1
|
Yu W, Srivastava R, Srivastava S, Ma Y, Shankar S, Srivastava RK. Oncogenic Role of SATB2 In Vitro: Regulator of Pluripotency, Self-Renewal, and Epithelial-Mesenchymal Transition in Prostate Cancer. Cells 2024; 13:962. [PMID: 38891096 PMCID: PMC11171950 DOI: 10.3390/cells13110962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Special AT-rich sequence binding protein-2 (SATB2) is a nuclear matrix protein that binds to nuclear attachment regions and is involved in chromatin remodeling and transcription regulation. In stem cells, it regulates the expression of genes required for maintaining pluripotency and self-renewal and epithelial-mesenchymal transition (EMT). In this study, we examined the oncogenic role of SATB2 in prostate cancer and assessed whether overexpression of SATB2 in human normal prostate epithelial cells (PrECs) induces properties of cancer stem cells (CSCs). The results demonstrate that SATB2 is highly expressed in prostate cancer cell lines and CSCs, but not in PrECs. Overexpression of SATB2 in PrECs induces cellular transformation which was evident by the formation of colonies in soft agar and spheroids in suspension. Overexpression of SATB2 in PrECs also resulted in induction of stem cell markers (CD44 and CD133), pluripotency-maintaining transcription factors (cMYC, OCT4, SOX2, KLF4, and NANOG), CADHERIN switch, and EMT-related transcription factors. Chromatin immunoprecipitation assay demonstrated that SATB2 can directly bind to promoters of BCL-2, BSP, NANOG, MYC, XIAP, KLF4, and HOXA2, suggesting SATB2 is capable of directly regulating pluripotency/self-renewal, cell survival, and proliferation. Since prostate CSCs play a crucial role in cancer initiation, progression, and metastasis, we also examined the effects of SATB2 knockdown on stemness. SATB2 knockdown in prostate CSCs inhibited spheroid formation, cell viability, colony formation, cell motility, migration, and invasion compared to their scrambled control groups. SATB2 knockdown in CSCs also upregulated the expression of E-CADHERIN and inhibited the expression of N-CADHERIN, SNAIL, SLUG, and ZEB1. The expression of SATB2 was significantly higher in prostate adenocarcinoma compared to normal tissues. Overall, our data suggest that SATB2 acts as an oncogenic factor where it is capable of inducing malignant changes in PrECs by inducing CSC characteristics.
Collapse
Affiliation(s)
- Wei Yu
- Kansas City VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO 66128, USA (Y.M.)
| | - Rashmi Srivastava
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA
| | | | - Yiming Ma
- Kansas City VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO 66128, USA (Y.M.)
| | - Sharmila Shankar
- Kansas City VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO 66128, USA (Y.M.)
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Southeast Louisiana Veterans Health Care System, 2400 Canal Street, New Orleans, LA 70119, USA
| | - Rakesh K. Srivastava
- Kansas City VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO 66128, USA (Y.M.)
- GLAX LLC, 3500 S Dupont Highway, Dover, DE 19901, USA
| |
Collapse
|
2
|
Zarate YA, Bosanko K, Andres A, Fish JL. Bone health in SATB2-associated syndrome: Results from a large prospective cohort and recommendations for surveillance. Am J Med Genet A 2024; 194:203-210. [PMID: 37786328 DOI: 10.1002/ajmg.a.63421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 10/04/2023]
Abstract
Alterations in SATB2 result in SATB2-associated syndrome (SAS; Glass syndrome, OMIM 612313), an autosomal dominant multisystemic disorder predominantly characterized by developmental delay, craniofacial anomalies, and growth retardation. The bone phenotype of SAS has been less explored until recently and includes a variety of skeletal deformities, increased risk of low bone mineral density (BMD) with a propensity to fractures, and other biochemical abnormalities that suggest elevated bone turnover. We present the results of ongoing surveillance of bone health from 32 individuals (47% females, 3-18 years) with molecularly-confirmed SAS evaluated at a multidisciplinary clinic. Five individuals (5/32, 16%) were documented to have BMD Z-scores by DXA scans of -2.0 SD or lower and 7 more (7/32, 22%) had Z-scores between -1 and - 2 SD at the lumbar spine or the total hip. Alkaline phosphatase levels were found to be elevated in 19 individuals (19/30, 63%) and determined to correspond to bone-specific alkaline phosphatase elevations when measured (11/11, 100%). C-telopeptide levels were found to be elevated when adjusted by age and gender in 6 individuals (6/14, 43%). Additionally, the two individuals who underwent bone cross-sectional geometry evaluation by peripheral quantitative computed tomography were documented to have low cortical bone density for age and sex despite concurrent DXA scans that did not have this level of decreased density. While we could not identify particular biochemical abnormalities that predicted low BMD, the frequent elevations in markers of bone formation and resorption further confirmed the increased bone turnover in SAS. Based on our results and other recently published studies, we propose surveillance guidelines for the skeletal phenotype of SAS.
