1
|
Ward LM. A practical guide to the diagnosis and management of osteoporosis in childhood and adolescence. Front Endocrinol (Lausanne) 2024; 14:1266986. [PMID: 38374961 PMCID: PMC10875302 DOI: 10.3389/fendo.2023.1266986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/18/2023] [Indexed: 02/21/2024] Open
Abstract
Osteoporosis in childhood distinguishes itself from adulthood in four important ways: 1) challenges in distinguishing otherwise healthy children who have experienced fractures due to non-accidental injury or misfortunate during sports and play from those with an underlying bone fragility condition; 2) a preponderance of monogenic "early onset" osteoporotic conditions that unveil themselves during the pediatric years; 3) the unique potential, in those with residual growth and transient bone health threats, to reclaim bone density, structure, and strength without bone-targeted therapy; and 4) the need to benchmark bone health metrics to constantly evolving "normal targets", given the changes in bone size, shape, and metabolism that take place from birth through late adolescence. On this background, the pediatric osteoporosis field has evolved considerably over the last few decades, giving rise to a deeper understanding of the discrete genes implicated in childhood-onset osteoporosis, the natural history of bone fragility in the chronic illness setting and associated risk factors, effective diagnostic and monitoring pathways in different disease contexts, the importance of timely identification of candidates for osteoporosis treatment, and the benefits of early (during growth) rather than late (post-epiphyseal fusion) treatment. While there has been considerable progress, a number of unmet needs remain, the most urgent of which is to move beyond the monotherapeutic anti-resorptive landscape to the study and application of anabolic agents that are anticipated to not only improve bone mineral density but also increase long bone cross-sectional diameter (periosteal circumference). The purpose of this review is to provide a practical guide to the diagnosis and management of osteoporosis in children presenting to the clinic with fragility fractures, one that serves as a step-by-step "how to" reference for clinicians in their routine clinical journey. The article also provides a sightline to the future, emphasizing the clinical scenarios with the most urgent need for an expanded toolbox of effective osteoporosis agents in childhood.
Collapse
Affiliation(s)
- Leanne M. Ward
- Department of Pediatrics, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| |
Collapse
|
2
|
Indermaur M, Casari D, Kochetkova T, Willie BM, Michler J, Schwiedrzik J, Zysset P. Tensile Mechanical Properties of Dry Cortical Bone Extracellular Matrix: A Comparison Among Two Osteogenesis Imperfecta and One Healthy Control Iliac Crest Biopsies. JBMR Plus 2023; 7:e10826. [PMID: 38130764 PMCID: PMC10731133 DOI: 10.1002/jbm4.10826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/22/2023] [Accepted: 09/14/2023] [Indexed: 12/23/2023] Open
Abstract
Osteogenesis imperfecta (OI) is a genetic, collagen-related bone disease that increases the incidence of bone fractures. Still, the origin of this brittle mechanical behavior remains unclear. The extracellular matrix (ECM) of OI bone exhibits a higher degree of bone mineralization (DBM), whereas compressive mechanical properties at the ECM level do not appear to be inferior to healthy bone. However, it is unknown if collagen defects alter ECM tensile properties. This study aims to quantify the tensile properties of healthy and OI bone ECM. In three transiliac biopsies (healthy n = 1, OI type I n = 1, OI type III n = 1), 23 microtensile specimens (gauge dimensions 10 × 5 × 2 μm3) were manufactured and loaded quasi-statically under tension in vacuum condition. The resulting loading modulus and ultimate strength were extracted. Interestingly, tensile properties in OI bone ECM were not inferior compared to controls. All specimens revealed a brittle failure behavior. Fracture surfaces were graded according to their mineralized collagen fibers (MCF) orientation into axial, mixed, and transversal fracture surface types (FST). Furthermore, tissue mineral density (TMD) of the biopsy cortices was extracted from micro-computed tomogra[hy (μCT) images. Both FST and TMD are significant factors to predict loading modulus and ultimate strength with an adjusted R 2 of 0.556 (p = 2.65e-05) and 0.46 (p = 2.2e-04), respectively. The influence of MCF orientation and DBM on the mechanical properties of the neighboring ECM was further verified with quantitative polarized Raman spectroscopy (qPRS) and site-matched nanoindentation. MCF orientation and DBM were extracted from the qPRS spectrum, and a second mechanical model was developed to predict the indentation modulus with MCF orientation and DBM (R 2 = 67.4%, p = 7.73e-07). The tensile mechanical properties of the cortical bone ECM of two OI iliac crest biopsies are not lower than the one from a healthy and are primarily dependent on MCF orientation and DBM. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Michael Indermaur
- ARTORG Center for Biomedical EngineeringUniversity of BernBernSwitzerland
| | - Daniele Casari
- ARTORG Center for Biomedical EngineeringUniversity of BernBernSwitzerland
- Swiss Federal Laboratories for Material Science and TechnologyThunSwitzerland
| | - Tatiana Kochetkova
- Swiss Federal Laboratories for Material Science and TechnologyThunSwitzerland
| | - Bettina M. Willie
- Research Centre, Shriners Hospital for Children‐Canada, Department of Pediatric SurgeryMcGill UniversityMontrealQCCanada
| | - Johann Michler
- Swiss Federal Laboratories for Material Science and TechnologyThunSwitzerland
| | - Jakob Schwiedrzik
- Swiss Federal Laboratories for Material Science and TechnologyThunSwitzerland
| | - Philippe Zysset
- ARTORG Center for Biomedical EngineeringUniversity of BernBernSwitzerland
| |
Collapse
|
3
|
Wu MH, Hsu WB, Chen MH, Shi CS. Inhibition of Neddylation Suppresses Osteoclast Differentiation and Function In Vitro and Alleviates Osteoporosis In Vivo. Biomedicines 2022; 10:2355. [PMID: 36289618 PMCID: PMC9598818 DOI: 10.3390/biomedicines10102355] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 09/20/2023] Open
Abstract
Neddylation, or the covalent addition of NEDD8 to specific lysine residue of proteins, is a reversible posttranslational modification, which regulates numerous biological functions; however, its involvement and therapeutic significance in osteoporosis remains unknown. Our results revealed that during the soluble receptor activator of nuclear factor-κB ligand (sRANKL)-stimulated osteoclast differentiation, the neddylation and expression of UBA3, the NEDD8-activating enzyme (NAE) catalytic subunit, were dose- and time-dependently upregulated in RAW 264.7 macrophages. UBA3 knockdown for diminishing NAE activity or administering low doses of the NAE inhibitor MLN4924 significantly suppressed sRANKL-stimulated osteoclast differentiation and bone-resorbing activity in the macrophages by inhibiting sRANKL-stimulated neddylation and tumor necrosis factor receptor-associated factor 6 (TRAF6)-activated transforming growth factor-β-activated kinase 1 (TAK1) downstream signaling for diminishing nuclear factor-activated T cells c1 (NFATc1) expression. sRANKL enhanced the interaction of TRAF6 with the neddylated proteins and the polyubiquitination of TRAF6's lysine 63, which activated TAK1 downstream signaling; however, this process was inhibited by MLN4924. MLN4924 significantly reduced osteoporosis in an ovariectomy- and sRANKL-induced osteoporosis mouse model in vivo. Our novel finding was that NAE-mediated neddylation participates in RANKL-activated TRAF6-TAK1-NFATc1 signaling during osteoclast differentiation and osteoporosis, suggesting that neddylation may be a new target for treating osteoporosis.
