1
|
Carr KD, Zambrano DED, Weidle C, Goodson A, Eisenach HE, Pyles H, Courbet A, King NP, Borst AJ. Protein identification using Cryo-EM and artificial intelligence guides improved sample purification. J Struct Biol X 2025; 11:100120. [PMID: 39958810 PMCID: PMC11830286 DOI: 10.1016/j.yjsbx.2025.100120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 02/18/2025] Open
Abstract
Protein purification is essential in protein biochemistry, structural biology, and protein design, enabling the determination of protein structures, the study of biological mechanisms, and the characterization of both natural and de novo designed proteins. However, standard purification strategies often encounter challenges, such as unintended co-purification of contaminants alongside the target protein. This issue is particularly problematic for self-assembling protein nanomaterials, where unexpected geometries may reflect novel assembly states, cross-contamination, or native proteins originating from the expression host. Here, we used an automated structure-to-sequence pipeline to first identify an unknown co-purifying protein found in several purified designed protein samples. By integrating cryo-electron microscopy (Cryo-EM), ModelAngelo's sequence-agnostic model-building, and Protein BLAST, we identified the contaminant as dihydrolipoamide succinyltransferase (DLST). This identification was validated through comparisons with DLST structures in the Protein Data Bank, AlphaFold 3 predictions based on the DLST sequence from our E. coli expression vector, and traditional biochemical methods. The identification informed subsequent modifications to our purification protocol, which successfully excluded DLST from future preparations. To explore the potential broader utility of this approach, we benchmarked four computational methods for DLST identification across varying resolution ranges. This study demonstrates the successful application of a structure-to-sequence protein identification workflow, integrating Cryo-EM, ModelAngelo, Protein BLAST, and AlphaFold 3 predictions, to identify and ultimately help guide the removal of DLST from sample purification efforts. It highlights the potential of combining Cryo-EM with AI-driven tools for accurate protein identification and addressing purification challenges across diverse contexts in protein science.
Collapse
Affiliation(s)
- Kenneth D. Carr
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Dane Evan D. Zambrano
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Connor Weidle
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Alex Goodson
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Helen E. Eisenach
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Harley Pyles
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Alexis Courbet
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Neil P. King
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Andrew J. Borst
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
2
|
Pargas-Ferrer E, Chang SLL, García K, Azaharez E, Palacio J, Mena MC, Boggiano-Ayo T. Strategy to mitigate aggregation during Protein A chromatography and low pH virus inactivation for a nivolumab biosimilar candidate. J Chromatogr A 2025; 1743:465698. [PMID: 39837187 DOI: 10.1016/j.chroma.2025.465698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 01/23/2025]
Abstract
Protein A chromatography represents the most prevalent methodology for the capture of monoclonal antibodies. The use of a low pH elution buffer from Protein A has been observed to contribute to product aggregation, particularly in the case of IgG4 antibodies, such as nivolumab. This paper presents a well-defined strategy for addressing this issue. Initial experiments were conducted at scale-down Protein A affinity chromatography to evaluate the use of glycine-HCL and sodium citrate as elution buffers at pH values of 3.25, 3.5, and 3.75. Subsequently, a scale-down screening was conducted to assess the efficacy of various additives in Protein A elution. These included 10 % (w/v) mannitol, 50 mM histidine, 50 mM sucrose, 10 % (v/v) sorbitol, 50 mM arginine, 50 mM trehalose, 0.02 % (v/v) polysorbate 80, 1.5 M urea, and 1 M MgCl2. The three most stabilizing additives were evaluated at the laboratory scale, and the one that demonstrated the greatest ability to maintain the minimum high molecular weight aggregate over time was selected. Lastly, the selected additive was subjected to testing at elevated IgG concentrations during purification. Nivolumab exhibits a markedly pH-dependent propensity for aggregation, and the relative efficacy of glycine-HCL and sodium citrate in mitigating anti-PD1 aggregation within the pH range of 3.25 to 3.75 is subject to variation. The use of buffer 100 mM sodium citrate, pH 3.5 was found to be beneficial. All additives evaluated contribute to reducing nivolumab aggregation, albeit in different ways and to varying degrees of effectiveness. Elution buffer with mannitol, polysorbate 80, or MgCl₂ resulted in a monomer control ratio of approximately twice that observed in the absence of additives. However, the stabilizing role of mannitol was confirmed to be particularly significant, as the ratio of aggregation formed at a low pH was reduced to ≤ 2 % from 15 % in all evaluated scales and at different protein concentrations, while maintaining high biological activity.
Collapse
Affiliation(s)
- Elizabeth Pargas-Ferrer
- Center of Molecular Immunology, 216 Street and 15th Avenue Atabey-Siboney Playa P.O. Box 16040, Havana, 11600, Cuba.
| | - Sum Lai Lozada Chang
- Center of Molecular Immunology, 216 Street and 15th Avenue Atabey-Siboney Playa P.O. Box 16040, Havana, 11600, Cuba.
| | - Katia García
- Center of Molecular Immunology, 216 Street and 15th Avenue Atabey-Siboney Playa P.O. Box 16040, Havana, 11600, Cuba.
| | - Ernesto Azaharez
- Center of Molecular Immunology, 216 Street and 15th Avenue Atabey-Siboney Playa P.O. Box 16040, Havana, 11600, Cuba.
| | - Julio Palacio
- Center of Molecular Immunology, 216 Street and 15th Avenue Atabey-Siboney Playa P.O. Box 16040, Havana, 11600, Cuba.
| | - Midalys Cabrera Mena
- Center of Molecular Immunology, 216 Street and 15th Avenue Atabey-Siboney Playa P.O. Box 16040, Havana, 11600, Cuba.
| | - Tammy Boggiano-Ayo
- Center of Molecular Immunology, 216 Street and 15th Avenue Atabey-Siboney Playa P.O. Box 16040, Havana, 11600, Cuba.
| |
Collapse
|
3
|
Hu Y, Dang M, Zhang X. Influence of physicochemical conditions on liquid-liquid phase separation and stability of immunoglobulin Y for storage and application. Int J Biol Macromol 2025; 306:141393. [PMID: 39993672 DOI: 10.1016/j.ijbiomac.2025.141393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 02/26/2025]
Abstract
Liquid-liquid phase separation (LLPS) is a biological process and can lead to the formation of irreversible aggregates of functional proteins upon storage and administration, making it essential to predict and mitigate this phenomenon. Immunoglobulin Y (IgY), a unique class of antibody derived from egg yolk has broad applications in disease diagnosis, prophylaxis, and treatment. In this study, we observed the formation of droplet-shaped condensates of IgY under crowding conditions with polyethylene glycol 8000 (PEG 8000). To assess the relative contribution of different IgY domains to LLPS, we prepared the fragment antigen binding (Fab), fragment crystallizable (Fc) 3-4, and Escherichia coli-expressed IgY-Fc 2-4 domain. After PEG 8000 addition, the Fab fragments more propensity to aggregate, while Fc 3-4 and E. coli-expressed Fc underwent LLPS. Furthermore, we found that LLPS of IgY is influenced by electrostatic interactions. Recognizing the negative effects of LLPS on antibody efficacy, our study showed that the addition of arginine and lysine at low concentrations could prevent PEG-induced LLPS, enhancing IgY stability. These findings provide valuable insights into the optimization of IgY antibody applications and storage conditions, advancing our understanding of antibody stability in solution and facilitating the development of strategies to protect antibodies from aggregation.
Collapse
Affiliation(s)
- Yuzhang Hu
- Chinese-German Joint Laboratory for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China
| | - Mei Dang
- Chinese-German Joint Laboratory for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China; Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Xiaoying Zhang
- Chinese-German Joint Laboratory for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China; Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal; Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
4
|
Zhang X, Ren X, Lin J, Sun P, Tan Y, Li D. Inhibitory effect of L-arginine on the oxidative aggregation behavior of myofibrillar proteins in the Antarctic krill (Euphausia superba): pH and antioxidation. Food Chem 2025; 464:141702. [PMID: 39447268 DOI: 10.1016/j.foodchem.2024.141702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/30/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
In this study, the effect of L-arginine (L-Arg) on the oxidative aggregation of myofibrillar proteins (MPs) in Antarctic krill was evaluated. The results showed that the oxidized aggregation of MPs was significantly inhibited after the addition of 20 mM L-Arg compared to the oxidized group, the solubility of MPs significantly increased by 25.74 %, the turbidity reduced from 0.56 to 0.18. These effects were primarily attributed to the addition of L-Arg, which prevented the unfolding of the spatial structure of MPs after oxidation, inhibited the formation of disulfide bonds and dityrosine, and improved the stability of MPs structure. Analysis of carbonyl content and hydroxyl radical (•OH) inhibitory capacity showed that carbonyl formation and hydroxyl radicals were effectively reduced by the pH and guanidinium group of L-Arg. The pH of L-Arg exhibited a significantly higher effect than the guanidinium group in inhibiting the oxidative aggregation of MPs.
Collapse
Affiliation(s)
- Xinyu Zhang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Xiang Ren
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Junxin Lin
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Peizi Sun
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Yuting Tan
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Dongmei Li
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China; SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
5
|
Lebar B, Orehova M, Japelj B, Šprager E, Podlipec R, Knaflič T, Urbančič I, Knez B, Zidar M, Cerar J, Mravljak J, Žula A, Arčon D, Plavec J, Pajk S. A multifaceted approach to understanding protein-buffer interactions in biopharmaceuticals. Eur J Pharm Biopharm 2025; 206:114582. [PMID: 39571949 DOI: 10.1016/j.ejpb.2024.114582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/15/2024]
Abstract
The excipient selection process plays a crucial role in biopharmaceutical formulation development to ensure the long-term stability of the drug product. Though there are numerous options approved by regulatory authorities, only a subset is commonly utilized. Previous research has proposed various stabilization mechanisms, including protein-excipient interactions. However, identifying these interactions remains challenging due to their weak and transient nature. In this study, we present a comprehensive approach to identify such interactions. Using the 1HT2 CPMG (Carr-Purcel-Meiboom-Gill) filter experiment we identified interactions of rituximab with certain buffers and amino acids, shedding light on its Fc fragment instability that manifested during the enzymatic cleavage of the antibody. Moreover, chemometric analyses of 2D NMR fingerprints revealed interactions of selected excipients with antibody fragments. Furthermore, molecular dynamics simulations revealed potential interacting hotspots without NMR spectra assignment. Our results highlight the importance of an orthogonal methods approach to uncovering these critical interactions, advancing our understanding of excipient stabilization mechanisms and rational formulation design in biopharmaceutics.