Collapse
Affiliation(s)
- Yuri A Zarate
- Division of Genetics and Metabolism, University of Kentucky, Lexington, Kentucky, USA
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Katherine Bosanko
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Aline Andres
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Section of Developmental Nutrition, Arkansas Children's Nutrition Center, Little Rock, Arkansas, USA
| | - Jennifer L Fish
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| |
Collapse
|
3
|
Ouyang X, Li S, Ding Y, Xin F, Liu M. Mechanism of miRNA-31 Regulating Wnt/β-catenin Signaling Pathway by Targeting Satb2 in the Osteogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2023; 23:346-354. [PMID: 37654220 PMCID: PMC10483816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Accepted: 05/04/2023] [Indexed: 09/02/2023]
Abstract
OBJECTIVE To explore the expression of miR-31 and Satb2 gene in the serum of postmenopausal women with osteoporosis (OP). METHODS 97 postmenopausal women with OP and 100 healthy women were selected as research subjects. MSCs were purchased from Shanghai Zhong Qiao Xin Zhou Biotechnology Co., Ltd. Bone marrow-derived mesenchymal stem cells (BMSCs) were isolated, identified and transfected, and then quantified by alkaline phosphatase (ALP) levels. The expression levels of miR-31 and Satb2 gene mRNA were determined by qRT-PCR. The proteins of RUNX2, OCN and BMP and Wnt/β-catenin pathway-related proteins (GSK-3, Frizzled 1, Lrp5, Lrp6 and β-catenin) were tested by Western blotting. RESULTS In the OP group, the relative expression of miR-31 was 3.61±0.54, significantly higher than that (1.75±0.27) in the healthy control group (t=9.422, P<0.001). The relative expression of mRNA of Satb2 gene was 0.86±0.12, significantly lower than that (1.35±0.21) in the healthy control group (t=5.897, P<0.001). CONCLUSIONS The increase in miR-31 expression can down-regulate the Wnt/β-catenin pathway by targeting the expression of Satb2 gene, thereby inhibiting the osteogenic differentiation of BMSCs. This provides an important reference for further understanding the mechanism of OP and identifying targets for early diagnosis and treatment.
Collapse
Affiliation(s)
- Xiao Ouyang
- Department of Orthopedic Surgery, Xuzhou Third People’s Hospital, Affiliated Xuzhou Hospital of Jiangsu University, Affiliated Xuzhou Third People’s Hospital of Xuzhou Medical University, China
| | - Shimin Li
- Department of Orthopedic Surgery, Xuzhou Third People’s Hospital, Affiliated Xuzhou Hospital of Jiangsu University, Affiliated Xuzhou Third People’s Hospital of Xuzhou Medical University, China
| | - Yunzhi Ding
- Department of Orthopedic Surgery, Xuzhou Third People’s Hospital, Affiliated Xuzhou Hospital of Jiangsu University, Affiliated Xuzhou Third People’s Hospital of Xuzhou Medical University, China
| | - Feng Xin
- Department of Orthopedic Surgery, Xuzhou Third People’s Hospital, Affiliated Xuzhou Hospital of Jiangsu University, Affiliated Xuzhou Third People’s Hospital of Xuzhou Medical University, China
| | - Meng Liu
- Department of Orthopedic Surgery, Xuzhou Third People’s Hospital, Affiliated Xuzhou Hospital of Jiangsu University, Affiliated Xuzhou Third People’s Hospital of Xuzhou Medical University, China
| |
Collapse
|
4
|
Copelli MDM, Pairet E, Atique-Tacla M, Vieira TP, Appenzeller S, Helaers R, Vikkula M, Gil-da-Silva-Lopes VL. SATB2-Associated Syndrome Due to a c.715C>T:p(Arg239*) Variant in Adulthood: Natural History and Literature Review. Genes (Basel) 2023; 14:genes14040882. [PMID: 37107640 PMCID: PMC10137462 DOI: 10.3390/genes14040882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
SATB2-associated syndrome (SAS) is a rare condition, and it is characterized by severe developmental delay/intellectual disability, especially severe speech delay/or absence, craniofacial abnormalities, and behavioral problems. Most of the published reports are limited to children, with little information about the natural history of the disease and the possible novel signs and symptoms or behavioral changes in adulthood. We describe the management and follow-up of a 25-year-old male with SAS due to a de novo heterozygous nonsense variant SATB2:c.715C>T:p.(Arg239*) identified by whole-exome sequencing and review the literature. The case herein described contributes to a better characterization of the natural history of this genetic condition and in addition to the genotype-phenotype correlation of the SATB2:c.715C>T:p.(Arg239*) variant in SAS, highlights some particularities of its management.
