1
|
Testa L, Dotta S, Vercelli A, Marvaldi L. Communicating pain: emerging axonal signaling in peripheral neuropathic pain. Front Neuroanat 2024; 18:1398400. [PMID: 39045347 PMCID: PMC11265228 DOI: 10.3389/fnana.2024.1398400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/21/2024] [Indexed: 07/25/2024] Open
Abstract
Peripheral nerve damage often leads to the onset of neuropathic pain (NeuP). This condition afflicts millions of people, significantly burdening healthcare systems and putting strain on families' financial well-being. Here, we will focus on the role of peripheral sensory neurons, specifically the Dorsal Root Ganglia neurons (DRG neurons) in the development of NeuP. After axotomy, DRG neurons activate regenerative signals of axons-soma communication to promote a gene program that activates an axonal branching and elongation processes. The results of a neuronal morphological cytoskeleton change are not always associated with functional recovery. Moreover, any axonal miss-targeting may contribute to NeuP development. In this review, we will explore the epidemiology of NeuP and its molecular causes at the level of the peripheral nervous system and the target organs, with major focus on the neuronal cross-talk between intrinsic and extrinsic factors. Specifically, we will describe how failures in the neuronal regenerative program can exacerbate NeuP.
Collapse
Affiliation(s)
- Livia Testa
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano (Torino), Torino, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, Torino, Italy
| | - Sofia Dotta
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano (Torino), Torino, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, Torino, Italy
| | - Alessandro Vercelli
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano (Torino), Torino, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, Torino, Italy
| | - Letizia Marvaldi
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano (Torino), Torino, Italy
- Department of Neuroscience “Rita Levi-Montalcini”, Torino, Italy
| |
Collapse
|
2
|
Zhao C, Zhou X, Shi X. The influence of Nav1.9 channels on intestinal hyperpathia and dysmotility. Channels (Austin) 2023; 17:2212350. [PMID: 37186898 DOI: 10.1080/19336950.2023.2212350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
The Nav1.9 channel is a voltage-gated sodium channel. It plays a vital role in the generation of pain and the formation of neuronal hyperexcitability after inflammation. It is highly expressed in small diameter neurons of dorsal root ganglions and Dogiel II neurons in enteric nervous system. The small diameter neurons in dorsal root ganglions are the primary sensory neurons of pain conduction. Nav1.9 channels also participate in regulating intestinal motility. Functional enhancements of Nav1.9 channels to a certain extent lead to hyperexcitability of small diameter dorsal root ganglion neurons. The hyperexcitability of the neurons can cause visceral hyperalgesia. Intestinofugal afferent neurons and intrinsic primary afferent neurons in enteric nervous system belong to Dogiel type II neurons. Their excitability can also be regulated by Nav1.9 channels. The hyperexcitability of intestinofugal afferent neurons abnormally activate entero-enteric inhibitory reflexes. The hyperexcitability of intrinsic primary afferent neurons disturb peristaltic waves by abnormally activating peristaltic reflexes. This review discusses the role of Nav1.9 channels in intestinal hyperpathia and dysmotility.
Collapse
Affiliation(s)
- Chenyu Zhao
- Department of Gastroenterology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xi Zhou
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Xiaoliu Shi
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
3
|
Maqoud F, Tricarico D, Mallamaci R, Orlando A, Russo F. The Role of Ion Channels in Functional Gastrointestinal Disorders (FGID): Evidence of Channelopathies and Potential Avenues for Future Research and Therapeutic Targets. Int J Mol Sci 2023; 24:11074. [PMID: 37446251 DOI: 10.3390/ijms241311074] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Several gastrointestinal (GI) tract abnormalities, including visceral hypersensitivity, motility, and intestinal permeability alterations, have been implicated in functional GI disorders (FGIDs). Ion channels play a crucial role in all the functions mentioned above. Hormones and natural molecules modulate these channels and represent targets of drugs and bacterial toxins. Mutations and abnormal functional expression of ion channel subunits can lead to diseases called channelopathies. These channelopathies in gastroenterology are gaining a strong interest, and the evidence of co-relationships is increasing. In this review, we describe the correlation status between channelopathies and FGIDs. Different findings are available. Among others, mutations in the ABCC7/CFTR gene have been described as a cause of constipation and diarrhea. Mutations of the SCN5A gene are instead associated with irritable bowel syndrome. In contrast, mutations of the TRPV1 and TRPA genes of the transient receptor potential (TRP) superfamily manifest hypersensitivity and visceral pain in sensory nerves. Recently, mice and humans affected by Cantu syndrome (CS), which is associated with the mutations of the KCNJ8 and ABCC9 genes encoding for the Kir6.1 and SUR2 subunits, showed dysfunction of contractility throughout the intestine and death in the mice after the weaning on solid food. The discovery of a correlation between channelopathies and FIGD opens new avenues for discovering new direct drug targets for specific channelopathies, leading to significant implications for diagnosing and treating functional GI diseases.
Collapse
Affiliation(s)
- Fatima Maqoud
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS "Saverio de Bellis", Castellana Grotte, 70013 Bari, Italy
| | - Domenico Tricarico
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Rosanna Mallamaci
- Department of Biosciences, Biotechnologies and Environment University of Bari Aldo Moro, 70125 Bari, Italy
| | - Antonella Orlando
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS "Saverio de Bellis", Castellana Grotte, 70013 Bari, Italy
| | - Francesco Russo
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS "Saverio de Bellis", Castellana Grotte, 70013 Bari, Italy
| |
Collapse
|
4
|
Brackx W, de Cássia Collaço R, Theys M, Cruyssen JV, Bosmans F. Understanding the physiological role of Na V1.9: Challenges and opportunities for pain modulation. Pharmacol Ther 2023; 245:108416. [PMID: 37061202 DOI: 10.1016/j.pharmthera.2023.108416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023]
Abstract
Voltage-activated Na+ (NaV) channels are crucial contributors to rapid electrical signaling in the human body. As such, they are among the most targeted membrane proteins by clinical therapeutics and natural toxins. Several of the nine mammalian NaV channel subtypes play a documented role in pain or other sensory processes such as itch, touch, and smell. While causal relationships between these subtypes and biological function have been extensively described, the physiological role of NaV1.9 is less understood. Yet, mutations in NaV1.9 can cause striking disease phenotypes related to sensory perception such as loss or gain of pain and chronic itch. Here, we explore our current knowledge of the mechanisms by which NaV1.9 may contribute to pain and elaborate on the challenges associated with establishing links between experimental conditions and human disease. This review also discusses the lack of comprehensive insights into NaV1.9-specific pharmacology, an unfortunate situation since modulatory compounds may have tremendous potential in the clinic to treat pain or as precision tools to examine the extent of NaV1.9 participation in sensory perception processes.
Collapse
Affiliation(s)
- Wayra Brackx
- Molecular Physiology and Neurophysics Group, Department of Basic and Applied Medical Sciences, University of Ghent, Ghent, Belgium
| | - Rita de Cássia Collaço
- Molecular Physiology and Neurophysics Group, Department of Basic and Applied Medical Sciences, University of Ghent, Ghent, Belgium
| | - Margaux Theys
- Molecular Physiology and Neurophysics Group, Department of Basic and Applied Medical Sciences, University of Ghent, Ghent, Belgium
| | - Jolien Vander Cruyssen
- Molecular Physiology and Neurophysics Group, Department of Basic and Applied Medical Sciences, University of Ghent, Ghent, Belgium
| | - Frank Bosmans
- Molecular Physiology and Neurophysics Group, Department of Basic and Applied Medical Sciences, University of Ghent, Ghent, Belgium.
| |
Collapse
|
5
|
Okuda H, Inoue S, Oyamada Y, Koizumi A, Youssefian S. Reduced pain sensitivity of episodic pain syndrome model mice carrying a Nav1.9 mutation by ANP-230, a novel sodium channel blocker. Heliyon 2023; 9:e15423. [PMID: 37151704 PMCID: PMC10161610 DOI: 10.1016/j.heliyon.2023.e15423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 03/24/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023] Open
Abstract
The sodium channel Nav1.9 is expressed in the sensory neurons of small diameter dorsal root ganglia that transmit pain signals, and gain-of-function Nav1.9 mutations have been associated with both painful and painless disorders. We initially determined that some Nav1.9 mutations are responsible for familial episodic pain syndrome observed in the Japanese population. We therefore generated model mice harboring one of the more painful Japanese mutations, R222S, and determined that dorsal root ganglia hyperexcitability was the cause of the associated pain. ANP-230 is a novel non-opioid drug with strong inhibitory effects on Nav1.7, 1.8 and 1.9, and is currently under clinical trials for patients suffering from familial episodic pain syndrome. However, little is known about its mechanism of action and effects on pain sensitivity. In this study, we therefore investigated the inhibitory effects of ANP-230 on the hypersensitivity of Nav1.9 p.R222S mutant model mouse to pain. In behavioral tests, ANP-230 reduced the pain response of the mice, particularly to heat or mechanical stimuli, in a concentration- and time-dependent manner. Furthermore, ANP-230 suppressed the repetitive firing of dorsal root ganglion neurons of these mutant mice. Our results clearly demonstrate that ANP-230 is an effective analgesic for familial episodic pain syndrome resulting from DRG neuron hyperexcitability, and that such analgesic effects are likely to be of clinical significance.