Collapse
Affiliation(s)
- Blaž Lebar
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva 7, SI-1000 Ljubljana, Slovenia; Novartis Pharmaceutical Manufacturing LLC, Kolodvorska 27, SI-1234 Menges, Slovenia
| | - Maria Orehova
- National Institute of Chemistry, Slovenian NMR Centre, Hajdrihova ulica 19, SI-1000 Ljubljana, Slovenia
| | - Boštjan Japelj
- Novartis Pharmaceutical Manufacturing LLC, Kolodvorska 27, SI-1234 Menges, Slovenia
| | - Ernest Šprager
- Novartis Pharmaceutical Manufacturing LLC, Kolodvorska 27, SI-1234 Menges, Slovenia
| | - Rok Podlipec
- Jožef Stefan Institute, Laboratory of Biophysics & Quantum Materials Group, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Tilen Knaflič
- Jožef Stefan Institute, Laboratory of Biophysics & Quantum Materials Group, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Iztok Urbančič
- Jožef Stefan Institute, Laboratory of Biophysics & Quantum Materials Group, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Benjamin Knez
- Novartis Pharmaceutical Manufacturing LLC, Kolodvorska 27, SI-1234 Menges, Slovenia
| | - Mitja Zidar
- Novartis Pharmaceutical Manufacturing LLC, Kolodvorska 27, SI-1234 Menges, Slovenia
| | - Jure Cerar
- Novartis Pharmaceutical Manufacturing LLC, Kolodvorska 27, SI-1234 Menges, Slovenia
| | - Janez Mravljak
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Aleš Žula
- Novartis Pharmaceutical Manufacturing LLC, Kolodvorska 27, SI-1234 Menges, Slovenia
| | - Denis Arčon
- Jožef Stefan Institute, Laboratory of Biophysics & Quantum Materials Group, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Janez Plavec
- National Institute of Chemistry, Slovenian NMR Centre, Hajdrihova ulica 19, SI-1000 Ljubljana, Slovenia
| | - Stane Pajk
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva 7, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
6
|
Fukunari A, Matsushita H, Furukawa T, Matsuzaki H, Tanaka H, Ogawa Y, Sugimura Y, Inoue F, Ueda M, Ando Y. Arginine: A potential prophylactic supplement for transthyretin amyloidosis. Biochem Biophys Res Commun 2024; 737:150770. [PMID: 39500040 DOI: 10.1016/j.bbrc.2024.150770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 09/29/2024] [Indexed: 11/13/2024]
Abstract
Transthyretin (TTR) is an amyloidogenic protein associated with TTR amyloidosis (ATTR). Dissociation of TTR tetramers into TTR monomers causes TTR misfolding, resulting in amyloid fibril formation and triggering the onset of ATTR. Low-molecular-weight tetrameric TTR stabilizers are potential therapeutic agents to delay ATTR progression. However, the currently available drugs are expensive and cannot be used for prophylaxis. Therefore, in this study, we aimed to identify a prophylactic supplement that suppresses TTR amyloid formation. We investigated whether arginine, an amyloidogenic protein aggregation inhibitor, stabilizes tetrameric TTR, thereby preventing amyloid fibril formation. Immunoblotting showed that arginine mixed with wild-type TTR (TTRwt), amyloidogenic TTR Val30Met (ATTR V30M), and human serum samples reduced the amount of monomeric TTR but increased the tetramer/monomer ratio of TTR compared to those in the samples without arginine. Additionally, oral administration of arginine (5000 mg for 5 days) to healthy volunteers effectively increased the tetramer/monomer ratio of TTR in the serum. Thioflavin T test, a quantitative analysis method for amyloid fibril formation, showed that amyloid fibril formation was significantly suppressed with arginine compared to that without arginine. As arginine is a common supplement and non-toxic amino acid, it can be used as a promising prophylactic supplement to suppress amyloid fibril formation in ATTR.
Collapse
Affiliation(s)
- Atsushi Fukunari
- Department of Amyloidosis Research, Faculty of Pharmaceutical Sciences, Nagasaki International University, Huis Ten Bosch, Sasebo, Nagasaki, Japan.
| | - Hiroaki Matsushita
- Department of Amyloidosis Research, Faculty of Pharmaceutical Sciences, Nagasaki International University, Huis Ten Bosch, Sasebo, Nagasaki, Japan
| | - Tamon Furukawa
- Department of Amyloidosis Research, Faculty of Pharmaceutical Sciences, Nagasaki International University, Huis Ten Bosch, Sasebo, Nagasaki, Japan
| | - Haruya Matsuzaki
- Department of Amyloidosis Research, Faculty of Pharmaceutical Sciences, Nagasaki International University, Huis Ten Bosch, Sasebo, Nagasaki, Japan
| | - Hiromitsu Tanaka
- Department of Amyloidosis Research, Faculty of Pharmaceutical Sciences, Nagasaki International University, Huis Ten Bosch, Sasebo, Nagasaki, Japan
| | - Yukiko Ogawa
- Department of Amyloidosis Research, Faculty of Pharmaceutical Sciences, Nagasaki International University, Huis Ten Bosch, Sasebo, Nagasaki, Japan
| | - Yusuke Sugimura
- Department of Amyloidosis Supporting Center, Sugimura Hospital, Honjo, Chuo-ku, Kumamoto, Japan
| | - Fumika Inoue
- Department of Amyloidosis Research, Faculty of Pharmaceutical Sciences, Nagasaki International University, Huis Ten Bosch, Sasebo, Nagasaki, Japan
| | - Mitsuharu Ueda
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Honjo, Chuo-ku, Kumamoto, Japan
| | - Yukio Ando
- Department of Amyloidosis Research, Faculty of Pharmaceutical Sciences, Nagasaki International University, Huis Ten Bosch, Sasebo, Nagasaki, Japan; Department of Amyloidosis Supporting Center, Sugimura Hospital, Honjo, Chuo-ku, Kumamoto, Japan.
| |
Collapse
|
7
|
Fukuda M, Takahashi K, Takarada T, Saito S, Tanaka M. Synergistic effect of cyclodextrins and electrolytes at high concentrations on protein aggregation inhibition. J Pharm Sci 2024; 113:3543-3553. [PMID: 39374691 DOI: 10.1016/j.xphs.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
The stabilization of protein therapeutics against aggregation is crucial for maintaining their efficacy and safety. This study investigated the synergistic effects of cyclodextrins (CDs) and electrolytes at high concentrations on the stabilization of immunoglobulin G (IgG), insulin, and adeno-associated virus (AAV) vectors. The effects of 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) combined with various electrolytes were evaluated using human plasma-derived IgG as a model protein. The HP-β-CD and L(+)-arginine hydrochloride combination synergistically increased the onset temperature of protein aggregation and inhibited the formation of soluble and insoluble aggregates during long-term storage. Notably, this synergistic effect was not observed when sucrose was used instead of HP-β-CD. Similar synergistic effects were observed with insulin and AAV vectors. The findings suggest that the stabilization mechanism could potentially involve enhanced interactions between HP-β-CD and IgG, preventing protein-protein interactions. However, the combination did not synergistically improve the solubility of free aromatic amino acids, including tyrosine and tryptophan. This study highlights the potential of using the combination of CDs and electrolytes as a promising formulation strategy for stabilizing complex protein therapeutics. Further studies are needed to elucidate the underlying mechanisms and generalize the approach to other proteins with varying physicochemical properties.
Collapse
Affiliation(s)
- Masakazu Fukuda
- Laboratory of Functional Molecular Chemistry, Kobe Pharmaceutical University, 4-19-1, Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan.
| | - Kanako Takahashi
- Medical Business Unit, Synplogen Co., Ltd., 6-3-7-409 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Toru Takarada
- Laboratory of Functional Molecular Chemistry, Kobe Pharmaceutical University, 4-19-1, Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| | - Shunsuke Saito
- Medical Business Unit, Synplogen Co., Ltd., 6-3-7-409 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Masafumi Tanaka
- Laboratory of Functional Molecular Chemistry, Kobe Pharmaceutical University, 4-19-1, Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| |
Collapse
|
8
|
Wu L, Xu W, Jiang H, Yang M, Cun D. Respiratory delivered vaccines: Current status and perspectives in rational formulation design. Acta Pharm Sin B 2024; 14:5132-5160. [PMID: 39807330 PMCID: PMC11725141 DOI: 10.1016/j.apsb.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/20/2024] [Accepted: 08/18/2024] [Indexed: 01/16/2025] Open
Abstract
The respiratory tract is susceptible to various infections and can be affected by many serious diseases. Vaccination is one of the most promising ways that prevent infectious diseases and treatment of some diseases such as malignancy. Direct delivery of vaccines to the respiratory tract could mimic the natural process of infection and shorten the delivery path, therefore unique mucosal immunity at the first line might be induced and the efficiency of delivery can be high. Despite considerable attempts at the development of respiratory vaccines, the rational formulation design still warrants attention, i.e., how the formulation composition, particle properties, formulation type (liquid or solid), and devices would influence the immune outcome. This article reviews the recent advances in the formulation design and development of respiratory vaccines. The focus is on the state of the art of delivering antigenic compounds through the respiratory tract, overcoming the pulmonary bio-barriers, enhancing delivery efficiencies of respiratory vaccines as well as maintaining the stability of vaccines during storage and use. The choice of devices and the influence of deposition sites on vaccine efficiencies were also reviewed.
Collapse
Affiliation(s)
- Lan Wu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
| | - Wenwen Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
| | - Huiyang Jiang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
- School of Food and Drug, Shenzhen Polytechnic University, China, Shenzhen 518055, China
| |
Collapse
|
9
|
Zhang Y, Austin MJ, Chou DHC. Insulin Stabilization Designs for Enhanced Therapeutic Efficacy and Accessibility. Acc Chem Res 2024; 57:3303-3315. [PMID: 39466175 DOI: 10.1021/acs.accounts.4c00500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
ConspectusInsulin has remained indispensable in the treatment of diabetes since it was first discovered in 1921. Unlike small molecular drugs, insulin and other protein drugs are prone to degradation when exposed to elevated temperatures, mechanical agitation during transportation, and prolonged storage periods. Therefore, strict cold-chain management is crucial for the insulin supply, requiring significant resources, which can limit the access to insulin, particularly in low-income areas. Moreover, although insulin formulations have advanced tremendously in the last century, insulin treatment still imposes a challenging regimen and provides suboptimal outcomes for the majority of patients. There is an increasing focus on pursuing improved pharmacology, specifically on safer, more user-friendly insulin therapies that minimize the self-management burden. These challenges underscore the need for developing novel insulin formulations with improved stability that are compatible with advanced insulin therapy.Insulin stabilization can be achieved through either chemical modification of insulin or formulation component design. Inspired by insulin-like peptides from invertebrates, we have developed novel stable insulin analogs based on a fundamental understanding of the insulin receptor engagement for insulin bioactivity. We created a novel four-disulfide insulin analog with high aggregation stability and potency by introducing a fourth disulfide bond between a C-terminal extended insulin A-chain and residues near the C-terminus of the B-chain. In an effort to stabilize insulin in its monomeric state to develop ultrafast-acting insulin with rapid absorption upon injection, we have developed a series of structurally miniaturized yet fully active insulin analogs that do not form dimers due to the lack of the canonical B-chain C-terminal octapeptide. Additionally, our study provided strategies for expanding the scope of cucurbit[7]uril (CB[7])-assisted insulin stabilization by engineering safe and biodegradable CB[7]-zwitterionic polypeptide excipients. We also explored insulin N-terminal substitution methods to achieve pH-dependent insulin stabilization without prolonging the duration of action.This Account describes our exploration of engineering stable insulin analogs and formulation design strategies for stabilizing insulin in aqueous solutions. Beyond conventional stabilization strategies for insulin injections, the unmet challenges and recent innovations in insulin stabilization are discussed, addressing the growing demand for alternative, less invasive routes of insulin administration. Additionally, we aim to provide a thorough overview of insulin stabilization from the perspective of commercially available insulin drugs and common pharmaceutical engineering practices in the industry. We also highlight unresolved insulin stabilization challenges and ongoing research strategies. We anticipate that further emphasis on collective efforts of protein engineering, pharmaceutical formulation design, and drug delivery will inform the development of stable and advanced insulin therapy.