Collapse
Affiliation(s)
- Matheus de Mello Copelli
- Department of Translational Medicine, Area of Medical Genetics and Genomic Medicine, University of Campinas (UNICAMP), Campinas CEP 13083-887, SP, Brazil
| | - Eleonore Pairet
- Human Molecular Genetics, de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Milena Atique-Tacla
- Department of Translational Medicine, Area of Medical Genetics and Genomic Medicine, University of Campinas (UNICAMP), Campinas CEP 13083-887, SP, Brazil
| | - Társis Paiva Vieira
- Department of Translational Medicine, Area of Medical Genetics and Genomic Medicine, University of Campinas (UNICAMP), Campinas CEP 13083-887, SP, Brazil
| | - Simone Appenzeller
- Department of Orthopedics, Rheumatology and Traumatology, School of Medical Science, University of Campinas (UNICAMP), Campinas CEP 13083-887, SP, Brazil
| | - Raphaël Helaers
- Human Molecular Genetics, de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Vera Lúcia Gil-da-Silva-Lopes
- Department of Translational Medicine, Area of Medical Genetics and Genomic Medicine, University of Campinas (UNICAMP), Campinas CEP 13083-887, SP, Brazil
| |
Collapse
|
5
|
Li C, Du Y, Zhang T, Wang H, Hou Z, Zhang Y, Cui W, Chen W. "Genetic scissors" CRISPR/Cas9 genome editing cutting-edge biocarrier technology for bone and cartilage repair. Bioact Mater 2022; 22:254-273. [PMID: 36263098 PMCID: PMC9554751 DOI: 10.1016/j.bioactmat.2022.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/13/2022] [Accepted: 09/28/2022] [Indexed: 12/02/2022] Open
Abstract
CRISPR/Cas9 is a revolutionary genome editing technology with the tremendous advantages such as precisely targeting/shearing ability, low cost and convenient operation, becoming an efficient and indispensable tool in biological research. As a disruptive technique, CRISPR/Cas9 genome editing has a great potential to realize a future breakthrough in the clinical bone and cartilage repairing as well. This review highlights the research status of CRISPR/Cas9 system in bone and cartilage repair, illustrates its mechanism for promoting osteogenesis and chondrogenesis, and explores the development tendency of CRISPR/Cas9 in bone and cartilage repair to overcome the current limitations.
Collapse
Affiliation(s)
- Chao Li
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Orthopaedic Research Institution of Hebei Province, NHC Key Laboratory of Intelligent Orthopaedic Equipment, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China,Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Yawei Du
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Tongtong Zhang
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Orthopaedic Research Institution of Hebei Province, NHC Key Laboratory of Intelligent Orthopaedic Equipment, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
| | - Haoran Wang
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Orthopaedic Research Institution of Hebei Province, NHC Key Laboratory of Intelligent Orthopaedic Equipment, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China,Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Zhiyong Hou
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Orthopaedic Research Institution of Hebei Province, NHC Key Laboratory of Intelligent Orthopaedic Equipment, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
| | - Yingze Zhang
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Orthopaedic Research Institution of Hebei Province, NHC Key Laboratory of Intelligent Orthopaedic Equipment, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China,Corresponding author.
| | - Wei Chen
- Department of Orthopaedics, The Third Hospital of Hebei Medical University, Orthopaedic Research Institution of Hebei Province, NHC Key Laboratory of Intelligent Orthopaedic Equipment, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China,Corresponding author.
| |
Collapse
|
6
|
Zarate YA, Kannan A, Bosanko KA, Caffrey AR. Growth in individuals with SATB2-associated syndrome. Am J Med Genet A 2022; 188:2952-2957. [PMID: 35838081 DOI: 10.1002/ajmg.a.62896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/16/2022] [Accepted: 06/24/2022] [Indexed: 01/31/2023]
Abstract
SATB2-associated syndrome (SAS) is an autosomal dominant multisystemic disorder caused by alterations in the SATB2 gene. In addition to a predominant neurodevelopmental phenotype, individuals with SAS often present with feeding difficulties and growth retardation that persist past infancy. In this study, we present growth and measurement data from 211 individuals (53.6% male, 46.4% female) with SAS due to different molecular mechanisms. To delineate growth in this population, we constructed SAS-specific growth charts by sex from birth to 10 years of age. Smoothed SAS percentiles were superimposed with normative percentiles from WHO (birth to <24 months) and CDC (24 months to 10 years) growth charts. Individuals with SAS tend to display slower postnatal growth with 22.2% (32/144), 19.0% (26/137), and 21.6% having at least one weight, height, or weight-for-length /body mass index (BMI) measurement below -2 standard deviations, respectively. The SAS 50th centile BMI was consistently below the normative data 50th centile and negative mean Z-scores were seen across almost all age groups analyzed for both genders. Individuals with chromosomal abnormalities displayed significantly lower weight for age Z-score, height for age Z-scores, occipitofrontal head circumference for age Z-scores, and BMI for age Z-scores compared to either missense or null variants.