Collapse
Affiliation(s)
- Meng-Huang Wu
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Orthopedics, Taipei Medical University Hospital, Taipei 11031, Taiwan
- TMU Biodesign Center, Taipei Medical University, Taipei 11031, Taiwan
| | - Wei-Bin Hsu
- Sports Medicine Center, Chang Gung Memorial Hospital, Puzi 61301, Taiwan
| | - Mei-Hsin Chen
- Sports Medicine Center, Chang Gung Memorial Hospital, Puzi 61301, Taiwan
| | - Chung-Sheng Shi
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33332, Taiwan
- Colon and Rectal Surgery, Department of Surgery, Chiayi Chang Gung Memorial Hospital, Puzi 61301, Taiwan
| |
Collapse
|
4
|
Jovanovic M, Guterman-Ram G, Marini JC. Osteogenesis Imperfecta: Mechanisms and Signaling Pathways Connecting Classical and Rare OI Types. Endocr Rev 2022; 43:61-90. [PMID: 34007986 PMCID: PMC8755987 DOI: 10.1210/endrev/bnab017] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Osteogenesis imperfecta (OI) is a phenotypically and genetically heterogeneous skeletal dysplasia characterized by bone fragility, growth deficiency, and skeletal deformity. Previously known to be caused by defects in type I collagen, the major protein of extracellular matrix, it is now also understood to be a collagen-related disorder caused by defects in collagen folding, posttranslational modification and processing, bone mineralization, and osteoblast differentiation, with inheritance of OI types spanning autosomal dominant and recessive as well as X-linked recessive. This review provides the latest updates on OI, encompassing both classical OI and rare forms, their mechanism, and the signaling pathways involved in their pathophysiology. There is a special emphasis on mutations in type I procollagen C-propeptide structure and processing, the later causing OI with strikingly high bone mass. Types V and VI OI, while notably different, are shown to be interrelated by the interferon-induced transmembrane protein 5 p.S40L mutation that reveals the connection between the bone-restricted interferon-induced transmembrane protein-like protein and pigment epithelium-derived factor pathways. The function of regulated intramembrane proteolysis has been extended beyond cholesterol metabolism to bone formation by defects in regulated membrane proteolysis components site-2 protease and old astrocyte specifically induced-substance. Several recently proposed candidate genes for new types of OI are also presented. Discoveries of new OI genes add complexity to already-challenging OI management; current and potential approaches are summarized.
Collapse
Affiliation(s)
- Milena Jovanovic
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Gali Guterman-Ram
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Joan C Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Abstract
Otalgia, otorrhea and hearing loss are the most common ear-related symptoms that lead to the consultation of an otolaryngologist. Furthermore, balance disorders and affections of the cranial nerve function may play a role in the consultation. In large academic centres, but also in primary care, the identification of rare diseases of the middle ear and the lateral skull base is essential, as these diseases often require interdisciplinary approaches to establish the correct diagnosis and to initiate safe and adequate treatments. This review provides an overview of rare bone, neoplastic, haematological, autoimmunological and infectious disorders as well as malformations that may manifest in the middle ear and the lateral skull base. Knowledge of rare disorders is an essential factor ensuring the quality of patient care, in particular surgical procedures. Notably, in untypical, complicated, and prolonged disease courses, rare differential diagnoses need to be considered.
