1
|
Chen S, Bigdon S, Riether C, Ma X, Niu X, Häckel S, Li Z, Gantenbein B. The Role of the Bone Morphogenetic Protein Antagonist Noggin in Nucleus Pulposus Intervertebral Disc Cells. Int J Mol Sci 2024; 25:11803. [PMID: 39519354 PMCID: PMC11546912 DOI: 10.3390/ijms252111803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Low back pain (LBP) is a significant global health issue, contributing to disability and socioeconomic burdens worldwide. The degeneration of the human intervertebral disc (IVD) is a critical factor in the pathogenesis of LBP. Recent studies have emphasized the significance of a specific set of genes and extracellular matrix (ECM) in IVD health. In particular, Noggin has emerged as a critical gene due to its high expression levels in healthy nucleus pulposus cells (NPCs) observed in our previous research. In this study, it was hypothesized that decreased Noggin expression in NPCs is associated with IVD degeneration and contributes to LBP development. A lentivirus-mediated RNAi was applied to knock down Noggin expression in primary NPCs from six human donors. The NPCs after transduction were evaluated through cell viability analysis, XTT assay, and cell apoptosis analyses. After two weeks, a colony formation assay was used to examine the anchor-independent growth ability of transduced cells. At the transcript level, anabolic and catabolic markers were quantified using RT-qPCR. The results demonstrated that lentivirus-mediated downregulation of Noggin significantly inhibited cell proliferation, reduced cell viability, and suppressed colony formation, while inducing apoptosis in human NPCs in vitro. Notably, it disrupted cellular anabolic processes and promoted catabolic activity in human NPCs post-transduction. Our findings indicated that the degeneration of human IVD is possibly related to decreased Noggin expression in NPCs. This research provides valuable insights into the role of Noggin in IVD homeostasis and its implications in LBP treatment.
Collapse
Affiliation(s)
- Shuimu Chen
- Tissue Engineering for Orthopedics & Mechanobiology (TOM), Bone & Joint Program, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, CH-3008 Bern, Switzerland;
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, CH-3012 Bern, Switzerland
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (S.B.); (S.H.)
| | - Sebastian Bigdon
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (S.B.); (S.H.)
| | - Carsten Riether
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland;
- Department for BioMedical Research, University of Bern, CH-3008 Bern, Switzerland; (X.M.); (X.N.)
| | - Xiaochi Ma
- Department for BioMedical Research, University of Bern, CH-3008 Bern, Switzerland; (X.M.); (X.N.)
| | - Xiaoyi Niu
- Department for BioMedical Research, University of Bern, CH-3008 Bern, Switzerland; (X.M.); (X.N.)
| | - Sonja Häckel
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (S.B.); (S.H.)
- Graduate School for Health Sciences (GSH), University of Bern, CH-3012 Bern, Switzerland
| | - Zhen Li
- AO Research Institute Davos, CH-7270 Davos, Switzerland;
| | - Benjamin Gantenbein
- Tissue Engineering for Orthopedics & Mechanobiology (TOM), Bone & Joint Program, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, CH-3008 Bern, Switzerland;
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (S.B.); (S.H.)
| |
Collapse
|
2
|
Wang L, Wan L, Zhang T, Guan C, Hu J, Xu D, Lu H. A Combined Treatment of BMP2 and Soluble VEGFR1 for the Enhancement of Tendon-Bone Healing by Regulating Injury-Activated Skeletal Stem Cell Lineage. Am J Sports Med 2024; 52:779-790. [PMID: 38357866 DOI: 10.1177/03635465231225244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
BACKGROUND Bone morphogenetic protein 2 (BMP2) is an appealing osteogenic and chondrogenic growth factor for promoting tendon-bone healing. Recently, it has been reported that soluble vascular endothelial growth factor (VEGF) receptor 1 (sVEGFR1) (a VEGF receptor antagonist) could enhance BMP2-induced bone repair and cartilage regeneration; thus, their combined application may represent a promising treatment to improve tendon-bone healing. Moreover, BMP2 could stimulate skeletal stem cell (SSC) expansion and formation, which is responsible for wounded tendon-bone interface repair. However, whether the codelivery of BMP2 and sVEGFR1 increases tendon enthesis injury-activated SSCs better than does BMP2 alone needs further research. PURPOSE To study the effect of BMP2 combined with sVEGFR1 on tendon-bone healing and injury-activated SSC lineage. STUDY DESIGN Controlled laboratory study. METHODS A total of 128 C57BL/6 mice that underwent unilateral supraspinatus tendon detachment and repair were randomly assigned to 4 groups: (1) untreated control group; (2) hydrogel group, which received a local injection of the blank hydrogel at the injured site; (3) BMP2 group, which received an injection of hydrogel with BMP2; and (4) BMP2 with sVEGFR1 group, which received an injection of hydrogel with BMP2 and sVEGFR1. Histology, micro-computed tomography, and biomechanical tests were conducted to evaluate tendon-bone healing at 4 and 8 weeks after surgery. In addition, flow cytometry was performed to detect the proportion of SSCs and their downstream differentiated subtypes, including bone, cartilage, and stromal progenitors; osteoprogenitors; and pro-chondrogenic progenitors within supraspinatus tendon enthesis at 1 week postoperatively. RESULTS The repaired interface in BMP2 with sVEGFR1 group showed a significantly improved collagen fiber continuity, increased fibrocartilage, greater newly formed bone, and elevated mechanical properties compared with the other 3 groups. There were more SSCs; bone, cartilage, and stromal progenitors; osteoprogenitors; and pro-chondrogenic progenitors in the BMP2 with sVEGFR1 group than that in the other groups. CONCLUSION Our study suggests that the combined delivery of BMP2 and sVEGFR1 could promote tendon-bone healing and stimulate the expansion of SSCs and their downstream progeny within the injured tendon-bone interface. CLINICAL RELEVANCE Combining BMP2 with sVEGFR1 may be a good clinical treatment for wounded tendon enthesis healing.