Collapse
Affiliation(s)
- Hiroko Okuda
- Department of Pain Pharmacogenetics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, 465 Kajiicho Kamigyo‐ward, Kyoto, 602‐8566, Japan
- Corresponding author.
| | - Sumiko Inoue
- Department of Pain Pharmacogenetics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Yoshihiro Oyamada
- Department of Pain Pharmacogenetics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
- AlphaNavi Pharma Inc., Osaka, 564-0053, Japan
| | - Akio Koizumi
- Department of Pain Pharmacogenetics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
- Institute of Public Health and Welfare Research, Kyoto, 616-8141, Japan
- Corresponding author. Department of Pain Pharmacogenetics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.
| | - Shohab Youssefian
- Department of Pain Pharmacogenetics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
- Laboratory of Molecular Biosciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| |
Collapse
|
6
|
Kuehs S, Teege L, Hellberg AK, Stanke C, Haag N, Kurth I, Blum R, Nau C, Leipold E. Isolation and transfection of myenteric neurons from mice for patch-clamp applications. Front Mol Neurosci 2022; 15:1076187. [PMID: 36618826 PMCID: PMC9810798 DOI: 10.3389/fnmol.2022.1076187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
The enteric nervous system (ENS) is a complex neuronal network organized in ganglionated plexuses that extend along the entire length of the gastrointestinal tract. Largely independent of the central nervous system, the ENS coordinates motility and peristalsis of the digestive tract, regulates secretion and absorption, and is involved in immunological processes. Electrophysiological methods such as the patch-clamp technique are particularly suitable to study the function of neurons as well as the biophysical parameters of the underlying ion channels under both physiological and pathophysiological conditions. However, application of the patch-clamp method to ENS neurons remained difficult because they are embedded in substantial tissue layers that limit access to and targeted manipulation of these cells. Here, we present a robust step-by-step protocol that involves isolation of ENS neurons from adult mice, culturing of the cells, their transfection with plasmid DNA, and subsequent electrophysiological characterization of individual neurons in current-clamp and voltage-clamp recordings. With this protocol, ENS neurons can be prepared, transfected, and electrophysiologically characterized within 72 h. Using isolated ENS neurons, we demonstrate the feasibility of the approach by functional overexpression of recombinant voltage-gated NaV1.9 mutant channels associated with hereditary sensory and autonomic neuropathy type 7 (HSAN-7), a disorder characterized by congenital analgesia and severe constipation that can require parenteral nutrition. Although our focus is on the electrophysiological evaluation of isolated ENS neurons, the presented methodology is also useful to analyze molecules other than sodium channels or to apply alternative downstream assays including calcium imaging, proteomic and nucleic acid approaches, or immunochemistry.
Collapse
Affiliation(s)
- Samuel Kuehs
- Department of Anesthesiology and Intensive Care, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Laura Teege
- Department of Anesthesiology and Intensive Care, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Ann-Katrin Hellberg
- Department of Anesthesiology and Intensive Care, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Christina Stanke
- Department of Anesthesiology and Intensive Care, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Natja Haag
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, Rhine-Westphalia Technical University of Aachen, Aachen, Germany,Institute of Physiology, Medical Faculty, Rhine-Westphalia Technical University of Aachen, Aachen, Germany
| | - Ingo Kurth
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, Rhine-Westphalia Technical University of Aachen, Aachen, Germany
| | - Robert Blum
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Carla Nau
- Department of Anesthesiology and Intensive Care, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Enrico Leipold
- Department of Anesthesiology and Intensive Care, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany,*Correspondence: Enrico Leipold,
| |
Collapse
|
7
|
Lischka A, Lassuthova P, Çakar A, Record CJ, Van Lent J, Baets J, Dohrn MF, Senderek J, Lampert A, Bennett DL, Wood JN, Timmerman V, Hornemann T, Auer-Grumbach M, Parman Y, Hübner CA, Elbracht M, Eggermann K, Geoffrey Woods C, Cox JJ, Reilly MM, Kurth I. Genetic pain loss disorders. Nat Rev Dis Primers 2022; 8:41. [PMID: 35710757 DOI: 10.1038/s41572-022-00365-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/10/2022] [Indexed: 01/05/2023]
Abstract
Genetic pain loss includes congenital insensitivity to pain (CIP), hereditary sensory neuropathies and, if autonomic nerves are involved, hereditary sensory and autonomic neuropathy (HSAN). This heterogeneous group of disorders highlights the essential role of nociception in protecting against tissue damage. Patients with genetic pain loss have recurrent injuries, burns and poorly healing wounds as disease hallmarks. CIP and HSAN are caused by pathogenic genetic variants in >20 genes that lead to developmental defects, neurodegeneration or altered neuronal excitability of peripheral damage-sensing neurons. These genetic variants lead to hyperactivity of sodium channels, disturbed haem metabolism, altered clathrin-mediated transport and impaired gene regulatory mechanisms affecting epigenetic marks, long non-coding RNAs and repetitive elements. Therapies for pain loss disorders are mainly symptomatic but the first targeted therapies are being tested. Conversely, chronic pain remains one of the greatest unresolved medical challenges, and the genes and mechanisms associated with pain loss offer new targets for analgesics. Given the progress that has been made, the coming years are promising both in terms of targeted treatments for pain loss disorders and the development of innovative pain medicines based on knowledge of these genetic diseases.
Collapse
Affiliation(s)
- Annette Lischka
- Institute of Human Genetics, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Petra Lassuthova
- Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Arman Çakar
- Neuromuscular Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Christopher J Record
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Jonas Van Lent
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born Bunge, Antwerp, Belgium
| | - Jonathan Baets
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, Antwerp, Belgium.,Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Maike F Dohrn
- Department of Neurology, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany.,Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Jan Senderek
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University, Munich, Germany
| | - Angelika Lampert
- Institute of Physiology, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - David L Bennett
- Nuffield Department of Clinical Neuroscience, Oxford University, Oxford, UK
| | - John N Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born Bunge, Antwerp, Belgium
| | - Thorsten Hornemann
- Department of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Michaela Auer-Grumbach
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Yesim Parman
- Neuromuscular Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | | | - Miriam Elbracht
- Institute of Human Genetics, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Katja Eggermann
- Institute of Human Genetics, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - C Geoffrey Woods
- Cambridge Institute for Medical Research, Keith Peters Building, Cambridge Biomedical Campus, Cambridge, UK
| | - James J Cox
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Mary M Reilly
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Ingo Kurth
- Institute of Human Genetics, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
8
|
Matsubara Y, Okuda H, Harada KH, Youssefian S, Koizumi A. Mechanical allodynia triggered by cold exposure in mice with the Scn11a p.R222S mutation: a novel model of drug therapy for neuropathic pain related to Na V1.9. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:299-306. [PMID: 32970203 PMCID: PMC7835175 DOI: 10.1007/s00210-020-01978-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/15/2020] [Indexed: 12/19/2022]
Abstract
Mutations within the SCN11A gene which encodes the voltage-gated sodium channel NaV1.9 mainly expressed in small fiber sensory neurons have been associated with neuropathic disorders; however, suitable medications have not been fully investigated. To develop drug therapies against NaV1.9-related neuropathic pain, we aimed to establish a novel model using mice carrying the Scn11a p.R222S mutation initially identified in patients with familial episodic limb pain that is characterized by paroxysmal pain induced by fatigue or bad weather conditions. We investigated the influence of cold exposure (4 °C, overnight) on the behavioral and biochemical phenotypes of Scn11a p.R222S mutant (R222S) and wild type C57BL/6N (WT) mice. We also tested the effects of acetaminophen (125, 250 mg/kg, perorally, p.o.) and traditional Japanese medicine, goshajinkigan (0.5 or 1.0 g/kg, p.o.), which are analgesic drugs prescribed to patients with neuropathic pain, in this model of cold-induced mechanical allodynia in R222S mice.Cold-exposed R222S mice exhibited enhanced mechanical allodynia and thermal hypersensitivity compared with WT mice. The decrease of the mechanical withdrawal threshold in R222S mice was reversible 24 h after housing at room temperature. There was no significant change in the levels of interleukin-1β, interleukin-6, tumor necrosis factor-α, or interferon-γ in the plasma or spinal cords of WT and R222S mice after cold exposure. Both acetaminophen (250 mg/kg) and goshajinkigan (1.0 g/kg) significantly attenuated mechanical allodynia in R222S mice. The model of cold-induced mechanical allodynia in mice with the Scn11a p.R222S mutation is novel and useful for evaluating analgesic drugs for intractable neuropathies related to NaV1.9.
Collapse
Affiliation(s)
- Yosuke Matsubara
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan.
- Laboratory of Molecular Biosciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Hiroko Okuda
- Department of Health and Environmental Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kouji H Harada
- Department of Health and Environmental Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shohab Youssefian
- Laboratory of Molecular Biosciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akio Koizumi
- Department of Health and Environmental Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Social Health Medicine Welfare Laboratory, Public Interest Incorporated Association Kyoto Hokenkai, Kyoto, Japan
| |
Collapse
|
9
|
Cox JJ, Woods CG, Kurth I. Peripheral sensory neuropathies – pain loss vs. pain gain. MED GENET-BERLIN 2020. [DOI: 10.1515/medgen-2020-2039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Peripheral sensory neurons are afferent neurons that innervate the skin, joints, bones, muscles, and mucosal tissues. By converting different stimuli into action potentials, they transmit signals for the sensing of temperature, touch, pressure, or pain. This review discusses the known Mendelian disorders which affect pain sensing in humans. For painlessness, these disorders can be classified as developmental, neurodegenerative, or functional, where pain-sensing neurons (nociceptors) are present but cannot be activated or produce action potentials. Affected patients suffer from numbness with recurrent injuries, burns, and poorly healing wounds. For Mendelian disorders of excess pain, aberrant overactivity of nociceptors is a hallmark and leads to paroxysmal or continuous pain states. Again, the effect can be functional or, as in small fiber neuropathies, can be accompanied by degeneration of small unmyelinated nerve fibers in the skin. About 20 different genes are known to cause Mendelian pain disorders and the molecules involved are of general interest for human pain research and as analgesic targets. Comprehensive genetic testing is the key to early diagnosis and adaptation of clinical management.
Collapse
Affiliation(s)
- James J. Cox
- Molecular Nociception Group, Wolfson Institute for Biomedical Research , University College London , London , UK
| | - C. Geoffrey Woods
- Cambridge Institute for Medical Research, The Clinical Medical School , University of Cambridge , Cambridge , UK
| | - Ingo Kurth
- Institute of Human Genetics, Medical Faculty , Uniklinik RWTH Aachen , Pauwelsstr. 30 , Aachen , Germany
| |
Collapse
|
10
|
Painful and painless mutations of SCN9A and SCN11A voltage-gated sodium channels. Pflugers Arch 2020; 472:865-880. [PMID: 32601768 PMCID: PMC7351857 DOI: 10.1007/s00424-020-02419-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/25/2020] [Accepted: 06/10/2020] [Indexed: 12/11/2022]
Abstract
Chronic pain is a global problem affecting up to 20% of the world’s population and has a significant economic, social and personal cost to society. Sensory neurons of the dorsal root ganglia (DRG) detect noxious stimuli and transmit this sensory information to regions of the central nervous system (CNS) where activity is perceived as pain. DRG neurons express multiple voltage-gated sodium channels that underlie their excitability. Research over the last 20 years has provided valuable insights into the critical roles that two channels, NaV1.7 and NaV1.9, play in pain signalling in man. Gain of function mutations in NaV1.7 cause painful conditions while loss of function mutations cause complete insensitivity to pain. Only gain of function mutations have been reported for NaV1.9. However, while most NaV1.9 mutations lead to painful conditions, a few are reported to cause insensitivity to pain. The critical roles these channels play in pain along with their low expression in the CNS and heart muscle suggest they are valid targets for novel analgesic drugs.
