1
|
Zhao Z, Du Y, Yan K, Zhang L, Guo Q. Exercise and osteoimmunology in bone remodeling. FASEB J 2024; 38:e23554. [PMID: 38588175 DOI: 10.1096/fj.202301508rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 04/10/2024]
Abstract
Bones can form the scaffolding of the body, support the organism, coordinate somatic movements, and control mineral homeostasis and hematopoiesis. The immune system plays immune supervisory, defensive, and regulatory roles in the organism, which mainly consists of immune organs (spleen, bone marrow, tonsils, lymph nodes, etc.), immune cells (granulocytes, platelets, lymphocytes, etc.), and immune molecules (immune factors, interferons, interleukins, tumor necrosis factors, etc.). Bone and the immune system have long been considered two distinct fields of study, and the bone marrow, as a shared microenvironment between the bone and the immune system, closely links the two. Osteoimmunology organically combines bone and the immune system, elucidates the role of the immune system in bone, and creatively emphasizes its interdisciplinary characteristics and the function of immune cells and factors in maintaining bone homeostasis, providing new perspectives for skeletal-related field research. In recent years, bone immunology has gradually become a hot spot in the study of bone-related diseases. As a new branch of immunology, bone immunology emphasizes that the immune system can directly or indirectly affect bones through the RANKL/RANK/OPG signaling pathway, IL family, TNF-α, TGF-β, and IFN-γ. These effects are of great significance for understanding inflammatory bone loss caused by various autoimmune or infectious diseases. In addition, as an external environment that plays an important role in immunity and bone, this study pays attention to the role of exercise-mediated bone immunity in bone reconstruction.
Collapse
Affiliation(s)
- Zhonghan Zhao
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yuxiang Du
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Kai Yan
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Lingli Zhang
- College of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Qiang Guo
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Roberts JL, Kapfhamer D, Devarapalli V, Drissi H. IL-17RA Signaling in Prx1+ Mesenchymal Cells Influences Fracture Healing in Mice. Int J Mol Sci 2024; 25:3751. [PMID: 38612562 PMCID: PMC11011315 DOI: 10.3390/ijms25073751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/17/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Fracture healing is a complex series of events that requires a local inflammatory reaction to initiate the reparative process. This inflammatory reaction is important for stimulating the migration and proliferation of mesenchymal progenitor cells from the periosteum and surrounding tissues to form the cartilaginous and bony calluses. The proinflammatory cytokine interleukin (IL)-17 family has gained attention for its potential regenerative effects; however, the requirement of IL-17 signaling within mesenchymal progenitor cells for normal secondary fracture healing remains unknown. The conditional knockout of IL-17 receptor a (Il17ra) in mesenchymal progenitor cells was achieved by crossing Il17raF/F mice with Prx1-cre mice to generate Prx1-cre; Il17raF/F mice. At 3 months of age, mice underwent experimental unilateral mid-diaphyseal femoral fractures and healing was assessed by micro-computed tomography (µCT) and histomorphometric analyses. The effects of IL-17RA signaling on the osteogenic differentiation of fracture-activated periosteal cells was investigated in vitro. Examination of the intact skeleton revealed that the conditional knockout of Il17ra decreased the femoral cortical porosity but did not affect any femoral trabecular microarchitectural indices. After unilateral femoral fractures, Il17ra conditional knockout impacted the cartilage and bone composition of the fracture callus that was most evident early in the healing process (day 7 and 14 post-fracture). Furthermore, the in vitro treatment of fracture-activated periosteal cells with IL-17A inhibited osteogenesis. This study suggests that IL-17RA signaling within Prx1+ mesenchymal progenitor cells can influence the early stages of endochondral ossification during fracture healing.
Collapse
Affiliation(s)
- Joseph L. Roberts
- Department of Orthopaedics, Emory University, Atlanta, GA 30329, USA; (J.L.R.)
- Atlanta VA Health Care System, Decatur, GA 30033, USA
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
| | - David Kapfhamer
- Department of Orthopaedics, Emory University, Atlanta, GA 30329, USA; (J.L.R.)
- Atlanta VA Health Care System, Decatur, GA 30033, USA
| | - Varsha Devarapalli
- Department of Orthopaedics, Emory University, Atlanta, GA 30329, USA; (J.L.R.)
- Atlanta VA Health Care System, Decatur, GA 30033, USA
| | - Hicham Drissi
- Department of Orthopaedics, Emory University, Atlanta, GA 30329, USA; (J.L.R.)