Collapse
Affiliation(s)
- Yuri A Zarate
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Amrit Kannan
- University of Arkansas for Medical Sciences School of Medicine, Little Rock, Arkansas, USA
| | - Katherine A Bosanko
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Aisling R Caffrey
- Health Outcomes, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| |
Collapse
|
7
|
Mouillé M, Rio M, Breton S, Piketty ML, Afenjar A, Amiel J, Capri Y, Goldenberg A, Francannet C, Michot C, Mignot C, Perrin L, Quelin C, Van Gils J, Barcia G, Pingault V, Maruani G, Koumakis E, Cormier-Daire V. SATB2-associated syndrome: characterization of skeletal features and of bone fragility in a prospective cohort of 19 patients. Orphanet J Rare Dis 2022; 17:100. [PMID: 35241104 PMCID: PMC8895909 DOI: 10.1186/s13023-022-02229-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 02/06/2022] [Indexed: 11/10/2022] Open
Abstract
Background Individuals with pathogenic variants in SATB2 display intellectual disability, speech and behavioral disorders, dental abnormalities and often features of Pierre Robin sequence. SATB2 encodes a transcription factor thought to play a role in bone remodeling. The primary aim of our study was to systematically review the skeletal manifestations of SATB2-associated syndrome. For this purpose, we performed a non-interventional, multicenter cohort study, from 2017 to 2018. We included 19 patients, 9 females and 10 males ranging in age from 2 to 19 years-old. The following data were collected prospectively for each patient: clinical data, bone markers and calcium and phosphate metabolism parameters, skeletal X-rays and bone mineral density. Results Digitiform impressions were present in 8/14 patients (57%). Vertebral compression fractures affected 6/17 patients (35%). Skeletal demineralization (16/17, 94%) and cortical thinning of vertebrae (15/17) were the most frequent radiological features at the spine. Long bones were generally demineralized (18/19). The distal phalanges were short, thick and abnormally shaped. C-telopeptide (CTX) and Alkaline phosphatase levels were in the upper normal values and osteocalcin and serum procollagen type 1 amino-terminal propeptide (P1NP) were both increased. Vitamin D insufficiency was frequent (66.7%). Conclusion We conclude that SATB2 pathogenic variants are responsible for skeletal demineralization and osteoporosis. We found increased levels of bone formation markers, supporting the key role of SATB2 in osteoblast differentiation. These results support the need for bone evaluation in children and adult patients with SATB2-associated syndrome (SAS). Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02229-5.
Collapse
Affiliation(s)
- M Mouillé
- Clinical Genetics, Necker Enfants Malades Hospital, APHP, 149 rue de Sevres, Paris, 75015, France.,Department of Neonatal Medicine, Cochin-Port Royal Hospital, APHP, Paris, France
| | - M Rio
- Clinical Genetics, Necker Enfants Malades Hospital, APHP, 149 rue de Sevres, Paris, 75015, France
| | - S Breton
- Department of Pediatric Radiology, Necker Enfants Malades Hospital, APHP, Paris, France
| | - M L Piketty
- Functional Exploration Laboratory, Necker Enfants Malades Hospital, APHP, Paris, France
| | - A Afenjar
- Sorbonne University, Reference Center for Intellectual Disabilities, Department of Genetics and Medical Embryology, Armand-Trousseau Hospital, APHP, Paris, France
| | - J Amiel
- Clinical Genetics, Necker Enfants Malades Hospital, APHP, 149 rue de Sevres, Paris, 75015, France
| | - Y Capri
- Clinical Genetics Functional Unit, Robert Debré Hospital, APHP, Paris, France
| | | | - C Francannet
- Clinical Genetics, Clermont-Ferrand CHU, Clermont-Ferrand, France
| | - C Michot
- Clinical Genetics, Necker Enfants Malades Hospital, APHP, 149 rue de Sevres, Paris, 75015, France.,Paris Cité University, Reference Center for Constitutional Bone Diseases, INSERM UMR1163, Imagine Institute, Paris, France
| | - C Mignot
- Sorbonne University, Reference Center for Intellectual Disabilities, Department of Genetics and Medical Embryology, Armand-Trousseau Hospital, APHP, Paris, France.,Clinical Genetics, La Pitié Salpétrière Hospital, APHP, Paris, France
| | - L Perrin
- Clinical Genetics Functional Unit, Robert Debré Hospital, APHP, Paris, France
| | - C Quelin
- Clinical Genetics, Hospital Sud, Rennes, France
| | - J Van Gils
- Clinical Genetics, Hospital Pellegrin, Bordeaux, France
| | - G Barcia
- Molecular Genetics, Necker Enfants Malades Hospital, APHP, Paris, France
| | - V Pingault
- Molecular Genetics, Necker Enfants Malades Hospital, APHP, Paris, France
| | - G Maruani
- Department of Physiology, Hôpital Necker Enfants Malades and Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - E Koumakis
- Paris Cité University, Reference Center for Constitutional Bone Diseases, INSERM UMR1163, Imagine Institute, Paris, France.,Reference Center for Skeletal Dysplasia, Cochin Hospital, APHP, Paris, France
| | - V Cormier-Daire
- Clinical Genetics, Necker Enfants Malades Hospital, APHP, 149 rue de Sevres, Paris, 75015, France. .,Paris Cité University, Reference Center for Constitutional Bone Diseases, INSERM UMR1163, Imagine Institute, Paris, France.
