1
|
Zheng DC, Hu JQ, Mai CT, Huang L, Zhou H, Yu LL, Xie Y. Liver X receptor inverse agonist SR9243 attenuates rheumatoid arthritis via modulating glycolytic metabolism of macrophages. Acta Pharmacol Sin 2024; 45:2354-2365. [PMID: 38987388 PMCID: PMC11489696 DOI: 10.1038/s41401-024-01315-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/15/2024] [Indexed: 07/12/2024] Open
Abstract
Liver X receptors (LXRs) which link lipid metabolism and inflammation, were overexpressed in experimental rheumatoid arthritis (RA) rats as observed in our previous studies, while suppression of LXRα by silybin ameliorates arthritis and abnormal lipid metabolism. However, the role of LXRs in RA remains undefined. In this study, we investigated the inhibition role of LXRs in the polarization and activation of M1 macrophage by using a special LXRs inverse agonist SR9243, which led to ameliorating the progression of adjuvant-induced arthritis (AIA) in rats. Mechanistically, SR9243 disrupted the LPS/IFN-γ-induced Warburg effect in M1 macrophages, while glycolysis inhibitor 2-DG attenuated the inhibition effect of SR9243 on M1 polarization and the cytokines expression of M1 macrophages including iNOS, TNF-α, and IL-6 in vitro. Furthermore, SR9243 downregulated key glycolytic enzymes, including LDH-A, HK2, G6PD, GLUT1, and HIF-1α in M1 macrophages, which is mediated by increased phosphorylation of AMPK (Thr172) and reduced downstream phosphorylation of mTOR (Ser2448). Importantly, gene silencing of LXRs compromises the inhibition effect of SR9243 on M1 macrophage polarization and activation. Collectively, for the first time, our findings suggest that the LXR inverse agonist SR9243 mitigates adjuvant-induced rheumatoid arthritis and protects against bone erosion by inhibiting M1 macrophage polarization and activation through modulation of glycolytic metabolism via the AMPK/mTOR/HIF-1α pathway.
Collapse
Affiliation(s)
- De-Chong Zheng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Jia-Qin Hu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Chu-Tian Mai
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Li Huang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Hua Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Li-Li Yu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China.
| | - Ying Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Long L, Luo H, Wang Y, Gu J, Xiong J, Tang X, Lv H, Zhou F, Cao K, Lin S. Kurarinone, a flavonoid from Radix Sophorae Flavescentis, inhibits RANKL-induced osteoclastogenesis in mouse bone marrow-derived monocyte/macrophages. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7071-7087. [PMID: 38643449 DOI: 10.1007/s00210-024-03100-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/11/2024] [Indexed: 04/22/2024]
Abstract
Inflammation-induced osteoclast proliferation is a crucial contributor to impaired bone metabolism. Kurarinone (KR), a flavonoid extracted from the Radix Sophorae Flavescentis, exhibits notable anti-inflammatory properties. Nevertheless, the precise influence of KR on osteoclast formation remains unclear. This study's objective was to assess the impact of KR on osteoclast activity in vitro and unravel its underlying mechanism. Initially, a target network for KR-osteoclastogenesis-osteoporosis was constructed using network pharmacology. Subsequently, the intersecting targets were identified through the Venny platform and a PPI network was created using Cytoscape 3.9.1. Key targets within the network were identified employing topological algorithms. GO enrichment and KEGG pathway analysis were then performed on these targets to explore their specific functions and pathways. Additionally, molecular docking of potential core targets of KR was conducted, and the results were validated through cell experiments. A total of 83 target genes overlapped between KR and osteoclastogenesis-osteoporosis targets. Enrichment analysis revealed their role in inflammatory response, protein tyrosine kinase activity, osteoclast differentiation, and MAPK and NF-κB signaling pathways. PPI analysis and molecular docking demonstrate that key targets MAPK14 and MAPK8 exhibit more stable binding with KR compared to other proteins. In vitro experiments demonstrate that KR effectively inhibits osteoclast differentiation and bone resorption without cellular toxicity. It suppresses key osteoclast genes (NFATc1, c-Fos, TRAP, MMP9, Ctsk, Atp6v2), hinders IκB-α degradation, and inhibits ERK and JNK phosphorylation, while not affecting p38 phosphorylation. The results indicate that KR may inhibit osteoclast maturation and bone resorption by blocking NF-κB and MAPK signaling pathways, suggesting its potential as a natural therapeutic agent for osteoporosis.