- Atlanta VA Health Care System, Decatur, GA 30033, USA
| |
Collapse
|
3
|
Huangfu L, Li R, Huang Y, Wang S. The IL-17 family in diseases: from bench to bedside. Signal Transduct Target Ther 2023; 8:402. [PMID: 37816755 PMCID: PMC10564932 DOI: 10.1038/s41392-023-01620-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/16/2023] [Accepted: 08/22/2023] [Indexed: 10/12/2023] Open
Abstract
The interleukin-17 (IL-17) family comprises six members (IL-17A-17F), and recently, all of its related receptors have been discovered. IL-17 was first discovered approximately 30 years ago. Members of this family have various biological functions, including driving an inflammatory cascade during infections and autoimmune diseases, as well as boosting protective immunity against various pathogens. IL-17 is a highly versatile proinflammatory cytokine necessary for vital processes including host immune defenses, tissue repair, inflammatory disease pathogenesis, and cancer progression. However, how IL-17 performs these functions remains controversial. The multifunctional properties of IL-17 have attracted research interest, and emerging data have gradually improved our understanding of the IL-17 signaling pathway. However, a comprehensive review is required to understand its role in both host defense functions and pathogenesis in the body. This review can aid researchers in better understanding the mechanisms underlying IL-17's roles in vivo and provide a theoretical basis for future studies aiming to regulate IL-17 expression and function. This review discusses recent progress in understanding the IL-17 signaling pathway and its physiological roles. In addition, we present the mechanism underlying IL-17's role in various pathologies, particularly, in IL-17-induced systemic lupus erythematosus and IL-17-related tumor cell transformation and metastasis. In addition, we have briefly discussed promising developments in the diagnosis and treatment of autoimmune diseases and tumors.
Collapse
Affiliation(s)
- Longjie Huangfu
- School of Stomatology, Harbin Medical University, Harbin, 150001, P. R. China
| | - Ruiying Li
- Department of Oral Pathology, School of Stomatology, Hainan Medical University, Haikou, 571199, P. R. China
| | - Yamei Huang
- Department of Oral Pathology, School of Stomatology, Hainan Medical University, Haikou, 571199, P. R. China
| | - Shan Wang
- Department of Oral Pathology, School of Stomatology, Hainan Medical University, Haikou, 571199, P. R. China.
- Department of Stomatology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570216, P. R. China.
| |
Collapse
|
4
|
Wang Y, Agenor A, Clement A, Hopfgartner A, Whyne C, Nam D. Probiotics: Can it modulate fracture healing? PLoS One 2023; 18:e0290738. [PMID: 37651346 PMCID: PMC10470963 DOI: 10.1371/journal.pone.0290738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023] Open
Abstract
OBJECTIVE Fractures remain a huge burden and their management adversely affects individuals' function and productivity during the lengthy healing period. Gut microbiota exerts a systemic influence on diverse aspects of host physiology, including bone. The primary objective of this study was to evaluate if oral probiotic treatment before or after a fracture in a mouse model could increase cytokines and biomarkers essential for bone healing with subsequent improvement in the biomechanical properties of the healed callus. METHODS Femoral osteotomy and intramedullary pinning were performed on C57BL/6 mice. Group 1 received either control PBS or probiotic via oral gavage for 5 weeks before fracture (pre-fracture). Group 2 received equivalent treatments for 4 weeks only after fracture (post-fracture). Fracture calluses were harvested on day 3 and 7 for RT-qPCR to quantify osteogenic-related inflammatory cytokines and bone biomarkers. Fractured femurs were evaluated day 28 post-osteotomy via microstructural analysis (μCT) and biomechanical testing (torsion). RESULTS Mice treated with probiotics pre-fracture (group 1) showed significantly increased gene expression on day 3 of cytokines TGF-β, IL-6 and IL-17F and a corresponding increase in gene expression on day 7 for Col1 and Runx2. Significant improvement was also seen in bone volume fraction, bone mineral density, tissue mineral density, maximum yield torque, stiffness and strain energy. Mice treated with probiotics post-fracture (group 2), demonstrated no changes in cytokine or bone marker gene expression with no significant changes on microstructural analysis. However, significant increases were seen in twist angle at failure and strain energy, with a corresponding reduction in torsional stiffness. CONCLUSION Our results suggest that oral probiotic administration, before or after a fracture, may sufficiently alter the gut flora microenvironment leading to improved bone healing biomechanical properties. The use of probiotics may provide a cost-effective and low-risk adjunctive therapy to improve fracture healing.