Collapse
Affiliation(s)
- Nora M. Weiss
- Klinik für Hals-Nasen-Ohrenheilkunde, Kopf- und Halschirurgie
„Otto Körner“ der Universitätsmedizin Rostock,
Deutschland
| |
Collapse
|
6
|
Osteoporosis Treatment with Anti-Sclerostin Antibodies-Mechanisms of Action and Clinical Application. J Clin Med 2021; 10:jcm10040787. [PMID: 33669283 PMCID: PMC7920044 DOI: 10.3390/jcm10040787] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/30/2021] [Accepted: 02/13/2021] [Indexed: 12/13/2022] Open
Abstract
Osteoporosis is characterized by reduced bone mass and disruption of bone architecture, resulting in increased risk of fragility fractures and significant long-term disability. Although both anti-resorptive treatments and osteoanabolic drugs, such as parathyroid hormone analogues, are effective in fracture prevention, limitations exist due to lack of compliance or contraindications to these drugs. Thus, there is a need for novel potent therapies, especially for patients at high fracture risk. Romosozumab is a monoclonal antibody against sclerostin with a dual mode of action. It enhances bone formation and simultaneously suppresses bone resorption, resulting in a large anabolic window. In this opinion-based narrative review, we highlight the role of sclerostin as a critical regulator of bone mass and present human diseases of sclerostin deficiency as well as preclinical models of genetically modified sclerostin expression, which led to the development of anti-sclerostin antibodies. We review clinical studies of romosozumab in terms of bone mass accrual and anti-fracture activity in the setting of postmenopausal and male osteoporosis, present sequential treatment regimens, and discuss its safety profile and possible limitations in its use. Moreover, an outlook comprising future translational applications of anti-sclerostin antibodies in diseases other than osteoporosis is given, highlighting the clinical significance and future scopes of Wnt signaling in these settings.
Collapse
|
7
|
Abstract
Glucocorticoids (GC) are an important risk factor for bone fragility in children with serious illnesses, largely due to their direct adverse effects on skeletal metabolism. To better appreciate the natural history of fractures in this setting, over a decade ago the Canadian STeroid-associated Osteoporosis in the Pediatric Population ("STOPP") Consortium launched a 6 year, multi-center observational cohort study in GC-treated children. This study unveiled numerous key clinical-biological principles about GC-induced osteoporosis (GIO), many of which are unique to the growing skeleton. This was important, because most GIO recommendations to date have been guided by adult studies, and therefore do not acknowledge the pediatric-specific principles that inform monitoring, diagnosis and treatment strategies in the young. Some of the most informative observations from the STOPP study were that vertebral fractures are the hallmark of pediatric GIO, they occur early in the GC treatment course, and they are frequently asymptomatic (thereby undetected in the absence of routine monitoring). At the same time, some children have the unique, growth-mediated ability to restore normal vertebral body dimensions following vertebral fractures. This is an important index of recovery, since spontaneous vertebral body reshaping may preclude the need for osteoporosis therapy. Furthermore, we now better understand that children with poor growth, older children with less residual growth potential, and children with ongoing bone health threats have less potential for vertebral body reshaping following spine fractures, which can result in permanent vertebral deformity if treatment is not initiated in a timely fashion. Therefore, pediatric GIO management is now predicated upon early identification of vertebral fractures in those at risk, and timely intervention when there is limited potential for spontaneous recovery. A single, low-trauma long bone fracture can also signal an osteoporotic event, and a need for treatment. Intravenous bisphosphonates are currently the recommended therapy for pediatric GC-induced bone fragility, typically prescribed to children with limited potential for medication-unassisted recovery. It is recognized, however, that even early identification of bone fragility, combined with timely introduction of intravenous bisphosphonate therapy, may not completely rescue the osteoporosis in those with the most aggressive forms, opening the door to novel strategies.
Collapse
Affiliation(s)
- Leanne M. Ward
- The Ottawa Pediatric Bone Health Research Group, The Children's Hospital of Eastern Ontario Genetic and Metabolic Bone Disease Clinic, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
8
|
Surowiec RK, Battle LF, Schlecht SH, Wojtys EM, Caird MS, Kozloff KM. Gene Expression Profile and Acute Gene Expression Response to Sclerostin Inhibition in Osteogenesis Imperfecta Bone. JBMR Plus 2020; 4:e10377. [PMID: 32803109 PMCID: PMC7422710 DOI: 10.1002/jbm4.10377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/19/2020] [Indexed: 12/31/2022] Open
Abstract
Sclerostin antibody (SclAb) therapy has been suggested as a novel therapeutic approach toward addressing the fragility phenotypic of osteogenesis imperfecta (OI). Observations of cellular and transcriptional responses to SclAb in OI have been limited to mouse models of the disorder, leaving a paucity of data on the human OI osteoblastic cellular response to the treatment. Here, we explore factors associated with response to SclAb therapy in vitro and in a novel xenograft model using OI bone tissue derived from pediatric patients. Bone isolates (approximately 2 mm3) from OI patients (OI type III, type III/IV, and type IV, n = 7; non-OI control, n = 5) were collected to media, randomly assigned to an untreated (UN), low-dose SclAb (TRL, 2.5 μg/mL), or high-dose SclAb (TRH, 25 μg/mL) group, and maintained in vitro at 37°C. Treatment occurred on days 2 and 4 and was removed on day 5 for TaqMan qPCR analysis of genes related to the Wnt pathway. A subset of bone