Collapse
|
11
|
Jin JY, Wu PF, He JQ, Fan LL, Yuan ZZ, Pang XY, Tang JY, Zhang LY. Novel Compound Heterozygous DST Variants Causing Hereditary Sensory and Autonomic Neuropathies VI in Twins of a Chinese Family. Front Genet 2020; 11:492. [PMID: 32528525 PMCID: PMC7262964 DOI: 10.3389/fgene.2020.00492] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/20/2020] [Indexed: 11/27/2022] Open
Abstract
Background: Hereditary sensory and autonomic neuropathies (HSANs) are a rare and severe group of sensory axonal neuropathies. HSANs have been classified into eight groups based on mode of inheritance, clinical features, and the involved genes. HSAN-VI, perhaps the most notable type, is an autosomal recessive disease, which manifests as the severely impaired pain sensitivity, autonomic disturbances, distal myopathy, spontaneous or surgical amputations, and sometimes early death. Mutations in DST have been identified as the cause of HSAN-VI. DST encodes dystonin, a member of the plakin protein family that is involved in cytoskeletal filament networks. Dystonin has seven major isoforms in nerve, muscle, and epithelium. Material and Methods: The present study investigated a Chinese family with HSAN and explored potential pathogenic variants using whole-exome sequencing (WES). Variants were screened and filtered through bioinformatics analysis and prediction of variant pathogenicity. Co-segregation analysis was subsequently conducted. Results: We identified compound heterozygous variants of DST (c.3304G>A, p.V1102I and c.13796G>A, p.R4599H) in two patients. Conclusion: We reported on a Chinese family with HSAN-VI family and detected the disease-causing variants. Our description expands the spectrum of known DST variants and contributes to the clinical diagnosis of HSAN-VI.
Collapse
Affiliation(s)
- Jie-Yuan Jin
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China.,Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,School of Life Sciences, Central South University, Changsha, China
| | - Pan-Feng Wu
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China
| | - Ji-Qiang He
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China
| | - Liang-Liang Fan
- School of Life Sciences, Central South University, Changsha, China.,Human Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China
| | | | - Xiao-Yang Pang
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China
| | - Ju-Yu Tang
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China
| | - Li-Yang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
12
|
Drissi I, Woods WA, Woods CG. Understanding the genetic basis of congenital insensitivity to pain. Br Med Bull 2020; 133:65-78. [PMID: 32219415 PMCID: PMC7227775 DOI: 10.1093/bmb/ldaa003] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/21/2020] [Accepted: 01/31/2020] [Indexed: 12/15/2022]
Abstract
INTRODUCTION OR BACKGROUND Congenital insensitivity to pain (CIP) is caused by extremely rare Mendelian genetic disorders. CIP individuals demonstrate the unexpectedly severe consequences of painlessness. Although only a small number of causative conditions and genes are known, most have led to profound insights into human nociception. CIP gene discovery is catalyzing the manufacture of completely new classes of analgesics, and these are needed as alternatives to synthetic highly potent opioids. SOURCES OF DATA Pubmed.gov peer-reviewed journal articles and reviews. AREAS OF AGREEMENT The importance of nerve growth factor-tropomyosin receptor kinase A (NGF-TRKA) signalling for nociceptor genesis and subsequent pain sensing.New analgesics can be generated from knowledge of the NGF-TRKA nociceptor pathway.Increased susceptibility to Staphylococcus aureus infection is a consequence of deficient NGF-TRKA signalling.Mutations in the voltage-gated sodium channels SCN9A and SCN11A can cause congenital painlessness, and in contradistinction, other mutations can cause episodic neuropathic pain. SCN9A/Nav1.7 is an analgesic target. SCN11A/Nav1.9 is unlikely to be an analgesic target.There are further Mendelian causes of painlessness to be discovered. AREAS OF CONTROVERSY Which NGF-TRKA intracellular signalling pathways operate in nociceptor development and which in post-natal pain sensing?Why have no clinically effective Nav1.7 antagonist been generated? SCN9A-CIP causes analgesia, at least in part, through endogenous opioids.Why do all CIP phenotypes involve a complete loss of all types of nociception? AREAS TIMELY FOR DEVELOPING RESEARCH PRDM12 as an analgesic target.Discovery of the function and analgesic potential of new CIP genes.Can NGF-TRKA be used in the treatment of S. aureus?
Collapse
Affiliation(s)
- Ichrak Drissi
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - William Aidan Woods
- School of Medicine, David Weatherall building, University Road, Keele University, Staffordshire ST5 5BG, UK
| | - Christopher Geoffrey Woods
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
13
|
Ahmadi S, Knerr JM, Argemi L, Bordon KCF, Pucca MB, Cerni FA, Arantes EC, Çalışkan F, Laustsen AH. Scorpion Venom: Detriments and Benefits. Biomedicines 2020; 8:biomedicines8050118. [PMID: 32408604 PMCID: PMC7277529 DOI: 10.3390/biomedicines8050118] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/01/2020] [Accepted: 05/07/2020] [Indexed: 12/17/2022] Open
Abstract
Scorpion venom may cause severe medical complications and untimely death if injected into the human body. Neurotoxins are the main components of scorpion venom that are known to be responsible for the pathological manifestations of envenoming. Besides neurotoxins, a wide range of other bioactive molecules can be found in scorpion venoms. Advances in separation, characterization, and biotechnological approaches have enabled not only the development of more effective treatments against scorpion envenomings, but have also led to the discovery of several scorpion venom peptides with interesting therapeutic properties. Thus, scorpion venom may not only be a medical threat to human health, but could prove to be a valuable source of bioactive molecules that may serve as leads for the development of new therapies against current and emerging diseases. This review presents both the detrimental and beneficial properties of scorpion venom toxins and discusses the newest advances within the development of novel therapies against scorpion envenoming and the therapeutic perspectives for scorpion toxins in drug discovery.
Collapse
Affiliation(s)
- Shirin Ahmadi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (J.M.K.); (L.A.); (M.B.P.); (F.A.C.)
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Sciences, Eşkisehir Osmangazi University, TR-26040 Eşkisehir, Turkey;
- Correspondence: (S.A.); (A.H.L.); Tel.: +45-7164-6042 (S.A.); +45-2988-1134 (A.H.L.)
| | - Julius M. Knerr
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (J.M.K.); (L.A.); (M.B.P.); (F.A.C.)
| | - Lídia Argemi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (J.M.K.); (L.A.); (M.B.P.); (F.A.C.)
| | - Karla C. F. Bordon
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto—São Paulo 14040-903, Brazil; (K.C.F.B.); (E.C.A.)
| | - Manuela B. Pucca
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (J.M.K.); (L.A.); (M.B.P.); (F.A.C.)
- Medical School, Federal University of Roraima, Boa Vista, Roraima 69310-000, Brazil
| | - Felipe A. Cerni
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (J.M.K.); (L.A.); (M.B.P.); (F.A.C.)
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto—São Paulo 14040-903, Brazil; (K.C.F.B.); (E.C.A.)
| | - Eliane C. Arantes
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto—São Paulo 14040-903, Brazil; (K.C.F.B.); (E.C.A.)
| | - Figen Çalışkan
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Sciences, Eşkisehir Osmangazi University, TR-26040 Eşkisehir, Turkey;
- Department of Biology, Faculty of Science and Letters, Eskisehir Osmangazi University, TR-26040 Eskisehir, Turkey
| | - Andreas H. Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (J.M.K.); (L.A.); (M.B.P.); (F.A.C.)
- Correspondence: (S.A.); (A.H.L.); Tel.: +45-7164-6042 (S.A.); +45-2988-1134 (A.H.L.)
| |
Collapse
|
14
|
Poojary S, Jaiswal S, Shah KS, Bhalala KB. Sisters with No Pain, No Tears: A Report of a New Variant of Hereditary Sensory and Autonomic Neuropathy (Type IX) Caused by a Novel SCN11A Mutation. Indian J Dermatol 2020; 65:299-303. [PMID: 32831372 PMCID: PMC7423241 DOI: 10.4103/ijd.ijd_416_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Lack of pain sensation in children involves a rare group of heritable disorders; hereditary sensory and autonomic neuropathy (HSAN). Till date, eight types of HSAN have been described depending on the clinical phenotype and the underlying gene mutation. We report a new variant of HSAN (Type IX) in two siblings (of Indian origin) with a novel mutation of SCN11A gene and a distinct clinical phenotype.
Collapse
Affiliation(s)
- Shital Poojary
- Department of Dermatology, Venereology and Leprology, K. J. Somaiya Medical College, Mumbai, Maharashtra, India
| | - Saurabh Jaiswal
- Department of Dermatology, Venereology and Leprology, K. J. Somaiya Medical College, Mumbai, Maharashtra, India
| | - Kapisha Sunny Shah
- Department of Dermatology, Venereology and Leprology, K. J. Somaiya Medical College, Mumbai, Maharashtra, India
| | - Krishna B Bhalala
- Department of Dermatology, Venereology and Leprology, K. J. Somaiya Medical College, Mumbai, Maharashtra, India
| |
Collapse
|
15
|
Abstract
Prostaglandins (PGs) are highly bioactive fatty acids. PGs, especially prostaglandin E2 (PGE2), are abundantly produced by cells of both the bone-forming (osteoblast) lineage and the bone-resorbing (osteoclast) lineage. The inducible cyclooxygenase, COX-2, is largely responsible for most PGE2 production in bone, and once released, PGE2 is rapidly degraded in vivo. COX-2 is induced by multiple agonists - hormones, growth factors, and proinflammatory factors - and the resulting PGE2 may mediate, amplify, or, as we have recently shown for parathyroid hormone (PTH), inhibit responses to these agonists. In vitro, PGE2 can directly stimulate osteoblast differentiation and, indirectly via stimulation of RANKL in osteoblastic cells, stimulate the differentiation of osteoclasts. The net balance of these two effects of PGE2 in vivo on bone formation and bone resorption has been hard to predict and, as expected for such a widespread local factor, hard to study. Some of the complexity of PGE2 actions on bone can be explained by the fact that there are four receptors for PGE2 (EP1-4). Some of the major actions of PGE2 in vitro occur via EP2 and EP4, both of which can stimulate cAMP signaling, but there are other distinct signaling pathways, important in other tissues, which have not yet been fully elucidated in bone cells. Giving PGE2 or agonists of EP2 and EP4 to accelerate bone repair has been examined with positive results. Further studies to clarify the pathways of PGE2 action in bone may allow us to identify new and more effective ways to deliver the therapeutic benefits of PGE2 in skeletal disorders.