Collapse
Affiliation(s)
- Yufa Wang
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| | - Aouod Agenor
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| | - Allison Clement
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| | - Adam Hopfgartner
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| | - Cari Whyne
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
- Institute for Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Diane Nam
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| |
Collapse
|
5
|
Wang T, Luo E, Zhou Z, Yang J, Wang J, Zhong J, Zhang J, Yao B, Li X, Dong H. Lyophilized powder of velvet antler blood improves osteoporosis in OVX-induced mouse model and regulates proliferation and differentiation of primary osteoblasts via Wnt/β-catenin pathway. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
|
6
|
Regenerative and Anti-Inflammatory Potential of Regularly Fed, Starved Cells and Extracellular Vesicles In Vivo. Cells 2022; 11:cells11172696. [PMID: 36078106 PMCID: PMC9455002 DOI: 10.3390/cells11172696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Mesenchymal stem/stromal cells (MSC) have been employed successfully in immunotherapy and regenerative medicine, but their therapeutic potential is reduced considerably by the ischemic environment that exists after transplantation. The assumption that preconditioning MSC to promote quiescence may result in increased survival and regenerative potential upon transplantation is gaining popularity. Methods: The purpose of this work was to evaluate the anti-inflammatory and regenerative effects of human bone marrow MSC (hBM-MSC) and their extracellular vesicles (EVs) grown and isolated in a serum-free medium, as compared to starved hBM-MSC (preconditioned) in streptozotocin-induced diabetic fractured male C57BL/6J mice. Results: Blood samples taken four hours and five days after injection revealed that cells, whether starved or not, generated similar plasma levels of inflammatory-related cytokines but lower levels than animals treated with EVs. Nonetheless, starved cells prompted the highest production of IL-17, IL-6, IL-13, eotaxin and keratinocyte-derived chemokines and induced an earlier soft callus formation and mineralization of the fracture site compared to EVs and regularly fed cells five days after administration. Conclusions: Preconditioning may be crucial for refining and defining new criteria for future MSC therapies. Additionally, the elucidation of mechanisms underpinning an MSC’s survival/adaptive processes may result in increased cell survival and enhanced therapeutic efficacy following transplantation.
Collapse
|
7
|
Zhang C, Lin Y, Yan CH, Zhang W. Adipokine Signaling Pathways in Osteoarthritis. Front Bioeng Biotechnol 2022; 10:865370. [PMID: 35519618 PMCID: PMC9062110 DOI: 10.3389/fbioe.2022.865370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) is a debilitating joint disease that affects millions of individuals. The pathogenesis of OA has not been fully elucidated. Obesity is a well-recognized risk factor for OA. Multiple studies have demonstrated adipokines play a key role in obesity-induced OA. Increasing evidence show that various adipokines may significantly affect the development or clinical course of OA by regulating the pro/anti-inflammatory and anabolic/catabolic balance, matrix remodeling, chondrocyte apoptosis and autophagy, and subchondral bone sclerosis. Several signaling pathways are involved but still have not been systematically investigated. In this article, we review the cellular and molecular mechanisms of adipokines in OA, and highlight the possible signaling pathways. The review suggested adipokines play important roles in obesity-induced OA, and exert downstream function via the activation of various signaling pathways. In addition, some pharmaceuticals targeting these pathways have been applied into ongoing clinical trials and showed encouraging results. However, these signaling pathways are complex and converge into a common network with each other. In the future work, more research is warranted to further investigate how this network works. Moreover, more high quality randomised controlled trials are needed in order to investigate the therapeutic effects of pharmaceuticals against these pathways for the treatment of OA. This review may help researchers to better understand the pathogenesis of OA, so as to provide new insight for future clinical practices and translational research.