was implanted s.c. into an athymic mouse, representing our xenograft model, and treated (25 mg/kg s.c. 2×/week for 2/4 weeks). Implanted OI bone was evaluated using μCT and histomorphometry. Expression of Wnt/Wnt-related targets varied among untreated OI bone isolates. When treated with SclAb, OI bone showed an upregulation in osteoblast and osteoblast progenitor markers, which was heterogeneous across tissue. Interestingly, the greatest magnitude of response generally corresponded to samples with low untreated expression of progenitor markers. Conversely, samples with high untreated expression of these markers showed a lower response to treatment. in vivo implanted OI bone showed a bone-forming response to SclAb via μCT, which was corroborated by histomorphometry. SclAb induced downstream Wnt targets WISP1 and TWIST1, and elicited a compensatory response in Wnt inhibitors SOST and DKK1 in OI bone with the greatest magnitude from OI cortical bone. Understanding patients' genetic, cellular, and morphological bone phenotypes may play an important role in predicting treatment response. This information may aid in clinical decision-making for pharmacological interventions designed to address fragility in OI. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Rachel K Surowiec
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMIUSA
- Department of Orthopaedic SurgeryUniversity of MichiganAnn ArborMIUSA
| | - Lauren F Battle
- Department of Orthopaedic SurgeryUniversity of MichiganAnn ArborMIUSA
| | - Stephen H Schlecht
- Department of Orthopaedic SurgeryUniversity of MichiganAnn ArborMIUSA
- Department of Mechanical EngineeringUniversity of MichiganAnn ArborMIUSA
| | - Edward M Wojtys
- Department of Orthopaedic SurgeryUniversity of MichiganAnn ArborMIUSA
| | - Michelle S Caird
- Department of Orthopaedic SurgeryUniversity of MichiganAnn ArborMIUSA
| | - Kenneth M Kozloff
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMIUSA
- Department of Orthopaedic SurgeryUniversity of MichiganAnn ArborMIUSA
| |
Collapse
|
9
|
Zhou Y, Gong C, Hossaini-Zadeh M, Du J. 3D full-field strain in bone-implant and bone-tooth constructs and their morphological influential factors. J Mech Behav Biomed Mater 2020; 110:103858. [PMID: 32501222 DOI: 10.1016/j.jmbbm.2020.103858] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 01/20/2023]
Abstract
The biomechanics of bone-tooth and bone-implant interfaces affects the outcomes of several dental treatments, such as implant placement, because bone, tooth and periodontal ligament are living tissues that adapt to the changes in mechanical stimulations. In this work, mechanical testing coupled with micro-CT was performed on human cadaveric mandibular bone-tooth and bone-implant constructs. Using digital volume correlation, the 3D full-field strain in bone under implant loading and tooth loading was measured. Concurrently, bone morphology and bone-implant and bone-tooth contact were also measured through the analysis of micro-CT images. The results show that strain in bone increased when a tooth was replaced by a dental implant. Strain concentration was observed in peri-implant bone, as well as in the buccal bone plate, which is also the clinically-observed bone resorption area after implant placement. Decreasing implant stability measurements (resonance frequency analysis and torque test) indicated increased peri-implant strain, but their relationships may not be linear. Peri-implant bone strain linearly increased with decreasing bone-implant contact (BIC) ratio. It also linearly decreased with increasing bone-tooth/bone-implant contact ratio. The high strain in the buccal bone plate linearly increased with decreasing buccal bone plate thickness. The results of this study revealed 3D full-field strain in bone-tooth and bone-implant constructs, as well as their several morphological influential factors.
Collapse
Affiliation(s)
- Yuxiao Zhou
- Department of Mechanical Engineering, Pennsylvania State University, University Park, PA, 16802, United States.
| | - Chujie Gong
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, United States.
| | - Mehran Hossaini-Zadeh
- Department of Oral Maxillofacial Pathology, Medicine and Surgery, Temple University, Philadelphia, PA, 19140, United States.
| | - Jing Du
- Department of Mechanical Engineering, Pennsylvania State University, University Park, PA, 16802, United States.
| |
Collapse
|
10
|
Abstract
New therapeutic approaches have been established in the field of rare skeletal diseases (e.g., for osteogenesis imperfecta, achondroplasia, hypophosphatemic rickets, hypophosphatasia, and fibrodysplasia ossificans progressiva). After elucidation of the underlying genotypes and pathophysiologic alterations of these diseases, new treatment options have been designed. Most drugs are based on an interaction with the disease-specific cascade of enzymes and proteins involved in the disease. Thereby an approved treatment is available for children with severe forms of hypophosphatasia and hypophosphatemic rickets (asfotase alfa, burosumab). Additionally, there are different phase 3 trials ongoing assessing the efficacy and safety of drugs for osteogenesis imperfecta, achondroplasia, and fibrodysplasia ossificans progressiva (denosumab, vosoritide, palovarotene).Because all these diseases are rare, the number of investigated patients in the trials is small, and the knowledge about rare side effects and long-term outcome is limited. Therefore it is recommended to treat the patients in specialized centers where the effects of the drugs can be evaluated and data about safety, side effects, and efficacy can be collected.Based on the fact that most drugs for rare diseases are highly expensive clear indications for start of a treatment, evaluation of the therapy and recommendations how long a treatment has to be administrated are urgently needed.
Collapse
Affiliation(s)
- Heike Hoyer-Kuhn
- Faculty of Medicine, University of Cologne, Cologne, Germany.
- Department of Paediatrics, University Hospital Cologne, Cologne, Germany.