Collapse
Affiliation(s)
- Ling Long
- Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, 332000, Jiangxi, China
| | - Hao Luo
- Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, 332000, Jiangxi, China
| | - Yi Wang
- Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, 332000, Jiangxi, China
| | - Jiaxiang Gu
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330209, Jiangxi, China
| | - Jiachao Xiong
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330209, Jiangxi, China
| | - Xiaokai Tang
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330209, Jiangxi, China
| | - Hao Lv
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330209, Jiangxi, China
| | - Faxin Zhou
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330209, Jiangxi, China
| | - Kai Cao
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330209, Jiangxi, China.
| | - Sijian Lin
- Rehabilitation Medicine Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
3
|
Zhao Y, Yang K, Ferreira TA, Kang X, Feng X, Katz J, Michalek SM, Zhang P. Activation of liver X receptors suppresses the abundance and osteoclastogenic potential of osteoclast precursors and periodontal bone loss. Mol Oral Microbiol 2024; 39:125-135. [PMID: 38108557 PMCID: PMC11096071 DOI: 10.1111/omi.12447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/25/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Liver-X receptors (LXRs) are essential nuclear hormone receptors involved in cholesterol and lipid metabolism. They are also believed to regulate inflammation and physiological and pathological bone turnover. We have previously shown that infection with the periodontal pathogen Porphyromonas gingivalis (Pg) in mice increases the abundance of CD11b+c-fms+Ly6Chi cells in bone marrow (BM), spleen (SPL), and peripheral blood. These cells also demonstrated enhanced osteoclastogenic activity and a distinctive gene profile following Pg infection. Here, we investigated the role of LXRs in regulating these osteoclast precursors (OCPs) and periodontal bone loss. We found that Pg infection downregulates the gene expression of LXRs, as well as ApoE, a transcription target of LXRs, in CD11b+c-fms+Ly6Chi OCPs. Activation of LXRs by treatment with GW3965, a selective LXR agonist, significantly decreased Pg-induced accumulation of CD11b+c-fms+Ly6Chi population in BM and SPL. GW3965 treatment also significantly suppressed the osteoclastogenic potential of these OCPs induced by Pg infection. Furthermore, the activation of LXRs reduces the abundance of OCPs systemically in BM and locally in the periodontium, as well as mitigates gingival c-fms expression and periodontal bone loss in a ligature-induced periodontitis model. These data implicate a novel role of LXRs in regulating OCP abundance and osteoclastogenic potential in inflammatory bone loss.
Collapse
Affiliation(s)
- Yanfang Zhao
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kai Yang
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Thalyta Amanda Ferreira
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Xuejia Kang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama, USA
| | - Xu Feng
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jannet Katz
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Suzanne M Michalek
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ping Zhang
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
4
|
Austin TR, Fink HA, Jalal DI, Törnqvist AE, Buzkova P, Barzilay JI, Lu T, Carbone L, Gabrielsen ME, Grahnemo L, Hveem K, Jonasson C, Kizer JR, Langhammer A, Mukamal KJ, Gerszten RE, Nethander M, Psaty BM, Robbins JA, Sun YV, Skogholt AH, Åsvold BO, Valderrabano RJ, Zheng J, Richards JB, Coward E, Ohlsson C. Large-scale circulating proteome association study (CPAS) meta-analysis identifies circulating proteins and pathways predicting incident hip fractures. J Bone Miner Res 2024; 39:139-149. [PMID: 38477735 PMCID: PMC11070286 DOI: 10.1093/jbmr/zjad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/09/2023] [Accepted: 11/23/2023] [Indexed: 03/14/2024]
Abstract
Hip fractures are associated with significant disability, high cost, and mortality. However, the exact biological mechanisms underlying susceptibility to hip fractures remain incompletely understood. In an exploratory search of the underlying biology as reflected through the circulating proteome, we performed a comprehensive Circulating Proteome Association Study (CPAS) meta-analysis for incident hip fractures. Analyses included 6430 subjects from two prospective cohort studies (Cardiovascular Health Study and Trøndelag Health Study) with circulating proteomics data (aptamer-based 5 K SomaScan version 4.0 assay; 4979 aptamers). Associations between circulating protein levels and incident hip fractures were estimated for each cohort using age and sex-adjusted Cox regression models. Participants experienced 643 incident hip fractures. Compared with the individual studies, inverse-variance weighted meta-analyses yielded more statistically significant associations, identifying 23 aptamers associated with incident hip fractures (conservative Bonferroni correction 0.05/4979, P < 1.0 × 10-5). The aptamers most strongly associated with hip fracture risk corresponded to two proteins of the growth hormone/insulin growth factor system (GHR and IGFBP2), as well as GDF15 and EGFR. High levels of several inflammation-related proteins (CD14, CXCL12, MMP12, ITIH3) were also associated with increased hip fracture risk. Ingenuity pathway analysis identified reduced LXR/RXR activation and increased acute phase response signaling to be overrepresented among those proteins associated with increased hip fracture risk. These analyses identified several circulating proteins and pathways consistently associated with incident hip fractures. These findings underscore the usefulness of the meta-analytic approach for comprehensive CPAS in a similar manner as has previously been observed for large-scale human genetic studies. Future studies should investigate the underlying biology of these potential novel drug targets.