Collapse
Affiliation(s)
- Yanxian Zhang
- Division of Endocrinology and Diabetes, Department of Pediatrics, School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Maxwell Jack Austin
- Division of Endocrinology and Diabetes, Department of Pediatrics, School of Medicine, Stanford University, Stanford, California 94305, United States
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Danny Hung-Chieh Chou
- Division of Endocrinology and Diabetes, Department of Pediatrics, School of Medicine, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
10
|
Zürcher D, Wuchner K, Arosio P. Mitigation Strategies against Antibody Aggregation Induced by Oleic Acid in Liquid Formulations. Mol Pharm 2024; 21:5761-5771. [PMID: 39444106 PMCID: PMC11539069 DOI: 10.1021/acs.molpharmaceut.4c00754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024]
Abstract
Polysorbates 20 and 80 (PS20 and PS80) are commonly used in the formulations of biologics to protect against interfacial stresses. However, these surfactants can degrade over time, releasing free fatty acids, which assemble into solid particles or liquid droplets. Here, we apply a droplet microfluidic platform to analyze the interactions between antibodies and oleic acid, the primary free fatty acid resulting from the hydrolysis of PS80. We show that antibodies adsorb within seconds to the polar oleic acid-water interface, forming a viscoelastic protein layer that leads to particle formation upon mechanical rupture. By testing two different monoclonal antibodies of pharmaceutical origin, we show that the propensity to form a rigid viscoelastic layer is protein-specific. We further demonstrate that intact PS80 is effective in preventing antibody adsorption at the oleic acid-water interface only at low antibody concentrations and low pH, where oleic acid is fully protonated. Importantly, introduction of the amino acid l-arginine prevents the formation of the interfacial layer and protein particles even at high antibody concentrations (180 mg mL-1). Overall, our findings indicate that oleic acid droplets in antibody formulations can lead to the formation of protein particles via an interface-mediated mechanism. Depending on the conditions, intact PS80 alone might not be sufficient to protect against antibody aggregation. Additional mitigation strategies include the optimization of protein physicochemical properties, pH, and the addition of arginine.
Collapse
Affiliation(s)
- Dominik Zürcher
- Department
of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Klaus Wuchner
- Cilag
GmbH International, a Division of Johnson & Johnson TDS-Biologics,
Analytical Development, 8200 Schaffhausen, Switzerland
| | - Paolo Arosio
- Department
of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
11
|
Karunnanithy V, Abdul Rahman NHB, Abdullah NAH, Fauzi MB, Lokanathan Y, Min Hwei AN, Maarof M. Effectiveness of Lyoprotectants in Protein Stabilization During Lyophilization. Pharmaceutics 2024; 16:1346. [PMID: 39458674 PMCID: PMC11510631 DOI: 10.3390/pharmaceutics16101346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Proteins are commonly used in the healthcare industry to treat various health conditions, and most proteins are sensitive to physical and chemical changes. Lyophilization, also known as freeze-drying, involves sublimating water in the form of ice from a substance at low pressure, forming a freeze-dried powder that increases its shelf life. Extreme pressure and varying temperatures in the freeze-drying process may damage the protein's structural integrity. Lyoprotectants are commonly used to protect protein conformations. It is important to choose a suitable lyoprotectant to ensure optimal effectiveness. Method: Twenty articles screened from Scopus, Web of Science, and PubMed were included in this review that discussed potential lyoprotectants and their effectiveness with different protein models. Results: Lyoprotectants were categorized into sugars, polyols, surfactants, and amino acids. Lyoprotectants can exhibit significant protective effects towards proteins, either singularly or in combination with another lyoprotectant. They exert various interactions with the protein to stabilize it, such as hydrogen bonding, hydrophobic interactions, electrostatic interactions, and osmoprotection. Conclusions: This review concludes that disaccharides are the most effective lyoprotectants, while other groups of lyoprotectants are best used in combination with other lyoprotectants.
Collapse
Affiliation(s)
- Vinoothini Karunnanithy
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Kuala Lumpur, Malaysia; (V.K.); (N.A.H.A.); (M.B.F.); (Y.L.); (A.N.M.H.)
| | - Nur Hazirah Binti Abdul Rahman
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Kuala Lumpur, Malaysia; (V.K.); (N.A.H.A.); (M.B.F.); (Y.L.); (A.N.M.H.)
| | - Nur Atiqah Haizum Abdullah
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Kuala Lumpur, Malaysia; (V.K.); (N.A.H.A.); (M.B.F.); (Y.L.); (A.N.M.H.)
| | - Mh Busra Fauzi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Kuala Lumpur, Malaysia; (V.K.); (N.A.H.A.); (M.B.F.); (Y.L.); (A.N.M.H.)
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Yogeswaran Lokanathan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Kuala Lumpur, Malaysia; (V.K.); (N.A.H.A.); (M.B.F.); (Y.L.); (A.N.M.H.)
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Angela Ng Min Hwei
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Kuala Lumpur, Malaysia; (V.K.); (N.A.H.A.); (M.B.F.); (Y.L.); (A.N.M.H.)
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Manira Maarof
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Kuala Lumpur, Malaysia; (V.K.); (N.A.H.A.); (M.B.F.); (Y.L.); (A.N.M.H.)
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Ageing and Degenerative Disease UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
12
|
Sharma A, Cazade P, Khamar D, Hayden A, Thompson D, Hughes H. On the role of excipients in biopharmaceuticals manufacture: Modelling-guided formulation identifies the protective effect of arginine hydrochloride excipient on spray-dried Olipudase alfa recombinant protein. Int J Pharm 2024; 662:124466. [PMID: 39009288 DOI: 10.1016/j.ijpharm.2024.124466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/25/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
Biopharmaceuticals are labile biomolecules that must be safeguarded to ensure the safety, quality, and efficacy of the product. Batch freeze-drying is an established means of manufacturing solid biopharmaceuticals but alternative technologies such as spray-drying may be more suitable for continuous manufacturing of inhalable biopharmaceuticals. Here we assessed the feasibility of spray-drying Olipudase alfa, a novel parenteral therapeutic enzyme, by evaluating some of its critical quality attributes (CQAs) in a range of excipients, namely, trehalose, arginine (Arg), and arginine hydrochloride (Arg-HCl) in the sucrose/methionine base formulation. The Arg-HCl excipient produced the best gain in CQAs of spray-dried Olipudase with a 63% reduction in reconstitution time and 83% reduction in the optical density of the solution. Molecular dynamics simulations revealed the atomic-scale mechanism of the protein-excipient interactions, substantiating the experimental results. The Arg-HCl effect was explained by the calculated thermal stability and structural order of the protein wherein Arg-HCl acted as a crowding agent to suppress protein aggregation and promote stabilization of Olipudase post-spray-drying. Therefore, by rational selection of appropriate excipients, our experimental and modelling dataset confirms spray-drying is a promising technology for the manufacture of Olipudase and demonstrates the potential to accelerate development of continuous manufacturing of parenteral biopharmaceuticals.
Collapse
Affiliation(s)
- Ashutosh Sharma
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), South East Technological University (SETU), Main Campus, Cork Road, Waterford X91K0EK, Ireland
| | - Pierre Cazade
- Department of Physics, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Dikshitkumar Khamar
- Sanofi, Manufacturing Science, Analytics and Technology (MSAT), IDA Industrial Park Waterford, X91TP27, Ireland
| | - Ambrose Hayden
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), South East Technological University (SETU), Main Campus, Cork Road, Waterford X91K0EK, Ireland
| | - Damien Thompson
- Department of Physics, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland.
| | - Helen Hughes
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), South East Technological University (SETU), Main Campus, Cork Road, Waterford X91K0EK, Ireland.
| |
Collapse
|
13
|
Liu JZ, Li L, Fang WJ. A Novel Size Exclusion Chromatography Method for the Analysis of Monoclonal Antibodies and Antibody-drug Conjugates by Using Sodium Iodide in the Mobile Phase. Pharm Res 2024; 41:1893-1901. [PMID: 39231906 DOI: 10.1007/s11095-024-03763-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/13/2024] [Indexed: 09/06/2024]
Abstract
PURPOSES Size exclusion chromatography (SEC) is widely used to characterize molecular size variants of antibody drugs. However, SEC analysis is hindered by secondary interactions (or nonspecific interactions) between proteins and stationary phase packing, which result in poor column efficiency. Previous studies have reported that chaotropic salt can inhibit these interactions, but the corresponding applications of this aspect are relatively rare. Therefore, this study introduces a novel approach using sodium iodide (NaI) as a mobile-phase component in SEC and investigates the influence of the mobile-phase composition on secondary interactions. METHODS SEC analysis was performed on one antibody-drug conjugate and four monoclonal antibodies (mAbs) using three different mobile-phase systems (i.e., sodium chloride/L-arginine hydrochloride/NaI mobile phases system) to compare the column efficiency. Subsequently, mAb-1 was used as a model to investigate the effects of these factors on secondary interactions by adjusting the ionic strength (salt concentration) and pH of the NaI mobile-phase system. RESULTS NaI exhibits superior column efficiency performance in the SEC analysis of most products. The ionic strength will affect nonideal electrostatic and hydrophobic interaction. An appropriate ionic strength can inhibit electrostatic interactions, while an excessive ionic strength increases hydrophobic interactions. pH primarily influences electrostatic interactions. Determining the appropriate pH necessitates consideration of the isoelectric point of the protein and the pH tolerance of the column. CONCLUSIONS In SEC analysis, using NaI as the salt component in the mobile phase reduces secondary interactions and improves column efficiency. This approach is advantageous for samples with intense secondary interactions and is a suitable alternative.
Collapse
Affiliation(s)
- Jian-Zhong Liu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Taizhou Institute of Zhejiang University, Taizhou, 317000, China
| | - Lei Li
- Zhejiang Bioray Biopharmaceutical Co., Taizhou, 317000, China
| | - Wei-Jie Fang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Taizhou Institute of Zhejiang University, Taizhou, 317000, China.
- Innovation Center of Translational Pharmacy, Jinhua Institute of Zhejiang University, Jinhua, 321000, China.
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
14
|
Arakawa T, Tomioka Y, Akuta T, Shiraki K. The contrasting roles of co-solvents in protein formulations and food products. Biophys Chem 2024; 312:107282. [PMID: 38944944 DOI: 10.1016/j.bpc.2024.107282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024]
Abstract
Protein aggregation is a major hurdle in developing biopharmaceuticals, in particular protein formulation area, but plays a pivotal role in food products. Co-solvents are used to suppress protein aggregation in pharmaceutical proteins. On the contrary, aggregation is encouraged in the process of food product making. Thus, it is expected that co-solvents play a contrasting role in biopharmaceutical formulation and food products. Here, we show several examples that utilize co-solvents, e.g., salting-out salts, sugars, polyols and divalent cations in promoting protein-protein interactions. The mechanisms of co-solvent effects on protein aggregation and solubility have been studied on aqueous protein solution and applied to develop pharmaceutical formulation based on the acquired scientific knowledge. On the contrary, co-solvents have been used in food industries based on empirical basis. Here, we will review the mechanisms of co-solvent effects on protein-protein interactions that can be applied to both pharmaceutical and food industries and hope to convey knowledge acquired through research on co-solvent interactions in aqueous protein solution and formulation to those involved in food science and provide those involved in protein solution research with the observations on aggregation behavior of food proteins.