Collapse
Affiliation(s)
- Chaofan Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yunzhi Lin
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Chun Hoi Yan
- Department of Orthopaedics & Traumatology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Wenming Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
8
|
Zhang N, Cui M, Liu X, Yu L, Zhao X, Cao L, Ji Y. IL-17F promotes osteoblastic osteogenesis via the MAPK/ERK1/2 signaling pathway. Exp Ther Med 2021; 22:1052. [PMID: 34434266 PMCID: PMC8353634 DOI: 10.3892/etm.2021.10486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/23/2020] [Indexed: 12/27/2022] Open
Abstract
Osteoimmunology is a field that focuses on the interactions between the skeletal and immune systems, and has become a focus of research over the years. The role of interleukin (IL)-17F, a proinflammatory cytokine, in bone regeneration and its signal transduction are not completely understood. The aim of the present study was to evaluate the function of IL-17F and the possible mechanisms underlying IL-17F in osteoblasts in vitro. Osteoblasts derived from newborn rats were treated with various concentrations of IL-17F. The pro-osteogenic effects of IL-17F were assessed at the cellular and molecular level. The results demonstrated that IL-17F promoted osteoblast proliferation, differentiation and mineralization. Reverse transcription-quantitative PCR and western blotting indicated that IL-17F treatment upregulated osteogenesis-related factors, including bone morphogenetic protein-2, Runt-related transcription factor-2 (Runx2) and Osterix, and downregulated Noggin compared with the control group. Subsequently, whether the IL-17F receptors, IL-17 receptor (IL-17R) A and IL-17RC, served a role in the effects of IL-17F on osteoblasts was investigated. The mRNA expression levels of IL-17RA and IL-17RC were upregulated in IL-17F-treated osteoblasts compared with control osteoblasts. Furthermore, U0126, a MAPK/ERK1/2 inhibitor, was utilized to investigate the mechanisms underlying IL-17F. The results indicated that compared with the control group, IL-17F increased the protein expression of phosphorylated-ERK1/2, Runx2 and Osterix, whereas U0126 reversed IL-17F-mediated effects. Collectively, the results of the present study suggested that IL-17F promoted osteoblastic osteogenesis via the MAPK/ERK1/2-mediated signaling pathway. IL-17F promoted osteogenesis, including proliferation, differentiation and mineralization activity, indicating that IL-17F may serve as a potential therapeutic target for osteoblast-mediated bone loss disease.
Collapse
Affiliation(s)
- Na Zhang
- Department of Pain Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Min Cui
- Department of Pain Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Xudong Liu
- Department of Pain Medicine, Shandong University Qilu Hospital, Jinan, Shandong 250012, P.R. China
| | - Lingzhi Yu
- Department of Pain Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Xu Zhao
- Department of Anesthesiology, Shandong Provincial Hospital, Jinan, Shandong 250021, P.R. China
| | - Luning Cao
- Department of Pain Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong 272001, P.R. China
| | - Yuanyuan Ji
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
9
|
Dutta P, Kodigepalli KM, LaHaye S, Thompson JW, Rains S, Nagel C, Thatcher K, Hinton RB, Lincoln J. KPT-330 Prevents Aortic Valve Calcification via a Novel C/EBPβ Signaling Pathway. Circ Res 2021; 128:1300-1316. [PMID: 33601919 PMCID: PMC8085092 DOI: 10.1161/circresaha.120.318503] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Punashi Dutta
- Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
- Pediatric Cardiology, The Herma Heart Institute, Children’s Wisconsin, Milwaukee, WI, USA
| | - Karthik M. Kodigepalli
- Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
- Pediatric Cardiology, The Herma Heart Institute, Children’s Wisconsin, Milwaukee, WI, USA
| | - Stephanie LaHaye
- The Institute for Genomic Medicine at Nationwide Children’s Hospital, Columbus, OH, USA
| | - J. Will Thompson
- Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Sarah Rains
- Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
- Duke Proteomics and Metabolomics Shared Resource, Durham, NC, USA
| | - Casey Nagel
- Ocean Ridge Biosciences, Deerfield Beach, Florida, USA
| | - Kaitlyn Thatcher
- Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
- Pediatric Cardiology, The Herma Heart Institute, Children’s Wisconsin, Milwaukee, WI, USA
| | - Robert B. Hinton
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Joy Lincoln
- Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
- Pediatric Cardiology, The Herma Heart Institute, Children’s Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
10
|
Russell T, Bridgewood C, Rowe H, Altaie A, Jones E, McGonagle D. Cytokine "fine tuning" of enthesis tissue homeostasis as a pointer to spondyloarthritis pathogenesis with a focus on relevant TNF and IL-17 targeted therapies. Semin Immunopathol 2021; 43:193-206. [PMID: 33544244 PMCID: PMC7990848 DOI: 10.1007/s00281-021-00836-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022]
Abstract
A curious feature of axial disease in ankylosing spondylitis (AS) and related non-radiographic axial spondyloarthropathy (nrAxSpA) is that spinal inflammation may ultimately be associated with excessive entheseal tissue repair with new bone formation. Other SpA associated target tissues including the gut and the skin have well established paradigms on how local tissue immune responses and proven disease relevant cytokines including TNF and the IL-23/17 axis contribute to tissue repair. Normal skeletal homeostasis including the highly mechanically stressed entheseal sites is subject to tissue microdamage, micro-inflammation and ultimately repair. Like the skin and gut, healthy enthesis has resident immune cells including ILCs, γδ T cells, conventional CD4+ and CD8+ T cells and myeloid lineage cells capable of cytokine induction involving prostaglandins, growth factors and cytokines including TNF and IL-17 that regulate these responses. We discuss how human genetic studies, animal models and translational human immunology around TNF and IL-17 suggest a largely redundant role for these pathways in physiological tissue repair and homeostasis. However, disease associated immune system overactivity of these cytokines with loss of tissue repair “fine tuning” is eventually associated with exuberant tissue repair responses in AS. Conversely, excessive biomechanical stress at spinal enthesis or peripheral enthesis with mechanically related or degenerative conditions is associated with a normal immune system attempts at cytokine fine tuning, but in this setting, it is commensurate to sustained abnormal biomechanical stressing. Unlike SpA, where restoration of aberrant and excessive cytokine “fine tuning” is efficacious, antagonism of these pathways in biomechanically related disease may be of limited or even no value.