| |
Collapse
|
8
|
SOX9 and SATB2 Immunohistochemistry Cannot Reliably Distinguish Between Osteosarcoma and Chondrosarcoma on Biopsy Material. Hum Pathol 2022; 121:56-64. [PMID: 35016891 DOI: 10.1016/j.humpath.2021.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Limited tissue in biopsies of malignant bone lesions can preclude definitive subclassification, especially when cellular or matrix elements are sparse, absent, or confounding. It is uncertain whether IHC for SOX9 (marker of chondrogenesis) and SATB2 (marker of osteoblastic differentiation) may be discriminatory tools towards osteosarcoma and chondrosarcoma. METHODS This study interrogated the pre-resection biopsies of a cohort of osteosarcoma and chondrosarcoma with SATB2 and SOX9 in tandem, to assess their value as diagnostic adjuncts as well as their concordance with final resection diagnoses. RESULTS SATB2 was expressed more frequently in osteosarcoma (46/53, 86%) compared to chondrosarcoma (9/18, 50%); SOX9 was expressed in high frequencies in both osteosarcoma (52/53, 98%) and chondrosarcoma (17/18, 94%), and SATB2 and SOX9 were co-expressed in both osteosarcoma (46/53, 89%) and chondrosarcoma (8/18, 44%). CONCLUSIONS There exists significant overlap in expression of SATB2 and SOX9 in osteosarcoma and chondrosarcoma. These markers are not expressed in a distribution that is unique enough for application towards this particular diagnostic differential.
Collapse
|
9
|
Xin T, Li Q, Bai R, Zhang T, Zhou Y, Zhang Y, Han B, Yang R. A novel mutation of SATB2 inhibits odontogenesis of human dental pulp stem cells through Wnt/β-catenin signaling pathway. Stem Cell Res Ther 2021; 12:595. [PMID: 34863303 PMCID: PMC8642962 DOI: 10.1186/s13287-021-02660-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/23/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND SATB2-associated syndrome (SAS) is a multisystem disorder caused by mutation of human SATB2 gene. Tooth agenesis is one of the most common phenotypes observed in SAS. Our study aimed at identifying novel variant of SATB2 in a patient with SAS, and to investigate the cellular and molecular mechanism of tooth agenesis caused by SATB2 mutation. METHODS We applied whole exome sequencing (WES) to identify the novel mutation of SATB2 in a Chinese patient with SAS. Construction and overexpression of wild-type and the mutant vector was performed, followed by functional analysis including flow cytometry assay, fluorescent immunocytochemistry, western blot, quantitative real-time PCR and Alizarin Red S staining to investigate its impact on hDPSCs and the underlying mechanisms. RESULTS As a result, we identified a novel frameshift mutation of SATB2 (c. 376_378delinsTT) in a patient with SAS exhibiting tooth agenesis. Human DPSCs transfected with mutant SATB2 showed decreased cell proliferation and odontogenic differentiation capacity compared with hDPSCs transfected with wild-type SATB2 plasmid. Mechanistically, mutant SATB2 failed to translocate into nucleus and distributed in the cytoplasm, failing to activate Wnt/β-catenin signaling pathway, whereas the wild-type SATB2 translocated into the nucleus and upregulated the expression of active β-catenin. When we used Wnt inhibitor XAV939 to treat hDPSCs transfected with wild-type SATB2 plasmid, the increased odontogenic differentiation capacity was attenuated. Furthermore, we found that SATB2 mutation resulted in the upregulation of DKK1 and histone demethylase JHDM1D to inhibit Wnt/β-catenin signaling pathway. CONCLUSION We identified a novel frameshift mutation of SATB2 (c.376_378delinsTT, p.Leu126SerfsX6) in a Chinese patient with SATB2-associated syndrome (SAS) exhibiting tooth agenesis. Mechanistically, SATB2 regulated osteo/odontogenesis of human dental pulp stem cells through Wnt/β-catenin signaling pathway by regulating DKK1 and histone demethylase JHDM1D.