| | - Eckhard Schönau
- Faculty of Medicine, University of Cologne, Cologne, Germany
- Department of Paediatrics, University Hospital Cologne, Cologne, Germany
- Center for Prevention and Rehabilitation, Unireha, University of Cologne, Cologne, Germany
| |
Collapse
|
11
|
Scheiber AL, Barton DK, Khoury BM, Marini JC, Swiderski DL, Caird MS, Kozloff KM. Sclerostin Antibody-Induced Changes in Bone Mass Are Site Specific in Developing Crania. J Bone Miner Res 2019; 34:2301-2310. [PMID: 31441963 PMCID: PMC7458133 DOI: 10.1002/jbmr.3858] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 07/24/2019] [Accepted: 08/14/2019] [Indexed: 01/01/2023]
Abstract
Sclerostin antibody (Scl-Ab) is an anabolic bone agent that has been shown to increase bone mass in clinical trials of adult diseases of low bone mass, such as osteoporosis and osteogenesis imperfecta (OI). Its use to decrease bone fragility in pediatric OI has shown efficacy in several growing mouse models, suggesting translational potential to pediatric disorders of low bone mass. However, the effects of pharmacologic inhibition of sclerostin during periods of rapid growth and development have not yet been described with respect to the cranium, where lifelong deficiency of functioning sclerostin leads to patterns of excessive bone growth, cranial compression, and facial palsy. In the present study, we undertook dimensional and volumetric measurements in the skulls of growing Brtl/+ OI mice treated with Scl-Ab to examine whether therapy-induced phenotypic changes were similar to those observed clinically in patients with sclerosteosis or Van Buchem disorder. Mice treated between 3 and 14 weeks of age with high doses of Scl-Ab show significant calvarial thickening capable of rescuing OI-induced deficiencies in skull thickness. Other changes in cranial morphology, such as lengths and distances between anatomic landmarks, intracranial volume, and suture interdigitation, showed minimal effects of Scl-Ab when compared with growth-induced differences over the treatment duration. Treatment-induced narrowing of foramina was limited to sites of vascular but not neural passage, suggesting patterns of local regulation. Together, these findings reveal a site specificity of Scl-Ab action in the calvaria with no measurable cranial nerve impingement or brainstem compression. This differentiation from the observed outcomes of lifelong sclerostin deficiency complements reports of Scl-Ab treatment efficacy at other skeletal sites with the prospect of minimal cranial secondary complications. © 2019 American Society for Bone and Mineral Research. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Amanda L Scheiber
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - David K Barton
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Basma M Khoury
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Joan C Marini
- Bone and Extracellular Matrix Branch, National Institute of Child Health and Human Disorders, NIH, Bethesda, MD, USA
| | - Donald L Swiderski
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, USA
| | - Michelle S Caird
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Kenneth M Kozloff
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
12
|
Olvera D, Stolzenfeld R, Fisher E, Nolan B, Caird MS, Kozloff KM. Pamidronate Administration During Pregnancy and Lactation Induces Temporal Preservation of Maternal Bone Mass in a Mouse Model of Osteogenesis Imperfecta. J Bone Miner Res 2019; 34:2061-2074. [PMID: 31310351 PMCID: PMC6854294 DOI: 10.1002/jbmr.3831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 06/25/2019] [Accepted: 07/03/2019] [Indexed: 01/25/2023]
Abstract
During pregnancy and lactation, the maternal skeleton undergoes significant bone loss through increased resorption to provide the necessary calcium supply to the developing fetus and suckling neonate. This period of skeletal vulnerability has not been clearly associated with increased maternal fracture risk, but these physiological conditions can exacerbate an underlying metabolic bone condition like osteogenesis imperfecta. Although bisphosphonates (BPs) are commonly used in postmenopausal women, there are cases where premenopausal women taking BPs become pregnant. Given BPs' long half-life, there is a need to establish how BPs affect the maternal skeleton during periods of demanding metabolic bone changes that are critical for the skeletal development of their offspring. In the present study, pamidronate- (PAM-) amplified pregnancy-induced bone mass gains and lactation-induced bone loss were prevented. This preservation of bone mass was less robust when PAM was administered at late stages of lactation compared with early pregnancy and first day of lactation. Pregnancy-induced osteocyte osteolysis was also observed and was unaffected with PAM treatment. No negative skeletal effects were observed in offspring from PAM-treated dams despite lactation-induced bone loss prevention. These findings provide important insight into (1) a treatment window for when PAM is most effective in preserving maternal bone mass, and (2) the maternal changes in bone metabolism that maintain calcium homeostasis crucial for fetal and neonatal bone development. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Diana Olvera
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Rachel Stolzenfeld
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Emily Fisher
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Bonnie Nolan
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Michelle S Caird
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Kenneth M Kozloff
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
13
|
Liu Y, Wang J, Liu S, Kuang M, Jing Y, Zhao Y, Wang Z, Li G. A novel transgenic murine model with persistently brittle bones simulating osteogenesis imperfecta type I. Bone 2019; 127:646-655. [PMID: 31369917 DOI: 10.1016/j.bone.2019.07.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/27/2019] [Accepted: 07/17/2019] [Indexed: 01/10/2023]
Abstract
Osteogenesis imperfecta (OI) type I caused by the null allele of COL1A1 gene is in the majority in clinical OI cases. Currently, heterozygous Mov-13 mice generated by virus insertion in the first intron of col1a1 is the exclusive model to modulate OI type I, in spite of the gradually recovered bone mineral and mechanical properties. A newly designed heterozygous col1a1±365 OI mouse was produced in the present study by partial exons knockout (exon 2-exon 5, 365 nt of mRNA) using CRISPR/Cas9 system. The deletion resulted in generally large decrease in type I collagen synthesis due to frameshift mutation and premature chain termination, closely mimicking the pathogenic mechanism in affected individuals. And the strain possessed significantly sparse mineral scaffolds, bone loss, lowered mechanical strength and broken bone metabolism by 8 and 20 weeks compared to their littermates, suggesting a sustained skeletal weakness. Notably, the remarkable down-regulation of Yes-associated protein (YAP), one of the key coactivator in Hippo signaling pathway, was first found both in the femur and adipose derived mesenchymal stem cells (ADSCs) under osteogenic differentiation of col1a1±365 mice, which might be responsible for the reduced osteogenic potential and brittle bones. Still, further research was needed in order to illuminate the underlying mechanism.
Collapse
Affiliation(s)
- Yi Liu
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Jianhai Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Shuo Liu
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Mingjie Kuang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Yaqing Jing
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Yuxia Zhao
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Zihan Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Guang Li
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China.
| |
Collapse
|
14
|
Cho N, Shokeen M. Changing landscape of optical imaging in skeletal metastases. J Bone Oncol 2019; 17:100249. [PMID: 31316892 PMCID: PMC6611980 DOI: 10.1016/j.jbo.2019.100249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 02/08/2023] Open
Abstract
Optical imaging is an emerging strategy for in vitro and in vivo visualization of the molecular mechanisms of cancer over time. An increasing number of optical imaging contrast agents and techniques have been developed in recent years specifically for bone research and skeletal metastases. Visualizing molecular processes in relation to bone remodeling in metastasized cancers provides valuable information for understanding disease mechanisms and monitoring expression of primary molecular targets and therapeutic efficacy. This review is intended to provide an overview of tumor-specific and non-specific contrast agents in the first near-infrared window (NIR-I) window from 650 nm to 950 nm that can be used to study functional and structural aspects of skeletal remodeling of cancer in preclinical animal models. Near-infrared (NIR) optical imaging techniques, specifically NIR spectroscopy and photoacoustic imaging, and their use in skeletal metastases will also be discussed. Perspectives on the promises and challenges facing this exciting field are then given.