Collapse
Affiliation(s)
- Thomas R Austin
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, 98195, United States
| | - Howard A Fink
- Geriatric Research Education and Clinical Center, VA Health Care System, Minneapolis, MN, 56401, United States
| | - Diana I Jalal
- Division of Nephrology, Department of Internal Medicine, Carver College of Medicine, Iowa City, IA, 52242, United States
- Iowa City VA Medical Center, Iowa City, IA, 52246, United States
| | - Anna E Törnqvist
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
| | - Petra Buzkova
- Department of Biostatistics, University of Washington, Seattle, WA, 98115, United States
| | - Joshua I Barzilay
- Division of Endocrinology, Kaiser Permanente of Georgia, Atlanta, GA, 30339, United States
| | - Tianyuan Lu
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, H3T 1E2, Canada
- Quantitative Life Sciences Program, McGill University, Montreal, Quebec, H3G 0B1, Canada
- 5 Prime Sciences Inc, Montreal, Quebec, H3Y 2W4, Canada
| | - Laura Carbone
- Charlie Norwood VAMC, Augusta, GA, 30901, United States
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States
| | - Maiken E Gabrielsen
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Louise Grahnemo
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
| | - Kristian Hveem
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
- HUNT Research Centre, NTNU, 7600, Levanger, Norway
| | - Christian Jonasson
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Jorge R Kizer
- Cardiology Section, San Francisco VA Health Care System, San Francisco, CA, 94121, United States
- Department of Medicine, Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, 94158, United States
| | - Arnulf Langhammer
- HUNT Research Centre, NTNU, 7600, Levanger, Norway
- Levanger Hospital, Nord-Trøndelag Hospital Trust, 7600, Levanger, Norway
| | - Kenneth J Mukamal
- Department of Medicine, Beth Israel Deaconess Medical Center, Brookline, MA, 2446, United States
| | - Robert E Gerszten
- Department of Medicine, Beth Israel Deaconess Medical Center, Brookline, MA, 2446, United States
| | - Maria Nethander
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
- Bioinformatics and Data Center, Sahlgrenska Academy, University of Gothenburg, 413 90, Gothenburg, Sweden
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, 98195, United States
- Departments of Medicine, Epidemiology, and Health Systems and Population Health, University of Washington, Seattle, WA, 98195, United States
| | - John A Robbins
- Department of Medicine, University of California, Davis, CA, 95817, United States
| | - Yan V Sun
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, United States
| | - Anne Heidi Skogholt
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Bjørn Olav Åsvold
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
- Department of Endocrinology, Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, 7491, Trondheim, Norway
| | - Rodrigo J Valderrabano
- Research Program in Men’s Health, Aging and Metabolism, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, 2130, United States
| | - Jie Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Jiao Tong University School of Medicine, Ruijin Hospital, Shanghai, 200025, China
- Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Shanghai National Clinical Research Center for Metabolic Diseases, Shanghai Digital Medicine Innovation Center, Shanghai Jiao Tong University School of Medicine, Ruijin Hospital, Shanghai, 200025, China
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Bristol, BS8 2BN, United Kingdom
| | - J Brent Richards
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, H3T 1E2, Canada
- 5 Prime Sciences Inc, Montreal, Quebec, H3Y 2W4, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, H4A 3J1, Canada
- Department of Twin Research, King’s College London, London, SE1 7EH, United Kingdom
| | - Eivind Coward