Collapse
Affiliation(s)
- Tianyi Xin
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Qian Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Rushui Bai
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Ting Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Yanheng Zhou
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Yuehua Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, People's Republic of China
| | - Bing Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China.
| | - Ruili Yang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, No. 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China.
| |
Collapse
|
10
|
SATB2 Immunoexpression in Peripheral Ossifying Fibroma and Peripheral Odontogenic Fibroma. Head Neck Pathol 2021; 16:339-343. [PMID: 34224081 PMCID: PMC9187816 DOI: 10.1007/s12105-021-01355-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/24/2021] [Indexed: 01/26/2023]
Abstract
Peripheral ossifying fibromas (POFs) and peripheral odontogenic fibromas (POdFs) appear clinically similar but of different histogenesis. The novel marker SATB2 is involved in regulation of osteoblastic differentiation and phenotype. However, SATB2 expression has not been previously explored in POFs and POdFs. Given the potential for mineralized tissue formation in POFs and POdFs, and to more clarify the phenotype of the lesional cells, this study was aimed to immunohistochemically investigate SATB2 expression in POFs and POdFs. Fourteen cases of POF and POdF (7 cases each) were selected, stained for SATB2 immunohistochemically, and scored according to the percentage of positive lesional cells (0, no staining; 1 +, < 5%; 2 +, 5-25%; 3 +, 26-50%; 4 +, 51-75%; and 5 +, 76-100%), and the intensity of staining was graded as weak, moderate, or strong. The control group included the inflammatory fibrous hyperplasia-like area present in two cases, 1 case fibroma, and 1 case giant cell fibroma. Moderate to strong, and diffuse SATB2 nuclear immunoreactivity was detected in the lesional cells of all cases of POFs and POdFs with variable scores; 3-5 + for the POFs and 3-4 + for the POdFs (P = 0.101). The distribution of staining was more prominent in those lesional cells associated with the osteoid/calcification in the cases of POFs. No staining was noted in the control group. The lesional cells in both POFs and POdFs express SATB2 and may exhibit the osteoblastic-like phenotype. SATB2 staining may be useful for diagnosis of subsets of POFs with minimal or absent calcification and some POdFs with unidentifiable odontogenic epithelium.
Collapse
|
11
|
Zhu Y, Chen QY, Jordan A, Sun H, Roy N, Costa M. RUNX2/miR‑31/SATB2 pathway in nickel‑induced BEAS‑2B cell transformation. Oncol Rep 2021; 46:154. [PMID: 34109987 DOI: 10.3892/or.2021.8105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/05/2021] [Indexed: 11/05/2022] Open
Abstract
Nickel (Ni) compounds are classified as Group 1 carcinogens by the International Agency for Research on Cancer (IARC) and are known to be carcinogenic to the lungs. In our previous study, special AT‑rich sequence‑binding protein 2 (SATB2) was required for Ni‑induced BEAS‑2B cell transformation. In the present study, a pathway that regulates the expression of SATB2 protein was investigated in Ni‑transformed BEAS‑2B cells using western blotting and RT‑qPCR for expression, and soft agar, migration and invasion assays for cell transformation. Runt‑related transcription factor 2 (RUNX2), a master regulator of osteogenesis and an oncogene, was identified as an upstream regulator for SATB2. Ni induced RUNX2 expression and initiated BEAS‑2B transformation and metastatic potential. Previously, miRNA‑31 was identified as a negative regulator of SATB2 during arsenic‑induced cell transformation, and in the present study it was identified as a downstream target of RUNX2 during carcinogenesis. miR‑31 expression was reduced in Ni‑transformed BEAS‑2B cells, which was required to maintain cancer hallmarks. The expression level of miR‑31 was suppressed by RUNX2 in BEAS‑2B cells, and this increased the expression level of SATB2, initiating cell transformation. Ni caused the repression of miR‑31 by placing repressive marks at its promoter, which in turn increased the expression level of SATB2, leading to cell transformation.
Collapse
Affiliation(s)
- Yusha Zhu
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10100, USA
| | - Qiao Yi Chen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shanxi 710000, P.R. China
| | - Ashley Jordan
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10100, USA
| | - Hong Sun
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10100, USA
| | - Nirmal Roy
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10100, USA
| | - Max Costa
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10100, USA
| |
Collapse
|
12
|
Zarate YA, Örsell JL, Bosanko K, Srikanth S, Cascio L, Pauly R, Boccuto L. Individuals with SATB2-associated syndrome with and without autism have a recognizable metabolic profile and distinctive cellular energy metabolism alterations. Metab Brain Dis 2021; 36:1049-1056. [PMID: 33661512 DOI: 10.1007/s11011-021-00706-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/23/2021] [Indexed: 12/25/2022]
Abstract
SATB2-associated syndrome (SAS) is a multisystemic disorder characterized by developmental delay often with concurrent autistic tendencies. This study aimed to characterize cellular metabolic pathways and energy metabolism from cells derived from individuals with SAS. The cellular production of NADH (nicotinamide adenine dinucleotide, reduced form) as determined by the Phenotype Mammalian MicroArrays was measured in lymphoblastoid cell lines derived from 11 subjects with a molecularly confirmed diagnosis of SAS and compared to a control population of 50 age-matched typically developing individuals. All patients were evaluated clinically by a multidisciplinary team. Eleven individuals (five in a screening cohort and six in the validation cohort, mean age 6.1 years) were recruited to the study. All individuals had developmental delay and the diagnosis of autism was previously established in five of them. Key metabolic findings included reduced NADH production in the presence of phosphorylated carbohydrates (with corresponding increased production in the presence of alternative carbon-based energy sources), increased response to certain hormones (β-estradiol in particular), and significantly reduced levels of NADH in wells containing tryptophan. The individual analysis revealed no particular differences among the SAS subjects based on molecular findings or phenotypic features. In conclusion, individuals with SAS have a common and recognizable metabolic profile. A lower capacity to utilize glucose as an energy substrate could be contributing to the neurodevelopment phenotype of SAS. The identified abnormalities offer previously unexplored insight into the potential pathophysiology of common SAS phenotypic features.