Collapse
Affiliation(s)
- Tobias Russell
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, UK
| | - Charlie Bridgewood
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, UK
| | - Hannah Rowe
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, UK
| | - Ala Altaie
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, UK
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, UK
| | - Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, UK.
- Section of Musculoskeletal Disease, Leeds Institute of Molecular Medicine, University of Leeds, NIHR Leeds Musculoskeletal Biomedical Research Unit, Chapel Allerton Hospital, Leeds, UK.
| |
Collapse
|
11
|
Wang D, Gilbert JR, Zhang X, Zhao B, Ker DFE, Cooper GM. Calvarial Versus Long Bone: Implications for Tailoring Skeletal Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2019; 26:46-63. [PMID: 31588853 DOI: 10.1089/ten.teb.2018.0353] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tissue-engineered graft substitutes have shown great potential to treat large bone defects. While we usually assume that therapeutic approaches developed for appendicular bone healing could be similarly translated for application in craniofacial reconstruction and vice versa, this is not necessarily accurate. In addition to those more well-known healing-associated factors, such as age, lifestyle (e.g., nutrition and smoking), preexisting disease (e.g., diabetes), medication, and poor blood supply, the developmental origins and surrounding tissue of the wound sites can largely affect the fracture healing outcome as well as designed treatments. Therefore, the strategies developed for long bone fracture repair might not be suitable or directly applicable to skull bone repair. In this review, we discuss aspects of development, healing process, structure, and tissue engineering considerations between calvarial and long bones to assist in designing the tailored bone repair strategies. Impact Statement We summarized, in this review, the existing body of knowledge between long bone and calvarial bone with regard to their development and healing, tissue structure, and consideration of current tissue engineering strategies. By highlighting their similarities and differences, we propose that tailored tissue engineering strategies, such as scaffold features, growth factor usage, and the source of cells for tissue or region-specific bone repair, are necessary to ensure an optimized healing outcome.
Collapse
Affiliation(s)
- Dan Wang
- Department of Stomatology, Tenth People's Hospital of Tongji University, Shanghai, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - James R Gilbert
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.,McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Xu Zhang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Bingkun Zhao
- Department of Stomatology, Tenth People's Hospital of Tongji University, Shanghai, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Dai Fei Elmer Ker
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Gregory M Cooper
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
12
|
George EL, Truesdell SL, Magyar AL, Saunders MM. The effects of mechanically loaded osteocytes and inflammation on bone remodeling in a bisphosphonate-induced environment. Bone 2019; 127:460-473. [PMID: 31301402 DOI: 10.1016/j.bone.2019.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 12/23/2022]
Abstract
Bisphosphonate-related osteonecrosis of the jaw is a disease appearing after tooth removal in patients undergoing bisphosphonate treatment for metastasizing cancers and osteoporosis. The complexity of the condition requires a multicellular model to address the net effects of two key risk factors: mechanical trauma (pathologic overload) and inflammation. In this work, a system comprised of a polydimethylsiloxane chip and mechanical loading device is used to expose bisphosphonate-treated osteocytes to mechanical trauma. Specifically, osteocytes are treated with the potent nitrogen-containing bisphosphonate, zoledronic acid, and exposed to short-term pathologic overload via substrate stretch. During bone remodeling, osteocyte apoptosis plays a role in attracting pre-osteoclasts to sites of damage; as such, lactate dehydrogenase activity, cell death and protein expression are evaluated as functions of load. Additionally, the effects of osteocyte soluble factors on osteoclast and osteoblast functional activity are quantified. Osteoclast activity and bone resorption are quantified in the presence and absence of inflammatory components, lipopolysaccharide and interferon gamma. Results suggest that inflammation associated with bacterial infection may hinder bone resorption by osteoclasts. In addition, osteocytes may respond to overload by altering expression of soluble signals that act on osteoblasts to attenuate bone formation. These findings give insight into the multicellular interactions implicated in bisphosphonate-related osteonecrosis of the jaw.