Collapse
Affiliation(s)
- Tsutomu Arakawa
- Alliance Protein Laboratories, 13380 Pantera Road, San Diego, CA 92130, USA.
| | - Yui Tomioka
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd, 3333-26, Aza-Asayama, Kamitezuna Tahahagi, Ibaraki 318-0004, Japan
| | - Teruo Akuta
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd, 3333-26, Aza-Asayama, Kamitezuna Tahahagi, Ibaraki 318-0004, Japan
| | - Kentaro Shiraki
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
15
|
Niu F, Hu X, Ritzoulis C, Tu W, Zhao X, Xia Y, Lu Y, Yin J, Pan W. Does arginine aggregate formation in aqueous solutions follow a two-step mechanism? Phys Chem Chem Phys 2024; 26:21240-21248. [PMID: 39073462 DOI: 10.1039/d4cp02119c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The formation of aggregates was studied in arginine aqueous solutions using light scattering. The main driving force for aggregate formation is hydrogen bonding between the arginine (Arg) amino acids, which is partially verified using density functional theory calculations. The measurement of energy loss during this process, coupled with Cryo-EM morphology data, indicates that these aggregates are in the solid state. The aggregation occurs in two steps, with a liquid intermediate stage. The investigation of the effect of pH and solute concentration on aggregate formation for other amino acid aqueous solutions verifies that aggregate formation is amino-acid specific, while small-sized clusters formed by weak interactions lead to large-sized aggregation. The water structure around amino acid molecules sheds light on the prediction of their aggregate formation. Homochirality is observed in the aggregates; its existence sheds light on the origin of protein homochirality.
Collapse
Affiliation(s)
- Fuge Niu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| | - Xinyu Hu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| | - Christos Ritzoulis
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
- Department of Food Science and Technology, International Hellenic University, Thessaloniki 57400, Greece
| | - Weiwei Tu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| | - Xurui Zhao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yuanzhi Xia
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan University town, Wenzhou, 325035, China
| | - Yinghua Lu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Junfeng Yin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Weichun Pan
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
16
|
Kish WS, Lightholder J, Zeković T, Berrill A, Roach M, Wellborn WB, Vorst E. Removal of empty capsids from high-dose adeno-associated virus 9 gene therapies. Biotechnol Bioeng 2024; 121:2500-2523. [PMID: 38807330 DOI: 10.1002/bit.28737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024]
Abstract
Recombinant adeno-associated virus, serotype 9 (rAAV9) has shown promise as a gene therapy vector for muscle and central nervous diseases. High-dose requirements of these therapies present critical safety considerations and biomanufacturing challenges. Notably, the reduction of empty capsids (ECs), which lack therapeutic transgene, from rAAV9 products is critical to maximize efficacy. Removal of rAAV ECs from full capsids is a major downstream challenge because of their highly similar biophysical characteristics. Ultracentrifugation (UC) reduces ECs but is laborious and difficult to scale. In this paper, to replace a poorly scalable UC process, we developed an anion exchange (AEX) chromatography for rAAV9 EC reduction from full capsids. AEX load preparation by dilution incurred major product loss. The addition of histidine and surfactants to dilution buffers increased yield and reduced aggregation. Elution salts were screened and sodium acetate was found to maximize yield and EC reduction. The most promising load dilution buffer and elution salt were used in combination to form an optimized AEX method. The process reduced ECs three-fold, demonstrated robustness to a broad range of EC load challenges, and was scaled for large-scale manufacture. Compared to UC, the AEX method simplified scale-up, reduced ECs to comparable levels (20%), afforded similar purity and product quality, and increased yield by 14%.
Collapse
Affiliation(s)
- William S Kish
- Gene Therapy Process Development, Pfizer Inc., Morrisville, North Carolina, USA
| | - John Lightholder
- Gene Therapy Process Development, Pfizer Inc., Morrisville, North Carolina, USA
| | - Tamara Zeković
- Gene Therapy Process Development, Pfizer Inc., Morrisville, North Carolina, USA
| | - Alex Berrill
- Gene Therapy Process Development, Pfizer Inc., Chesterfield, Missouri, USA
| | - Matthew Roach
- Gene Therapy Process Development, Pfizer Inc., Morrisville, North Carolina, USA
| | - William B Wellborn
- Gene Therapy Process Development, Pfizer Inc., Chesterfield, Missouri, USA
| | - Eric Vorst
- Gene Therapy Process Development, Pfizer Inc., Morrisville, North Carolina, USA
| |
Collapse
|
17
|
Salehian M, Emamzadeh R, Nazari M. Exploring the Potential of Arginine to Increase Coelenterazine-Renilla Luciferase Affinity and Enzyme Stability: Kinetic and Molecular Dynamics Studies. Protein J 2024; 43:739-750. [PMID: 38824468 DOI: 10.1007/s10930-024-10208-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2024] [Indexed: 06/03/2024]
Abstract
Renilla luciferase catalyzes the oxidation of coelenterazine to coelenteramide and results in the emission of a photon of light. Although Renilla luciferase has various applications in biotechnology, its low thermal stability limits the development of its applications. Arginine is a well-known stabilizing amino acid that plays a key role in protein stabilization against inactivation. However, its impact on enzyme properties is unpredictable. This study investigates the impact of arginine on the kinetics and thermal stability of Renilla luciferase. The enzyme's performance was significantly enhanced in the presence of arginine, with catalytic efficiency increasing by 3.31-fold and 3.08-fold when exposed to 0.2 M and 0.3 M arginine, respectively. Additionally, arginine improved the thermal stability of Renilla luciferase. Molecular dynamics simulation showed that the addition of 0.2 M arginine reduced the binding of coelenteramide, the reaction product and an enzyme inhibitor, to the active site of the Renilla luciferase. Therefore, the release of the product was accelerated, and the affinity of Renilla luciferase for coelenterazine increased. Furthermore, Molecular dynamics studies indicated an increased network of water molecules surrounding Renilla luciferase in the presence of 0.2 M arginine. This network potentially enhances the hydrophobic effect on the protein structure, ultimately improving enzyme stability. The findings of this study hold promise for the development of commercial kits incorporating Renilla luciferase.
Collapse
Affiliation(s)
- Maryam Salehian
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Rahman Emamzadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Mahboobeh Nazari
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Ito T, Lutz H, Tan L, Wang B, Tan J, Patel M, Chen L, Tsunakawa Y, Park B, Banerjee S. Host cell proteins in monoclonal antibody processing: Control, detection, and removal. Biotechnol Prog 2024; 40:e3448. [PMID: 38477405 DOI: 10.1002/btpr.3448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024]
Abstract
Host cell proteins (HCPs) are process-related impurities in a therapeutic protein expressed using cell culture technology. This review presents biopharmaceutical industry trends in terms of both HCPs in the bioprocessing of monoclonal antibodies (mAbs) and the capabilities for HCP clearance by downstream unit operations. A comprehensive assessment of currently implemented and emerging technologies in the manufacturing processes with extensive references was performed. Meta-analyses of published downstream data were conducted to identify trends. Improved analytical methods and understanding of "high-risk" HCPs lead to more robust manufacturing processes and higher-quality therapeutics. The trend of higher cell density cultures leads to both higher mAb expression and higher HCP levels. However, HCP levels can be significantly reduced with improvements in operations, resulting in similar concentrations of approx. 10 ppm HCPs. There are no differences in the performance of HCP clearance between recent enhanced downstream operations and traditional batch processing. This review includes best practices for developing improved processes.
Collapse
Affiliation(s)
- Takao Ito
- Life Science, Process Solutions, Merck Ltd. (An Affiliate of Merck KGaA, Darmstadt, Germany), Tokyo, Japan
| | - Herb Lutz
- Independent Consultant, Sudbury, Massachusetts, USA
| | - Lihan Tan
- Life Science Services, Sigma-Aldrich Pte Ltd, Singapore, Singapore
| | - Bin Wang
- Life Science, Process Solutions, Merck Chemicals (Shanghai) Co. Ltd. (An Affiliate of Merck KGaA Darmstadt, Germany), Shanghai, China
| | - Janice Tan
- Life Science, Process Solutions, Merck Pte Ltd. (An Affiliate of Merck KGaA, Darmstadt, Germany), Singapore
| | - Masum Patel
- Life Science, Process Solutions, Merck Life Sciences Pvt. Ltd. (An Affiliate of Merck KGaA, Darmstadt, Germany), Bangalore, India
| | - Lance Chen
- Life Science, Process Solutions, Merck Pte Ltd. (An Affiliate of Merck KGaA, Darmstadt, Germany), Singapore
| | - Yuki Tsunakawa
- Life Science, Process Solutions, Merck Ltd. (An Affiliate of Merck KGaA, Darmstadt, Germany), Tokyo, Japan
| | - Byunghyun Park
- Life Science, Process Solutions, Merck Ltd. (An Affiliate of Merck KGaA, Darmstadt, Germany), Seoul, South Korea
| | - Subhasis Banerjee
- Life Science, Process Solutions, Merck Life Sciences Pvt. Ltd. (An Affiliate of Merck KGaA, Darmstadt, Germany), Bangalore, India
| |
Collapse
|
19
|
Xu J, Yan S, Xu J, Qi B. Ultrasound-assisted modification of soybean protein isolate with L-histidine: Relationship between structure and function. ULTRASONICS SONOCHEMISTRY 2024; 107:106934. [PMID: 38834001 PMCID: PMC11179065 DOI: 10.1016/j.ultsonch.2024.106934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
Herein, the effects of ultrasound-assisted L-histidine (L-His) on the physicochemical properties and conformation of soybean protein isolate (SPI) were investigated. Particle size, zeta potential, turbidity, and solubility were used to evaluate protein aggregation, and the relationship between structural and functional changes of the proteins was characterized using spectral analysis, surface hydrophobicity, emulsification, and antioxidant properties. After ultrasound-assisted L-His treatment, SPI exhibited a smaller particle size, higher solubility, and more homogeneous micromorphology owing to the decrease in alpha-helix content and subsequent increases in zeta potential and active sulfhydryl content. In addition, spectral analysis showed that L-His and SPI could form a complex, which changed the microenvironment of the amino acid residues in SPI, thus improving its emulsification and antioxidant properties. At the concentration of L-His was 0.3 % w/w, the nanocomplex had a smaller particle size (140.03 nm), higher ζ-potential (-23.63 mV), and higher emulsification stability (22.48 min).
Collapse
Affiliation(s)
- Jingwen Xu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Shizhang Yan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jing Xu
- College of Arts and Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
20
|
Adibi L, Yaghmaei P, Maghami P, Ebrahim-Habibi A. Phenylalanine as an effective stabilizer and aggregation inhibitor of Bacillus amyloliquefaciens alpha-amylase. AMB Express 2024; 14:69. [PMID: 38850460 PMCID: PMC11162409 DOI: 10.1186/s13568-024-01712-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/28/2024] [Indexed: 06/10/2024] Open
Abstract
Aromatic compounds are known anti-amyloid aggregates. Their effect on amorphous aggregates of proteins is, however, less studied. We chose aromatic amino acids Trp, Tyr, and Phe, as well as another known stabilizer (i.e. Arg), as potential compatible solvents to be tested on Bacillus amyloliquefaciens alpha-amylase (BAA). Among these additives, Phe was the only one to be effective on the thermal inactivation and amorphous aggregation of BAA, while preserving its intrinsic activity. A concentration of 50 mM Phe was used to test its potential in counteracting the deleterious effect of BAA amorphous aggregates in vivo. After 21 days of daily subcutaneous injections of the native enzyme to mice, amorphous aggregates of BAA, as well as aggregates produced in presence of 50 mM Phe, the tissues located at the site of injection were studied histologically. Amorphous aggregates caused an increase in macrophages and lipid droplets. Serum levels of IL6 and TNF-α were also accordingly elevated and indicative of an inflammation state. Aggregates also resulted into increased levels of glucose, triglycerides and cholesterol, as well as liver enzymes SGOT and SGPT. On the other hand, the presence of Phe prevented this exacerbated inflammatory state and the subsequent impairment of biochemical parameters. In conclusion, Phe is an interesting compound for both stabilizing proteins and counteracting the pathological effect of amorphous aggregates.