Collapse
Affiliation(s)
- Nicholas Cho
- Department of Radiology, Washington University School of Medicine, 4515 McKinley Ave, St. Louis, MO 63110, United States.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110, United States
| | - Monica Shokeen
- Department of Radiology, Washington University School of Medicine, 4515 McKinley Ave, St. Louis, MO 63110, United States.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110, United States.,Alvin J. Siteman Cancer Center at Washington University School of Medicine and Barnes Jewish Hospital, St. Louis, MO 63110, United States
| |
Collapse
|
15
|
Semler O, Rehberg M, Mehdiani N, Jackels M, Hoyer-Kuhn H. Current and Emerging Therapeutic Options for the Management of Rare Skeletal Diseases. Paediatr Drugs 2019; 21:95-106. [PMID: 30941653 DOI: 10.1007/s40272-019-00330-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increasing knowledge in the field of rare diseases has led to new therapeutic approaches in the last decade. Treatment strategies have been developed after elucidation of the underlying genetic alterations and pathophysiology of certain diseases (e.g., in osteogenesis imperfecta, achondroplasia, hypophosphatemic rickets, hypophosphatasia and fibrodysplasia ossificans progressiva). Most of the drugs developed are specifically designed agents interacting with the disease-specific cascade of enzymes and proteins involved. While some are approved (asfotase alfa, burosumab), others are currently being investigated in phase III trials (denosumab, vosoritide, palovarotene). To offer a multi-disciplinary therapeutic approach, it is recommended that patients with rare skeletal disorders are treated and monitored in highly specialized centers. This guarantees the greatest safety for the individual patient and offers the possibility of collecting data to further improve treatment strategies for these rare conditions. Additionally, new therapeutic options could be achieved through increased awareness, not only in the field of pediatrics but also in prenatal and obstetric specialties. Presenting new therapeutic options might influence families in their decision of whether or not to terminate a pregnancy with a child with a skeletal disease.
Collapse
Affiliation(s)
- Oliver Semler
- Centre for Rare Skeletal Diseases in childhood, Children's Hospital, University of Cologne, Kerpenerstr. 62, 50937, Cologne, Germany. .,Children's and Adolescent's Hospital, University of Cologne, Cologne, Germany.
| | - Mirko Rehberg
- Children's and Adolescent's Hospital, University of Cologne, Cologne, Germany
| | - Nava Mehdiani
- Children's and Adolescent's Hospital, University of Cologne, Cologne, Germany
| | - Miriam Jackels
- Children's and Adolescent's Hospital, University of Cologne, Cologne, Germany.,Centre for Prevention and Rehabilitation, Unireha, University of Cologne, Cologne, Germany
| | - Heike Hoyer-Kuhn
- Children's and Adolescent's Hospital, University of Cologne, Cologne, Germany
| |
Collapse
|
16
|
Tauer JT, Robinson ME, Rauch F. Osteogenesis Imperfecta: New Perspectives From Clinical and Translational Research. JBMR Plus 2019; 3:e10174. [PMID: 31485550 PMCID: PMC6715783 DOI: 10.1002/jbm4.10174] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/04/2019] [Accepted: 01/16/2019] [Indexed: 12/30/2022] Open
Abstract
Osteogenesis imperfecta (OI) is a monogenic bone fragility disorder that usually is caused by mutations in one of the two genes coding for collagen type I alpha chains, COL1A1 or COL1A2. Mutations in at least 18 other genes can also lead to an OI phenotype. As genetic testing is more widely used, mutations in these genes are also more frequently discovered in individuals who have a propensity for fractures, but who do not have other typical clinical characteristics of OI. Intravenous bisphosphonate therapy is still the most widely used drug treatment approach. Preclinical studies in OI mouse models have shown encouraging effects when the antiresorptive effect of a bisphosphonate was combined with bone anabolic therapy using a sclerostin antibody. Other novel experimental treatment approaches include inhibition of transforming growth factor beta signaling with a neutralizing antibody and the inhibition of myostatin and activin A by a soluble activin receptor 2B. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research
Collapse
Affiliation(s)
| | | | - Frank Rauch
- Shriners Hospital for Children Montreal Quebec Canada
| |
Collapse
|
17
|
Blouin S, Fratzl-Zelman N, Roschger A, Cabral WA, Klaushofer K, Marini JC, Fratzl P, Roschger P. Cortical bone properties in the Brtl/+ mouse model of Osteogenesis imperfecta as evidenced by acoustic transmission microscopy. J Mech Behav Biomed Mater 2018; 90:125-132. [PMID: 30366302 DOI: 10.1016/j.jmbbm.2018.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/24/2018] [Accepted: 10/03/2018] [Indexed: 10/28/2022]
Abstract
Higher skeletal fragility has been established for the Brtl/+ mouse model of osteogenesis imperfecta at the whole bone level, but previous investigations of mechanical properties at the bone material level were inconclusive. Bone material was analyzed separately at endosteal (ER) and periosteal regions (PR) on transverse femoral midshaft sections for 2-month old mice (wild-type n = 6; Brtl/+ n = 6). Quantitative backscattered electron imaging revealed that the mass density computed from mineral density maps was higher in PR than in ER for both wild-type (+2.1%, p < 0.05) and Brtl/+ mice (+1.8%, p < 0.05). Electron induced X-ray fluorescence analysis indicated significantly lower atomic Ca/P ratios and higher Na/Ca, Mg/Ca and K/Ca ratios in PR bone compared to ER independently of genotype. Second harmonic generation microscopy indicated that the occurrence of periodically alternating collagen orientation in ER of Brtl/+ mice was strongly reduced compared to wild-type mice. Scanning acoustic microscopy in time of flight mode revealed that the sound velocity and Young's modulus (estimated based on sound velocity and mass density maps) were significantly greater in PR (respectively +6% and +15%) compared to ER in wild-type mice but not in Brtl/+ mice. ER sound velocity and Young's modulus were significantly increased in Brtl/+ mice (+9.4% and +22%, respectively) compared to wild-type mice. These data demonstrate that the Col1a1 G349C mutation in Brtl/+ mice affects the mechanical behavior of bone material predominantly in the endosteal region by altering the collagen orientation.