Collapse
Affiliation(s)
- Linfeng Wang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Liyang Wan
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Tao Zhang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Changbiao Guan
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jianzhong Hu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China. Linfeng Wang and Liyang Wan contributed equally to this study
| | - Daqi Xu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
3
|
Ivanjko N, Stokovic N, Milesevic M, Rumenovic V, Windhager R, Sampath KT, Kovacic N, Grcevic D, Vukicevic S. rhBMP6 in autologous blood coagulum is a preferred osteoinductive device to rhBMP2 on bovine collagen sponge in the rat ectopic bone formation assay. Biomed Pharmacother 2023; 169:115844. [PMID: 37948990 DOI: 10.1016/j.biopha.2023.115844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/02/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023] Open
Abstract
Osteoinductive BMPs require a suitable delivery system for treating various pathological conditions of the spine and segmental bone defects. INFUSE, the only commercially available BMP-based osteoinductive device, consisting of rhBMP2 on bovine absorbable collagen sponge (ACS) showed major disadvantages due to serious side effects. A novel osteoinductive device, OSTEOGROW, comprised of rhBMP6 dispersed within autologous blood coagulum (ABC) is a promising therapy for bone regeneration, subjected to several clinical trials for diaphysial bone repair and spinal fusion. In the present study, we have examined the release dynamics showing that the ABC carrier provided a slower, more steady BMP release in comparison to the ACS. Rat subcutaneous assay was employed to evaluate cellular events and the time course of ectopic osteogenesis. The host cellular response to osteoinductive implants was evaluated by flow cytometry, while dynamics of bone formation and maintenance in time were evaluated by histology, immunohistochemistry and micro CT analyses. Flow cytometry revealed that the recruitment of lymphoid cell populations was significantly higher in rhBMP6/ABC implants, while rhBMP2/ACS implants recruited more myeloid populations. Furthermore, rhBMP6/ABC implants more efficiently attracted early and committed progenitor cells. Dynamics of bone formation induced by rhBMP2/ACS was characterized by a delayed endochondral ossification process in comparison to rhBMP6/ABC implants. Besides, rhBMP6/ABC implants induced more ectopic bone volume in all observed time points in comparison to rhBMP2/ACS implants. These results indicate that OSTEOGROW was superior to INFUSE due to ABC's advantages as a carrier and rhBMP6 superior efficacy in inducing bone.
Collapse
Affiliation(s)
- Natalia Ivanjko
- Laboratory for Mineralized Tissues, School of Medicine, University of Zagreb, Zagreb, Croatia; Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Nikola Stokovic
- Laboratory for Mineralized Tissues, School of Medicine, University of Zagreb, Zagreb, Croatia; Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Marina Milesevic
- Laboratory for Mineralized Tissues, School of Medicine, University of Zagreb, Zagreb, Croatia; Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Viktorija Rumenovic
- Laboratory for Mineralized Tissues, School of Medicine, University of Zagreb, Zagreb, Croatia; Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Reinhard Windhager
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | | | - Natasa Kovacic
- Croatian Institute for Brain Research, Laboratory for Molecular Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Danka Grcevic
- Croatian Institute for Brain Research, Laboratory for Molecular Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Slobodan Vukicevic
- Laboratory for Mineralized Tissues, School of Medicine, University of Zagreb, Zagreb, Croatia; Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia.
| |
Collapse
|
4
|
Torres HM, Arnold KM, Oviedo M, Westendorf JJ, Weaver SR. Inflammatory Processes Affecting Bone Health and Repair. Curr Osteoporos Rep 2023; 21:842-853. [PMID: 37759135 PMCID: PMC10842967 DOI: 10.1007/s11914-023-00824-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
PURPOSE OF REVIEW The purpose of this article is to review the current understanding of inflammatory processes on bone, including direct impacts of inflammatory factors on bone cells, the effect of senescence on inflamed bone, and the critical role of inflammation in bone pain and healing. RECENT FINDINGS Advances in osteoimmunology have provided new perspectives on inflammatory bone loss in recent years. Characterization of so-called inflammatory osteoclasts has revealed insights into physiological and pathological bone loss. The identification of inflammation-associated senescent markers in bone cells indicates that therapies that reduce senescent cell burden may reverse bone loss caused by inflammatory processes. Finally, novel studies have refined the role of inflammation in bone healing, including cross talk between nerves and bone cells. Except for the initial stages of fracture healing, inflammation has predominately negative effects on bone and increases fracture risk. Eliminating senescent cells, priming the osteo-immune axis in bone cells, and alleviating pro-inflammatory cytokine burden may ameliorate the negative effects of inflammation on bone.
Collapse
Affiliation(s)
- Haydee M Torres
- Department of Orthopedic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Katherine M Arnold
- Department of Orthopedic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
- Biomedical Engineering and Physiology Track/Regenerative Sciences Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, 55905, USA
| | - Manuela Oviedo
- Department of Orthopedic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Jennifer J Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Samantha R Weaver
- Department of Orthopedic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA.