Collapse
Affiliation(s)
- Leila Adibi
- Department of Biology, Science and Research Branch, Islamic Azad University, North Sattaree Avenue, 1477893855, Tehran, Iran
| | - Parichehreh Yaghmaei
- Department of Biology, Science and Research Branch, Islamic Azad University, North Sattaree Avenue, 1477893855, Tehran, Iran.
| | - Parvaneh Maghami
- Department of Biology, Science and Research Branch, Islamic Azad University, North Sattaree Avenue, 1477893855, Tehran, Iran
| | - Azadeh Ebrahim-Habibi
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Jalal-al-Ahmad Street, Chamran Highway, 1411713137, Tehran, Iran.
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, 1411713137, Tehran, Iran.
| |
Collapse
|
21
|
Pires GP, Fioresi VS, Canal D, Canal DC, Fernandes M, Brustolini OJB, de Avelar Carpinetti P, Ferreira A, da Silva Ferreira MF. Effects of trimer repeats on Psidium guajava L. gene expression and prospection of functional microsatellite markers. Sci Rep 2024; 14:9811. [PMID: 38684872 PMCID: PMC11059378 DOI: 10.1038/s41598-024-60417-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
Most research on trinucleotide repeats (TRs) focuses on human diseases, with few on the impact of TR expansions on plant gene expression. This work investigates TRs' effect on global gene expression in Psidium guajava L., a plant species with widespread distribution and significant relevance in the food, pharmacology, and economics sectors. We analyzed TR-containing coding sequences in 1,107 transcripts from 2,256 genes across root, shoot, young leaf, old leaf, and flower bud tissues of the Brazilian guava cultivars Cortibel RM and Paluma. Structural analysis revealed TR sequences with small repeat numbers (5-9) starting with cytosine or guanine or containing these bases. Functional annotation indicated TR-containing genes' involvement in cellular structures and processes (especially cell membranes and signal recognition), stress response, and resistance. Gene expression analysis showed significant variation, with a subset of highly expressed genes in both cultivars. Differential expression highlighted numerous down-regulated genes in Cortibel RM tissues, but not in Paluma, suggesting interplay between tissues and cultivars. Among 72 differentially expressed genes with TRs, 24 form miRNAs, 13 encode transcription factors, and 11 are associated with transposable elements. In addition, a set of 20 SSR-annotated, transcribed, and differentially expressed genes with TRs was selected as phenotypic markers for Psidium guajava and, potentially for closely related species as well.
Collapse
Affiliation(s)
- Giovanna Pinto Pires
- Centro de Ciências Agrárias e Engenharias, Departamento de Agronomia, Universidade Federal Do Espírito Santo, Alto Universitário, s/n, Alegre, ES, 29500-000, Brazil
| | - Vinicius Sartori Fioresi
- Centro de Ciências Agrárias e Engenharias, Departamento de Agronomia, Universidade Federal Do Espírito Santo, Alto Universitário, s/n, Alegre, ES, 29500-000, Brazil
| | - Drielli Canal
- Centro de Ciências Agrárias e Engenharias, Departamento de Agronomia, Universidade Federal Do Espírito Santo, Alto Universitário, s/n, Alegre, ES, 29500-000, Brazil
| | - Dener Cezati Canal
- Centro de Ciências Agrárias e Engenharias, Departamento de Agronomia, Universidade Federal Do Espírito Santo, Alto Universitário, s/n, Alegre, ES, 29500-000, Brazil
| | - Miquéias Fernandes
- Centro de Ciências Agrárias e Engenharias, Departamento de Agronomia, Universidade Federal Do Espírito Santo, Alto Universitário, s/n, Alegre, ES, 29500-000, Brazil
| | - Otávio José Bernardes Brustolini
- Laboratório Nacional de Computação Científica (LNCC). Av. Getulio Vargas, 333, Petrópolis, Rio de Janeiro, Quitandinha, 25651-076, Brazil
| | - Paola de Avelar Carpinetti
- Centro de Ciências Agrárias e Engenharias, Departamento de Agronomia, Universidade Federal Do Espírito Santo, Alto Universitário, s/n, Alegre, ES, 29500-000, Brazil
| | - Adésio Ferreira
- Centro de Ciências Agrárias e Engenharias, Departamento de Agronomia, Universidade Federal Do Espírito Santo, Alto Universitário, s/n, Alegre, ES, 29500-000, Brazil
| | - Marcia Flores da Silva Ferreira
- Centro de Ciências Agrárias e Engenharias, Departamento de Agronomia, Universidade Federal Do Espírito Santo, Alto Universitário, s/n, Alegre, ES, 29500-000, Brazil.
| |
Collapse
|
22
|
Prašnikar M, Proj M, Bjelošević Žiberna M, Lebar B, Knez B, Kržišnik N, Roškar R, Gobec S, Grabnar I, Žula A, Ahlin Grabnar P. The search for novel proline analogs for viscosity reduction and stabilization of highly concentrated monoclonal antibody solutions. Int J Pharm 2024; 655:124055. [PMID: 38554741 DOI: 10.1016/j.ijpharm.2024.124055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/16/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Administration of monoclonal antibodies (mAbs) is currently focused on subcutaneous injection associated with increased patient adherence and reduced treatment cost, leading to sustainable healthcare. The main bottleneck is low volume that can be injected, requiring highly concentrated mAb solutions. The latter results in increased solution viscosity with pronounced mAb aggregation propensity because of intensive protein-protein interactions. Small molecule excipients have been proposed to restrict the protein-protein interactions, contributing to reduced viscosity. The aim of the study was to discover novel compounds that reduce the viscosity of highly concentrated mAb solution. First, the chemical space of proline analogs was explored and 35 compounds were determined. Viscosity measurements revealed that 18 proline analogs reduced the mAb solution viscosity similar to or more than proline. The compounds forming both electrostatic and hydrophobic interactions with mAb reduced the viscosity of the formulation more efficiently without detrimentally effecting mAb physical stability. A correlation between the level of interaction and viscosity-reducing effect was confirmed with molecular dynamic simulations. Structure rigidity of the compounds and aromaticity contributed to their viscosity-reducing effect, dependent on molecule size. The study results highlight the novel proline analogs as an effective approach in viscosity reduction in development of biopharmaceuticals for subcutaneous administration.
Collapse
Affiliation(s)
- Monika Prašnikar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Matic Proj
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | | | - Blaž Lebar
- Biologics Drug Product, Technical Research and Development, Global Drug Development, Novartis, Slovenia
| | - Benjamin Knez
- Biologics Drug Product, Technical Research and Development, Global Drug Development, Novartis, Slovenia
| | - Nika Kržišnik
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Robert Roškar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Iztok Grabnar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Aleš Žula
- Biologics Drug Product, Technical Research and Development, Global Drug Development, Novartis, Slovenia
| | - Pegi Ahlin Grabnar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
23
|
Gupta MN, Uversky VN. Reexamining the diverse functions of arginine in biochemistry. Biochem Biophys Res Commun 2024; 705:149731. [PMID: 38432110 DOI: 10.1016/j.bbrc.2024.149731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Arginine in a free-state and as part of peptides and proteins shows distinct tendency to form clusters. In free-form, it has been found useful in cryoprotection, as a drug excipient for both solid and liquid formulations, as an aggregation suppressor, and an eluent in protein chromatography. In many cases, the mechanisms by which arginine acts in all these applications is either debatable or at least continues to attract interest. It is quite possible that arginine clusters may be involved in many such applications. Furthermore, it is possible that such clusters are likely to behave as intrinsically disordered polypeptides. These considerations may help in understanding the roles of arginine in diverse applications and may even lead to better strategies for using arginine in different situations.
Collapse
Affiliation(s)
- Munishwar Nath Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India.
| | - Vladimir N Uversky
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya Str., 7, Pushchino, Moscow Region, 142290, Russia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
24
|
Chen J, Cai L, Huang X, Fu H, Sun L, Yuan C, Gong H, Lyu B, Wang Z, Yu H. Mathematical modeling of optimal coagulant dosage for tofu preparation using MgCl 2. Food Chem X 2024; 21:101137. [PMID: 38304048 PMCID: PMC10831496 DOI: 10.1016/j.fochx.2024.101137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
To explore the association between the optimal coagulant for tofu and the components of soybeans,30 different kinds of soybeans were selected, and tested for their optimal coagulant MgCl2 content. The optimal amount of coagulant was taken as the dependent variable, and the soybean Composition were taken as independent variables for the correlation analysis. The results showed that there was a positive correlation between the optimal coagulant content and the content of histidine, 7S β-conglycinin, B1aB1bB2B3B4 of 11 s glycincin, and α'-subunit of 7S β-conglycinin, negative correlation with lysine. The regression formula is y = -1.186 + 3.457*B1aB1bB2B3B4 + 2.304*7S + 0.351*histidine - 0.084*lysine + 4.696*α', and the model is validated to be within 10 % of the error value and has a high degree of confidence. This study provides theoretical support for realizing the green production of traditional soybean products.
Collapse
Affiliation(s)
- Jian Chen
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Lei Cai
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Xiaolong Huang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Hongling Fu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Ling Sun
- Institute of Plant Protection, Jilin Academy of Agriculture Sciences, Changchun 130024, China
| | - Changwei Yuan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Hao Gong
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Bo Lyu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Zhaohui Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| |
Collapse
|
25
|
Ng YK, Konermann L. Mechanism of Protein Aggregation Inhibition by Arginine: Blockage of Anionic Side Chains Favors Unproductive Encounter Complexes. J Am Chem Soc 2024; 146:8394-8406. [PMID: 38477601 DOI: 10.1021/jacs.3c14180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Aggregation refers to the assembly of proteins into nonphysiological higher order structures. While amyloid has been studied extensively, much less is known about amorphous aggregation, a process that interferes with protein expression and storage. Free arginine (Arg+) is a widely used aggregation inhibitor, but its mechanism remains elusive. Focusing on myoglobin (Mb), we recently applied atomistic molecular dynamics (MD) simulations for gaining detailed insights into amorphous aggregation (Ng J. Phys. Chem. B 2021, 125, 13099). Building on that approach, the current work for the first time demonstrates that MD simulations can directly elucidate aggregation inhibition mechanisms. Comparative simulations with and without Arg+ reproduced the experimental finding that Arg+ significantly decreased the Mb aggregation propensity. Our data reveal that, without Arg+, protein-protein encounter complexes readily form salt bridges and hydrophobic contacts, culminating in firmly linked dimeric aggregation nuclei. Arg+ promotes the dissociation of encounter complexes. These "unproductive" encounter complexes are favored because Arg+ binding to D- and E- lowers the tendency of these anionic residues to form interprotein salt bridges. Side chain blockage is mediated largely by the guanidinium group of Arg+, which binds carboxylates through H-bond-reinforced ionic contacts. Our MD data revealed Arg+ self-association into a dynamic quasi-infinite network, but we found no evidence that this self-association is important for protein aggregation inhibition. Instead, aggregation inhibition by Arg+ is similar to that mediated by free guanidinium ions. The computational strategy used here should be suitable for the rational design of aggregation inhibitors with enhanced potency.