Collapse
Affiliation(s)
- Carol Pilbeam
- Department of Medicine and Musculoskeletal Institute, UConn Health, Farmington, CT, USA.
| |
Collapse
|
16
|
Whyte MP, McAlister WH, Zhang F, Bijanki VN, Nenninger A, Gottesman GS, Lin EL, Huskey M, Duan S, Dahir K, Mumm S. New explanation for autosomal dominant high bone mass: Mutation of low-density lipoprotein receptor-related protein 6. Bone 2019; 127:228-243. [PMID: 31085352 DOI: 10.1016/j.bone.2019.05.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 01/10/2023]
Abstract
LRP5 encodes low-density lipoprotein receptor-related protein 5 (LRP5). When LRP5 with a Frizzled receptor join on the surface of an osteoblast and bind a member of the Wnt family of ligands, canonical Wnt/β-catenin signaling occurs and increases bone formation. Eleven heterozygous gain-of-function missense mutations within LRP5 are known to prevent the LRP5 inhibitory ligands sclerostin and dickkopf1 from attaching to LRP5's first β-propeller, and thereby explain the rare autosomal dominant (AD) skeletal disorder "high bone mass" (HBM). LRP6 is a cognate co-receptor of LRP5 and similarly controls Wnt signaling in osteoblasts, yet the consequences of increased LRP6-mediated signaling remain unknown. We investigated two multi-generational American families manifesting the clinical and routine laboratory features of LRP5 HBM but without an LRP5 defect and instead carrying a heterozygous LRP6 missense mutation that would alter the first β-propeller of LRP6. In Family 1 LRP6 c.602C>T, p.A201V was homologous to LRP5 HBM mutation c.641C>T, p.A214V, and in Family 2 LRP6 c.553A>C, p.N185H was homologous to LRP5 HBM mutation c.593A>G, p.N198S but predicting a different residue at the identical amino acid position. In both families the LRP6 mutation co-segregated with striking generalized osteosclerosis and hyperostosis. Clinical features shared by the seven LRP6 HBM family members and ten LRP5 HBM patients included a broad jaw, torus palatinus, teeth encased in bone and, reportedly, resistance to fracturing and inability to float in water. For both HBM disorders, all affected individuals were taller than average for Americans (Ps < 0.005), but with similar mean height Z-scores (P = 0.7606) and indistinguishable radiographic skeletal features. Absence of adult maxillary lateral incisors was reported by some LRP6 HBM individuals. In contrast, our 16 patients with AD osteopetrosis [i.e., Albers-Schönberg disease (A-SD)] had an unremarkable mean height Z-score (P = 0.9401) lower than for either HBM group (Ps < 0.05). DXA mean BMD Z-scores in LRP6 HBM versus LRP5 HBM were somewhat higher at the lumbar spine (+7.8 vs +6.5, respectively; P = 0.0403), but no different at the total hip (+7.9 vs +7.7, respectively; P = 0.7905). Among the three diagnostic groups, only the LRP6 HBM DXA BMD values at the spine seemed to increase with subject age (R = +0.7183, P = 0.0448). Total hip BMD Z-scores were not significantly different among the three disorders (Ps > 0.05), and showed no age effect (Ps > 0.1). HR-pQCT available only for LRP6 HBM revealed indistinct corticomedullary boundaries, high distal forearm and tibial total volumetric BMD, and finite element analysis predicted marked fracture resistance. Hence, we have discovered mutations of LRP6 that cause a dento-osseous disorder indistinguishable without mutation analysis from LRP5 HBM. LRP6 HBM seems associated with generally good health, providing some reassurance for the development of anabolic treatments aimed to enhance LRP5/LRP6-mediated osteogenesis.
Collapse
Affiliation(s)
- Michael P Whyte
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110, USA.
| | - William H McAlister
- Mallinckrodt Institute of Radiology, Washington University School of Medicine at St. Louis Children's Hospital, St. Louis, MO 63110, USA.
| | - Fan Zhang
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA.
| | - Vinieth N Bijanki
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA.
| | - Angela Nenninger
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA.
| | - Gary S Gottesman
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA.
| | - Elizabeth L Lin
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110, USA.
| | - Margaret Huskey
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110, USA.
| | - Shenghui Duan
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110, USA.
| | - Kathryn Dahir
- Department of Endocrinology and Diabetes, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Steven Mumm
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110, USA.
| |
Collapse
|
17
|
Habib AM, Matsuyama A, Okorokov AL, Santana-Varela S, Bras JT, Aloisi AM, Emery EC, Bogdanov YD, Follenfant M, Gossage SJ, Gras M, Humphrey J, Kolesnikov A, Le Cann K, Li S, Minett MS, Pereira V, Ponsolles C, Sikandar S, Torres JM, Yamaoka K, Zhao J, Komine Y, Yamamori T, Maniatis N, Panov KI, Houlden H, Ramirez JD, Bennett DLH, Marsili L, Bachiocco V, Wood JN, Cox JJ. A novel human pain insensitivity disorder caused by a point mutation in ZFHX2. Brain 2019; 141:365-376. [PMID: 29253101 PMCID: PMC5837393 DOI: 10.1093/brain/awx326] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/18/2017] [Indexed: 12/13/2022] Open
Abstract
Chronic pain is a major global public health issue causing a severe impact on both the quality of life for sufferers and the wider economy. Despite the significant clinical burden, little progress has been made in terms of therapeutic development. A unique approach to identifying new human-validated analgesic drug targets is to study rare families with inherited pain insensitivity. Here we have analysed an otherwise normal family where six affected individuals display a pain insensitive phenotype that is characterized by hyposensitivity to noxious heat and painless bone fractures. This autosomal dominant disorder is found in three generations and is not associated with a peripheral neuropathy. A novel point mutation in ZFHX2, encoding a putative transcription factor expressed in small diameter sensory neurons, was identified by whole exome sequencing that segregates with the pain insensitivity. The mutation is predicted to change an evolutionarily highly conserved arginine residue 1913 to a lysine within a homeodomain. Bacterial artificial chromosome (BAC) transgenic mice bearing the orthologous murine p.R1907K mutation, as well as Zfhx2 null mutant mice, have significant deficits in pain sensitivity. Gene expression analyses in dorsal root ganglia from mutant and wild-type mice show altered expression of genes implicated in peripheral pain mechanisms. The ZFHX2 variant and downstream regulated genes associated with a human pain-insensitive phenotype are therefore potential novel targets for the development of new analgesic drugs.awx326media15680039660001.
Collapse
Affiliation(s)
- Abdella M Habib
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, UK.,College of Medicine, Member of Qatar Health Cluster, Qatar University, PO Box 2713, Doha, Qatar
| | - Ayako Matsuyama
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, UK
| | - Andrei L Okorokov
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, UK
| | - Sonia Santana-Varela
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, UK
| | - Jose T Bras
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Anna Maria Aloisi
- Department of Medicine, Surgery and Neuroscience, University of Siena, via Aldo Moro, 2, 53100 Siena, Italy
| | - Edward C Emery
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, UK
| | - Yury D Bogdanov
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, UK
| | - Maryne Follenfant
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, UK
| | - Sam J Gossage
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, UK
| | - Mathilde Gras
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, UK
| | - Jack Humphrey
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, UK
| | - Anna Kolesnikov
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, UK
| | - Kim Le Cann
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, UK
| | - Shengnan Li
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, UK
| | - Michael S Minett
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, UK
| | - Vanessa Pereira
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, UK
| | - Clara Ponsolles
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, UK
| | - Shafaq Sikandar
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, UK
| | - Jesus M Torres
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, UK.,Department of Biochemistry, Molecular Biology and Immunology, Faculty of Medicine, University of Granada, Granada 18012, Spain
| | - Kenji Yamaoka
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, UK
| | - Jing Zhao
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, UK
| | - Yuriko Komine
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Tetsuo Yamamori
- National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Nikolas Maniatis
- Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Konstantin I Panov
- Medical Biology Centre, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Henry Houlden
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Juan D Ramirez
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - David L H Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Letizia Marsili
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| | - Valeria Bachiocco
- Department of Medicine, Surgery and Neuroscience, University of Siena, via Aldo Moro, 2, 53100 Siena, Italy
| | - John N Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, UK
| | - James J Cox
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, UK
| |
Collapse
|
18
|
Monteiro C, Cardoso-Cruz H, Galhardo V. Animal models of congenital hypoalgesia: Untapped potential for assessing pain-related plasticity. Neurosci Lett 2019; 702:51-60. [DOI: 10.1016/j.neulet.2018.11.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
19
|
Cardoso FC, Lewis RJ. Structure-Function and Therapeutic Potential of Spider Venom-Derived Cysteine Knot Peptides Targeting Sodium Channels. Front Pharmacol 2019; 10:366. [PMID: 31031623 PMCID: PMC6470632 DOI: 10.3389/fphar.2019.00366] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 03/25/2019] [Indexed: 12/11/2022] Open
Abstract
Spider venom-derived cysteine knot peptides are a mega-diverse class of molecules that exhibit unique pharmacological properties to modulate key membrane protein targets. Voltage-gated sodium channels (NaV) are often targeted by these peptides to allosterically promote opening or closing of the channel by binding to structural domains outside the channel pore. These effects can result in modified pain responses, muscle paralysis, cardiac arrest, priapism, and numbness. Although such effects are often deleterious, subtype selective spider venom peptides are showing potential to treat a range of neurological disorders, including chronic pain and epilepsy. This review examines the structure–activity relationships of cysteine knot peptides from spider venoms that modulate NaV and discusses their potential as leads to novel therapies for neurological disorders.