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Claes Ohlsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
- Department of Drug Treatment, Region Västra Götaland, Sahlgrenska University Hospital, 413 45, Gothenburg, Sweden
| |
Collapse
|
5
|
Mishra P, Davies DA, Albensi BC. The Interaction Between NF-κB and Estrogen in Alzheimer's Disease. Mol Neurobiol 2023; 60:1515-1526. [PMID: 36512265 DOI: 10.1007/s12035-022-03152-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022]
Abstract
Post-menopausal women are at a higher risk of developing Alzheimer's disease (AD) than males. The higher rates of AD in women are associated with the sharp decline in the estrogen levels after menopause. Estrogen has been shown to downregulate inflammatory cytokines in the central nervous system (CNS), which has a neuroprotective role against neurodegenerative diseases including AD. Sustained neuroinflammation is associated with neurodegeneration and contributes to AD. Nuclear factor kappa-B (NF-κB) is a transcription factor involved with the modulation of inflammation and interacts with estrogen to influence the progression of AD. Application of 17β-estradiol (E2) has been shown to inhibit NF-κB, thereby reducing transcription of NF-κB target genes. Despite accumulating evidence showing that estrogens have beneficial effects in pre-clinical AD studies, there are mixed results with hormone replacement therapy in clinical trials. Furthering our understanding of how NF-κB interacts with estrogen and alters the progression of neurodegenerative disorders including AD, should be beneficial and result in the development of novel therapeutics.
Collapse
Affiliation(s)
- Pranav Mishra
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB, Canada.,Department of Pharmacology & Therapeutics, College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Don A Davies
- Department of Biology, York University, Toronto, ON, Canada
| | - Benedict C Albensi
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB, Canada. .,Department of Pharmacology & Therapeutics, College of Medicine, University of Manitoba, Winnipeg, MB, Canada. .,Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA.
| |
Collapse
|
6
|
Chung MH, Chen YC, Wu WT, Lin MH, Yang YJ, Hueng DY, Lin TK, Chou YC, Sun CA. Clinical Use of Lansoprazole and the Risk of Osteoporosis: A Nationwide Cohort Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15359. [PMID: 36430077 PMCID: PMC9696422 DOI: 10.3390/ijerph192215359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Proton pump inhibitor (PPI) lansoprazole acts as a liver X receptor agonist, which plays a crucial role in the crosstalk of osteoblasts and osteoclasts in vitro and during bone turnover in vivo. However, epidemiological studies on the association between the use of lansoprazole and osteoporosis risk are limited. We aimed to determine the risk of developing osteoporosis in patients with lansoprazole use. METHODS A retrospective cohort study was conducted using the National Health Insurance Research Database of Taiwan dated from 2000 to 2013. The study includes 655 patients with lansoprazole use (the exposed cohort) and 2620 patients with other PPI use (the comparison cohort). The main outcome was the primary diagnosis of osteoporosis. The hazard ratios (HRs) and 95% confidence intervals (CIs) were used to assess the association between the use of lansoprazole and risk of osteoporosis. RESULTS Patients receiving lansoprazole treatment had a reduced risk of osteoporosis as compared with those undergoing other PPI therapy (adjusted HR, 0.56; 95% CI, 0.46-0.68). Moreover, this inverse association is evident in both sexes and in various age groups. CONCLUSIONS This population-based cohort study demonstrated that lansoprazole use was associated with a reduced risk of osteoporosis. The clinical implications of the present study need further investigations.
