1
|
Liu Z, Mao Y, Yang K, Wang S, Zou F. A trend of osteocalcin in diabetes mellitus research: bibliometric and visualization analysis. Front Endocrinol (Lausanne) 2025; 15:1475214. [PMID: 39872315 PMCID: PMC11769813 DOI: 10.3389/fendo.2024.1475214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 12/16/2024] [Indexed: 01/30/2025] Open
Abstract
Background Osteocalcin has attracted attention for its potential role in diabetes management. However, there has been no bibliometric assessment of scientific progress in this field. Methods We analysed 1680 articles retrieved from the Web of Science Core Collection (WoSCC) between 1 January 1986 and 10 May 2024 using various online tools. Result These papers accumulated 42,714 citations,with an average of 25.43 citations per paper. Publication output increased sharply from 1991 onwards. The United States and China are at the forefront of this research area. Discussion The keywords were grouped into four clusters: 'Differential and functional osteocalcin genes', 'Differential expression of osteocalcin genes in relation to diabetes mellitus', 'Role of osteocalcin in the assessment of osteoporosis and diabetes mellitus', and 'Indirect involvement of osteocalcin in metabolic processes'. Analysis using the VoS viewer suggests a shift in research focus towards the correlation between osteocalcin levels and diabetic complications, the clinical efficacy of therapeutic agents or vitamins in the treatment of osteoporosis in diabetic patients, and the mechanisms by which osteocalcin modulates insulin action. The proposed focus areas are "osteocalcin genes", "insulin regulation and osteoporosis ", "different populations", "diabetes-related complications" and "type 2 diabetes mellitus","effect of osteocalcin expression on insulin sensitivity as well as secretion","osteocalcin expression in different populations of diabetic patients and treatment-related studies".
Collapse
Affiliation(s)
- Zixu Liu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- The First Clinical Medicine School, Nanchang University, Nanchang, China
| | - Yuchen Mao
- The First Clinical Medicine School, Nanchang University, Nanchang, China
| | - Kangping Yang
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Shukai Wang
- The First Clinical Medicine School, Nanchang University, Nanchang, China
| | - Fang Zou
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Hansen BB, Hass Rubin K, Vind Nielsen C, Frost Nielsen M, Hermann AP, Abrahamsen B. Biological Heterogeneity in Susceptibility to Glucocorticoid-Induced Bone Loss: Short- and Long-Term Hip BMD Trajectories. J Clin Endocrinol Metab 2024:dgae832. [PMID: 39671259 DOI: 10.1210/clinem/dgae832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Indexed: 12/15/2024]
Abstract
CONTEXT Glucocorticoids (GCs) are widely used for their anti-inflammatory and immunosuppressive properties. Their effect on bone health is predominantly negative by decreasing bone formation and increasing risk of fractures. OBJECTIVE This work aimed to quantify the short- and long-term changes in total hip bone mineral density (THBMD) after initiating systemic GC treatment in previously GC treatment-naive adults without bone protective agents. METHODS An observational study was conducted using THBMD data from dual-energy x-ray absorptiometry (DXA). Individuals were stratified by sex and tertiles of GC exposure. Individuals not GC-exposed served as a reference group. Routine-care DXA scans were obtained from the main public hospitals servicing the Island of Funen in Denmark. A total of 15 099 adults underwent routine DXA at Odense University Hospital between 2006 and 2021. Data were enriched with Danish national registers. Intervention included systemic GCs (observational data). The short-term outcome included annualized THBMD changes between first 2 DXA scans. The long-term outcome included greater than 5% annualized THBMD loss over a 10-year follow-up. RESULTS Strong associations between GC exposure and THBMD loss was found for both outcomes, with larger losses in the middle and upper tertiles of GC exposure. The risk of experiencing greater than 5% annualized THBMD loss was elevated, especially in the first 2 years of initiating GC treatment. There is significant heterogeneity in THBMD responses, with approximately 1 in 5 patients experiencing no nominal bone loss despite receiving upper tertile levels of GC exposure. CONCLUSION The findings confirm the association between initial GC exposure and significant bone loss. The heterogeneity in individual responses emphasizes the need for early monitoring and personalized approaches in managing bone health for patients undergoing GC treatment.
Collapse
Affiliation(s)
- Benjamin Bakke Hansen
- OPEN-Open Patient Data Explorative Network, Odense University Hospital, Odense 5230, Denmark
- Research Unit OPEN, Department of Clinical Research, University of Southern Denmark, Odense 5230, Denmark
| | - Katrine Hass Rubin
- OPEN-Open Patient Data Explorative Network, Odense University Hospital, Odense 5230, Denmark
- Research Unit OPEN, Department of Clinical Research, University of Southern Denmark, Odense 5230, Denmark
| | - Catharina Vind Nielsen
- Department of Endocrinology, Odense University Hospital, Odense 5230, Denmark
- Department of Diabetes and Endocrinology, Esbjerg Hospital, University Hospital of Southern Denmark, Esbjerg 6700, Denmark
| | - Morten Frost Nielsen
- Department of Endocrinology, Odense University Hospital, Odense 5230, Denmark
- Excellence Center for Improved Diagnostics and Use of Corticosteroids in Clinical Practice - Region of Southern Denmark, Odense C 5000, Denmark
| | - Anne Pernille Hermann
- Department of Endocrinology, Odense University Hospital, Odense 5230, Denmark
- Excellence Center for Improved Diagnostics and Use of Corticosteroids in Clinical Practice - Region of Southern Denmark, Odense C 5000, Denmark
| | - Bo Abrahamsen
- Research Unit OPEN, Department of Clinical Research, University of Southern Denmark, Odense 5230, Denmark
- Excellence Center for Improved Diagnostics and Use of Corticosteroids in Clinical Practice - Region of Southern Denmark, Odense C 5000, Denmark
- Department of Medicine 1, Holbæk Hospital, Holbæk 4300, Denmark
| |
Collapse
|
3
|
Smith C, Lin X, Parker L, Yeap BB, Hayes A, Levinger I. The role of bone in energy metabolism: A focus on osteocalcin. Bone 2024; 188:117238. [PMID: 39153587 DOI: 10.1016/j.bone.2024.117238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Understanding the mechanisms involved in whole body glucose regulation is key for the discovery of new treatments for type 2 diabetes (T2D). Historically, glucose regulation was largely focused on responses to insulin and glucagon. Impacts of incretin-based therapies, and importance of muscle mass, are also highly relevant. Recently, bone was recognized as an endocrine organ, with several bone proteins, known as osteokines, implicated in glucose metabolism through their effects on the liver, skeletal muscle, and adipose tissue. Research efforts mostly focused on osteocalcin (OC) as a leading example. This review will provide an overview on this role of bone by discussing bone turnover markers (BTMs), the receptor activator of nuclear factor kB ligand (RANKL), osteoprotegerin (OPG), sclerostin (SCL) and lipocalin 2 (LCN2), with a focus on OC. Since 2007, some, but not all, research using mostly OC genetically modified animal models suggested undercarboxylated (uc) OC acts as a hormone involved in energy metabolism. Most data generated from in vivo, ex vivo and in vitro models, indicate that exogenous ucOC administration improves whole-body and skeletal muscle glucose metabolism. Although data in humans are generally supportive, findings are often discordant likely due to methodological differences and observational nature of that research. Overall, evidence supports the concept that bone-derived factors are involved in energy metabolism, some having beneficial effects (ucOC, OPG) others negative (RANKL, SCL), with the role of some (LCN2, other BTMs) remaining unclear. Whether the effect of osteokines on glucose regulation is clinically significant and of therapeutic value for people with insulin resistance and T2D remains to be confirmed.