Collapse
Affiliation(s)
- Yuen Ki Ng
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
26
|
Cernosek T, Jain N, Dalphin M, Behrens S, Wunderli P. Accelerated development of a SEC-HPLC procedure for purity analysis of monoclonal antibodies using design of experiments. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1235:124037. [PMID: 38335765 DOI: 10.1016/j.jchromb.2024.124037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
The complex structure of biopharmaceutical products poses an inherent need for their thorough characterization to ensure product quality, safety, and efficacy. Analytical size exclusion chromatography (SEC) is a widely used technique throughout the development and manufacturing of monoclonal antibodies (mAbs) which quantifies product size variants such as aggregates and fragments. Aggregate and fragment content are critical quality attributes (CQAs) in mAb products, as higher contents of such size heterogeneities impact product quality. Historically, SEC methods have achieved sufficient separation between the high molecular weight (HMW) species and the main product. In contrast, some low molecular weight (LMW) species are often not sufficiently different in molecular mass from the main product, making it difficult to achieve appropriate resolutions between the two species. This lack of resolution makes it difficult to consistently quantify the LMW species in mAb-based therapeutics. The following work uses a design of experiments (DoE) approach to establish a robust analytical SEC procedure by evaluating SEC column types and mobile phase compositions using two mAb products with different physiochemical properties. The resulting optimized procedure using a Waters™ BioResolve column exhibits an improved ability to resolve and quantify mAb size variants, highlighting improvement in the resolution of the LMW species. Additionally, the addition of L-arginine as a mobile phase additive showed to reduce secondary interactions and was beneficial in increasing the recoveries of the HMW species.
Collapse
Affiliation(s)
- Terezie Cernosek
- Catalent Biologics, Madison, WI, USA; Keck Graduate Institute of Applied Life Sciences, Claremont, CA, USA.
| | | | | | - Sue Behrens
- Keck Graduate Institute of Applied Life Sciences, Claremont, CA, USA
| | | |
Collapse
|
27
|
Banayan NE, Loughlin BJ, Singh S, Forouhar F, Lu G, Wong K, Neky M, Hunt HS, Bateman LB, Tamez A, Handelman SK, Price WN, Hunt JF. Systematic enhancement of protein crystallization efficiency by bulk lysine-to-arginine (KR) substitution. Protein Sci 2024; 33:e4898. [PMID: 38358135 PMCID: PMC10868448 DOI: 10.1002/pro.4898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 02/16/2024]
Abstract
Structural genomics consortia established that protein crystallization is the primary obstacle to structure determination using x-ray crystallography. We previously demonstrated that crystallization propensity is systematically related to primary sequence, and we subsequently performed computational analyses showing that arginine is the most overrepresented amino acid in crystal-packing interfaces in the Protein Data Bank. Given the similar physicochemical characteristics of arginine and lysine, we hypothesized that multiple lysine-to-arginine (KR) substitutions should improve crystallization. To test this hypothesis, we developed software that ranks lysine sites in a target protein based on the redundancy-corrected KR substitution frequency in homologs. This software can be run interactively on the worldwide web at https://www.pxengineering.org/. We demonstrate that three unrelated single-domain proteins can tolerate 5-11 KR substitutions with at most minor destabilization, and, for two of these three proteins, the construct with the largest number of KR substitutions exhibits significantly enhanced crystallization propensity. This approach rapidly produced a 1.9 Å crystal structure of a human protein domain refractory to crystallization with its native sequence. Structures from Bulk KR-substituted domains show the engineered arginine residues frequently make hydrogen-bonds across crystal-packing interfaces. We thus demonstrate that Bulk KR substitution represents a rational and efficient method for probabilistic engineering of protein surface properties to improve crystallization.
Collapse
Affiliation(s)
- Nooriel E. Banayan
- Department of Biological Sciences702A Sherman Fairchild Center, MC2434, Columbia UniversityNew YorkNew YorkUSA
| | - Blaine J. Loughlin
- Department of Biological Sciences702A Sherman Fairchild Center, MC2434, Columbia UniversityNew YorkNew YorkUSA
| | - Shikha Singh
- Department of Biological Sciences702A Sherman Fairchild Center, MC2434, Columbia UniversityNew YorkNew YorkUSA
| | - Farhad Forouhar
- Department of Biological Sciences702A Sherman Fairchild Center, MC2434, Columbia UniversityNew YorkNew YorkUSA
| | - Guanqi Lu
- Department of Biological Sciences702A Sherman Fairchild Center, MC2434, Columbia UniversityNew YorkNew YorkUSA
| | - Kam‐Ho Wong
- Department of Biological Sciences702A Sherman Fairchild Center, MC2434, Columbia UniversityNew YorkNew YorkUSA
- Present address:
Vaccine Research and DevelopmentPfizer Inc.Pearl RiverNew YorkUSA
| | - Matthew Neky
- Department of Biological Sciences702A Sherman Fairchild Center, MC2434, Columbia UniversityNew YorkNew YorkUSA
- Present address:
Columbia UniversityNew YorkNew YorkUSA
| | - Henry S. Hunt
- Department of PhysicsStanford UniversityStanfordCaliforniaUSA
| | | | | | - Samuel K. Handelman
- Department of Biological Sciences702A Sherman Fairchild Center, MC2434, Columbia UniversityNew YorkNew YorkUSA
- Present address:
Department of Pain & Neuronal HealthEli Lily & Co.893 Delaware StIndianapolisIndianaUSA
| | - W. Nicholson Price
- Department of Biological Sciences702A Sherman Fairchild Center, MC2434, Columbia UniversityNew YorkNew YorkUSA
- Present address:
University of Michigan Law SchoolAnn ArborMichiganUSA
| | - John F. Hunt
- Department of Biological Sciences702A Sherman Fairchild Center, MC2434, Columbia UniversityNew YorkNew YorkUSA
| |
Collapse
|
28
|
Hirano A, Wada M, Sato TK, Kameda T. N-acetyl amino acid amide solubility in aqueous 1,6-hexanediol solutions: Insights into the protein droplet deformation mechanism. Int J Biol Macromol 2024; 261:129724. [PMID: 38272403 DOI: 10.1016/j.ijbiomac.2024.129724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Proteinaceous liquid droplets, generated by liquid-liquid phase separation, function as membraneless compartments that are essential for diverse biological functions. Studies addressing droplet generation have used 1,6-hexanediol (1,6-HD) as a droplet-discerning agent owing to its capacity to induce droplet deformation. Despite the empirical utility of 1,6-HD, the mechanism underlying 1,6-HD-induced droplet deformation remains unknown. In this study, the solubilities of N-acetyl amino acid amides, which correspond to proteinogenic amino acid residues, were examined in the presence of 1,6-HD at 25 °C. Other solvents included ethanol, 1-propanol, and amides. Remarkably, 1,6-HD effectively solubilized hydrophobic species (particularly aromatic species) and exhibited reduced efficacy in solubilizing hydrophilic species and peptide bond moieties. These solubilizing effects are reflected in changes in protein solubility and structure. Specifically, 1,6-HD primarily targets the hydrophobic regions of a protein, increasing protein solubility without causing substantial structural changes. This solubilization mechanism is essential for elucidating the role of 1,6-HD as a droplet-discerning agent and recognizing its potential limitations.
Collapse
Affiliation(s)
- Atsushi Hirano
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan.
| | - Momoyo Wada
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Takehiro K Sato
- Spiber, Inc., 234-1 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Tomoshi Kameda
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Koto, Tokyo 135-0064, Japan
| |
Collapse
|
29
|
Muraoka T, Okumura M, Saio T. Enzymatic and synthetic regulation of polypeptide folding. Chem Sci 2024; 15:2282-2299. [PMID: 38362427 PMCID: PMC10866363 DOI: 10.1039/d3sc05781j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/04/2024] [Indexed: 02/17/2024] Open
Abstract
Proper folding is essential for the biological functions of all proteins. The folding process is intrinsically error-prone, and the misfolding of a polypeptide chain can cause the formation of toxic aggregates related to pathological outcomes such as neurodegenerative disease and diabetes. Chaperones and some enzymes are involved in the cellular proteostasis systems that assist polypeptide folding to diminish the risk of aggregation. Elucidating the molecular mechanisms of chaperones and related enzymes is important for understanding proteostasis systems and protein misfolding- and aggregation-related pathophysiology. Furthermore, mechanistic studies of chaperones and related enzymes provide important clues to designing chemical mimics, or chemical chaperones, that are potentially useful for recovering proteostasis activities as therapeutic approaches for treating and preventing protein misfolding-related diseases. In this Perspective, we provide a comprehensive overview of the latest understanding of the folding-promotion mechanisms by chaperones and oxidoreductases and recent progress in the development of chemical mimics that possess activities comparable to enzymes, followed by a discussion of future directions.
Collapse
Affiliation(s)
- Takahiro Muraoka
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology Koganei Tokyo 184-8588 Japan
- Kanagawa Institute of Industrial Science and Technology (KISTEC) Kanagawa 243-0435 Japan
| | - Masaki Okumura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University Sendai Miyagi 980-8578 Japan
| | - Tomohide Saio
- Division of Molecular Life Science, Institute of Advanced Medical Sciences, Tokushima University Tokushima 770-8503 Japan
| |
Collapse
|
30
|
Xu J, Lei X, Li A, Li J, Li S, Chen L. Scalable production of recombinant three-finger proteins: from inclusion bodies to high quality molecular probes. Microb Cell Fact 2024; 23:48. [PMID: 38347541 PMCID: PMC10860255 DOI: 10.1186/s12934-024-02316-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/10/2022] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND The three-finger proteins are a collection of disulfide bond rich proteins of great biomedical interests. Scalable recombinant expression and purification of bioactive three-finger proteins is quite difficult. RESULTS We introduce a working pipeline for expression, purification and validation of disulfide-bond rich three-finger proteins using E. coli as the expression host. With this pipeline, we have successfully obtained highly purified and bioactive recombinant α-Βungarotoxin, k-Bungarotoxin, Hannalgesin, Mambalgin-1, α-Cobratoxin, MTα, Slurp1, Pate B etc. Milligrams to hundreds of milligrams of recombinant three finger proteins were obtained within weeks in the lab. The recombinant proteins showed specificity in binding assay and six of them were crystallized and structurally validated using X-ray diffraction protein crystallography. CONCLUSIONS Our pipeline allows refolding and purifying recombinant three finger proteins under optimized conditions and can be scaled up for massive production of three finger proteins. As many three finger proteins have attractive therapeutic or research interests and due to the extremely high quality of the recombinant three finger proteins we obtained, our method provides a competitive alternative to either their native counterparts or chemically synthetic ones and should facilitate related research and applications.