| |
Collapse
|
5
|
Huang L, Liang L, Ji Z, Chen S, Liu M, Huang Q, Huang Z, Sun S, Ding J, Chen J, Huang X, Zheng S, Deng W, Huang Y, Li T. Proteomics profiling of CD4 + T-cell-derived exosomes from patients with rheumatoid arthritis. Int Immunopharmacol 2023; 122:110560. [PMID: 37423153 DOI: 10.1016/j.intimp.2023.110560] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/17/2023] [Accepted: 06/22/2023] [Indexed: 07/11/2023]
Abstract
OBJECTIVES Our study profiled the CD4 + T-cell-derived exosomes from patients with rheumatoid arthritis (RA) using proteomics. METHODS Proteomic analysis of CD4 + T-cell-derived exosomes was performed by tandem mass tags (TMT) combined with LC-MS/MS. We validated the most significantly upregulated and downregulated proteins using ELISA and WB. RESULTS The proteomic results showed that there were 3 upregulated differentially expressed proteins and 31 downregulated differentially expressed proteins in the RA group. The results indicated that dihydropyrimidinase-related protein 3 (DPYSL3) was significantly upregulated in CD4 + T-cell-derived exosomes, whereas proteasome activator complex subunit 1 (PSME1) was significantly downregulated in the RA group. Bioinformatics analysis showed that proteins were enriched in "positive regulation of gene expression", "antigen processing and presentation", "acute-phase response" and "PI3K-AKT signaling" pathways. ELISA verified that compared to the control group, the RA group showed significant upregulation of DPYSL3, and downregulation of PSME1 in CD4 + T-cell-derived exosomes. CONCLUSIONS The proteomic analysis results of CD4 + T-cell-derived exosomes from patients with RA suggest that these differentially expressed proteins may be involved in RA pathogenesis. DPYSL3 and PSME1 may become useful biomarkers for RA.
Collapse
Affiliation(s)
- Lixin Huang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Ling Liang
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhuyi Ji
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Shuyang Chen
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Meng Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Qidang Huang
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Zhixiang Huang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shanmiao Sun
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Jiali Ding
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Jiajun Chen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xuechan Huang
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shaoling Zheng
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Weiming Deng
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou, China.
| | - Yukai Huang
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou, China.
| | - Tianwang Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou, China; Department of Rheumatology and Immunology, Zhaoqing Central People's Hospital, Zhaoqing, China; The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
6
|
Cai L, Cui Y, Guo D, Chen H, Li J, Zhou X, Xie J. Microenvironmental Stiffness Directs Chondrogenic Lineages of Stem Cells from the Human Apical Papilla via Cooperation between ROCK and Smad3 Signaling. ACS Biomater Sci Eng 2023; 9:4831-4845. [PMID: 36797839 DOI: 10.1021/acsbiomaterials.2c01371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Cell-based cartilage tissue engineering faces a great challenge in the repair process, partly due to the special physical microenvironment. Human stem cell from apical papilla (hSCAP) shows great potential as seed cells because of its versatile differentiation capacity. However, whether hSCAP has potent chondrogenic differentiation ability in the physical microenvironment of chondroid remains unknown. In this study, we fabricated poly(dimethylsiloxane) (PDMS) substrates with different stiffnesses and investigated the chondrogenic differentiation potential of hSCAPs. First, we found that hSCAPs cultured on soft substrates spread more narrowly accompanied by cortical actin organization, a hallmark of differentiated chondrocytes. On the contrary, stiff substrates were favorable for cell spreading and stress fiber formation. More importantly, the increased chondrogenic differentiation of hSCAPs seeded on soft substrates was confirmed by characterizing increased extracellular proteoglycan aggregation through Alcian blue staining and Safranin O staining and enhanced markers toward chondrogenic differentiation including SRY-box transcription factor 9 (Sox9), type II collagen (Col2), and aggrecan in both normal α-minimum essential medium (αMEM) and specific chondrogenic medium (CM) culture conditions. Then, we investigated the mechanosensing/mechanotransduction governing the chondrogenic differentiation of hSCAPs in response to different stiffnesses and found that stiffness-sensitive integrin β1 and focal adhesion kinase (FAK) were essential for mechanical signal perception and were oriented at the start of mechanotransduction induced by matrix stiffness. We next showed that the increased nuclear accumulation of Smad3 signaling and target Sox9 facilitated the chondrogenic differentiation of hSCAPs on the soft substrates and further verified the importance of Rho-associated protein kinase (ROCK) signaling in regulating chondrogenic differentiation and its driving factors, Smad3 and Sox9. By using SIS3, the specific inhibitor of p-Smad3, and miRNA targeting Rho-associated protein kinase 1 (ROCK-1), we finally confirmed the importance of ROCK/Smad3/Sox9 axis in the chondrogenic differentiation of hSCAPs in response to substrate stiffness. These results help us to increase the understanding of how microenvironmental stiffness directs chondrogenic differentiation from the aspects of mechanosensing, mechanotransduction, and cell fate decision, which will be of great value in the application of hSCAPs in cartilage tissue engineering.
Collapse
Affiliation(s)
- Linyi Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yujia Cui
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Daimo Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hao Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiazhou Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Hosseinpour S, Dai H, Walsh LJ, Xu C. Mesoporous Core-Cone Silica Nanoparticles Can Deliver miRNA-26a to Macrophages to Exert Immunomodulatory Effects on Osteogenesis In Vitro. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1755. [PMID: 37299658 PMCID: PMC10254425 DOI: 10.3390/nano13111755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
Nanoparticles can play valuable roles in delivering nucleic acids, including microRNAs (miRNA), which are small, non-coding RNA segments. In this way, nanoparticles may exert post-transcriptional regulatory influences on various inflammatory conditions and bone disorders. This study used biocompatible, core-cone-structured, mesoporous silica nanoparticles (MSN-CC) to deliver miRNA-26a to macrophages in order to influence osteogenesis in vitro. The loaded nanoparticles (MSN-CC-miRNA-26) showed low-level toxicity towards macrophages (RAW 264.7 cells) and were internalized efficiently, causing the reduced expression of pro-inflammatory cytokines, as seen via real-time PCR and cytokine immunoassays. The conditioned macrophages created a favorable osteoimmune environment for MC3T3-E1 preosteoblasts, driving osteogenic differentiation with enhanced osteogenic marker expression, alkaline phosphatase (ALP) production, extracellular matrix formation, and calcium deposition. An indirect co-culture system revealed that direct osteogenic induction and immunomodulation by MSN-CC-miRNA-26a synergistically increased bone production due to the crosstalk between MSN-CC-miRNA-26a-conditioned macrophages and MSN-CC-miRNA-26a-treated preosteoblasts. These findings demonstrate the value of nanoparticle delivery of miR-NA-26a using MSN-CC for suppressing the production of pro-inflammatory cytokines with macrophages and for driving osteogenic differentiation in preosteoblasts via osteoimmune modulation.