Collapse
Affiliation(s)
- Fernanda C Cardoso
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Richard J Lewis
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
20
|
Bennett DL, Clark AJ, Huang J, Waxman SG, Dib-Hajj SD. The Role of Voltage-Gated Sodium Channels in Pain Signaling. Physiol Rev 2019; 99:1079-1151. [DOI: 10.1152/physrev.00052.2017] [Citation(s) in RCA: 256] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acute pain signaling has a key protective role and is highly evolutionarily conserved. Chronic pain, however, is maladaptive, occurring as a consequence of injury and disease, and is associated with sensitization of the somatosensory nervous system. Primary sensory neurons are involved in both of these processes, and the recent advances in understanding sensory transduction and human genetics are the focus of this review. Voltage-gated sodium channels (VGSCs) are important determinants of sensory neuron excitability: they are essential for the initial transduction of sensory stimuli, the electrogenesis of the action potential, and neurotransmitter release from sensory neuron terminals. Nav1.1, Nav1.6, Nav1.7, Nav1.8, and Nav1.9 are all expressed by adult sensory neurons. The biophysical characteristics of these channels, as well as their unique expression patterns within subtypes of sensory neurons, define their functional role in pain signaling. Changes in the expression of VGSCs, as well as posttranslational modifications, contribute to the sensitization of sensory neurons in chronic pain states. Furthermore, gene variants in Nav1.7, Nav1.8, and Nav1.9 have now been linked to human Mendelian pain disorders and more recently to common pain disorders such as small-fiber neuropathy. Chronic pain affects one in five of the general population. Given the poor efficacy of current analgesics, the selective expression of particular VGSCs in sensory neurons makes these attractive targets for drug discovery. The increasing availability of gene sequencing, combined with structural modeling and electrophysiological analysis of gene variants, also provides the opportunity to better target existing therapies in a personalized manner.
Collapse
Affiliation(s)
- David L. Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Alex J. Clark
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Jianying Huang
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Stephen G. Waxman
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Sulayman D. Dib-Hajj
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| |
Collapse
|
21
|
Lam PT, Padula SL, Hoang TV, Poth JE, Liu L, Liang C, LeFever AS, Wallace LM, Ashery-Padan R, Riggs PK, Shields JE, Shaham O, Rowan S, Brown NL, Glaser T, Robinson ML. Considerations for the use of Cre recombinase for conditional gene deletion in the mouse lens. Hum Genomics 2019; 13:10. [PMID: 30770771 PMCID: PMC6377743 DOI: 10.1186/s40246-019-0192-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/22/2019] [Indexed: 12/03/2022] Open
Abstract
Background Despite a number of different transgenes that can mediate DNA deletion in the developing lens, each has unique features that can make a given transgenic line more or less appropriate for particular studies. The purpose of this work encompasses both a review of transgenes that lead to the expression of Cre recombinase in the lens and a comparative analysis of currently available transgenic lines with a particular emphasis on the Le-Cre and P0-3.9GFPCre lines that can mediate DNA deletion in the lens placode. Although both of these transgenes are driven by elements of the Pax6 P0 promoter, the Le-Cre transgene consistently leads to ocular abnormalities in homozygous state and can lead to ocular defects on some genetic backgrounds when hemizygous. Result Although both P0-3.9GFPCre and Le-Cre hemizygous transgenic mice undergo normal eye development on an FVB/N genetic background, Le-Cre homozygotes uniquely exhibit microphthalmia. Examination of the expression patterns of these two transgenes revealed similar expression in the developing eye and pancreas. However, lineage tracing revealed widespread non-ocular CRE reporter gene expression in the P0-3.9GFPCre transgenic mice that results from stochastic CRE expression in the P0-3.9GFPCre embryos prior to lens placode formation. Postnatal hemizygous Le-Cre transgenic lenses express higher levels of CRE transcript and protein than the hemizygous lenses of P0-3.9GFPCre mice. Transcriptome analysis revealed that Le-Cre hemizygous lenses deregulated the expression of 15 murine genes, several of which are associated with apoptosis. In contrast, P0-3.9GFPCre hemizygous lenses only deregulated two murine genes. No known PAX6-responsive genes or genes directly associated with lens differentiation were deregulated in the hemizygous Le-Cre lenses. Conclusions Although P0-3.9GFPCre transgenic mice appear free from ocular abnormalities, extensive non-ocular CRE expression represents a potential problem for conditional gene deletion studies using this transgene. The higher level of CRE expression in Le-Cre lenses versus P0-3.9GFPCre lenses may explain abnormal lens development in homozygous Le-Cre mice. Given the lack of deregulation of PAX6-responsive transcripts, we suggest that abnormal eye development in Le-Cre transgenic mice stems from CRE toxicity. Our studies reinforce the requirement for appropriate CRE-only expressing controls when using CRE as a driver of conditional gene targeting strategies. Electronic supplementary material The online version of this article (10.1186/s40246-019-0192-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Phuong T Lam
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| | | | - Thanh V Hoang
- Department of Biology, Miami University, Oxford, OH, 45056, USA.,Present Address: Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Justin E Poth
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| | - Lin Liu
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| | - Chun Liang
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| | - Adam S LeFever
- Nuclear Medicine Department, University of Cincinnati Medical Center, 234 Goodman Street, Cincinnati, OH, 45219, USA
| | - Lindsay M Wallace
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Ruth Ashery-Padan
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neurosciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Penny K Riggs
- Department of Animal Sciences, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Jordan E Shields
- Department of Animal Sciences, Texas A&M University, College Station, TX, 77843-2471, USA.,Present Address: Emory Children's Center, Room 410, 2015 Uppergate Drive, Atlanta, GA, 30322, USA
| | - Ohad Shaham
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neurosciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Sheldon Rowan
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Nadean L Brown
- Department of Cell Biology and Human Anatomy, University of California, Davis One Shields Avenue, Davis, CA, 95616, USA
| | - Tom Glaser
- Department of Cell Biology and Human Anatomy, University of California, Davis One Shields Avenue, Davis, CA, 95616, USA
| | | |
Collapse
|
22
|
Li N, Guo S, Wang Q, Duan G, Sun J, Liu Y, Zhang J, Wang C, Zhu C, Liu J, Zhang X. Heterogeneity of clinical features and mutation analysis of NTRK1 in Han Chinese patients with congenital insensitivity to pain with anhidrosis. J Pain Res 2019; 12:453-465. [PMID: 30774415 PMCID: PMC6348974 DOI: 10.2147/jpr.s188566] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Purpose Congenital insensitivity to pain with anhidrosis (CIPA) is a rare inherited disorder whose core clinical features consist of no response to noxious stimuli and inability to sweat under any conditions. Our goal was to characterize the details of phenotypic and genotypic features in Chinese CIPA patients. Patients and methods Personal data and clinical information were investigated by interview and physical examination. DNA was extracted from blood samples of patients and their available familial members and subjected to genetic analysis. Results A total of 41 Han Chinese CIPA patients from 35 unrelated families were recruited. The distribution of patients was mainly in the central and southern regions of China, with a male to female ratio of 3:1 and a mortality rate of 7.3%. Heterogeneity of clinical features, including pain insensitivity, temperature sensation, and complications, were cataloged. Interestingly, some patients had "visceral pain" sensation, and there was a significant difference in temperature perception and thermal pain between individuals. The incidence of bone and joint fractures was 49%. The characteristics of 19 mutations of NTRK1 in 41 patients, with five novel mutations, were identified. More than 63% of patients had the splice mutation, c.851-33 T>A, which strongly suggests that it may be a common pathogenic site in Han Chinese patients. Conclusion Current findings expand our knowledge about the spectrum of phenotypic features and the racial characteristics of NTRK1 mutations of CIPA patients in the Han Chinese population.
Collapse
Affiliation(s)
- Ningbo Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
| | - Shanna Guo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
| | - Qingli Wang
- Department of Anesthesiology, Wuhan General Hospital of Guangzhou Military, Wuhan, China
| | - Guangyou Duan
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jiaoli Sun
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
| | - Yi Liu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
| | - Jin Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
| | - Cong Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
| | - Changmao Zhu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
| | - Jingyu Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Xianwei Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
| |
Collapse
|
23
|
Sopacua M, Hoeijmakers JGJ, Merkies ISJ, Lauria G, Waxman SG, Faber CG. Small‐fiber neuropathy: Expanding the clinical pain universe. J Peripher Nerv Syst 2019; 24:19-33. [DOI: 10.1111/jns.12298] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/27/2018] [Accepted: 12/14/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Maurice Sopacua
- Department of Neurology, School of Mental Health and NeuroscienceMaastricht University Medical Centre+ Maastricht The Netherlands
| | - Janneke G. J. Hoeijmakers
- Department of Neurology, School of Mental Health and NeuroscienceMaastricht University Medical Centre+ Maastricht The Netherlands
| | - Ingemar S. J. Merkies
- Department of Neurology, School of Mental Health and NeuroscienceMaastricht University Medical Centre+ Maastricht The Netherlands
- Department of NeurologySt. Elisabeth Hospital Willemstad Curaçao
| | - Giuseppe Lauria
- Neuroalgology UnitIRCCS Foundation, “Carlo Besta” Neurological Institute Milan Italy
- Department of Biomedical and Clinical Sciences “Luigi Sacco”University of Milan Milan Italy
| | - Stephen G. Waxman
- Department of NeurologyYale University School of Medicine New Haven Connecticut
- Center for Neuroscience and Regeneration ResearchVA Connecticut Healthcare System West Haven Connecticut
| | - Catharina G. Faber
- Department of Neurology, School of Mental Health and NeuroscienceMaastricht University Medical Centre+ Maastricht The Netherlands
| |
Collapse
|
24
|
Familial episodic limb pain in kindreds with novel Nav1.9 mutations. PLoS One 2018; 13:e0208516. [PMID: 30557356 PMCID: PMC6296736 DOI: 10.1371/journal.pone.0208516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 11/19/2018] [Indexed: 12/18/2022] Open
Abstract
We previously performed genetic analysis in six unrelated families with infantile limb pain episodes, characterized by cold-induced deterioration and mitigation in adolescence, and reported two new mutations p.R222H/S in SCN11A responsible for these episodes. As no term described this syndrome (familial episodic pain: FEP) in Japanese, we named it as”小児四肢疼痛発作症”. In the current study, we recruited an additional 42 new unrelated Japanese FEP families, between March 2016 and March 2018, and identified a total of 11 mutations in SCN11A: p.R222H in seven families, and p.R225C, p.F814C, p.F1146S, or p.V1184A, in independent families. A founder mutation, SCN11A p.R222H was confirmed to be frequently observed in patients with FEP in the Tohoku region of Japan. We also identified two novel missense variants of SCN11A, p.F814C and p.F1146S. To evaluate the effects of these latter two mutations, we generated knock-in mouse models harboring p.F802C (F802C) and p.F1125S (F1125S), orthologues of the human p.F814C and p.F1146S, respectively. We then performed electrophysiological investigations using dorsal root ganglion neurons dissected from the 6–8 week-old mice. Dissected neurons of F802C and F1125S mice showed increased resting membrane potentials and firing frequency of the action potentials (APs) by high input–current stimulus compared with WT mice. Furthermore, the firing probability of evoked APs increased in low stimulus input in F1125S mice, whereas several AP parameters and current threshold did not differ significantly between either of the mutations and WT mice. These results suggest a higher level of excitability in the F802C or F1125S mice than in WT, and indicate that these novel mutations are gain of function mutations. It can be expected that a considerable number of potential patients with FEP may be the result of gain of function SCN11A mutations.