Collapse
Affiliation(s)
- Cassandra Smith
- Nutrition & Health Innovation Research Institute, School of Health and Medical Sciences, Edith Cowan University, Perth, Western Australia, Australia; Medical School, The University of Western Australia, Perth, Western Australia, Australia; Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), Victoria University and Western Health, St Albans, VIC, Australia
| | - Xuzhu Lin
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Lewan Parker
- Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, VIC, Australia
| | - Bu B Yeap
- Medical School, The University of Western Australia, Perth, Western Australia, Australia; Department of Endocrinology and Diabetes, Fiona Stanley Hospital, Perth, Australia
| | - Alan Hayes
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), Victoria University and Western Health, St Albans, VIC, Australia; Department of Medicine - Western Health, The University of Melbourne, Footscray, VIC, Australia
| | - Itamar Levinger
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), Victoria University and Western Health, St Albans, VIC, Australia; Department of Medicine - Western Health, The University of Melbourne, Footscray, VIC, Australia.
| |
Collapse
|
4
|
Fehsel K. Metabolic Side Effects from Antipsychotic Treatment with Clozapine Linked to Aryl Hydrocarbon Receptor (AhR) Activation. Biomedicines 2024; 12:2294. [PMID: 39457607 PMCID: PMC11505606 DOI: 10.3390/biomedicines12102294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Metabolic syndrome (MetS) is the most common adverse drug reaction from psychiatric pharmacotherapy. Neuroreceptor blockade by the antipsychotic drug clozapine induces MetS in about 30% of patients. Similar to insulin resistance, clozapine impedes Akt kinase activation, leading to intracellular glucose and glutathione depletion. Additional cystine shortage triggers tryptophan degradation to kynurenine, which is a well-known AhR ligand. Ligand-bound AhR downregulates the intracellular iron pool, thereby increasing the risk of mitochondrial dysfunction. Scavenging iron stabilizes the transcription factor HIF-1, which shifts the metabolism toward transient glycolysis. Furthermore, the AhR inhibits AMPK activation, leading to obesity and liver steatosis. Increasing glucose uptake by AMPK activation prevents dyslipidemia and liver damage and, therefore, reduces the risk of MetS. In line with the in vitro results, feeding experiments with rats revealed a disturbed glucose-/lipid-/iron-metabolism from clozapine treatment with hyperglycemia and hepatic iron deposits in female rats and steatosis and anemia in male animals. Decreased energy expenditure from clozapine treatment seems to be the cause of the fast weight gain in the first weeks of treatment. In patients, this weight gain due to neuroleptic treatment correlates with an improvement in psychotic syndromes and can even be used to anticipate the therapeutic effect of the treatment.
Collapse
Affiliation(s)
- Karin Fehsel
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Bergische Landstrasse 2, 40629 Duesseldorf, Germany
| |
Collapse
|
5
|
Adhikary K, Sarkar R, Maity S, Banerjee I, Chatterjee P, Bhattacharya K, Ahuja D, Sinha NK, Maiti R. The underlying causes, treatment options of gut microbiota and food habits in type 2 diabetes mellitus: a narrative review. J Basic Clin Physiol Pharmacol 2024; 35:153-168. [PMID: 38748886 DOI: 10.1515/jbcpp-2024-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/01/2024] [Indexed: 07/05/2024]
Abstract
Type 2 diabetes mellitus is a long-lasting endocrine disorder characterized by persistent hyperglycaemia, which is often triggered by an entire or relative inadequacy of insulin production or insulin resistance. As a result of resistance to insulin (IR) and an overall lack of insulin in the body, type 2 diabetes mellitus (T2DM) is a metabolic illness that is characterized by hyperglycaemia. Notably, the occurrence of vascular complications of diabetes and the advancement of IR in T2DM are accompanied by dysbiosis of the gut microbiota. Due to the difficulties in managing the disease and the dangers of multiple accompanying complications, diabetes is a chronic, progressive immune-mediated condition that plays a significant clinical and health burden on patients. The frequency and incidence of diabetes among young people have been rising worldwide. The relationship between the gut microbiota composition and the physio-pathological characteristics of T2DM proposes a novel way to monitor the condition and enhance the effectiveness of therapies. Our knowledge of the microbiota of the gut and how it affects health and illness has changed over the last 20 years. Species of the genus Eubacterium, which make up a significant portion of the core animal gut microbiome, are some of the recently discovered 'generation' of possibly helpful bacteria. In this article, we have focused on pathogenesis and therapeutic approaches towards T2DM, with a special reference to gut bacteria from ancient times to the present day.