Collapse
Affiliation(s)
- Yuri A Zarate
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children's Hospital, 1 Children's Way; Slot 512-22, Little Rock, AR, 72202, USA.
| | - Jenny-Li Örsell
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Katherine Bosanko
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | | | - Rini Pauly
- Greenwood Genetic Center, Greenwood, SC, USA
| | - Luigi Boccuto
- Greenwood Genetic Center, Greenwood, SC, USA
- School of Nursing, College of Behavioral, Social and Health Sciences, Clemson University, Clemson, SC, USA
| |
Collapse
|
13
|
Amarasekara DS, Kim S, Rho J. Regulation of Osteoblast Differentiation by Cytokine Networks. Int J Mol Sci 2021; 22:ijms22062851. [PMID: 33799644 PMCID: PMC7998677 DOI: 10.3390/ijms22062851] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
Osteoblasts, which are bone-forming cells, play pivotal roles in bone modeling and remodeling. Osteoblast differentiation, also known as osteoblastogenesis, is orchestrated by transcription factors, such as runt-related transcription factor 1/2, osterix, activating transcription factor 4, special AT-rich sequence-binding protein 2 and activator protein-1. Osteoblastogenesis is regulated by a network of cytokines under physiological and pathophysiological conditions. Osteoblastogenic cytokines, such as interleukin-10 (IL-10), IL-11, IL-18, interferon-γ (IFN-γ), cardiotrophin-1 and oncostatin M, promote osteoblastogenesis, whereas anti-osteoblastogenic cytokines, such as tumor necrosis factor-α (TNF-α), TNF-β, IL-1α, IL-4, IL-7, IL-12, IL-13, IL-23, IFN-α, IFN-β, leukemia inhibitory factor, cardiotrophin-like cytokine, and ciliary neurotrophic factor, downregulate osteoblastogenesis. Although there are gaps in the body of knowledge regarding the interplay of cytokine networks in osteoblastogenesis, cytokines appear to be potential therapeutic targets in bone-related diseases. Thus, in this study, we review and discuss our osteoblast, osteoblast differentiation, osteoblastogenesis, cytokines, signaling pathway of cytokine networks in osteoblastogenesis.
Collapse
Affiliation(s)
- Dulshara Sachini Amarasekara
- Department of Zoology and Environment Sciences, Faculty of Science, University of Colombo, Colombo 00300, Sri Lanka;
| | - Sumi Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea;
| | - Jaerang Rho
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea;
- Correspondence: ; Tel.: +82-42-821-6420; Fax: +82-42-822-7367
| |
Collapse
|
14
|
Zhao F, Xu Y, Ouyang Y, Wen Z, Zheng G, Wan T, Sun G. Silencing of miR-483-5p alleviates postmenopausal osteoporosis by targeting SATB2 and PI3K/AKT pathway. Aging (Albany NY) 2021; 13:6945-6956. [PMID: 33621956 PMCID: PMC7993743 DOI: 10.18632/aging.202552] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/10/2020] [Indexed: 12/23/2022]
Abstract
Postmenopausal osteoporosis (PMOP) poses a significant threat to women's health worldwide. However, detailed molecular mechanism and therapeutic strategy for PMOP remain insufficient. Accumulating evidence suggests that miR-48-5p is implicated in the pathogenesis of osteoporosis. The present study aimed to determine the role and mechanism of miR-483-5p in PMOP. Results from PMOP patients demonstrated that miR-483-5p was up-regulated and SATB2 was down-regulated. Luciferase reporter assay identified SATB2 as a direct target gene of miR-483-5p. Experiments in MC3T3-E1 cells indicated that miR-483-5p mimic markedly inhibited cell viability as well as the expressions of OPG, RUNX2 and BMP2. And miR-483-5p inhibitor, SATB2-overexpressed lentiviruses (Lv-SATB2) or LY294002 (PI3K/AKT inhibitor) significantly reversed the above results. Similarly, PI3K/AKT signaling was activated by miR-483-5p mimic, and was inhibited in miR-483-5p inhibitor, Lv-SATB2 or LY294002 treated cells. In vivo experiments showed that miR-483-5p inhibitor significantly increased the bone mineral density and biomechanical parameters of femurs in ovariectomized (OVX) rats by targeting SATB2. In addition, the osteogenic differentiation and PI3K/AKT signaling were also regulated by miR-483-5p-SATB2 axis. Taken together, our findings indicated that miR-483-5p contributed to the pathogenesis of PMOP by inhibiting SATB2 and activating PI3K/AKT pathway. MiR-483-5p/SATB2 could be selected as a potential therapeutic target for PMOP.