Collapse
|
25
|
|
26
|
Gonçalves TC, Benoit E, Partiseti M, Servent D. The Na V1.7 Channel Subtype as an Antinociceptive Target for Spider Toxins in Adult Dorsal Root Ganglia Neurons. Front Pharmacol 2018; 9:1000. [PMID: 30233376 PMCID: PMC6131673 DOI: 10.3389/fphar.2018.01000] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/14/2018] [Indexed: 12/11/2022] Open
Abstract
Although necessary for human survival, pain may sometimes become pathologic if long-lasting and associated with alterations in its signaling pathway. Opioid painkillers are officially used to treat moderate to severe, and even mild, pain. However, the consequent strong and not so rare complications that occur, including addiction and overdose, combined with pain management costs, remain an important societal and economic concern. In this context, animal venom toxins represent an original source of antinociceptive peptides that mainly target ion channels (such as ASICs as well as TRP, CaV, KV and NaV channels) involved in pain transmission. The present review aims to highlight the NaV1.7 channel subtype as an antinociceptive target for spider toxins in adult dorsal root ganglia neurons. It will detail (i) the characteristics of these primary sensory neurons, the first ones in contact with pain stimulus and conveying the nociceptive message, (ii) the electrophysiological properties of the different NaV channel subtypes expressed in these neurons, with a particular attention on the NaV1.7 subtype, an antinociceptive target of choice that has been validated by human genetic evidence, and (iii) the features of spider venom toxins, shaped of inhibitory cysteine knot motif, that present high affinity for the NaV1.7 subtype associated with evidenced analgesic efficacy in animal models.
Collapse
Affiliation(s)
- Tânia C Gonçalves
- Sanofi R&D, Integrated Drug Discovery - High Content Biology, Paris, France.,Service d'Ingénierie Moléculaire des Protéines, CEA de Saclay, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Evelyne Benoit
- Service d'Ingénierie Moléculaire des Protéines, CEA de Saclay, Université Paris-Saclay, Gif-sur-Yvette, France.,Institut des Neurosciences Paris-Saclay, UMR CNRS/Université Paris-Sud 9197, Gif-sur-Yvette, France
| | - Michel Partiseti
- Sanofi R&D, Integrated Drug Discovery - High Content Biology, Paris, France
| | - Denis Servent
- Service d'Ingénierie Moléculaire des Protéines, CEA de Saclay, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
27
|
|
28
|
Cardoso FC, Lewis RJ. Sodium channels and pain: from toxins to therapies. Br J Pharmacol 2018; 175:2138-2157. [PMID: 28749537 PMCID: PMC5980290 DOI: 10.1111/bph.13962] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/11/2017] [Accepted: 07/17/2017] [Indexed: 12/16/2022] Open
Abstract
Voltage-gated sodium channels (NaV channels) are essential for the initiation and propagation of action potentials that critically influence our ability to respond to a diverse range of stimuli. Physiological and pharmacological studies have linked abnormal function of NaV channels to many human disorders, including chronic neuropathic pain. These findings, along with the description of the functional properties and expression pattern of NaV channel subtypes, are helping to uncover subtype specific roles in acute and chronic pain and revealing potential opportunities to target these with selective inhibitors. High-throughput screens and automated electrophysiology platforms have identified natural toxins as a promising group of molecules for the development of target-specific analgesics. In this review, the role of toxins in defining the contribution of NaV channels in acute and chronic pain states and their potential to be used as analgesic therapies are discussed. LINKED ARTICLES This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc.
Collapse
Affiliation(s)
- Fernanda C Cardoso
- Department of Chemistry and Structural Biology, Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLDAustralia
| | - Richard J Lewis
- Department of Chemistry and Structural Biology, Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLDAustralia
| |
Collapse
|
29
|
Zorina-Lichtenwalter K, Parisien M, Diatchenko L. Genetic studies of human neuropathic pain conditions: a review. Pain 2018; 159:583-594. [PMID: 29240606 PMCID: PMC5828382 DOI: 10.1097/j.pain.0000000000001099] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 10/20/2017] [Accepted: 10/26/2017] [Indexed: 12/12/2022]
Abstract
Numerous studies have shown associations between genetic variants and neuropathic pain disorders. Rare monogenic disorders are caused by mutations of substantial effect size in a single gene, whereas common disorders are likely to have a contribution from multiple genetic variants of mild effect size, representing different biological pathways. In this review, we survey the reported genetic contributors to neuropathic pain and submit them for validation in a 150,000-participant sample of the U.K. Biobank cohort. Successfully replicated association with a neuropathic pain construct for 2 variants in IL10 underscores the importance of neuroimmune interactions, whereas genome-wide significant association with low back pain (P = 1.3e-8) and false discovery rate 5% significant associations with hip, knee, and neck pain for variant rs7734804 upstream of the MAT2B gene provide evidence of shared contributing mechanisms to overlapping pain conditions at the molecular genetic level.
Collapse
Affiliation(s)
| | - Marc Parisien
- Alan Edwards Pain Centre, McGill University, Montreal, QC, Canada
| | - Luda Diatchenko
- Alan Edwards Pain Centre, McGill University, Montreal, QC, Canada
| |
Collapse
|
30
|
Huang J, Mis MA, Tanaka B, Adi T, Estacion M, Liu S, Walker S, Dib-Hajj SD, Waxman SG. Atypical changes in DRG neuron excitability and complex pain phenotype associated with a Na v1.7 mutation that massively hyperpolarizes activation. Sci Rep 2018; 8:1811. [PMID: 29379075 PMCID: PMC5788866 DOI: 10.1038/s41598-018-20221-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/16/2018] [Indexed: 02/06/2023] Open
Abstract
Sodium channel Nav1.7 plays a central role in pain-signaling: gain-of-function Nav1.7 mutations usually cause severe pain and loss-of-function mutations produce insensitivity to pain. The Nav1.7 I234T gain-of-function mutation, however, is linked to a dual clinical presentation of episodic pain, together with absence of pain following fractures, and corneal anesthesia. How a Nav1.7 mutation that produces gain-of-function at the channel level causes clinical loss-of-function has remained enigmatic. We show by current-clamp that expression of I234T in dorsal root ganglion (DRG) neurons produces a range of membrane depolarizations including a massive shift to >−40 mV that reduces excitability in a small number of neurons. Dynamic-clamp permitted us to mimic the heterozygous condition via replacement of 50% endogenous wild-type Nav1.7 channels by I234T, and confirmed that the I234T conductance could drastically depolarize DRG neurons, resulting in loss of excitability. We conclude that attenuation of pain sensation by I234T is caused by massively depolarized membrane potential of some DRG neurons which is partly due to enhanced overlap between activation and fast-inactivation, impairing their ability to fire. Our results demonstrate how a Nav1.7 mutation that produces channel gain-of-function can contribute to a dual clinical presentation that includes loss of pain sensation at the clinical level.
Collapse
Affiliation(s)
- Jianying Huang
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA, 06510.,Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA, 06516
| | - Malgorzata A Mis
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA, 06510.,Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA, 06516
| | - Brian Tanaka
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA, 06510.,Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA, 06516
| | - Talia Adi
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA, 06510.,Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA, 06516
| | - Mark Estacion
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA, 06510.,Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA, 06516
| | - Shujun Liu
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA, 06510.,Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA, 06516
| | - Suellen Walker
- Developmental Neurosciences Program, Department of Anaesthesia and Pain Medicine, UCL Great Ormond Street Hospital, London, WC1N 1EH, UK
| | - Sulayman D Dib-Hajj
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA, 06510.,Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA, 06516
| | - Stephen G Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA, 06510. .,Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA, 06516.
| |
Collapse
|
31
|
Abstract
Pain is an increasing clinical challenge affecting about half the population, with a substantial number of people suffering daily intense pain. Such suffering can be linked to the dramatic rise in opioid use and associated deaths in the United States. There is a pressing need for new analgesics with limited side effects. Here, we summarize what we know about the genetics of pain and implications for drug development. We make the case that chronic pain is not one but a set of disease states, with peripheral drive a key element in most. We argue that understanding redundancy and plasticity, hallmarks of the nervous system, is critical in developing analgesic drug strategies. We describe the exploitation of monogenic pain syndromes and genetic association studies to define analgesic targets, as well as issues associated with animal models of pain. We appraise present-day screening technologies and describe recent approaches to pain treatment that hold promise.
Collapse
Affiliation(s)
- Jane E Sexton
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, United Kingdom;
| | - James J Cox
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, United Kingdom;
| | - Jing Zhao
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, United Kingdom;
| | - John N Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, United Kingdom;
| |
Collapse
|
32
|
Translational Model Systems for Complex Sodium Channel Pathophysiology in Pain. Handb Exp Pharmacol 2018; 246:355-369. [PMID: 29374838 DOI: 10.1007/164_2017_91] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Chronic pain patients are often left with insufficient treatment as the pathophysiology especially of neuropathic pain remains enigmatic. Recently, genetic variations in the genes of the voltage-gated sodium channels (Navs) were linked to inherited neuropathic pain syndromes, opening a research pathway to foster our understanding of the pathophysiology of neuropathic pain. More than 10 years ago, the rare, inherited pain syndrome erythromelalgia was linked to mutations in the subtype Nav1.7, and since then a plethora of mutations and genetic variations in this and other Nav genes were identified. Often the biophysical changes induced by the genetic alteration offer a straightforward explanation for the clinical symptoms, but mutations in some channels, especially Nav1.9, paint a more complex picture. Although efforts were undertaken to significantly advance our knowledge, translation from heterologous or animal model systems to humans remains a challenge. Here we present recent advances in translation using stem cell-derived human sensory neurons and their potential application for identification of better, effective, and more precise treatment for the individual pain patient.