Collapse
Affiliation(s)
| | | | | | - Chun Xu
- School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia
| |
Collapse
|
8
|
Rivera KO, Cuylear DL, Duke VR, O’Hara KM, Zhong JX, Elghazali NA, Finbloom JA, Kharbikar BN, Kryger AN, Miclau T, Marcucio RS, Bahney CS, Desai TA. Encapsulation of β-NGF in injectable microrods for localized delivery accelerates endochondral fracture repair. Front Bioeng Biotechnol 2023; 11:1190371. [PMID: 37284244 PMCID: PMC10241161 DOI: 10.3389/fbioe.2023.1190371] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/02/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction: Currently, there are no non-surgical FDA-approved biological approaches to accelerate fracture repair. Injectable therapies designed to stimulate bone healing represent an exciting alternative to surgically implanted biologics, however, the translation of effective osteoinductive therapies remains challenging due to the need for safe and effective drug delivery. Hydrogel-based microparticle platforms may be a clinically relevant solution to create controlled and localized drug delivery to treat bone fractures. Here, we describe poly (ethylene glycol) dimethacrylate (PEGDMA)-based microparticles, in the shape of microrods, loaded with beta nerve growth factor (β-NGF) for the purpose of promoting fracture repair. Methods: Herein, PEGDMA microrods were fabricated through photolithography. PEGDMA microrods were loaded with β-NGF and in vitro release was examined. Subsequently, bioactivity assays were evaluated in vitro using the TF-1 tyrosine receptor kinase A (Trk-A) expressing cell line. Finally, in vivo studies using our well-established murine tibia fracture model were performed and a single injection of the β-NGF loaded PEGDMA microrods, non-loaded PEGDMA microrods, or soluble β-NGF was administered to assess the extent of fracture healing using Micro-computed tomography (µCT) and histomorphometry. Results: In vitro release studies showed there is significant retention of protein within the polymer matrix over 168 hours through physiochemical interactions. Bioactivity of protein post-loading was confirmed with the TF-1 cell line. In vivo studies using our murine tibia fracture model show that PEGDMA microrods injected at the site of fracture remained adjacent to the callus for over 7 days. Importantly, a single injection of β-NGF loaded PEGDMA microrods resulted in improved fracture healing as indicated by a significant increase in the percent bone in the fracture callus, trabecular connective density, and bone mineral density relative to soluble β-NGF control indicating improved drug retention within the tissue. The concomitant decrease in cartilage fraction supports our prior work showing that β-NGF promotes endochondral conversion of cartilage to bone to accelerate healing. Discussion: We demonstrate a novel and translational method wherein β-NGF can be encapsulated within PEGDMA microrods for local delivery and that β-NGF bioactivity is maintained resulting in improved bone fracture repair.
Collapse
Affiliation(s)
- Kevin O. Rivera
- Graduate Program in Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, United States
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco (UCSF), San Francisco, CA, United States
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Darnell L. Cuylear
- Graduate Program in Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, United States
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Victoria R. Duke
- Center for Regenerative and Personalized Medicine, The Steadman Philippon Research Institute (SPRI), Vail, CO, United States
| | - Kelsey M. O’Hara
- Center for Regenerative and Personalized Medicine, The Steadman Philippon Research Institute (SPRI), Vail, CO, United States
| | - Justin X. Zhong
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco (UCSF), San Francisco, CA, United States
- UC Berkeley—UCSF Graduate Program in Bioengineering, San Francisco, CA, United States
| | - Nafisa A. Elghazali
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco (UCSF), San Francisco, CA, United States
- UC Berkeley—UCSF Graduate Program in Bioengineering, San Francisco, CA, United States
| | - Joel A. Finbloom
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Bhushan N. Kharbikar
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Alex N. Kryger
- School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Theodore Miclau
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Ralph S. Marcucio
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Chelsea S. Bahney
- Graduate Program in Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, United States
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco (UCSF), San Francisco, CA, United States
- Center for Regenerative and Personalized Medicine, The Steadman Philippon Research Institute (SPRI), Vail, CO, United States
- UC Berkeley—UCSF Graduate Program in Bioengineering, San Francisco, CA, United States
| | - Tejal A. Desai
- Graduate Program in Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, United States
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco (UCSF), San Francisco, CA, United States
- Department of Bioengineering, University of California, Berkeley (UC Berkeley), Berkeley, CA, United States
- School of Engineering, Brown University, Providence, RI, United States
| |
Collapse
|
9
|
Grčević D, Sanjay A, Lorenzo J. Interactions of B-lymphocytes and bone cells in health and disease. Bone 2023; 168:116296. [PMID: 34942359 PMCID: PMC9936888 DOI: 10.1016/j.bone.2021.116296] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 02/09/2023]
Abstract
Bone remodeling occurs through the interactions of three major cell lineages, osteoblasts, which mediate bone formation, osteocytes, which derive from osteoblasts, sense mechanical force and direct bone turnover, and osteoclasts, which mediate bone resorption. However, multiple additional cell types within the bone marrow, including macrophages, T lymphocytes and B lymphocytes influence the process. The bone marrow microenvironment, which is supported, in part, by bone cells, forms a nurturing network for B lymphopoiesis. In turn, developing B lymphocytes influence bone cells. Bone health during homeostasis depends on the normal interactions of bone cells with other lineages in the bone marrow. In disease state these interactions become pathologic and can cause abnormal function of bone cells and inadequate repair of bone after a fracture. This review summarizes what is known about the development of B lymphocytes and the interactions of B lymphocytes with bone cells in both health and disease.