Collapse
Affiliation(s)
- S Blouin
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria.
| | - N Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria
| | - A Roschger
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Postdam, Germany
| | - W A Cabral
- Bone and Extracellular Matrix Branch, National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - K Klaushofer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria
| | - J C Marini
- Bone and Extracellular Matrix Branch, National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - P Fratzl
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Postdam, Germany
| | - P Roschger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Osteogenesis imperfecta (OI) is a hereditary connective tissue disorder of skeletal fragility and more recently muscle weakness. This review highlights our current knowledge of the impact of compromised OI muscle function on muscle-bone interactions and skeletal strength in OI. RECENT FINDINGS The ramifications of inherent muscle weakness in OI muscle-bone interactions are just beginning to be elucidated. Studies in patients and in OI mouse models implicate altered mechanosensing, energy metabolism, mitochondrial dysfunction, and paracrine/endocrine crosstalk in the pathogenesis of OI. Compromised muscle-bone unit impacts mechanosensing and the ability of OI muscle and bone to respond to physiotherapeutic and pharmacologic treatment strategies. Muscle and bone are both compromised in OI, making it essential to understand the mechanisms responsible for both impaired muscle and bone functions and their interdependence, as this will expand and drive new physiotherapeutic and pharmacological approaches to treat OI and other musculoskeletal disorders.
Collapse
Affiliation(s)
- Charlotte L Phillips
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO, 65211, USA.
- Department of Child Health, University of Missouri, Columbia, MO, 65211, USA.
| | - Youngjae Jeong
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO, 65211, USA
| |
Collapse
|
19
|
Olvera D, Stolzenfeld R, Marini JC, Caird MS, Kozloff KM. Low Dose of Bisphosphonate Enhances Sclerostin Antibody-Induced Trabecular Bone Mass Gains in Brtl/+ Osteogenesis Imperfecta Mouse Model. J Bone Miner Res 2018; 33:1272-1282. [PMID: 29544018 PMCID: PMC6084801 DOI: 10.1002/jbmr.3421] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/27/2018] [Accepted: 03/05/2018] [Indexed: 02/01/2023]
Abstract
Osteogenesis imperfecta (OI) is a genetic disorder characterized by altered bone quality and imbalanced bone remodeling, leading to skeletal fractures that are most prominent during childhood. Treatments for OI have focused on restoring pediatric bone density and architecture to recover functional strength and consequently reduce fragility. Though antiresorptive agents like bisphosphonates (BPs) are currently the most common intervention for the treatment of OI, a number of studies have shown efficacy of sclerostin antibody (SclAb) in inducing gains in bone mass and reducing fragility in OI mouse models. In this study, the effects of the concurrent use of BP and SclAb were evaluated during bone growth in a mouse harboring an OI-causing Gly→Cys mutation on col1a1. A single dose of antiresorptive BP facilitated the anabolic action of SclAb by increasing availability of surfaces for new bone formation via retention of primary trabeculae that would otherwise be remodeled. Chronic effects of concurrent administration of BP and SclAb revealed that accumulating cycles conferred synergistic gains in trabecular mass and vertebral stiffness, suggesting a distinct advantage of both therapies combined. Cortical gains in mass and strength occurred through SclAb alone, independent of presence of BP. In conclusion, these preclinical results support the scientific hypothesis that minimal antiresorptive treatment can amplify the effects of SclAb during early stages of skeletal growth to further improve bone structure and rigidity, a beneficial outcome for children with OI. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Diana Olvera
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Rachel Stolzenfeld
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Joan C Marini
- Bone and Extracellular Matrix Branch, National Institute of Child Health and Human Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Michelle S Caird
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Kenneth M Kozloff
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Numerous forms of osteoporosis in childhood are characterized by low bone turnover (for example, osteoporosis due to neuromuscular disorders and glucocorticoid exposure). Anti-resorptive therapy, traditionally used to treat osteoporosis in the young, is associated with further reductions in bone turnover, raising concerns about the long-term safety and efficacy of such therapy. These observations have led to increasing interest in the role of anabolic therapy to treat pediatric osteoporosis. RECENT FINDINGS While growth hormone and androgens appears to be relatively weak anabolic modulators of bone mass, emerging therapies targeting bone formation pathways (anti-transforming growth factor beta antibody and anti-sclerostin antibody) hold considerable promise. Teriparatide remains an attractive option that merits formal study for patients post-epiphyseal fusion, although it must be considered that adult studies have shown its effect is blunted when administered following bisphosphonate therapy. Mechanical stimulation of bone through whole body vibration therapy appears to be much less effective than bisphosphonate therapy for treating osteoporosis in children. New anabolic therapies which target important pathways in skeletal metabolism merit further study in children, including their effects on fracture risk reduction and after treatment discontinuation.