Collapse
|
33
|
Zhou X, Xiao Z, Xu Y, Zhang Y, Tang D, Wu X, Tang C, Chen M, Shi X, Chen P, Liang S, Liu Z. Electrophysiological and Pharmacological Analyses of Na v1.9 Voltage-Gated Sodium Channel by Establishing a Heterologous Expression System. Front Pharmacol 2017; 8:852. [PMID: 29213238 PMCID: PMC5702848 DOI: 10.3389/fphar.2017.00852] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/07/2017] [Indexed: 11/13/2022] Open
Abstract
Nav1. 9 voltage-gated sodium channel is preferentially expressed in peripheral nociceptive neurons. Recent progresses have proved its role in pain sensation, but our understanding of Nav1.9, in general, has lagged behind because of limitations in heterologous expression in mammal cells. In this work, functional expression of human Nav1.9 (hNav1.9) was achieved by fusing GFP to the C-terminal of hNav1.9 in ND7/23 cells, which has been proved to be a reliable method to the electrophysiological and pharmacological studies of hNav1.9. By using the hNav1.9 expression system, we investigated the electrophysiological properties of four mutations of hNav1.9 (K419N, A582T, A842P, and F1689L), whose electrophysiological functions have not been determined yet. The four mutations significantly caused positive shift of the steady-state fast inactivation and therefore increased hNav1.9 activity, consistent with the phenotype of painful peripheral neuropathy. Meanwhile, the effects of inflammatory mediators on hNav1.9 were also investigated. Impressively, histamine was found for the first time to enhance hNav1.9 activity, indicating its vital role in hNav1.9 modulating inflammatory pain. Taken together, our research provided a useful platform for hNav1.9 studies and new insight into mechanism of hNav1.9 linking to pain.
Collapse
Affiliation(s)
- Xi Zhou
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Zhen Xiao
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yan Xu
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yunxiao Zhang
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Dongfang Tang
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xinzhou Wu
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Cheng Tang
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China.,Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Minzhi Chen
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China.,Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xiaoliu Shi
- Laboratory of Clinical Diagnosis and Research, Department of Medical Genetics, Second Xiangya Hospital of Central South University, Changsha, China
| | - Ping Chen
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China.,Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Songping Liang
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China.,Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Zhonghua Liu
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China.,Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
34
|
Abstract
Abstract
Painful stimuli are detected by specialized neurons, nociceptors, and are translated into action potentials, that are conducted along afferent pathways into the central nervous system, where they are conceived as pain. Voltage-gated sodium channels (NaV channels) are of paramount importance for nociceptor function, as they are responsible for the generation of action potentials and for their directed propagation. The exceptional role of sodium channel subtypes NaV1.7, NaV1.8 and NaV1.9 in the transmission of nociceptive signals has been emphasized by a variety of studies that associated genetically-induced malfunction of these channels with various pain diseases. In the following, structure and function of subtypes NaV1.7, NaV1.8 und NaV1.9 are briefly reviewed, associated pain diseases are introduced and current and future NaV-based strategies for the treatment of pain are discussed.
Collapse
Affiliation(s)
- Carla Nau
- Department of Anesthesiology and Intensive Care , University Medical Center Schleswig-Holstein, Campus Luebeck , Ratzeburger Allee 160, 23538 Luebeck , Germany , Phone: +49 451 50040701, Fax: +49 451 50040704
| | - Enrico Leipold
- Center for Molecular Biomedicine , Department of Biophysics, Friedrich Schiller University Jena , Hans-Knoell-St. 2, 07745 Jena , Germany , Phone: +49 3641 9395654, Fax: +49 3641 9395652
| |
Collapse
|
35
|
Sun J, Duan G, Li N, Guo S, Zhang Y, Ying Y, Zhang M, Wang Q, Liu JY, Zhang X. SCN11A variants may influence postoperative pain sensitivity after gynecological surgery in Chinese Han female patients. Medicine (Baltimore) 2017; 96:e8149. [PMID: 28953656 PMCID: PMC5626299 DOI: 10.1097/md.0000000000008149] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Nav1.9, encoded by sodium voltage-gated channel alpha subunit 11 (SCN11A), is one of the main sodium channels involved in pain transmission. Dysfunction of Nav1.9 alters pain sensitivity, resulting in insensitivity to pain or familial episodic pain. Our purpose was to explore the effects of SCN11A single-nucleotide polymorphisms (SNPs) on postoperative pain sensitivity in Chinese Han female patients after gynecological surgery.Here, we combined the methods of tag SNPs and candidate SNPs. The associations between eleven SCN11A SNPs and basic pain sensitivity in female healthy volunteers were analyzed using the Plink software. The SNPs associated with basic pain sensitivity were termed positive SCN11A SNPs. The effect of these positive SNPs on postoperative pain sensitivity was explored in patients undergoing elective gynecological laparoscopic surgery and receiving postoperative patient-controlled analgesia (PCA). We assessed pain intensity using the numeric pain rating scale (NRS) and recorded PCA consumption.Our results suggested that 5 SNPs (rs33985936, rs13080116, rs11720988, rs11709492, and rs11720013) in 11 tag and candidate SNPs were associated with basic pain sensitivity (P < .05). No evident association was found between the 5 positive SNPs and NRS (P > .05). However, among these positive SNPs, the minor alleles of rs33985936 and rs13080116 were significantly associated with increased PCA consumption (P < .01).To our knowledge, this is the first study to report that SCN11A SNPs affect postoperative pain sensitivity in Chinese Han women after gynecological surgery. The SNP rs33985936 and rs13080116 may serve as novel predictors for postoperative pain.
Collapse
Affiliation(s)
- Jiaoli Sun
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Guangyou Duan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing
| | - Ningbo Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Shanna Guo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Yuhao Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
- Department of Anesthesiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Ying Ying
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Mi Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Qingli Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
- Department of Anesthesiology, Wuhan General Hospital of Guangzhou Military
| | - Jing Yu Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Xianwei Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| |
Collapse
|
36
|
Huang J, Vanoye CG, Cutts A, Goldberg YP, Dib-Hajj SD, Cohen CJ, Waxman SG, George AL. Sodium channel NaV1.9 mutations associated with insensitivity to pain dampen neuronal excitability. J Clin Invest 2017; 127:2805-2814. [PMID: 28530638 DOI: 10.1172/jci92373] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/23/2017] [Indexed: 02/05/2023] Open
Abstract
Voltage-gated sodium channel (NaV) mutations cause genetic pain disorders that range from severe paroxysmal pain to a congenital inability to sense pain. Previous studies on NaV1.7 and NaV1.8 established clear relationships between perturbations in channel function and divergent clinical phenotypes. By contrast, studies of NaV1.9 mutations have not revealed a clear relationship of channel dysfunction with the associated and contrasting clinical phenotypes. Here, we have elucidated the functional consequences of a NaV1.9 mutation (L1302F) that is associated with insensitivity to pain. We investigated the effects of L1302F and a previously reported mutation (L811P) on neuronal excitability. In transfected heterologous cells, the L1302F mutation caused a large hyperpolarizing shift in the voltage-dependence of activation, leading to substantially enhanced overlap between activation and steady-state inactivation relationships. In transfected small rat dorsal root ganglion neurons, expression of L1302F and L811P evoked large depolarizations of the resting membrane potential and impaired action potential generation. Therefore, our findings implicate a cellular loss of function as the basis for impaired pain sensation. We further demonstrated that a U-shaped relationship between the resting potential and the neuronal action potential threshold explains why NaV1.9 mutations that evoke small degrees of membrane depolarization cause hyperexcitability and familial episodic pain disorder or painful neuropathy, while mutations evoking larger membrane depolarizations cause hypoexcitability and insensitivity to pain.
Collapse
Affiliation(s)
- Jianying Huang
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine; and Rehabilitation Research Center, Veterans Administration Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Carlos G Vanoye
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alison Cutts
- Xenon Pharmaceuticals, Burnaby, British Columbia, Canada
| | | | - Sulayman D Dib-Hajj
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine; and Rehabilitation Research Center, Veterans Administration Connecticut Healthcare System, West Haven, Connecticut, USA
| | | | - Stephen G Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine; and Rehabilitation Research Center, Veterans Administration Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
37
|
King MK, Leipold E, Goehringer JM, Kurth I, Challman TD. Pain insensitivity: distal S6-segment mutations in Na V1.9 emerge as critical hotspot. Neurogenetics 2017; 18:179-181. [PMID: 28289907 DOI: 10.1007/s10048-017-0513-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 02/01/2023]
Affiliation(s)
- Margaret K King
- Autism & Developmental Medicine Institute, Geisinger Health System, Lewisburg, PA, USA. .,Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA.
| | - Enrico Leipold
- Department of Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University Jena & Jena University Hospital, 07745, Jena, Germany
| | - Jessica M Goehringer
- Autism & Developmental Medicine Institute, Geisinger Health System, Lewisburg, PA, USA
| | - Ingo Kurth
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany
| | - Thomas D Challman
- Autism & Developmental Medicine Institute, Geisinger Health System, Lewisburg, PA, USA
| |
Collapse
|
38
|
Han C, Yang Y, Te Morsche RH, Drenth JPH, Politei JM, Waxman SG, Dib-Hajj SD. Familial gain-of-function Na v1.9 mutation in a painful channelopathy. J Neurol Neurosurg Psychiatry 2017; 88:233-240. [PMID: 27503742 DOI: 10.1136/jnnp-2016-313804] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/23/2016] [Accepted: 07/19/2016] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Gain-of-function mutations in Nav1.9 have been identified in three families with rare heritable pain disorders, and in patients with painful small-fibre neuropathy. Identification and functional assessment of new Nav1.9 mutations will help to elucidate the phenotypic spectrum of Nav1.9 channelopathies. METHODS Patients from a large family with early-onset pain symptoms were evaluated by clinical examination and genomic screening for mutations in SCN9A and SCN11A. Electrophysiological recordings and multistate modelling analysis were implemented for functional analyses. RESULTS A novel Nav1.9 mutation, p.Arg222His, was identified in patients with early-onset pain in distal extremities including joints and gastrointestinal disturbances, but was absent from an asymptomatic blood relative. This mutation alters channel structure by substituting the highly conserved first arginine residue in transmembrane segment 4 (domain 1), the voltage sensor, with histidine. Voltage-clamp recordings demonstrate a hyperpolarising shift and acceleration of activation of the p.Arg222His mutant channel, which make it easier to open the channel. When expressed in dorsal root ganglion neurons, mutant p.Arg222His channels increase excitability via a depolarisation of resting potential and increased evoked firing. CONCLUSIONS This study expands the spectrum of heritable pain disorders linked to gain-of-function mutations in Nav1.9, strengthening human validation of this channel as a potential therapeutic target for pain.