Collapse
Affiliation(s)
- Ming-Hsuan Chung
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Yong-Chen Chen
- Data Science Center, College of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan
- Department of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan
| | - Wen-Tung Wu
- Department of Pharmacy, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- School of Pharmacy, National Defense Medical Center, Taipei 114, Taiwan
| | - Ming-Hsun Lin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Yun-Ju Yang
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Dueng-Yuan Hueng
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Tsung-Kun Lin
- School of Pharmacy, National Defense Medical Center, Taipei 114, Taiwan
| | - Yu-Ching Chou
- School of Public Health, National Defense Medical Center, Taipei 114, Taiwan
| | - Chien-An Sun
- Data Science Center, College of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan
- Department of Public Health, College of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan
| |
Collapse
|
7
|
Al-Ansari MM, Aleidi SM, Masood A, Alnehmi EA, Abdel Jabar M, Almogren M, Alshaker M, Benabdelkamel H, Abdel Rahman AM. Proteomics Profiling of Osteoporosis and Osteopenia Patients and Associated Network Analysis. Int J Mol Sci 2022; 23:ijms231710200. [PMID: 36077598 PMCID: PMC9456664 DOI: 10.3390/ijms231710200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022] Open
Abstract
Bone mass reduction due to an imbalance in osteogenesis and osteolysis is characterized by low bone mineral density (LBMD) and is clinically classified as osteopenia (ON) or osteoporosis (OP), which is more severe. Multiple biomarkers for diagnosing OP and its progression have been reported; however, most of these lack specificity. This cohort study aimed to investigate sensitive and specific LBMD-associated protein biomarkers in patients diagnosed with ON and OP. A label-free liquid chromatography-mass spectrometry (LC-MS) proteomics approach was used to analyze serum samples. Patients’ proteomics profiles were filtered for potential confounding effects, such as age, sex, chronic diseases, and medication. A distinctive proteomics profile between the control, ON, and OP groups (Q2 = 0.7295, R2 = 0.9180) was identified, and significant dysregulation in a panel of proteins (n = 20) was common among the three groups. A comparison of these proteins showed that the levels of eight proteins were upregulated in ON, compared to those in the control and the OP groups, while the levels of eleven proteins were downregulated in the ON group compared to those in the control group. Interestingly, only one protein, myosin heavy chain 14 (MYH14), showed a linear increase from the control to the ON group, with the highest abundance in the OP group. A significant separation in the proteomics profile between the ON and OP groups (Q2 = 0.8760, R2 = 0.991) was also noted. Furthermore, a total of twenty-six proteins were found to be dysregulated between the ON and the OP groups, with fourteen upregulated and twelve downregulated proteins in the OP, compared to that in the ON group. Most of the identified dysregulated proteins were immunoglobulins, complement proteins, cytoskeletal proteins, coagulation factors, and various enzymes. Of these identified proteins, the highest area under the curve (AUC) in the receiver operating characteristic (ROC) analysis was related to three proteins (immunoglobulin Lambda constant 1 (IGLC1), RNA binding protein (MEX3B), and fibulin 1 (FBLN1)). Multiple reaction monitoring (MRM), LC-MS, was used to validate some of the identified proteins. A network pathway analysis of the differentially abundant proteins demonstrated dysregulation of inflammatory signaling pathways in the LBMD patients, including the tumor necrosis factor (TNF), toll-like receptor (TL4), and interferon-γ (IFNG) signaling pathways. These results reveal the existence of potentially sensitive protein biomarkers that could be used in further investigations of bone health and OP progression.
Collapse
Affiliation(s)
- Mysoon M. Al-Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia
| | - Shereen M. Aleidi
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Afshan Masood
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Eman A. Alnehmi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia
| | - Mai Abdel Jabar
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia
| | - Maha Almogren
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh 11533, Saudi Arabia
| | - Mohammed Alshaker
- Department of Family Medicine and Polyclinic, King Faisal Specialist Hospital & Research Center, Riyadh 11211, Saudi Arabia
| | - Hicham Benabdelkamel
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Anas M. Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh 11533, Saudi Arabia
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
- Correspondence:
| |
Collapse
|
8
|
Freid R, Hussein AI, Schlezinger JJ. Tributyltin protects against ovariectomy-induced trabecular bone loss in C57BL/6J mice with an attenuated effect in high fat fed mice. Toxicol Appl Pharmacol 2021; 431:115736. [PMID: 34619157 PMCID: PMC8545923 DOI: 10.1016/j.taap.2021.115736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/25/2021] [Accepted: 09/29/2021] [Indexed: 11/27/2022]
Abstract
Risk factors for poor bone quality include estrogen loss at menopause, a high fat diet and exposures to drugs/chemicals that activate peroxisome proliferator activated receptor gamma (PPARγ). We previously reported that the PPARγ and retinoid X receptor dual ligand, tributyltin (TBT), repressed periosteal bone formation but enhanced trabecular bone formation in vivo. Here, we examined the interaction of diet, ovariectomy (OVX) and TBT exposure on bone structure. C57BL/6J mice underwent either sham surgery or OVX at 10 weeks of age. At 12 weeks of age, they were placed on a low (10% kcal) or high (45% kcal) fat, sucrose-matched diet and treated with vehicle or TBT (1 or 5 mg/kg) for 14 weeks. OVX increased body weight gain in mice on either diet. TBT enhanced body weight gain in intact mice fed a high fat diet, but decreased weight gain in OVX mice. Elemental tin concentrations increased dose-dependently in bone. TBT had marginal effects on cortical and trabecular bone in intact mice fed either diet. OVX caused a reduction in cortical and trabecular bone, regardless of diet. In high fat fed OVX mice, TBT further reduced cortical thickness, bone area and total area. Interestingly, TBT protected against OVX-induced trabecular bone loss in low fat fed mice. The protective effect of TBT was nullified by the high fat. These results show that TBT protects against trabecular bone loss, even in the presence of a strongly resorptive environment, at an even lower level of exposure than we showed repressed homeostatic resorption.