Collapse
Affiliation(s)
- Jiang Xu
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Xiao Lei
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Ao Li
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Jun Li
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Shuxing Li
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Lin Chen
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
31
|
Gupta MN, Uversky VN. Biological importance of arginine: A comprehensive review of the roles in structure, disorder, and functionality of peptides and proteins. Int J Biol Macromol 2024; 257:128646. [PMID: 38061507 DOI: 10.1016/j.ijbiomac.2023.128646] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 01/26/2024]
Abstract
Arginine shows Jekyll and Hyde behavior in several respects. It participates in protein folding via ionic and H-bonds and cation-pi interactions; the charge and hydrophobicity of its side chain make it a disorder-promoting amino acid. Its methylation in histones; RNA binding proteins; chaperones regulates several cellular processes. The arginine-centric modifications are important in oncogenesis and as biomarkers in several cardiovascular diseases. The cross-links involving arginine in collagen and cornea are involved in pathogenesis of tissues but have also been useful in tissue engineering and wound-dressing materials. Arginine is a part of active site of several enzymes such as GTPases, peroxidases, and sulfotransferases. Its metabolic importance is obvious as it is involved in production of urea, NO, ornithine and citrulline. It can form unusual functional structures such as molecular tweezers in vitro and sprockets which engage DNA chains as part of histones in vivo. It has been used in design of cell-penetrating peptides as drugs. Arginine has been used as an excipient in both solid and injectable drug formulations; its role in suppressing opalescence due to liquid-liquid phase separation is particularly very promising. It has been known as a suppressor of protein aggregation during protein refolding. It has proved its usefulness in protein bioseparation processes like ion-exchange, hydrophobic and affinity chromatographies. Arginine is an amino acid, whose importance in biological sciences and biotechnology continues to grow in diverse ways.
Collapse
Affiliation(s)
- Munishwar Nath Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
32
|
Ferreira PL, Marie H, Berger T, Edelmann B, Rammo O, Sousa F. Evaluation of novel chromatographic prototypes for supercoiled plasmid DNA polishing. Front Bioeng Biotechnol 2024; 11:1296444. [PMID: 38249801 PMCID: PMC10797707 DOI: 10.3389/fbioe.2023.1296444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
Since the world first approved gene therapeutics, nucleic acid-based therapies have gained prominence. Several strategies for DNA-based therapy have been approved, and numerous clinical trials for plasmid DNA (pDNA)-based vaccines are currently in development. Due to the rising interest in pDNA for vaccination and gene therapy, plasmid manufacturing must become more effective. One of the most critical steps is downstream processing, involving isolation and purification procedures. To comply with the regulatory guidelines, pDNA must be available as a highly purified, homogeneous preparation of supercoiled pDNA (sc pDNA). This process undertakes several challenges, primarily due to the diversity of molecules derived from the producer organism. In this study, different resins were tested for the adsorption and selective polishing of sc pDNA. To identify optimal pDNA adsorption conditions, batch and column assays were performed with different resins while promoting electrostatic and hydrophobic interactions. The effect of ionic strength, pH, and contact time were evaluated and optimized. Additionally, static and dynamic binding capacities were determined for the selected resins. Analytical chromatography and agarose gel electrophoresis were used to assess the selectivity of the most promising resins toward sc pDNA isoform. Also, genomic DNA, endotoxins, and proteins were quantified to characterize the final sc pDNA quality. At the same time, the recovery and purity yields were evaluated by quantification of sc pDNA after the purification procedure. Overall, the results of the chromatographic assays using agmatine- and arginine-based resins have shown promising potential for sc pDNA polishing. Both resins demonstrated excellent binding capacity for pDNA, with agmatine outperforming arginine-based resin in terms of capacity. However, arginine-based resin exhibited a superior pDNA recovery yield, reaching a notable 52.2% recovery compared to 10.09% from agmatine. Furthermore, both resins exhibited high relative purity levels above 90% for the sc pDNA. The comprehensive characterization of the recovered sc pDNA also revealed a significant reduction in gDNA levels, reinforcing the potential of these prototypes for obtaining high-quality and pure sc pDNA. These findings highlight the promising applications of both resins in scalable pDNA purification processes for gene therapy and biopharmaceutical applications.
Collapse
Affiliation(s)
- Pedro L. Ferreira
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | | | - Tim Berger
- Merck Life Science KGaA, Darmstadt, Germany
| | | | | | - Fani Sousa
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
33
|
Javanshad R, Panth R, Venter AR. Effects of Amino Acid Additives on Protein Stability during Electrothermal Supercharging in ESI-MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:151-157. [PMID: 38078777 DOI: 10.1021/jasms.3c00377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The surprising formation of highly charged protein ions from aqueous ammonium bicarbonate solution is a fascinating phenomenon referred to as electrothermal supercharging (ETS). Although the precise mechanism involved is not clearly understood, previous studies predominantly suggest that ETS is due to native protein destabilization in the presence of bicarbonate anion inside the electrospray ionization droplets under high temperatures and spray voltages. To evaluate existing hypotheses surrounding the underlying mechanism of ETS, the effects of several additives on protein charging under ETS conditions were investigated. The changes in the protein charge state distributions were compared by measuring the ratios between the intensities of highest intensity charge states of native and unfolded protein envelopes and shifts in the lowest and highest observed charge states. This study demonstrated that source temperature plays a more important role in ETS compared to spray voltage, especially when using a nebulized microelectrospray ionization source. Moreover, the effect of amino acids on ETS were generally in good agreement with the extensive literature available on the stabilization or destabilization of proteins by these additives in bulk solution. Among the natural amino acids, protein supercharging was significantly reduced by proline and glycine; however, imidazole provided the highest degree of noncovalent complex stabilization against ETS, outperforming the amino acids. Overall, our study shows that the simple addition of stabilizing reagents such as proline and imidazole can reduce the extent of apparent protein unfolding and supercharging in ammonium bicarbonate solution and provide evidence against the roles of charge depletion and thermal unfolding during ETS.
Collapse
Affiliation(s)
- Roshan Javanshad
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008-5413, United States
| | - Rajendra Panth
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008-5413, United States
| | - Andre R Venter
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008-5413, United States
| |
Collapse
|
34
|
Nobeyama T, Tataka K, Mori M, Murakami T, Yamada Y, Shiraki K. Synthesis of Butterfly-Like Shaped Gold Nanomaterial: For the Regulation of Liquid-Liquid Phase-Separated Biomacromolecule Droplets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300362. [PMID: 37596729 DOI: 10.1002/smll.202300362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/31/2023] [Indexed: 08/20/2023]
Abstract
Nanotechnology is a critical tool to manipulate the sophisticated behavior of biological structures and has provided new research fields. Liquid-liquid phase-separated (LLPS) droplets gather attention as basic reaction fields in a living cell. Droplets play critical roles in regulating protein behavior, including enzyme compartmentalization, stress response, and disease pathogenesis. The dynamic manipulation of LLPS droplet formation/deformation has become a crucial target in nanobiotechnology. However, the development of nanodevices specifically designed for this purpose remains a challenge. Therefore, this study presents butterfly-shaped gold nanobutterflies (GNBs) as novel nanodevices for manipulating LLPS droplet dynamics. The growth process of the GNBs is analyzed via time-lapse electroscopic imaging, time-lapse spectroscopy, and additives assays. Interestingly, GNBs demonstrate the ability to induce LLPS droplet formation in systems such as adenosine triphosphate/poly-l-lysine and human immunoglobulin G, whereas spherical and rod-shaped gold nanoparticles exhibit no such capability. This indicates that the GNB concave surface interacts with the droplet precursors facilitating the LLPS droplet formation. Near-infrared-laser irradiation applied to GNBs enables on-demand deformation of the droplets through localized heat effects. GNB regulates the enzymatic reaction of lysozymes. The innovative design of GNBs presents a promising strategy for manipulating LLPS dynamics and offers exciting prospects for future research.
Collapse
Affiliation(s)
- Tomohiro Nobeyama
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Koji Tataka
- Graduate School of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
- Human Life Technology Research, Toyama Industrial Technology Research and Development Center, 35-1 Iwatakeshin, Nanto, Toyama, 939-1503, Japan
| | - Megumi Mori
- Faculty of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Tatsuya Murakami
- Graduate School of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Yoichi Yamada
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Kentaro Shiraki
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| |
Collapse
|
35
|
Hada S, Burlakoti U, Kim KH, Han JS, Kim MJ, Kim NA, Jeong SH. A comprehensive evaluation of arginine and its derivatives as protein formulation stabilizers. Int J Pharm 2023; 647:123545. [PMID: 37871869 DOI: 10.1016/j.ijpharm.2023.123545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/14/2023] [Accepted: 10/21/2023] [Indexed: 10/25/2023]
Abstract
Arginine and its derivatives (such as arginine ethyl ester and acetyl arginine) have varying degrees of protein aggregation suppressor effect across different protein solutions. To understand this performance ambiguity, we evaluated the activity of arginine, acetyl arginine, and arginine ethyl ester for aggregation suppressor effect against human intravenous immunoglobulin G (IgG) solution at pH 4.8. Both arginine and its cationic derivative arginine ethyl ester in their hydrochloride salt forms significantly reduced the colloidal and conformational stability (reduced kd and Tm) of IgG. Consequently, the monomer content was decreased with an increase in subvisible particulates after agitation or thermal stress. Furthermore, compared to arginine, arginine ethyl ester with one more cationic charge and hydrochloride salt form readily precipitated IgG at temperatures higher than 25 °C. On the contrary, acetyl arginine, which mostly exists in a neutral state at pH 4.8, efficiently suppressed the formation of subvisible particles retaining a high amount of monomer owing to its higher colloidal and conformational stability. Concisely, the charged state of additives significantly impacts protein stability. This study demonstrated that contrary to popular belief, arginine and its derivatives may either enhance or suppress protein aggregation depending on their net charge and concentration.
Collapse
Affiliation(s)
- Shavron Hada
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea.
| | - Urmila Burlakoti
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea.
| | - Ki Hyun Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea.
| | - Ji Soo Han
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea.
| | - Min Ji Kim
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea.
| | - Nam Ah Kim
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea; Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Muan 58554, Republic of Korea.
| | - Seong Hoon Jeong
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea.
| |
Collapse
|
36
|
Vitharana S, Stillahn JM, Katayama DS, Henry CS, Manning MC. Application of Formulation Principles to Stability Issues Encountered During Processing, Manufacturing, and Storage of Drug Substance and Drug Product Protein Therapeutics. J Pharm Sci 2023; 112:2724-2751. [PMID: 37572779 DOI: 10.1016/j.xphs.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
The field of formulation and stabilization of protein therapeutics has become rather extensive. However, most of the focus has been on stabilization of the final drug product. Yet, proteins experience stress and degradation through the manufacturing process, starting with fermentaition. This review describes how formulation principles can be applied to stabilize biopharmaceutical proteins during bioprocessing and manufacturing, considering each unit operation involved in prepration of the drug substance. In addition, the impact of the container on stabilty is discussed as well.
Collapse
Affiliation(s)
| | - Joshua M Stillahn
- Legacy BioDesign LLC, Johnstown, CO 80534, USA; Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Mark Cornell Manning
- Legacy BioDesign LLC, Johnstown, CO 80534, USA; Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
37
|
Eilts F, Harsy YMJ, Lothert K, Pagallies F, Amann R, Wolff MW. An investigation of excipients for a stable Orf viral vector formulation. Virus Res 2023; 336:199213. [PMID: 37657509 PMCID: PMC10495626 DOI: 10.1016/j.virusres.2023.199213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
The Orf virus (ORFV) is a promising candidate for vector vaccines as well as for immunomodulatory and oncolytic therapies. However, few publications are available on its infectivity degradation or on suitable additives for prolonging its viral stability. In this study, the non-supplemented ORFV itself showed a very high stability at storage temperatures up to 28 °C, with a linear titer loss of 0.10 log infectious particles per day at 4 °C over a period of five weeks. To prolong this inherent stability, thirty additives, i.e., detergents, sugars, proteins, salts, and buffers as well as amino acids, were tested for their time- and temperature-dependent influence on the ORFV infectivity. A stabilizing effect on the infectivity was identified for the addition of all tested proteins, i.e., gelatine, bovine serum albumin, and recombinant human serum albumin (rHSA), of several sugars, i.e., mannitol, galactose, sucrose, and trehalose, of amino acids, i.e., arginine and proline, of the detergent Pluronic F68, and of the salt Na2SO4. The infectivity preservation was especially pronounced for proteins in liquid and frozen formulations, sugars in frozen state, and arginine und Pluronic in liquid formulations at high storage temperatures (37 °C). The addition of 1% rHSA with and without 5% sucrose was evaluated as a very stable formulation with a high safety profile and economic validity at storage temperatures up to 28 °C. At increased temperatures, the supplementation with 200 mM arginine performed better than with rHSA. In summary, this comprehensive data provides different options for a stable ORFV formulation, considering temperature, storage time, economic aspects, and downstream processing integrity.