Collapse
Affiliation(s)
- Fujiang Zhao
- Department of Orthopaedics, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China
| | - Yier Xu
- Laboratory of Pharmacology, Research and Development Center of Harbin Pharmaceutical Group, Harbin 150025, China
| | - Yulong Ouyang
- Medical College of Nanchang University, Nanchang 330006, China
| | - Zhexu Wen
- Medical College of Nanchang University, Nanchang 330006, China
| | - Guihao Zheng
- Medical College of Nanchang University, Nanchang 330006, China
| | - Ting Wan
- Medical College of Nanchang University, Nanchang 330006, China
| | - Guicai Sun
- Department of Orthopaedics, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|
15
|
Tian H, She Z, Gao X, Wang W, Tian H. MicroRNA-31 regulates dental epithelial cell proliferation by targeting Satb2. Biochem Biophys Res Commun 2020; 532:321-328. [PMID: 32873389 DOI: 10.1016/j.bbrc.2020.07.138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 07/29/2020] [Indexed: 12/27/2022]
Abstract
MicroRNAs (miRNAs) exhibit strong potential clinical application owing to their extensive regulation and flexible delivery properties. MicroRNA-31 (miR-31) is an evolutionarily conserved miRNA expressed during tooth development, and it is highly expressed in mouse incisor epithelium. The specific role of miR-31 in odontogenesis has not been elucidated comprehensively, and the aim of the present study was to investigate its activity. Our results showed that miR-31 suppressed LS8 cell proliferation by inhibiting the cell cycle at the G1/S transition. Mutation of Special AT-rich sequence-binding protein 2 (SATB2) gene is responsible for human SATB2-associated syndrome (SAS), which is often accompanied by dental abnormities. Here, it was identified as a direct target of miR-31 in LS8 cells and a promoter of cell proliferation. The expression and distribution of SATB2 in mouse molars and incisors were explored using immunofluorescence, which showed strong signals in the nuclei of incisor epithelial cells and weak signals in the cytoplasm of molar epithelial cells. Moreover, rescue experiments demonstrated that Satb2 could mitigate the inhibitory effect of miR-31 on cell proliferation by promoting the expression of CDK4. Collectively, our results suggested that miR-31 regulates dental epithelial cell proliferation by targeting Satb2, highlighting the biological importance of miR-31 in odontogenesis.
Collapse
Affiliation(s)
- Huizhong Tian
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, PR China
| | - Ziwei She
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, PR China
| | - Xuejun Gao
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, PR China
| | - Weiping Wang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, PR China.
| | - Hua Tian
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, PR China.
| |
Collapse
|
16
|
miR-187-3p participates in contextual fear memory formation through modulating SATB2 expression in the hippocampus. Neuroreport 2020; 31:909-917. [PMID: 32568775 DOI: 10.1097/wnr.0000000000001484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE When threatened, fear is one of the most important responses that an organism exhibits. The mechanisms involved in forming fear memories include specific neurological structures, neural circuits and detailed molecular interactions. METHODS MicroRNAs (miRNAs, small non-coding RNAs) act as endogenous functional small molecules that participate in or interfere with the formation of new fear memory by inhibiting the expression of mRNA targets. MicroRNA-187 (miR-187) is a newly reported miRNA that is related to cancer, but it has not been investigated regarding fear memory formation. RESULTS In the present study, we observed a transient reduction in the level of miR-187 in the dorsal hippocampus after a classic contextual fear conditioning (CFC) training. Overexpression of miR-187-3p in the DH using miR-187-3p agomir was detrimental in the formation of CFC memory, whereas downregulation of miR-187-3p using antagomir enhanced the formation of CFC memory. Additionally, utilization of bioinformatic methods and luciferase reporter assay revealed that miR-187-3p targets SATB2, and therefore miR-187-3p agomir can decrease the protein level of SATB2. Furthermore, we determined that SATB2 plays a role in the formation of CFC memory by miR-187-3p, which can be mediated by altering SATB2 expression. CONCLUSION Altogether, evidence obtained from both in-vitro and in-vivo experiments indicated that miR-187-3p is involved in CFC memory formation through modulation of SATB2. Our data provides a basis for the potential therapeutic benefits of miR-187-3p/SATB2 in the treatment of anxiety disorders induced from fear memory.
Collapse
|