Collapse
Affiliation(s)
- Krishnendu Adhikary
- Department of Interdisciplinary Science, Centurion University of Technology & Management, Bhubaneswar, Odisha, India
| | - Riya Sarkar
- Department of Medical Laboratory Technology, 231513 Dr. B. C. Roy Academy of Professional Courses , Durgapur, West Bengal, India
| | - Sriparna Maity
- Department of Medical Laboratory Technology, 231513 Dr. B. C. Roy Academy of Professional Courses , Durgapur, West Bengal, India
| | - Ipsita Banerjee
- Department of Nutrition, Paramedical College Durgapur, Durgapur, West Bengal, India
| | - Prity Chatterjee
- Department of Biotechnology, Paramedical College Durgapur, Durgapur, West Bengal, India
| | - Koushik Bhattacharya
- School of Paramedics and Allied Health Sciences, Centurion University of Technology & Management, Bhubaneswar, Odisha, India
| | - Deepika Ahuja
- School of Paramedics and Allied Health Sciences, Centurion University of Technology & Management, Bhubaneswar, Odisha, India
| | - Nirmalya Kumar Sinha
- Department of Nutrition and Department of NSS, Raja Narendra Lal Khan Women's College (Autonomous), Midnapore, West Bengal, India
| | - Rajkumar Maiti
- Department of Physiology, 326624 Bankura Christian College , Bankura, West Bengal, India
| |
Collapse
|
6
|
Martiniakova M, Biro R, Kovacova V, Babikova M, Zemanova N, Mondockova V, Omelka R. Current knowledge of bone-derived factor osteocalcin: its role in the management and treatment of diabetes mellitus, osteoporosis, osteopetrosis and inflammatory joint diseases. J Mol Med (Berl) 2024; 102:435-452. [PMID: 38363329 PMCID: PMC10963459 DOI: 10.1007/s00109-024-02418-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/21/2023] [Accepted: 01/10/2024] [Indexed: 02/17/2024]
Abstract
Osteocalcin (OC) is the most abundant non-collagenous and osteoblast-secreted protein in bone. It consists of two forms such as carboxylated OC (cOC) and undercarboxylated OC (ucOC). While cOC promotes bone mineralization and increases bone strength, ucOC is regarded an endocrinologically active form that may have several functions in multiple end organs and tissues. Total OC (tOC) includes both of these forms (cOC and ucOC) and is considered a marker of bone turnover in clinical settings. Most of the data on OC is limited to preclinical studies and therefore may not accurately reflect the situation in clinical conditions. For the stated reason, the aim of this review was not only to summarize current knowledge of all forms of OC and characterize its role in diabetes mellitus, osteoporosis, osteopetrosis, inflammatory joint diseases, but also to provide new interpretations of its involvement in the management and treatment of aforementioned diseases. In this context, special emphasis was placed on available clinical trials. Significantly lower levels of tOC and ucOC could be associated with the risk of type 2 diabetes mellitus. On the contrary, tOC level does not seem to be a good indicator of high bone turnover status in postmenopausal osteoporosis, osteoarthritis and rheumatoid arthritis. The associations between several pharmacological drugs used to treat all disorders mentioned above and OC levels have also been provided. From this perspective, OC may serve as a medium through which certain medications can influence glucose metabolism, body weight, adiponectin secretion, and synovial inflammation.
Collapse
Affiliation(s)
- Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Roman Biro
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Martina Babikova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Nina Zemanova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Vladimira Mondockova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia.
| |
Collapse
|
7
|
Gether L, Storgaard H, Kezic S, Jakasa I, Hartmann B, Skov-Jeppesen K, Holst JJ, Pedersen AJ, Forman J, van Hall G, Sørensen OE, Skov L, Røpke MA, Knop FK, Thyssen JP. Effects of topical corticosteroid versus tacrolimus on insulin sensitivity and bone homeostasis in adults with atopic dermatitis-A randomized controlled study. Allergy 2023. [PMID: 36824052 DOI: 10.1111/all.15690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/06/2023] [Accepted: 01/24/2023] [Indexed: 02/25/2023]
Abstract
INTRODUCTION Topical corticosteroids (TCS), used to treat atopic dermatitis (AD), have been associated with type 2 diabetes and osteoporosis in epidemiological studies, possibly explained by systemic absorption. OBJECTIVES We examined whether intensive daily whole-body TCS treatment over 2 weeks followed by twice weekly application for 4 weeks could elicit insulin resistance and increase bone resorption in adults with AD. METHODS A randomized parallel-group double-blind double-dummy non-corticosteroid-based active comparator study design was completed in Copenhagen, Denmark. Thirty-six non-obese, non-diabetic adults with moderate-to-severe AD were randomized to whole-body treatment with betamethasone 17-valerate 0.1% plus a vehicle once daily or tacrolimus 0.1% twice daily after washout. Insulin sensitivity assessed by the hyperinsulinemic-euglycemic clamp combined with tracer infusions and biomarkers of bone formation (P1NP) and resorption (CTX) were evaluated at baseline, after 2 weeks of daily treatment and after further 4 weeks of twice-weekly maintenance treatment. RESULTS AD severity improved with both treatments and systemic inflammation was reduced. After 2 weeks, we observed similar increase in peripheral insulin sensitivity with use of betamethasone (n = 18) and tacrolimus (n = 18). Bone resorption biomarker, CTX, was unchanged, while bone formation marker, P1NP, decreased after betamethasone treatment after both 2 and 6 weeks but remained unchanged in the tacrolimus arm. CONCLUSIONS Whole-body treatment with TCS leads to systemic exposure but appears not to compromise glucose metabolism during short-term use, which may be a result of reduced systemic inflammatory activity. The negative impact on bone formation could be regarded an adverse effect of TCS.