Collapse
Affiliation(s)
- Danka Grčević
- Department of Physiology and Immunology, Croatian Institute for Brain Research, School of Medicine University of Zagreb, Zagreb, Croatia.
| | - Archana Sanjay
- Department of Orthopaedics, UConn Health, Farmington, CT, USA.
| | - Joseph Lorenzo
- Departments of Medicine and Orthopaedics, UConn Health, Farmington, CT, USA.
| |
Collapse
|
10
|
Karateev AE, Nesterenko VA, Makarov MA, Lila AM. Chronic post-traumatic pain: rheumatological and orthopedic aspects. RHEUMATOLOGY SCIENCE AND PRACTICE 2022. [DOI: 10.47360/1995-4484-2022-526-537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Trauma causes a complex local and systemic reaction of the macroorganism, the consequences of which can be various functional, neurological and psychoemotional disorders. One of the most painful complications of injuries of the musculoskeletal system is chronic post-traumatic pain (CPTP), which occurs, depending on the severity of the damage, in 10–50% of cases. The pathogenesis of this syndrome is multifactorial and includes the development of chronic inflammation, degenerative changes (fibrosis, angiogenesis, heterotopic ossification), pathology of the muscular and nervous systems, neuroplastic changes leading to the development of central sensitization, as well as depression, anxiety and catastrophization. Risk factors for CPTP should be considered the severity of injury, comorbid diseases and conditions (in particular, obesity), stress and serious trauma-related experiences (within the framework of post-traumatic stress disorder), the development of post-traumatic osteoarthritis and chronic tendopathy, genetic predisposition, deficiencies in treatment and rehabilitation in the early period after injury. To date, there is no clear system of prevention and treatment of CPTP. Considering the pathogenesis of this suffering, adequate anesthesia after injury, active anti–inflammatory therapy (including local injections of glucocorticoids), the use of hyaluronic acid, slow-acting symptomatic agents and autologous cellular preparations – platelet-riched plasma, mesenchymal stem cells, etc. are of fundamental importance. However, therapeutic and surgical methods of CPTP control require further study
Collapse
Affiliation(s)
| | | | | | - A. M. Lila
- V.A. Nasonova Research Institute of Rheumatology; Russian Medical Academy of Continuous Professional Education of the Ministry of Healthcare of the Russian Federation
| |
Collapse
|
11
|
Barbarić Starčević K, Lukač N, Jelić M, Šućur A, Grčević D, Kovačić N. Reciprocal Alterations in Osteoprogenitor and Immune Cell Populations in Rheumatoid Synovia. Int J Mol Sci 2022; 23:ijms232012379. [PMID: 36293236 PMCID: PMC9604389 DOI: 10.3390/ijms232012379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/29/2022] [Accepted: 10/12/2022] [Indexed: 11/21/2022] Open
Abstract
Rheumatoid arthritis (RA) is chronic, autoimmune joint inflammation characterized by irreversible joint destruction. Besides increased resorption, destruction is a result of decreased bone formation, due to suppressed differentiation and function of the mesenchymal lineage-derived osteoblasts in inflammatory milieu. In this study, we analyzed the cellular composition of synovial tissue from 11 RA and 10 control patients harvested during planned surgeries in order to characterize resident synovial progenitor populations. Synovial cells were released by collagenase, and labeled for flow cytometry by two antibody panels: 1. CD3-FITC, CD14-PE, 7-AAD, CD11b-PECy7, CD235a-APC, CD19-APCeF780; and 2. 7-AAD, CD105-PECy7, CD45/CD31/CD235a-APC, and CD200-APCeF780. The proportions of lymphocytes (CD3+, CD19+) and myeloid (CD11b+, CD14+) cells were higher in synovial tissue from the patients with RA than in the controls. Among non-hematopoietic (CD45-CD31-CD235a-) cells, there was a decrease in the proportion of CD200+CD105- and increase in the proportion of CD200-CD105+ cells in synovial tissue from the patients with RA in comparison to the control patients. The proportions of both populations were associated with inflammatory activity and could discriminate between the RA and the controls.