Collapse
Affiliation(s)
- Leanne M Ward
- Department of Pediatrics, Faculty of Medicine, University of Ottawa and Division of Endocrinology and Metabolism, Children's Hospital of Eastern Ontario, 401 Smyth Road, Ottawa, Ontario, K1H 8L1, Canada.
| | - Frank Rauch
- Department of Pediatrics, Faculty of Medicine, McGill University, and Shriners Hospital for Children, 1003 Boulevard Décarie, Montréal, Québec, H4A 0A9, Canada
| |
Collapse
|
21
|
Bacon S, Crowley R. Developments in rare bone diseases and mineral disorders. Ther Adv Chronic Dis 2018; 9:51-60. [PMID: 29344330 PMCID: PMC5761943 DOI: 10.1177/2040622317739538] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/04/2017] [Indexed: 12/16/2022] Open
Abstract
In the last decade, there have been a number of significant advances made in the field of rare bone diseases. In this review, we discuss the expansion of the classification system for osteogenesis imperfecta (OI) and the resultant increase in therapeutic options available for management of OI. Bisphosphonates remain the most widely used intervention for OI, although the effect on fracture rate reduction is equivocal. We review the other therapies showing promising results, including denosumab, teriparatide, sclerostin, transforming growth factor β inhibition and gene targeted approaches. X-linked hypophosphataemia (XLH) is the most common heritable form of osteomalacia and rickets caused by a mutation in the phosphate regulating endopeptidase gene resulting in elevated serum fibroblast growth factor 23 (FGF23) and decreased renal phosphate reabsorption. The traditional treatment is phosphate replacement. We discuss the development of a human anti-FGF23 antibody (KRN23) as a promising development in the treatment of XLH. The current management of primary hypoparathyroidism is replacement with calcium and active vitamin D. This can be associated with under or over replacement and its inherent complications. We review the use of recombinant parathyroid hormone (1-84), which can significantly reduce the requirements for calcium and vitamin D resulting in greater safety and quality of life for individuals with hypoparathyroidism. The use of receptor activator of nuclear factor κB ligand infusions in the treatment of a particular form of osteopetrosis and enzyme replacement therapy for hypophosphatasia are also discussed.
Collapse
|
22
|
Matthews BG, Roeder E, Wang X, Aguila HL, Lee SK, Grcevic D, Kalajzic I. Splenomegaly, myeloid lineage expansion and increased osteoclastogenesis in osteogenesis imperfecta murine. Bone 2017; 103:1-11. [PMID: 28600151 PMCID: PMC5764163 DOI: 10.1016/j.bone.2017.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/14/2017] [Accepted: 06/04/2017] [Indexed: 01/14/2023]
Abstract
Osteogenesis imperfecta (OI) is a disease caused by defects in type I collagen production that results in brittle bones. While the pathology is mainly caused by defects in the osteoblast lineage, there is also elevated bone resorption by osteoclasts resulting in high bone turnover in severe forms of the disease. Osteoclasts originate from hematopoietic myeloid cells, however changes in hematopoiesis have not been previously documented in OI. In this study, we evaluated hematopoietic lineage distribution and osteoclast progenitor cell frequency in bone marrow, spleen and peripheral blood of osteogenesis imperfecta murine (OIM) mice, a model of severe OI. We found splenomegaly in all ages examined, and expansion of myeloid lineage cells (CD11b+) in bone marrow and spleen of 7-9week old male OIM animals. OIM spleens also showed an increased frequency of purified osteoclast progenitors. This phenotype is suggestive of chronic inflammation. Isolated osteoclast precursors from both spleen and bone marrow formed osteoclasts more rapidly than wild-type controls. We found that serum TNFα levels were increased in OIM, as was IL1α in OIM females. We targeted inflammation therapeutically by treating growing animals with murine TNFR2:Fc, a compound that blocks TNFα activity. Anti-TNFα treatment marginally decreased spleen mass in OIM females, but failed to reduce bone resorption, or improve bone parameters or fracture rate in OIM animals. We have demonstrated that OIM mice have changes in their hematopoietic system, and form osteoclasts more rapidly even in the absence of OI osteoblast signals, however therapy targeting TNFα did not improve disease parameters.
Collapse
Affiliation(s)
- Brya G Matthews
- Department of Reconstructive Sciences, University of Connecticut, Farmington, CT 06030, USA.
| | - Emilie Roeder
- Department of Reconstructive Sciences, University of Connecticut, Farmington, CT 06030, USA
| | - Xi Wang
- Department of Reconstructive Sciences, University of Connecticut, Farmington, CT 06030, USA
| | | | - Sun-Kyeong Lee
- Center on Aging, University of Connecticut, Farmington, CT 06030, USA
| | - Danka Grcevic
- Department of Physiology and Immunology, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, University of Connecticut, Farmington, CT 06030, USA.
| |
Collapse
|
23
|
Abstract
Skeletal deformity and bone fragility are the hallmarks of the brittle bone dysplasia osteogenesis imperfecta. The diagnosis of osteogenesis imperfecta usually depends on family history and clinical presentation characterized by a fracture (or fractures) during the prenatal period, at birth or in early childhood; genetic tests can confirm diagnosis. Osteogenesis imperfecta is caused by dominant autosomal mutations in the type I collagen coding genes (COL1A1 and COL1A2) in about 85% of individuals, affecting collagen quantity or structure. In the past decade, (mostly) recessive, dominant and X-linked defects in a wide variety of genes encoding proteins involved in type I collagen synthesis, processing, secretion and post-translational modification, as well as in proteins that regulate the differentiation and activity of bone-forming cells have been shown to cause osteogenesis imperfecta. The large number of causative genes has complicated the classic classification of the disease, and although a new genetic classification system is widely used, it is still debated. Phenotypic manifestations in many organs, in addition to bone, are reported, such as abnormalities in the cardiovascular and pulmonary systems, skin fragility, muscle weakness, hearing loss and dentinogenesis imperfecta. Management involves surgical and medical treatment of skeletal abnormalities, and treatment of other complications. More innovative approaches based on gene and cell therapy, and signalling pathway alterations, are under investigation.
Collapse
|