Collapse
Affiliation(s)
- Lise Gether
- Center for Clinical Metabolic Research, Herlev-Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Dermatology and Allergy, Copenhagen Research Group for Inflammatory Skin (CORGIS), Herlev-Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- LEO Pharma A/S, Ballerup, Denmark
| | - Heidi Storgaard
- Center for Clinical Metabolic Research, Herlev-Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Steno Diabetes Center Copenhagen, Copenhagen, Denmark
| | - Sanja Kezic
- Department of Public and Occupational Health, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Ivone Jakasa
- Department of Chemistry and Biochemistry, Laboratory for Analytical Chemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kirsa Skov-Jeppesen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Julie Forman
- Section of Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Gerrit van Hall
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Clinical Metabolomics Core Facility, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | - Lone Skov
- Department of Dermatology and Allergy, Copenhagen Research Group for Inflammatory Skin (CORGIS), Herlev-Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mads A Røpke
- LEO Pharma A/S, Ballerup, Denmark
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Herlev-Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Pontoppidan Thyssen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Dermatology and Venereology, Bispebjerg-Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Guo H, An Z, Wang N, Ge S, Cai J, Yu S, Zhou Y, Ying R, Zha K, Gu T, Zhao Y, Lu Y. Diabetes Mellitus Type 2 Patients with Abdominal Obesity Are Prone to Osteodysfunction: A Cross-Sectional Study. J Diabetes Res 2023; 2023:3872126. [PMID: 37102159 PMCID: PMC10125752 DOI: 10.1155/2023/3872126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/31/2023] [Accepted: 03/31/2023] [Indexed: 04/28/2023] Open
Abstract
Introduction The interaction between diabetes, obesity, and bone metabolism was drawing increasing public attention. However, the osteometabolic changes in diabetes mellitus type 2 (T2DM) patients with abdominal obesity have not been fully revealed. This study is aimed at investigating the association between abdominal obesity indices and bone turnover markers among T2DM participants. Methods 4351 subjects were involved in the METAL study. Abdominal obesity indices included neck, waist, and hip circumference, visceral adiposity index (VAI), lipid accumulation product (LAP), waist-to-hip ratio (WHR), and Chinese visceral adiposity index (CVAI). They were applied to elucidate the nexus between β-C-terminal telopeptide (β-CTX), osteocalcin (OC), and intact N-terminal propeptide of type I collagen (P1NP). Results Abdominal obesity indices were strongly negatively associated with β-CTX and OC. Among males, five indices were negatively correlated with β-CTX (BMI, WC, LAP, WHR, and CVAI) and OC (BMI, NC, WC, WHR, and CVAI). There were no significant associations with P1NP. Among females, all eight indices were negatively associated with β-CTX. Seven indices were negatively related to OC (BMI, NC, WC, HC, LAP, WHR, and CVAI). The VAI was negatively correlated with P1NP. Conclusions The present study demonstrated that in T2DM, abdominal obesity had an obviously negative correlation with bone metabolism. Abdominal obesity indices were significantly negatively associated with skeletal destruction (β-CTX) and formation (OC). In routine clinical practice, these easily obtained indices could be used as a preliminary screening method and relevant factors for osteodysfunction incidence risk at no additional cost and may be of particular value for postmenopausal women in T2DM populations.
Collapse
Affiliation(s)
- Hui Guo
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People's Hospital, Shanghai, China
| | - Zengmei An
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People's Hospital, Shanghai, China
| | - Ningjian Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaohong Ge
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People's Hospital, Shanghai, China
| | - Jian Cai
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People's Hospital, Shanghai, China
| | - Shiyan Yu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Zhou
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People's Hospital, Shanghai, China
| | - Rong Ying
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People's Hospital, Shanghai, China
| | - Kexi Zha
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People's Hospital, Shanghai, China
| | - Tao Gu
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People's Hospital, Shanghai, China
| | - Yan Zhao
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People's Hospital, Shanghai, China
| | - Yingli Lu
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People's Hospital, Shanghai, China
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Guo H, Sui C, Ge S, Cai J, Lin D, Guo Y, Wang N, Zhou Y, Ying R, Zha K, Gu T, Zhao Y, Lu Y, An Z. Positive association of glucagon with bone turnover markers in type 2 diabetes: A cross-sectional study. Diabetes Metab Res Rev 2022; 38:e3550. [PMID: 35621313 DOI: 10.1002/dmrr.3550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/09/2022] [Accepted: 03/24/2022] [Indexed: 11/12/2022]
Abstract
AIMS The osteo-metabolic changes in type 2 diabetes (T2D) patients are intricate and have not been fully revealed. It is not clear whether glucagon is entirely harmful in the pathogenesis of diabetes or a possible endocrine counter-regulation mechanism to reverse some abnormal bone metabolism. This study aimed to investigate the association between glucagon and bone turnover markers (BTMs) in T2D patients. METHODS A total of 3984 T2D participants were involved in a cross-sectional study in Shanghai, China. Serum glucagon was measured to elucidate its associations with intact N-terminal propeptide of type I collagen (P1NP), osteocalcin (OC), and β-C-terminal telopeptide (β-CTX). Glucagon was detected with a radioimmunoassay. Propeptide of type I collagen, OC, and β-CTX were detected using chemiluminescence. The diagnosis of T2D was based on American Diabetes Association criteria. RESULTS The concentration of glucagon was positively correlated with two BTMs [OC-β: 0.034, 95% CI: 0.004, 0.051, p = 0.024; CTX-β: 0.035, 95% CI: 0.004, 0.062, p = 0.024]. The result of P1NP was [P1NP-regression coefficient (β): 0.027, 95% CI: -0.003, 0.049, p = 0.083]. In the glucagon tertiles, P for trend of the BTMs is [P1NP: 0.031; OC: 0.038; CTX: 0.020], respectively. CONCLUSIONS Glucagon had a positive effect on bone metabolism. The concentrations of the three BTMs increased as glucagon concentrations rose. This implied that glucagon might speed up skeletal remodelling, accelerate osteogenesis, and promote the formation of mature bone tissue. At the same time, the osteoclastic process was also accelerated, providing raw materials for osteogenesis to preserve the dynamic balance. In view of the successful use of single-molecule as well as dual/triple agonists, it would be feasible to develop a preparation that would reduce osteoporosis in diabetic patients.
Collapse
Affiliation(s)
- Hui Guo
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People's Hospital, Shanghai, China
| | - Chunhua Sui
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaohong Ge
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People's Hospital, Shanghai, China
| | - Jian Cai
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People's Hospital, Shanghai, China
| | - Dongping Lin
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuyu Guo
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ningjian Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Zhou
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People's Hospital, Shanghai, China
| | - Rong Ying
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People's Hospital, Shanghai, China
| | - Kexi Zha
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People's Hospital, Shanghai, China
| | - Tao Gu
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People's Hospital, Shanghai, China
| | - Yan Zhao
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People's Hospital, Shanghai, China
| | - Yingli Lu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zengmei An
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People's Hospital, Shanghai, China
| |
Collapse
|
10
|
Laurent MR, Goemaere S, Verroken C, Bergmann P, Body JJ, Bruyère O, Cavalier E, Rozenberg S, Lapauw B, Gielen E. Prevention and Treatment of Glucocorticoid-Induced Osteoporosis in Adults: Consensus Recommendations From the Belgian Bone Club. Front Endocrinol (Lausanne) 2022; 13:908727. [PMID: 35757436 PMCID: PMC9219603 DOI: 10.3389/fendo.2022.908727] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/02/2022] [Indexed: 01/13/2023] Open
Abstract
Glucocorticoids are effective immunomodulatory drugs used for many inflammatory disorders as well as in transplant recipients. However, both iatrogenic and endogenous glucocorticoid excess are also associated with several side effects including an increased risk of osteoporosis and fractures. Glucocorticoid-induced osteoporosis (GIOP) is a common secondary cause of osteoporosis in adults. Despite availability of clear evidence and international guidelines for the prevention of GIOP, a large treatment gap remains. In this narrative review, the Belgian Bone Club (BBC) updates its 2006 consensus recommendations for the prevention and treatment of GIOP in adults. The pathophysiology of GIOP is multifactorial. The BBC strongly advises non-pharmacological measures including physical exercise, smoking cessation and avoidance of alcohol abuse in all adults at risk for osteoporosis. Glucocorticoids are associated with impaired intestinal calcium absorption; the BBC therefore strongly recommend sufficient calcium intake and avoidance of vitamin D deficiency. We recommend assessment of fracture risk, taking age, sex, menopausal status, prior fractures, glucocorticoid dose, other clinical risk factors and bone mineral density into account. Placebo-controlled randomized controlled trials have demonstrated the efficacy of alendronate, risedronate, zoledronate, denosumab and teriparatide in GIOP. We suggest monitoring by dual-energy X-ray absorptiometry (DXA) and vertebral fracture identification one year after glucocorticoid initiation. The trabecular bone score might be considered during DXA monitoring. Extended femur scans might be considered at the time of DXA imaging in glucocorticoid users on long-term (≥ 3 years) antiresorptive therapy. Bone turnover markers may be considered for monitoring treatment with anti-resorptive or osteoanabolic drugs in GIOP. Although the pathophysiology of solid organ and hematopoietic stem cell transplantation-induced osteoporosis extends beyond GIOP alone, the BBC recommends similar evaluation, prevention, treatment and follow-up principles in these patients. Efforts to close the treatment gap in GIOP and implement available effective fracture prevention strategies into clinical practice in primary, secondary and tertiary care are urgently needed.