Collapse
Affiliation(s)
| | - Nina Lukač
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb, School of Medicine, 10000 Zagreb, Croatia
- Department of Anatomy, University of Zagreb, School of Medicine, 10000 Zagreb, Croatia
| | - Mislav Jelić
- Department of Orthopaedic Surgery, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Alan Šućur
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb, School of Medicine, 10000 Zagreb, Croatia
- Department of Physiology and Immunology, University of Zagreb, School of Medicine, 10000 Zagreb, Croatia
| | - Danka Grčević
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb, School of Medicine, 10000 Zagreb, Croatia
- Department of Physiology and Immunology, University of Zagreb, School of Medicine, 10000 Zagreb, Croatia
| | - Nataša Kovačić
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb, School of Medicine, 10000 Zagreb, Croatia
- Department of Anatomy, University of Zagreb, School of Medicine, 10000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-1-4566-846
| |
Collapse
|
12
|
Özdemirel AE, Güven SC, Sarı Sürmeli Z, Özyuvalı A, Kurt M, Rüstemova D, Yalçın Sayan AP, Tutkan H, Ataman Ş. Serum BMP-2 and BMP-4 levels and their relationship with disease activity in patients with rheumatoid arthritis and ankylosing spondylitis. Arch Rheumatol 2022; 37:466-474. [PMID: 36589602 PMCID: PMC9791556 DOI: 10.46497/archrheumatol.2022.9819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 07/27/2022] [Indexed: 11/07/2022] Open
Abstract
Objectives This study aims to investigate the levels of bone morphogenic proteins (BMPs), one of the pathways affecting bone turnover in these diseases, and to investigate their relationship with disease activity. Patients and methods Between September 2013 and July 2015, a total of 100 ankylosing spondylitis (AS) patients (53 males, 48 females; median age: 40 years; range, 18 to 62 years), 58 rheumatoid arthritis (RA) patients (25 males, 33 females; median age: 40.5 years; range, 26 to 59 years), and 102 age- and sex-matched healthy controls (55 males, 47 females; median age: 38 years; range, 18 to 55 years) were included in the study. In all groups, serum BMP-2 and BMP-4 levels were measured using enzyme-linked immunosorbent assay (ELISA). Demographic data (age, sex, duration of disease) and acute phase reactants of the patients at the final visit were recorded. Disease activity was assessed through the Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) and Ankylosing Spondylitis Disease Activity Score C-Reactive Protein (ASDAS-CRP) for AS patients and through the Disease Activity Score-28-CRP (DAS-28-CRP) for RA patients. Results The median BMP-2 values were found to be significantly higher in the RA group compared to the other groups and in the control group compared to the AS group (p<0.001 for both). There was no significant difference between the groups in terms of median BMP-4 values (p>0.05). No significant relationship was found between serum BMP-2 and BMP-4 levels and disease activity in both AS and RA patients, while there was a weak positive correlation between erythrocyte sedimentation rate and CRP levels with BMP-2 level in RA patients (p=0.014, r=0.320 and p=0.029, r=0.287, respectively). Conclusion Our study results suggest that the BMP pathway may have different dual effects in AS and RA patients depending on the underlying pathogenesis, and that local effects are more prominent than serum levels.
Collapse
Affiliation(s)
| | - Serdar Can Güven
- Department of Rheumatology, Ankara City Hospital, Ankara, Türkiye
| | | | - Ayla Özyuvalı
- Department of Physical and Rehabilitation Medicine, HFM Beyazpınar Physical Medicine and Rehabilitation Centre, Ankara, Türkiye
| | - Memet Kurt
- Department of Physical and Rehabilitation Medicine, Dr. Ergun Özdemir Görele State Hospital, Giresun, Türkiye
| | - Diana Rüstemova
- Department of Physical and Rehabilitation Medicine, Can Private Hospital Clinic of Physical and Rehabilitation, Manisa, Türkiye
| | - Ayşe Peyman Yalçın Sayan
- Department of Physical and Rehabilitation Medicine, Ankara University Faculty of Medicine, Ankara, Türkiye
| | - Hüseyin Tutkan
- Department of Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Türkiye
| | - Şebnem Ataman
- Department of Physical and Rehabilitation Medicine, Division of Rheumatology, Ankara University Faculty of Medicine, Ankara, Türkiye
| |
Collapse
|
13
|
Organokines in Rheumatoid Arthritis: A Critical Review. Int J Mol Sci 2022; 23:ijms23116193. [PMID: 35682868 PMCID: PMC9180954 DOI: 10.3390/ijms23116193] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease that primarily affects the joints. Organokines can produce beneficial or harmful effects in this condition. Among RA patients, organokines have been associated with increased inflammation and cartilage degradation due to augmented cytokines and metalloproteinases production, respectively. This study aimed to perform a review to investigate the role of adipokines, osteokines, myokines, and hepatokines on RA progression. PubMed, Embase, Google Scholar, and Cochrane were searched, and 18 studies were selected, comprising more than 17,000 RA patients. Changes in the pattern of organokines secretion were identified, and these could directly or indirectly contribute to aggravating RA, promoting articular alterations, and predicting the disease activity. In addition, organokines have been implicated in higher radiographic damage, immune dysregulation, and angiogenesis. These can also act as RA potent regulators of cells proliferation, differentiation, and apoptosis, controlling osteoclasts, chondrocytes, and fibroblasts as well as immune cells chemotaxis to RA sites. Although much is already known, much more is still unknown, principally about the roles of organokines in the occurrence of RA extra-articular manifestations.
Collapse
|
14
|
Bordukalo-Nikšić T, Kufner V, Vukičević S. The Role Of BMPs in the Regulation of Osteoclasts Resorption and Bone Remodeling: From Experimental Models to Clinical Applications. Front Immunol 2022; 13:869422. [PMID: 35558080 PMCID: PMC9086899 DOI: 10.3389/fimmu.2022.869422] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/28/2022] [Indexed: 11/18/2022] Open
Abstract
In response to mechanical forces and the aging process, bone in the adult skeleton is continuously remodeled by a process in which old and damaged bone is removed by bone-resorbing osteoclasts and subsequently is replaced by new bone by bone-forming cells, osteoblasts. During this essential process of bone remodeling, osteoclastic resorption is tightly coupled to osteoblastic bone formation. Bone-resorbing cells, multinuclear giant osteoclasts, derive from the monocyte/macrophage hematopoietic lineage and their differentiation is driven by distinct signaling molecules and transcription factors. Critical factors for this process are Macrophage Colony Stimulating Factor (M-CSF) and Receptor Activator Nuclear Factor-κB Ligand (RANKL). Besides their resorption activity, osteoclasts secrete coupling factors which promote recruitment of osteoblast precursors to the bone surface, regulating thus the whole process of bone remodeling. Bone morphogenetic proteins (BMPs), a family of multi-functional growth factors involved in numerous molecular and signaling pathways, have significant role in osteoblast-osteoclast communication and significantly impact bone remodeling. It is well known that BMPs help to maintain healthy bone by stimulating osteoblast mineralization, differentiation and survival. Recently, increasing evidence indicates that BMPs not only help in the anabolic part of bone remodeling process but also significantly influence bone catabolism. The deletion of the BMP receptor type 1A (BMPRIA) in osteoclasts increased osteoblastic bone formation, suggesting that BMPR1A signaling in osteoclasts regulates coupling to osteoblasts by reducing bone-formation activity during bone remodeling. The dual effect of BMPs on bone mineralization and resorption highlights the essential role of BMP signaling in bone homeostasis and they also appear to be involved in pathological processes in inflammatory disorders affecting bones and joints. Certain BMPs (BMP2 and -7) were approved for clinical use; however, increased bone resorption rather than formation were observed in clinical applications, suggesting the role BMPs have in osteoclast activation and subsequent osteolysis. Here, we summarize the current knowledge of BMP signaling in osteoclasts, its role in osteoclast resorption, bone remodeling, and osteoblast–osteoclast coupling. Furthermore, discussion of clinical application of recombinant BMP therapy is based on recent preclinical and clinical studies.