Collapse
Affiliation(s)
- Rachel Freid
- Environmental Health, Boston University School of Public Health, USA
| | - Amira I Hussein
- Orthopaedic Surgery, Boston University School of Medicine, Boston, MA 02118, USA
| | | |
Collapse
|
9
|
Wu X, Liu Y, Du J, Li X, Lin J, Ni L, Zhu P, Zhou H, Kong F, Yang H, Geng D, Mao H. Melatonin Attenuates Intervertebral Disk Degeneration via Maintaining Cartilaginous Endplate Integrity in Rats. Front Physiol 2021; 12:672572. [PMID: 34220535 PMCID: PMC8248798 DOI: 10.3389/fphys.2021.672572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/10/2021] [Indexed: 01/08/2023] Open
Abstract
Objective The aim of this study is to verify whether melatonin (Mel) could mitigate intervertebral disk degeneration (IVDD) in rats and to investigate the potential mechanism of it. Method A rat acupuncture model of IVDD was established with intraperitoneal injection of Mel. The effect of Mel on IVDD was analyzed via radiologic and histological evaluations. The specific Mel receptors were investigated in both the nucleus pulposus (NP) and cartilaginous endplates (EPs). In vitro, EP cartilaginous cells (EPCs) were treated by different concentrations of Mel under lipopolysaccharide (LPS) and Luzindole conditions. In addition, LPS-induced inflammatory response and matrix degradation following nuclear factor kappa-B (NF-κB) pathway activation were investigated to confirm the potential mechanism of Mel on EPCs. Results The percent disk height index (%DHI) and MRI signal decreased after initial puncture in the degeneration group compared with the control group, while Mel treatment protected disk height from decline and prevented the loss of water during the degeneration process. In the meantime, the histological staining of the Mel groups showed more integrity and well-ordered construction of the NP and EPs in both low and high concentration than that of the degeneration group. In addition, more deep-brown staining of type II collagen (Coll-II) was shown in the Mel groups compared with the degeneration group. Furthermore, in rat samples, immunohistochemical staining showed more positive cells of Mel receptors 1a and 1b in the EPs, instead of in the NP. Moreover, evident osteochondral lacuna formation was observed in rat EPs in the degeneration group; after Mel treatment, the osteochondral destruction alleviated accompanying fewer receptor activator for nuclear factor-κB ligand (RANKL) and tartrate-resistant acid phosphatase (TRAP)-stained positive cells expressed in the EPs. In vitro, Mel could promote the proliferation of EPCs, which protected EPCs from degeneration under LPS treatment. What is more, Mel downregulated the inflammatory response and matrix degradation of EPCs activated by NF-κB pathway through binding to its specific receptors. Conclusion These results indicate that Mel protects the integrity of the EPs and attenuates IVDD by binding to the Mel receptors in the EPs. It may alleviate the inflammatory response and matrix degradation of EPCs activated by NF-κB pathway.
Collapse
Affiliation(s)
- Xiexing Wu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yijie Liu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiacheng Du
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaoping Li
- Department of Clinical Education, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiayi Lin
- Department of Orthopedics Center, Ningbo No. 2 Hospital, Ningbo, China
| | - Li Ni
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Pengfei Zhu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong Zhou
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fanchen Kong
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haiqing Mao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|