Collapse
Affiliation(s)
- Michaël R. Laurent
- Centre for Metabolic Bone Diseases, Department of Geriatrics, University Hospitals Leuven, Leuven, Belgium
- Department of Geriatrics, Imelda Hospital, Bonheiden, Belgium
| | - Stefan Goemaere
- Unit for Osteoporosis and Metabolic Bone Diseases, Ghent University Hospital, Ghent, Belgium
| | - Charlotte Verroken
- Unit for Osteoporosis and Metabolic Bone Diseases, Ghent University Hospital, Ghent, Belgium
- Department of Endocrinology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Pierre Bergmann
- Department of Nuclear Medicine, CHU Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean-Jacques Body
- Department of Medicine, CHU Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Olivier Bruyère
- WHO Collaborating Center for Public Health Aspects of Musculoskeletal Health and Ageing, Division of Public Health, Epidemiology and Health Economics, University of Liège, Liège, Belgium
| | - Etienne Cavalier
- Department of Clinical Chemistry, University of Liège, CHU de Liège, Liège, Belgium
| | - Serge Rozenberg
- Department of Gynaecology and Obstetrics, Université Libre de Bruxelles, Brussels, Belgium
| | - Bruno Lapauw
- Unit for Osteoporosis and Metabolic Bone Diseases, Ghent University Hospital, Ghent, Belgium
- Department of Endocrinology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Evelien Gielen
- Centre for Metabolic Bone Diseases, Department of Geriatrics, University Hospitals Leuven, Leuven, Belgium
- Gerontology and Geriatrics section, Department of Public Health and Primary Care, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Fehsel K, Christl J. Comorbidity of osteoporosis and Alzheimer's disease: Is `AKT `-ing on cellular glucose uptake the missing link? Ageing Res Rev 2022; 76:101592. [PMID: 35192961 DOI: 10.1016/j.arr.2022.101592] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 02/08/2023]
Abstract
Osteoporosis and Alzheimer's disease (AD) are both degenerative diseases. Osteoporosis often proceeds cognitive deficits, and multiple studies have revealed common triggers that lead to energy deficits in brain and bone. Risk factors for osteoporosis and AD, such as obesity, type 2 diabetes, aging, chemotherapy, vitamin deficiency, alcohol abuse, and apolipoprotein Eε4 and/or Il-6 gene variants, reduce cellular glucose uptake, and protective factors, such as estrogen, insulin, exercise, mammalian target of rapamycin inhibitors, hydrogen sulfide, and most phytochemicals, increase uptake. Glucose uptake is a fine-tuned process that depends on an abundance of glucose transporters (Gluts) on the cell surface. Gluts are stored in vesicles under the plasma membrane, and protective factors cause these vesicles to fuse with the membrane, resulting in presentation of Gluts on the cell surface. This translocation depends mainly on AKT kinase signaling and can be affected by a range of factors. Reduced AKT kinase signaling results in intracellular glucose deprivation, which causes endoplasmic reticulum stress and iron depletion, leading to activation of HIF-1α, the transcription factor necessary for higher Glut expression. The link between diseases and aging is a topic of growing interest. Here, we show that diseases that affect the same biochemical pathways tend to co-occur, which may explain why osteoporosis and/or diabetes are often associated with AD.
Collapse
|
12
|
Ebeling PR, Nguyen HH, Aleksova J, Vincent AJ, Wong P, Milat F. Secondary Osteoporosis. Endocr Rev 2022; 43:240-313. [PMID: 34476488 DOI: 10.1210/endrev/bnab028] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Indexed: 02/07/2023]
Abstract
Osteoporosis is a global public health problem, with fractures contributing to significant morbidity and mortality. Although postmenopausal osteoporosis is most common, up to 30% of postmenopausal women, > 50% of premenopausal women, and between 50% and 80% of men have secondary osteoporosis. Exclusion of secondary causes is important, as treatment of such patients often commences by treating the underlying condition. These are varied but often neglected, ranging from endocrine to chronic inflammatory and genetic conditions. General screening is recommended for all patients with osteoporosis, with advanced investigations reserved for premenopausal women and men aged < 50 years, for older patients in whom classical risk factors for osteoporosis are absent, and for all patients with the lowest bone mass (Z-score ≤ -2). The response of secondary osteoporosis to conventional anti-osteoporosis therapy may be inadequate if the underlying condition is unrecognized and untreated. Bone densitometry, using dual-energy x-ray absorptiometry, may underestimate fracture risk in some chronic diseases, including glucocorticoid-induced osteoporosis, type 2 diabetes, and obesity, and may overestimate fracture risk in others (eg, Turner syndrome). FRAX and trabecular bone score may provide additional information regarding fracture risk in secondary osteoporosis, but their use is limited to adults aged ≥ 40 years and ≥ 50 years, respectively. In addition, FRAX requires adjustment in some chronic conditions, such as glucocorticoid use, type 2 diabetes, and HIV. In most conditions, evidence for antiresorptive or anabolic therapy is limited to increases in bone mass. Current osteoporosis management guidelines also neglect secondary osteoporosis and these existing evidence gaps are discussed.