Collapse
Affiliation(s)
- Tatjana Bordukalo-Nikšić
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Vera Kufner
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Slobodan Vukičević
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
15
|
Gu F, Zhang K, Li J, Xie X, Wen Q, Sui Z, Su Z, Yu T. Changes of Migration, Immunoregulation and Osteogenic Differentiation of Mesenchymal Stem Cells in Different Stages of Inflammation. Int J Med Sci 2022; 19:25-33. [PMID: 34975296 PMCID: PMC8692114 DOI: 10.7150/ijms.58428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 10/25/2021] [Indexed: 12/17/2022] Open
Abstract
Bone infection has always been the focus of orthopedic research. Mesenchymal stem cells (MSCs) are the natural progenitors of osteoblasts, and the process of osteogenesis is triggered in response to different signals from the extracellular matrix. MSCs exert important functions including secretion and immune regulation and also play a key role in bone regeneration. The biological behavior of MSCs in acute and chronic inflammation, especially the transformation between acute inflammation and chronic inflammation, has aroused great interest among researchers. This paper reviews the recent literature and summarizes the behavior and biological characteristics of MSCs in acute and chronic inflammation to stimulate further research on MSCs and treatment of bone diseases.
Collapse
Affiliation(s)
- Feng Gu
- Department of Orthopedics, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Ke Zhang
- Department of Orthopedics, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Jiangbi Li
- Department of Orthopedics, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Xiaoping Xie
- Department of Orthopedics, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Qiangqiang Wen
- Department of Orthopedics, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Zhenjiang Sui
- Department of Orthopedics, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Zilong Su
- Department of Orthopedics, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Tiecheng Yu
- Department of Orthopedics, First Hospital of Jilin University, Changchun 130021, Jilin, China
| |
Collapse
|
16
|
Qu Q, Sun JY, Zhang ZY, Su Y, Li SS, Li F, Wang RX. Hub microRNAs and genes in the development of atrial fibrillation identified by weighted gene co-expression network analysis. BMC Med Genomics 2021; 14:271. [PMID: 34781940 PMCID: PMC8591905 DOI: 10.1186/s12920-021-01124-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/08/2021] [Indexed: 01/17/2023] Open
Abstract
Co-expression network may contribute to better understanding molecular interaction patterns underlying cellular processes. To explore microRNAs (miRNAs) expression patterns correlated with AF, we performed weighted gene co-expression network analysis (WGCNA) based on the dataset GSE28954. Thereafter, we predicted target genes using experimentally verified databases (ENOCRI, miRTarBase, and Tarbase), and overlapped genes with differentially expressed genes (DEGs) from GSE79768 were identified as key genes. Integrated analysis of association between hub miRNAs and key genes was conducted to screen hub genes. In general, we identified 3 differentially expressed miRNAs (DEMs) and 320 DEGs, predominantly enriched in inflammation-related functional items. Two significant modules (red and blue) and hub miRNAs (hsa-miR-146b-5p and hsa-miR-378a-5p), which highly correlated with AF-related phenotype, were detected by WGCNA. By overlapping the DEGs and predicted target genes, 38 genes were screened out. Finally, 9 genes (i.e. ATP13A3, BMP2, CXCL1, GABPA, LIF, MAP3K8, NPY1R, S100A12, SLC16A2) located at the core region in the miRNA-gene interaction network were identified as hub genes. In conclusion, our study identified 2 hub miRNAs and 9 hub genes, which may improve the understanding of molecular mechanisms and help to reveal potential therapeutic targets against AF.
Collapse
Affiliation(s)
- Qiang Qu
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Wuxi, 214023, China.,Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jin-Yu Sun
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Wuxi, 214023, China.,Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zhen-Ye Zhang
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Wuxi, 214023, China
| | - Yue Su
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Wuxi, 214023, China.,Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Shan-Shan Li
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Wuxi, 214023, China
| | - Feng Li
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Wuxi, 214023, China
| | - Ru-Xing Wang
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Wuxi, 214023, China.
| |
Collapse
|
17
|
Matthews BG, Novak S, Sbrana FV, Funnell JL, Cao Y, Buckels EJ, Grcevic D, Kalajzic I. Heterogeneity of murine periosteum progenitors involved in fracture healing. eLife 2021; 10:e58534. [PMID: 33560227 PMCID: PMC7906599 DOI: 10.7554/elife.58534] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
The periosteum is the major source of cells involved in fracture healing. We sought to characterize progenitor cells and their contribution to bone fracture healing. The periosteum is highly enriched with progenitor cells, including Sca1+ cells, fibroblast colony-forming units, and label-retaining cells compared to the endosteum and bone marrow. Using lineage tracing, we demonstrate that alpha smooth muscle actin (αSMA) identifies long-term, slow-cycling, self-renewing osteochondroprogenitors in the adult periosteum that are functionally important for bone formation during fracture healing. In addition, Col2.3CreER-labeled osteoblast cells contribute around 10% of osteoblasts but no chondrocytes in fracture calluses. Most periosteal osteochondroprogenitors following fracture can be targeted by αSMACreER. Previously identified skeletal stem cell populations were common in periosteum but contained high proportions of mature osteoblasts. We have demonstrated that the periosteum is highly enriched with skeletal progenitor cells, and there is heterogeneity in the populations of cells that contribute to mature lineages during periosteal fracture healing.