Collapse
Affiliation(s)
- Chongyang Han
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA.,Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut, USA.,Center for Restoration of Nervous System Function, Veterans Affairs Medical Center, West Haven, Connecticut, USA
| | - Yang Yang
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA.,Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut, USA.,Center for Restoration of Nervous System Function, Veterans Affairs Medical Center, West Haven, Connecticut, USA
| | - Rene H Te Morsche
- Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Joost P H Drenth
- Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Juan M Politei
- Department of Neurology, Fundación para el Estudio de las Enfermedades Neurometabólicas, Buenos Aires, Argentina
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA.,Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut, USA.,Center for Restoration of Nervous System Function, Veterans Affairs Medical Center, West Haven, Connecticut, USA
| | - Sulayman D Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA.,Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut, USA.,Center for Restoration of Nervous System Function, Veterans Affairs Medical Center, West Haven, Connecticut, USA
| |
Collapse
|
39
|
Recurrent and novel mutations in the NTRK1 gene lead to rare congenital insensitivity to pain with anhidrosis in two Chinese patients. Clin Chim Acta 2017; 468:39-45. [PMID: 28192073 DOI: 10.1016/j.cca.2017.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/09/2017] [Indexed: 01/26/2023]
Abstract
BACKGROUND Congenital insensitivity to pain with anhidrosis (CIPA) is an extremely rare autosomal recessive autonomic and sensory neuropathy. CIPA is associated with various mutations in NTRK1. CASES Two unrelated Chinese patients presented separately with symptoms of insensitivity to pain, inability to sweat, repeated painless fractures, and Charcot arthropathy were recruited. Both of them were clinically diagnosed with CIPA. Increased serum bone resorption marker (β-CTX) levels and decreased BMD were observed in both patients. X-ray films revealed enlarged bony calli in the fracture sites, Charcot arthropathy, and bilateral lower limb osteomyelitis. Sanger sequencing demonstrated compound heterozygous mutations in NTRK1 for proband 1 (IVS7-33T>A in intron 7 and c. 2281C>T in exon 17) and for proband 2 (IVS7-33T>A in intron 7 and c.1652delA in exon 14), of which the variation in exon 14 in NTRK1 was a novel mutation. CONCLUSIONS We report the detailed phenotypes, as well as both recurrent and novel mutations in NTRK1 in 2 Chinese patients with CIPA. The genetic findings of our study expand the gene mutation spectrum of CIPA.
Collapse
|
40
|
Caparros-Martin JA, Aglan MS, Temtamy S, Otaify GA, Valencia M, Nevado J, Vallespin E, Del Pozo A, Prior de Castro C, Calatrava-Ferreras L, Gutierrez P, Bueno AM, Sagastizabal B, Guillen-Navarro E, Ballesta-Martinez M, Gonzalez V, Basaran SY, Buyukoglan R, Sarikepe B, Espinoza-Valdez C, Cammarata-Scalisi F, Martinez-Glez V, Heath KE, Lapunzina P, Ruiz-Perez VL. Molecular spectrum and differential diagnosis in patients referred with sporadic or autosomal recessive osteogenesis imperfecta. Mol Genet Genomic Med 2016; 5:28-39. [PMID: 28116328 PMCID: PMC5241205 DOI: 10.1002/mgg3.257] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/12/2016] [Accepted: 10/19/2016] [Indexed: 11/08/2022] Open
Abstract
Background Osteogenesis imperfecta (OI) is a heterogeneous bone disorder characterized by recurrent fractures. Although most cases of OI have heterozygous mutations in COL1A1 or COL1A2 and show autosomal dominant inheritance, during the last years there has been an explosion in the number of genes responsible for both recessive and dominant forms of this condition. Herein, we have analyzed a cohort of patients with OI, all offspring of unaffected parents, to determine the spectrum of variants accounting for these cases. Twenty patients had nonrelated parents and were sporadic, and 21 were born to consanguineous relationships. Methods Mutation analysis was performed using a next‐generation sequencing gene panel, homozygosity mapping, and whole exome sequencing (WES). Results Patients offspring of nonconsanguineous parents were mostly identified with COL1A1 or COL1A2 heterozygous changes, although there were also a few cases with IFITM5 and WNT1 heterozygous mutations. Only one sporadic patient was a compound heterozygote for two recessive mutations. Patients offspring of consanguineous parents showed homozygous changes in a variety of genes including CRTAP,FKBP10,LEPRE1,PLOD2,PPIB,SERPINF1,TMEM38B, and WNT1. In addition, two patients born to consanguineous parents were found to have de novo COL1A1 heterozygous mutations demonstrating that causative variants in the collagen I structural genes cannot be overlooked in affected children from consanguineous couples. Further to this, WES analysis in probands lacking mutations in OI genes revealed deleterious variants in SCN9A,NTRK1, and SLC2A2, which are associated with congenital indifference to pain (CIP) and Fanconi–Bickel syndrome (FBS). Conclusion This work provides useful information for clinical and genetic diagnosis of OI patients with no positive family history of this disease. Our data also indicate that CIP and FBS are conditions to be considered in the differential diagnosis of OI and suggest a positive role of SCN9A and NTRK1 in bone development.
Collapse
Affiliation(s)
- Jose A Caparros-Martin
- Instituto de Investigaciones BiomédicasConsejo Superior de Investigaciones Científicas-Universidad Autónoma de MadridMadridSpain; CIBER de enfermedades Raras (CIBERER)MadridSpain
| | - Mona S Aglan
- Human Genetics and Genome Research Division Centre of Excellence of Human Genetics National Research Centre Cairo Egypt
| | - Samia Temtamy
- Human Genetics and Genome Research Division Centre of Excellence of Human Genetics National Research Centre Cairo Egypt
| | - Ghada A Otaify
- Human Genetics and Genome Research Division Centre of Excellence of Human Genetics National Research Centre Cairo Egypt
| | | | - Julián Nevado
- Instituto de Genética Médica y Molecular (INGEMM) Hospital Universitario La Paz-IdiPaz Universidad Autónoma de Madrid Madrid Spain
| | - Elena Vallespin
- Instituto de Genética Médica y Molecular (INGEMM) Hospital Universitario La Paz-IdiPaz Universidad Autónoma de Madrid Madrid Spain
| | - Angela Del Pozo
- Instituto de Genética Médica y Molecular (INGEMM) Hospital Universitario La Paz-IdiPaz Universidad Autónoma de Madrid Madrid Spain
| | - Carmen Prior de Castro
- Instituto de Genética Médica y Molecular (INGEMM) Hospital Universitario La Paz-IdiPaz Universidad Autónoma de Madrid Madrid Spain
| | - Lucia Calatrava-Ferreras
- Instituto de Investigaciones BiomédicasConsejo Superior de Investigaciones Científicas-Universidad Autónoma de MadridMadridSpain; CIBER de enfermedades Raras (CIBERER)MadridSpain
| | - Pilar Gutierrez
- Orthopedic Surgery Department and Endocrinology Department Hospital Universitario de Getafe Madrid Spain
| | - Ana M Bueno
- Orthopedic Surgery Department and Endocrinology Department Hospital Universitario de Getafe Madrid Spain
| | - Belen Sagastizabal
- Orthopedic Surgery Department and Endocrinology Department Hospital Universitario de Getafe Madrid Spain
| | - Encarna Guillen-Navarro
- CIBER de enfermedades Raras (CIBERER)MadridSpain; Unidad de Genética MédicaServicio de PediatríaHospital Universitario Virgen de la ArrixacaMurciaSpain
| | - Maria Ballesta-Martinez
- Unidad de Genética Médica Servicio de Pediatría Hospital Universitario Virgen de la Arrixaca Murcia Spain
| | - Vanesa Gonzalez
- Unidad de Genética Médica Servicio de Pediatría Hospital Universitario Virgen de la Arrixaca Murcia Spain
| | - Sarenur Y Basaran
- Department of Medical Genetics Faculty of Medicine Istanbul Medeniyet University Istanbul Turkey
| | - Ruksan Buyukoglan
- Department of Genetics Faculty of Medicine Erciyes University Kayseri Turkey
| | - Bilge Sarikepe
- Department of Genetics School of Medicine Pamukkale University Denizli Turkey
| | | | | | - Victor Martinez-Glez
- CIBER de enfermedades Raras (CIBERER)MadridSpain; Instituto de Genética Médica y Molecular (INGEMM)Hospital Universitario La Paz-IdiPazUniversidad Autónoma de MadridMadridSpain
| | - Karen E Heath
- CIBER de enfermedades Raras (CIBERER)MadridSpain; Instituto de Genética Médica y Molecular (INGEMM)Hospital Universitario La Paz-IdiPazUniversidad Autónoma de MadridMadridSpain; Skeletal Dysplasia Multidisciplinary Unit (UMDE)Hospital Universitario La PazMadridSpain
| | - Pablo Lapunzina
- CIBER de enfermedades Raras (CIBERER)MadridSpain; Instituto de Genética Médica y Molecular (INGEMM)Hospital Universitario La Paz-IdiPazUniversidad Autónoma de MadridMadridSpain; Skeletal Dysplasia Multidisciplinary Unit (UMDE)Hospital Universitario La PazMadridSpain
| | - Victor L Ruiz-Perez
- Instituto de Investigaciones BiomédicasConsejo Superior de Investigaciones Científicas-Universidad Autónoma de MadridMadridSpain; CIBER de enfermedades Raras (CIBERER)MadridSpain; Skeletal Dysplasia Multidisciplinary Unit (UMDE)Hospital Universitario La PazMadridSpain
| |
Collapse
|
41
|
Genetic predictors of human chronic pain conditions. Neuroscience 2016; 338:36-62. [DOI: 10.1016/j.neuroscience.2016.04.041] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 04/15/2016] [Accepted: 04/25/2016] [Indexed: 11/15/2022]
|
42
|
|