Collapse
Affiliation(s)
- Peter R Ebeling
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia.,Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia
| | - Hanh H Nguyen
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia.,Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia.,Department of Endocrinology and Diabetes, Western Health, Victoria 3011, Australia
| | - Jasna Aleksova
- Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia.,Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Amanda J Vincent
- Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia.,Monash Centre for Health Research and Implementation, School of Public Health and Preventative Medicine, Monash University, Clayton, Victoria 3168, Australia
| | - Phillip Wong
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia.,Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia.,Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Frances Milat
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia.,Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia.,Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| |
Collapse
|
13
|
Florez H, Hernández-Rodríguez J, Carrasco JL, Filella X, Prieto-González S, Monegal A, Guañabens N, Peris P. Low serum osteocalcin levels are associated with diabetes mellitus in glucocorticoid treated patients. Osteoporos Int 2022; 33:745-750. [PMID: 34557953 DOI: 10.1007/s00198-021-06167-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
UNLABELLED Bone turnover markers are decreased in GC-treated subjects with DM. Decreased OC levels in GC-treated patients were associated with an increased risk of DM. These results suggest the involvement of OC in glucose homeostasis regulation in DM. INTRODUCTION Osteocalcin (OC) is involved in the regulation of glucose homeostasis. Glucocorticoid (GC) treatment is associated with impaired osteoblast function, decreased OC levels, and the development and/or worsening of pre-existing diabetes mellitus (DM). Whether decreased OC levels in GC-treated subjects contribute to DM is not well known. The aim of this study was to analyse whether OC levels in GC-treated patients are associated with the presence of DM. METHODS One hundred twenty-seven patients (aged 61.5 ± 17.9 years) on GC treatment were included. GC dose, treatment duration, presence of DM and bone formation (OC, bone ALP, PINP) and resorption markers (urinary NTX, serum CTX) were analysed. The cut-offs of each bone turnover marker (BTM) for the presence of DM were evaluated and optimised with the Youden index and included in the logistic regression analysis. RESULTS Among the patients, 17.3% presented DM. No differences were observed in GC dose or duration or the presence of fractures. Diabetics showed lower levels of OC (7.57 ± 1.01 vs. 11.56 ± 1; p < 0.001), PINP (21.48 ± 1.01 vs. 28.39 ± 1; p = 0.0048), NTX (24.91 ± 1.01 vs. 31.7 ± 1; p = 0.036) and CTX (0.2 ± 1.01 vs. 0.3 ± 1; p = 0.0016). The discriminating BTM cut-offs for DM presence were < 9.25 ng/mL for OC, < 24 ng/mL for PINP, < 27.5 nMol/mM for NTX and < 0.25 ng/mL for CTX. In a multivariate logistic regression model adjusted for GC dose, BMI, age and the above four BTMs, only OC remained independently associated with DM presence. Thus, in a model adjusted for GC dose, BMI and age, OC was significantly associated with DM (OR: 6.1; 95%CI 1.87-19.89; p = 0.001). CONCLUSION Decreased OC levels in GC-treated patients are associated with increased odds of DM, and only OC was independently associated with DM in a model including four BTMs.
Collapse
Affiliation(s)
- H Florez
- Metabolic Bone Diseases Unit, Department of Rheumatology, Hospital Clinic, IDIBAPS, CIBERehd, University of Barcelona, Villarroel 170, 08036, Barcelona, Spain.
| | - J Hernández-Rodríguez
- Department of Autoimmune Diseases, Hospital Clinic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - J L Carrasco
- Biostatistics, Department of Basic Clinical Practice, University of Barcelona, Barcelona, Spain
| | - X Filella
- Biochemistry and Molecular Genetics Department, Hospital Clínic, IDIBAPS, Barcelona, Spain
| | - S Prieto-González
- Department of Autoimmune Diseases, Hospital Clinic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - A Monegal
- Metabolic Bone Diseases Unit, Department of Rheumatology, Hospital Clinic, IDIBAPS, CIBERehd, University of Barcelona, Villarroel 170, 08036, Barcelona, Spain
| | - N Guañabens
- Metabolic Bone Diseases Unit, Department of Rheumatology, Hospital Clinic, IDIBAPS, CIBERehd, University of Barcelona, Villarroel 170, 08036, Barcelona, Spain
| | - P Peris
- Metabolic Bone Diseases Unit, Department of Rheumatology, Hospital Clinic, IDIBAPS, CIBERehd, University of Barcelona, Villarroel 170, 08036, Barcelona, Spain
| |
Collapse
|
14
|
Cheng CH, Chen LR, Chen KH. Osteoporosis Due to Hormone Imbalance: An Overview of the Effects of Estrogen Deficiency and Glucocorticoid Overuse on Bone Turnover. Int J Mol Sci 2022; 23:ijms23031376. [PMID: 35163300 PMCID: PMC8836058 DOI: 10.3390/ijms23031376] [Citation(s) in RCA: 205] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 02/07/2023] Open
Abstract
Osteoporosis is a serious health issue among aging postmenopausal women. The majority of postmenopausal women with osteoporosis have bone loss related to estrogen deficiency. The rapid bone loss results from an increase in bone turnover with an imbalance between bone resorption and bone formation. Osteoporosis can also result from excessive glucocorticoid usage, which induces bone demineralization with significant changes of spatial heterogeneities of bone at microscale, indicating potential risk of fracture. This review is a summary of current literature about the molecular mechanisms of actions, the risk factors, and treatment of estrogen deficiency related osteoporosis (EDOP) and glucocorticoid induced osteoporosis (GIOP). Estrogen binds with estrogen receptor to promote the expression of osteoprotegerin (OPG), and to suppress the action of nuclear factor-κβ ligand (RANKL), thus inhibiting osteoclast formation and bone resorptive activity. It can also activate Wnt/β-catenin signaling to increase osteogenesis, and upregulate BMP signaling to promote mesenchymal stem cell differentiation from pre-osteoblasts to osteoblasts, rather than adipocytes. The lack of estrogen will alter the expression of estrogen target genes, increasing the secretion of IL-1, IL-6, and tumor necrosis factor (TNF). On the other hand, excessive glucocorticoids interfere the canonical BMP pathway and inhibit Wnt protein production, causing mesenchymal progenitor cells to differentiate toward adipocytes rather than osteoblasts. It can also increase RANKL/OPG ratio to promote bone resorption by enhancing the maturation and activation of osteoclast. Moreover, excess glucocorticoids are associated with osteoblast and osteocyte apoptosis, resulting in declined bone formation. The main focuses of treatment for EDOP and GIOP are somewhat different. Avoiding excessive glucocorticoid use is mandatory in patients with GIOP. In contrast, appropriate estrogen supplement is deemed the primary treatment for females with EDOP of various causes. Other pharmacological treatments include bisphosphonate, teriparatide, and RANKL inhibitors. Nevertheless, more detailed actions of EDOP and GIOP along with the safety and effectiveness of medications for treating osteoporosis warrant further investigation.