Collapse
Affiliation(s)
- Brya G Matthews
- Department of Molecular Medicine and Pathology, University of AucklandAucklandNew Zealand
- Department of Reconstructive Sciences, UConn HealthFarmingtonUnited States
| | - Sanja Novak
- Department of Reconstructive Sciences, UConn HealthFarmingtonUnited States
| | - Francesca V Sbrana
- Department of Reconstructive Sciences, UConn HealthFarmingtonUnited States
| | - Jessica L Funnell
- Department of Reconstructive Sciences, UConn HealthFarmingtonUnited States
| | - Ye Cao
- Department of Molecular Medicine and Pathology, University of AucklandAucklandNew Zealand
| | - Emma J Buckels
- Department of Molecular Medicine and Pathology, University of AucklandAucklandNew Zealand
| | - Danka Grcevic
- Department of Physiology and Immunology, University of ZagrebZagrebCroatia
- Croatian Intitute for Brain Research, University of ZagrebZagrebCroatia
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, UConn HealthFarmingtonUnited States
| |
Collapse
|
18
|
Vukicevic S, Sampath KT, Luyten FP. Editorial - "The role of bone morphogenetic proteins (BMPs) in musculoskeletal biology". Bone 2020; 141:115622. [PMID: 32919995 DOI: 10.1016/j.bone.2020.115622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Slobodan Vukicevic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia.
| | - Kuber T Sampath
- perForm Biologics Inc., Holliston, MA 01746, United States of America.
| | - Frank P Luyten
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium.
| |
Collapse
|
19
|
Lukač N, Katavić V, Šućur A, Filipović M, Grčević D, Kovačić N. RNA sequencing data from osteochondroprogenitor populations in synovial joints of mice during murine model of rheumatoid arthritis. Data Brief 2020; 33:106570. [PMID: 33304967 PMCID: PMC7711217 DOI: 10.1016/j.dib.2020.106570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/05/2022] Open
Abstract
The aim of this study was to analyze the transcriptome of TER119-CD31-CD45-CD51+CD200+CD105- population (further, CD200+), potential early osteocondroprogenitors, whose frequency is reduced in the joints of mice with antigen-induced arthritis (AIA) [1]. A population defined by similar surface markers has been previously identified as murine skeletal stem cells in bone [2]. In order to confirm their identity this population was compared to TER119-CD31-CD45-CD51+CD200-CD105+ (further, CD105+) cells, which possibly represent committed progenitors, or other non-progenitor population such as synovial fibroblasts. In order to asses changes in CD200+ population in inflammatory setting, it was also compared to the same population from healthy mice. AIA was induced by immunization of mice with methylated bovine serum albumin (mBSA) and subsequent intra-articular injection of mBSA, while non-immunized mice were injected with phosphate-buffered saline at all timepoints. Ten days after intra-articular injection, knee joints were harvested and synovial cells were released by collagenase digestion. Using fluorescence-activated cell sorting, 200-500 cells from selected populations were sorted directly into cell lysis buffer, RNA was reversely transcribed, and first strand cDNA product was amplified. cDNA amplicons were used for library preparation. Bioinformatics analysis was performed using cutadapt [3], HISAT2 [4], Samtools [5] and StringTie [6] tools, and egdeR [7], limma [8], and ClusterProfiler [9] Bioconductor packages. In addition to access to raw data at the NCBI Gene Expression Omnibus repository, this article also provides sample similarity analysis, tables of differentially expressed genes, graphic visualisations of differential expression and gene set enrichment analysis performed on publicly available GO terms. Interpretation of osteochondroprogenitor phenotype of CD200+ population based on analysis of presented data is provided in the article "What do we know about bone morphogenetic proteins and osteochondroprogenitors in inflammatory conditions?" [10]. Reuse of this data may help researchers elucidate alterations of synovial stromal and osteochondroprogenitor populations in inflammatory settings and define their role in structural damage in rheumatoid arthritis.
Collapse
Affiliation(s)
- Nina Lukač
- Laboratory for Molecular Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Anatomy, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Vedran Katavić
- Laboratory for Molecular Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Anatomy, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Alan Šućur
- Laboratory for Molecular Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Maša Filipović
- Laboratory for Molecular Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Danka Grčević
- Laboratory for Molecular Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Nataša Kovačić
- Laboratory for Molecular Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Anatomy, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
20
|
Zhao H, Lu A, He X. Roles of MicroRNAs in Bone Destruction of Rheumatoid Arthritis. Front Cell Dev Biol 2020; 8:600867. [PMID: 33330493 PMCID: PMC7710907 DOI: 10.3389/fcell.2020.600867] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/26/2020] [Indexed: 12/21/2022] Open
Abstract
As an important pathological result of rheumatoid arthritis (RA), bone destruction will lead to joint injury and dysfunction. The imbalance of bone metabolism caused by increased osteoclast activities and decreased osteoblast activities is the main cause of bone destruction in RA. MicroRNAs (MiRNAs) play an important role in regulating bone metabolic network. Recent studies have shown that miRNAs play indispensable roles in the occurrence and development of bone-related diseases including RA. In this paper, the role of miRNAs in regulating bone destruction of RA in recent years, especially the differentiation and activities of osteoclast and osteoblast, is reviewed. Our results will not only help provide ideas for further studies on miRNAs’ roles in regulating bone destruction, but give candidate targets for miRNAs-based drugs research in bone destruction therapy of RA as well.
Collapse
Affiliation(s)
- Hanxiao Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.,Shanghai GuangHua Hospital of Integrated Traditional Chinese and Western Medicine, Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Shanghai, China
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|