Collapse
Affiliation(s)
- Estee L George
- The University of Akron, Olson Research Center 319, 302 E. Buchtel Ave., Akron, OH 44325-0302, USA.
| | - Sharon L Truesdell
- The University of Akron, Olson Research Center 319, 302 E. Buchtel Ave., Akron, OH 44325-0302, USA.
| | - Alexandria L Magyar
- The University of Akron, Olson Research Center 319, 302 E. Buchtel Ave., Akron, OH 44325-0302, USA.
| | - Marnie M Saunders
- The University of Akron, Olson Research Center 319, 302 E. Buchtel Ave., Akron, OH 44325-0302, USA.
| |
Collapse
|
13
|
Zhang H, Tai H, Ma Y, Li Y, Dang Z, Wang J, Zhao L. Postoperative Serum Levels of Interleukin-1β (IL-1β), Interleukin-17 (IL-17), and Tumor Necrosis Factor-α (TNF-α) in Patients Following Hip Replacement Surgery for Traumatic Fractured Femoral Neck: A Retrospective Study. Med Sci Monit 2019; 25:6120-6127. [PMID: 31417072 PMCID: PMC6708283 DOI: 10.12659/msm.915369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background This study aimed to investigate the clinical significance of postoperative serum levels of interleukin-1β (IL-1β), interleukin-17 (IL-17), and tumor necrosis factor-α (TNF-α) in patients who required hip replacement surgery for traumatic fractured neck of femur. Material/Methods A retrospective study included 180 patients who had hip replacement surgery for traumatic fractured neck of femur and a control group of 100 patients. Differences between the two groups were compared for serum levels of IL-1β, IL-17, and TNF-α, and the Harris Hip Score (HHS) (maximum 100 points) using Pearson’s correlation. Results Serum levels of IL-1β, IL-17, and TNF-α in the control group were significantly lower than those in the study group (P<0.05). According to the HHS, there were 53 patients in the excellent group, 65 patients in the good group, 43 patients in the fair group and 19 patients in the poor group. Postoperative indicator analysis showed significant differences in IL-1β, IL-17, and TNF-α levels between the four groups (P<0.05). Clinical indicators increased from the excellent group to the poor group, with significant differences between the four groups (P<0.05). Postoperative levels of IL-1β, IL-17, and TNF-α were significantly decreased (P<0.05). Pearson’s correlation analysis showed a significant correlation with the clinical indicators (P<0.05). Conclusions In patients with hip replacement surgery for traumatic fractured neck of femur, measurement of postoperative serum levels of IL-1β, IL-17, and TNF-α were shown to be potential prognostic indicators.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Orthopedics, Gansu Provincial Hospital West Campus, Lanzhou, Gansu, China (mainland)
| | - Huiping Tai
- Department of Orthopedics, Gansu Provincial Hospital West Campus, Lanzhou, Gansu, China (mainland)
| | - Yuhong Ma
- The Second Department of Orthopedics, Gansu Provincial Hospital, Lanzhou, Gansu, China (mainland)
| | - Yan Li
- Department of Orthopedics, Gansu Provincial Hospital West Campus, Lanzhou, Gansu, China (mainland)
| | - Zongping Dang
- Department of Orthopedics, Gansu Provincial Hospital West Campus, Lanzhou, Gansu, China (mainland)
| | - Junkai Wang
- Department of Orthopedics, Gansu Provincial Hospital West Campus, Lanzhou, Gansu, China (mainland)
| | - Lin Zhao
- Department of Orthopedics, Gansu Provincial Hospital West Campus, Lanzhou, Gansu, China (mainland)
| |
Collapse
|