Collapse
Affiliation(s)
- Chu-Han Cheng
- Department of Physical Medicine and Rehabilitation, Mackay Memorial Hospital, Taipei 104, Taiwan; (C.-H.C.); (L.-R.C.)
| | - Li-Ru Chen
- Department of Physical Medicine and Rehabilitation, Mackay Memorial Hospital, Taipei 104, Taiwan; (C.-H.C.); (L.-R.C.)
- Department of Mechanical Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Kuo-Hu Chen
- Department of Obstetrics and Gynecology, Taipei Tzu-Chi Hospital, The Buddhist Tzu-Chi Medical Foundation, Taipei 231, Taiwan
- School of Medicine, Tzu-Chi University, Hualien 970, Taiwan
- Correspondence: ; Tel.: +886-2-66289779
| |
Collapse
|
15
|
Li Y, Gu Z, Wang J, Wang Y, Chen X, Dong B. The Emerging Role of Bone-Derived Hormones in Diabetes Mellitus and Diabetic Kidney Disease. Front Endocrinol (Lausanne) 2022; 13:938830. [PMID: 35966090 PMCID: PMC9367194 DOI: 10.3389/fendo.2022.938830] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic kidney disease (DKD) causes the greatest proportion of end-stage renal disease (ESRD)-related mortality and has become a high concern in patients with diabetes mellitus (DM). Bone is considered an endocrine organ, playing an emerging role in regulating glucose and energy metabolism. Accumulating research has proven that bone-derived hormones are involved in glucose metabolism and the pathogenesis of DM complications, especially DKD. Furthermore, these hormones are considered to be promising predictors and prospective treatment targets for DM and DKD. In this review, we focused on bone-derived hormones, including fibroblast growth factor 23, osteocalcin, sclerostin, and lipocalin 2, and summarized their role in regulating glucose metabolism and DKD.
Collapse
Affiliation(s)
- Yixuan Li
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zuhua Gu
- Department of Endocrinology and Nephropathy, Weihai Hospital, Weihai, China
| | - Jun Wang
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yangang Wang
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xian Chen
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Bingzi Dong, ; Xian Chen,
| | - Bingzi Dong
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Bingzi Dong, ; Xian Chen,
| |
Collapse
|
16
|
Guo H, Wang C, Jiang B, Ge S, Cai J, Zhou Y, Ying R, Zha K, Zhou J, Wang N, Zhu C, Cao C, Zhang L, Gu T, Zhao Y, Lu Y, An Z. Association of Insulin Resistance and β-cell Function With Bone Turnover Biomarkers in Dysglycemia Patients. Front Endocrinol (Lausanne) 2021; 12:554604. [PMID: 33841321 PMCID: PMC8027237 DOI: 10.3389/fendo.2021.554604] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 03/04/2021] [Indexed: 01/08/2023] Open
Abstract
Background The interrelation between glucose and bone metabolism is complex and has not been fully revealed. This study aimed to investigate the association between insulin resistance, β-cell function and bone turnover biomarker levels among participants with abnormal glycometabolism. Methods A total of 5277 subjects were involved through a cross-sectional study (METAL study, http://www.chictr.org.cn, ChiCTR1800017573) in Shanghai, China. Homeostasis model assessment of insulin resistance (HOMA-IR) and β-cell dysfunction (HOMA-%β) were applied to elucidate the nexus between β-C-terminal telopeptide (β-CTX), intact N-terminal propeptide of type I collagen (P1NP) and osteocalcin (OC). β-CTX, OC and P1NP were detected by chemiluminescence. Results HOMA-IR was negatively associated with β-CTX, P1NP and OC (regression coefficient (β) -0.044 (-0.053, -0.035), Q4vsQ1; β -7.340 (-9.130, -5.550), Q4vsQ1 and β -2.885 (-3.357, -2.412), Q4vsQ1, respectively, all P for trend <0.001). HOMA-%β was positively associated with β-CTX, P1NP and OC (β 0.022 (0.014, 0.031), Q4vsQ1; β 6.951 (5.300, 8.602), Q4vsQ1 and β 1.361 (0.921, 1.800), Q4vsQ1, respectively, all P for trend <0.001). Conclusions Our results support that lower bone turnover biomarker (β-CTX, P1NP and OC) levels were associated with a combination of higher prevalence of insulin resistance and worse β-cell function among dysglycemia patients. It is feasible to detect bone turnover in diabetes or hyperglycemia patients to predict the risk of osteoporosis and fracture, relieve patients' pain and reduce the expenses of long-term cure.
Collapse
Affiliation(s)
- Hui Guo
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People’s Hospital, Shanghai, China
| | - Chiyu Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Boren Jiang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaohong Ge
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People’s Hospital, Shanghai, China
| | - Jian Cai
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People’s Hospital, Shanghai, China
| | - Ying Zhou
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People’s Hospital, Shanghai, China
| | - Rong Ying
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People’s Hospital, Shanghai, China
| | - Kexi Zha
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People’s Hospital, Shanghai, China
| | - Ji Zhou
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People’s Hospital, Shanghai, China
| | - Ningjian Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunfang Zhu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenyu Cao
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liqin Zhang
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People’s Hospital, Shanghai, China
| | - Tao Gu
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People’s Hospital, Shanghai, China
| | - Yan Zhao
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People’s Hospital, Shanghai, China
| | - Yingli Lu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zengmei An
- Institute and Department of Endocrinology and Metabolism, Huangpu Branch of Shanghai Ninth People’s Hospital, Shanghai, China
| |
Collapse
|
17
|
Wang C, Zhang T, Wang P, Liu X, Zheng L, Miao L, Zhou D, Zhang Y, Hu Y, Yin H, Jiang Q, Jin H, Sun J. Bone metabolic biomarker-based diagnosis of type 2 diabetes osteoporosis by support vector machine. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:316. [PMID: 33708943 PMCID: PMC7944260 DOI: 10.21037/atm-20-3388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background Diabetes has significant effects on bone metabolism. Both type 1 and type 2 diabetes can cause osteoporotic fracture. However, it remains challenging to diagnose osteoporosis in type 2 diabetes by bone mineral density which lacks regular changes. Seen another way, osteoporosis can be ascribed to the imbalance of bone metabolism, which is closely related to diabetes as well. Methods Here, to assist clinicians in diagnosing osteoporosis in type 2 diabetes, an efficient and simple SVM (support vector machine) model was established based on different combinations of biochemical indexes, which were collected from patients who did the test of bone turn-over markers (BTMs) from January 2016 to March 2018 in the department of endocrine, Zhongda Hospital affiliated to Southeast University. The classification was done based on a software package of machine learning in Python. The classification performance was measured by SKLearn program incorporated in the Python software package and compared with the clinical diagnostic results. Results The predicting accuracy rate of final model was above 88%, with feature combination of sex, age, BMI (body mass index), TP1NP (total procollagen I N-terminal propeptide) and OSTEOC (osteocalcin). Conclusions Experimental results show that the model showed an anticipant result for early detection and daily monitoring on type 2 diabetic osteoporosis.
Collapse
Affiliation(s)
- Chuan Wang
- Naval Medical Center of PLA, Shanghai, China
| | - Taomin Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Peng Wang
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Xuan Liu
- School of Medicine, Southeast University, Nanjing, China
| | - Liming Zheng
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Lei Miao
- School of Computer Science and Engineering, Southeast University, Nanjing, China
| | - Deyu Zhou
- School of Computer Science and Engineering, Southeast University, Nanjing, China
| | - Yibo Zhang
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Yezi Hu
- Department of Endocrine Secretion, Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| | - Han Yin
- Department of Endocrine Secretion, Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Hui Jin
- Department of Endocrine Secretion, Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| | - Jianfei Sun
- State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
18
|
Wang XY, Hua BX, Jiang C, Yuan HF, Zhu L, Fan WS, Ji ZF, Wang Z, Yan ZQ. Serum Biomarkers Related to Glucocorticoid-Induced Osteonecrosis of the Femoral Head: A Prospective Nested Case-Control Study. J Orthop Res 2019; 37:2348-2357. [PMID: 31254413 DOI: 10.1002/jor.24400] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 06/18/2019] [Indexed: 02/04/2023]
Abstract
Early diagnosis and prevention of glucocorticoid (GC)-induced osteonecrosis of the femoral head (ONFH) continues to be a challenging problem for clinicians and researchers. However, the role of circulating biomarkers for GC-induced ONFH, which may reveal individual susceptibility and facilitate earlier diagnosis, remains to be determined. The aim of this study was to identify potential biomarkers that may predict early GC-induced ONFH. A total of 123 patients scheduled for initial systemic GC therapy were enrolled in this prospective nested case-control study. The serum concentrations of 13 potential biomarkers were measured in seven patients with GC-induced ONFH, diagnosed instantly after short-term use of GCs and in 20 controls who did not develop osteonecrosis despite similar GC therapy. Biomarkers were measured both before and after taking GCs to identify any differences in marker levels and the changes during GC therapy between two groups. Type I collagen cross-linked C-telopeptide (β-CTX; p = 0.000) was significantly lower, high-density lipoprotein cholesterol (p = 0.092) and apolipoprotein (apo)-B/apo-A1 (p = 0.085) tended to be lower and higher, respectively, before GC treatment in osteonecrosis group. After GC therapy, β-CTX (p = 0.014) was significantly lower and amino terminal telopeptide of procollagen type I (PINP; p = 0.068) tended to be lower in the osteonecrosis group. As secondary outcomes, we observed remarkable changes in nine potential biomarkers following short-term GC therapy in both groups. In conclusion, we found that β-CTX, could potentially be used to predict GC-induced ONFH before GC therapy. Lower β-CTX and PINP are promising biomarkers for the early diagnosis of GC-induced ONFH. These findings need to be confirmed in large-scale prospective studies. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2348-2357, 2019.
Collapse
Affiliation(s)
- Xin-Yuan Wang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Bing-Xuan Hua
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Chang Jiang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Heng-Feng Yuan
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Liang Zhu
- Department of Orthopaedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wen-Shuai Fan
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Zong-Fei Ji
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhe Wang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Zuo-Qin Yan
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| |
Collapse
|
19
|
Wei HJ, Liu L, Chen FL, Wang D, Wang L, Wang ZG, Jiang RC, Dong JF, Chen JL, Zhang JN. Decreased numbers of circulating endothelial progenitor cells are associated with hyperglycemia in patients with traumatic brain injury. Neural Regen Res 2019; 14:984-990. [PMID: 30762009 PMCID: PMC6404487 DOI: 10.4103/1673-5374.250577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Hyperglycemia reduces the number of circulating endothelial progenitor cells, accelerates their senescence and impairs their function. However, the relationship between blood glucose levels and endothelial progenitor cells in peripheral blood of patients with traumatic brain injury is unclear. In this study, 101 traumatic brain injury patients admitted to the Department of Neurosurgery, Tianjin Medical University General Hospital or the Department of Neurosurgery, Tianjin Huanhu Hospital, China, were enrolled from April 2005 to March 2007. The number of circulating endothelial progenitor cells and blood glucose levels were measured at 1, 4, 7, 14 and 21 days after traumatic brain injury by flow cytometry and automatic biochemical analysis, respectively. The number of circulating endothelial progenitor cells and blood sugar levels in 37 healthy control subjects were also examined. Compared with controls, the number of circulating endothelial progenitor cells in traumatic brain injury patients was decreased at 1 day after injury, and then increased at 4 days after injury, and reached a peak at 7 days after injury. Compared with controls, blood glucose levels in traumatic brain injury patients peaked at 1 day and then decreased until 7 days and then remained stable. At 1, 4, and 7 days after injury, the number of circulating endothelial progenitor cells was negatively correlated with blood sugar levels (r = −0.147, P < 0.05). Our results verify that hyperglycemia in patients with traumatic brain injury is associated with decreased numbers of circulating endothelial progenitor cells. This study was approved by the Ethical Committee of Tianjin Medical University General Hospital, China (approval No. 200501) in January 2015.
Collapse
Affiliation(s)
- Hui-Jie Wei
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Li Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Fang-Lian Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Dong Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Liang Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin; Department of Neurosurgery, Peking University International Hospital, Beijing, China
| | - Zeng-Guang Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Rong-Cai Jiang
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Jing-Fei Dong
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China; Thrombosis Research Section, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jie-Li Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China; Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Jian-Ning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| |
Collapse
|