Collapse
Affiliation(s)
- Friederike Eilts
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, Giessen 35390, Germany
| | - Yasmina M J Harsy
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, Giessen 35390, Germany
| | - Keven Lothert
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, Giessen 35390, Germany
| | - Felix Pagallies
- Department of Immunology, University of Tuebingen, Auf der Morgenstelle 15, Tuebingen 72076, Germany
| | - Ralf Amann
- Department of Immunology, University of Tuebingen, Auf der Morgenstelle 15, Tuebingen 72076, Germany; PRiME Vector Technologies, Herrenberger Straße 24, Tuebingen 72070, Germany
| | - Michael W Wolff
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, Giessen 35390, Germany.
| |
Collapse
|
38
|
Arakawa T, Akuta T. Mechanistic Insight into Poly-Reactivity of Immune Antibodies upon Acid Denaturation or Arginine Mutation in Antigen-Binding Regions. Antibodies (Basel) 2023; 12:64. [PMID: 37873861 PMCID: PMC10594486 DOI: 10.3390/antib12040064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/25/2023] Open
Abstract
The poly-reactivity of antibodies is defined as their binding to specific antigens as well as to related proteins and also to unrelated targets. Poly-reactivity can occur in individual molecules of natural serum antibodies, likely due to their conformation flexibility, and, for therapeutic antibodies, it plays a critical role in their clinical development. On the one hand, it can enhance their binding to target antigens and cognate receptors, but, on the other hand, it may lead to a loss of antibody function by binding to off-target proteins. Notably, poly-reactivity has been observed in antibodies subjected to treatments with dissociating, destabilizing or denaturing agents, in particular acidic pH, a common step in the therapeutic antibody production process involving the elution of Protein-A bound antibodies and viral clearance using low pH buffers. Additionally, poly-reactivity can emerge during the affinity maturation in the immune system, such as the germinal center. This review delves into the underlying potential causes of poly-reactivity, highlighting the importance of conformational flexibility, which can be further augmented by the acid denaturation of antibodies and the introduction of arginine mutations into the complementary regions of antibody-variable domains. The focus is placed on a particular antibody's acid conformation, meticulously characterized through circular dichroism, differential scanning calorimetry, and sedimentation velocity analyses. By gaining a deeper understanding of these mechanisms, we aim to shed light on the complexities of antibody poly-reactivity and its implications for therapeutic applications.
Collapse
Affiliation(s)
- Tsutomu Arakawa
- Alliance Protein Laboratories, 13380 Pantera Road, San Diego, CA 92130, USA
| | - Teruo Akuta
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., 3333-26 Aza-Asayama, Kamitezuna, Takahagi-shi 318-0004, Ibaraki, Japan;
| |
Collapse
|
39
|
Prass T, Garidel P, Blech M, Schäfer LV. Viscosity Prediction of High-Concentration Antibody Solutions with Atomistic Simulations. J Chem Inf Model 2023; 63:6129-6140. [PMID: 37757589 PMCID: PMC10565822 DOI: 10.1021/acs.jcim.3c00947] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Indexed: 09/29/2023]
Abstract
The computational prediction of the viscosity of dense protein solutions is highly desirable, for example, in the early development phase of high-concentration biopharmaceutical formulations where the material needed for experimental determination is typically limited. Here, we use large-scale atomistic molecular dynamics (MD) simulations with explicit solvation to de novo predict the dynamic viscosities of solutions of a monoclonal IgG1 antibody (mAb) from the pressure fluctuations using a Green-Kubo approach. The viscosities at simulated mAb concentrations of 200 and 250 mg/mL are compared to the experimental values, which we measured with rotational rheometry. The computational viscosity of 24 mPa·s at the mAb concentration of 250 mg/mL matches the experimental value of 23 mPa·s obtained at a concentration of 213 mg/mL, indicating slightly different effective concentrations (or activities) in the MD simulations and in the experiments. This difference is assigned to a slight underestimation of the effective mAb-mAb interactions in the simulations, leading to a too loose dynamic mAb network that governs the viscosity. Taken together, this study demonstrates the feasibility of all-atom MD simulations for predicting the properties of dense mAb solutions and provides detailed microscopic insights into the underlying molecular interactions. At the same time, it also shows that there is room for further improvements and highlights challenges, such as the massive sampling required for computing collective properties of dense biomolecular solutions in the high-viscosity regime with reasonable statistical precision.
Collapse
Affiliation(s)
- Tobias
M. Prass
- Center
for Theoretical Chemistry, Ruhr University
Bochum, D-44780 Bochum, Germany
| | - Patrick Garidel
- Boehringer
Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, D-88397 Biberach
an der Riss, Germany
| | - Michaela Blech
- Boehringer
Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, D-88397 Biberach
an der Riss, Germany
| | - Lars V. Schäfer
- Center
for Theoretical Chemistry, Ruhr University
Bochum, D-44780 Bochum, Germany
| |
Collapse
|
40
|
Ren S. Effects of arginine in therapeutic protein formulations: a decade review and perspectives. Antib Ther 2023; 6:265-276. [PMID: 38075239 PMCID: PMC10702853 DOI: 10.1093/abt/tbad022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/05/2023] [Accepted: 10/01/2023] [Indexed: 10/14/2024] Open
Abstract
Arginine (Arg) is a natural amino acid with an acceptable safety profile and a unique chemical structure. Arg and its salts are highly effective in enhancing protein refolding and solubilization, suppressing protein-protein interaction and aggregation and reducing viscosity of high concentration protein formulations. Arg and its salts have been used in research and 20 approved protein injectables. This review summarizes the effects of Arg as an excipient in therapeutic protein formulations with the focus on its physicochemical properties, safety, applications in approved protein products, beneficial and detrimental effects in liquid and lyophilized protein formulations when combined with different counterions and mechanism on protein stabilization and destabilization. The decade literature review indicates that the benefits of Arg overweigh its risks when it is used appropriately. It is recommended to add Arg along with glutamate as a counterion to high concentration protein formulations on top of sugars or polyols to counterbalance the negative effects of Arg hydrochloride. The use of Arg as a viscosity reducer and protein stabilizer in high concentration formulations will be the inevitable future trend of the biopharmaceutical industry for subcutaneous administration.
Collapse
Affiliation(s)
- Steven Ren
- CMC Management, WuXi Biologics, 7 Clarke Drive, Cranbury, NJ 08512, USA
| |
Collapse
|
41
|
Mozgovicz M, Fischer A, Brocard C, Jungbauer A, Lingg N. L-Arginine sulfate reduces irreversible protein binding in immobilized metal affinity chromatography. J Chromatogr A 2023; 1706:464246. [PMID: 37541058 DOI: 10.1016/j.chroma.2023.464246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/17/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023]
Abstract
Immobilized metal affinity chromatography (IMAC) is a powerful technique for capture and purification of relevant biopharmaceuticals in complex biological matrices. However, protein recovery can be drastically compromised due to surface induced spreading and unfolding of the analyte, leading to fouling of the stationary phase. Here, we report on the kinetics of irreversible adsorption of a protease on an IMAC resin in a time span ranging from minutes to several hours. This trend correlated with the thermal data measured by nano differential scanning calorimetry, and showed a time-dependent change in protein unfolding temperature. Our results highlight that 'soft' proteins show a strong time dependent increase in irreversible adsorption. Furthermore, commonly used co-solvents for preservation of the native protein conformation are tested for their ability to reduce fouling. Thermal data suggests that the amino acid l-arginine is beneficial in preventing unfolding, which was confirmed in batch adsorption experiments. The choice of counter-ions has to be considered when using this amino acid. These results show that l-arginine sulfate decelerates the irreversible adsorption kinetics of proteins on the IMAC stationary phase to a greater extent than l-arginine chloride.
Collapse
Affiliation(s)
- Markus Mozgovicz
- Austrian Centre of Industrial Biotechnology, Vienna, Austria; Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Andreas Fischer
- Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | - Cécile Brocard
- Biopharma Process Science Austria, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Alois Jungbauer
- Austrian Centre of Industrial Biotechnology, Vienna, Austria; Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Nico Lingg
- Austrian Centre of Industrial Biotechnology, Vienna, Austria; Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria.
| |
Collapse
|
42
|
Wang L, Zhang Y, Li R, Xiang D. L-lysine moderates thermal aggregation of coconut proteins induced by thermal treatment. Sci Rep 2023; 13:13310. [PMID: 37587151 PMCID: PMC10432461 DOI: 10.1038/s41598-023-38758-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/14/2023] [Indexed: 08/18/2023] Open
Abstract
This work attempts to investigate the inhibitory effect of L-lysine (Lys) on the thermal aggregation of coconut protein (CP). The results showed that under neutral conditions (pH = 7), temperature reduced the solubility and enhanced the thermally induced gel formation of CP. In addition, Lys reduced the fluorescence properties, particle size and increased the turbidity of CP, which had an inhibitory effect on heat induced gels. The results indicate that Lys plays an important role in inhibiting protein thermal aggregation by interacting with CP to create steric hindrance and increase protein electrostatic repulsion.
Collapse
Affiliation(s)
- Liqiang Wang
- School of Food Science and Engineering, Hainan University, No. 58 Renmin Avenue, Haikou, 570228, China
| | - Youbang Zhang
- School of Food Science and Engineering, Hainan University, No. 58 Renmin Avenue, Haikou, 570228, China
| | - Run Li
- School of Food Science and Engineering, Hainan University, No. 58 Renmin Avenue, Haikou, 570228, China
| | - Dong Xiang
- School of Food Science and Engineering, Hainan University, No. 58 Renmin Avenue, Haikou, 570228, China.
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, No. 58 Renmin Avenue, Haikou, 570228, China.
| |
Collapse
|
43
|
Garcia-Villen F, Gallego I, Sainz-Ramos M, Ordoyo-Pascual J, Ruiz-Alonso S, Saenz-del-Burgo L, O’Mahony C, Pedraz JL. Stability of Monoclonal Antibodies as Solid Formulation for Auto-Injectors: A Pilot Study. Pharmaceutics 2023; 15:2049. [PMID: 37631263 PMCID: PMC10459033 DOI: 10.3390/pharmaceutics15082049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Drug adherence is a significant medical issue, often responsible for sub-optimal outcomes during the treatment of chronic diseases such as rheumatoid or psoriatic arthritis. Monoclonal antibodies (which are exclusively given parenterally) have been proven to be an effective treatment in these cases. The use of auto-injectors is an effective strategy to improve drug adherence in parenteral treatments since these pen-like devices offer less discomfort and increased user-friendliness over conventional syringe-based delivery. This study aims to investigate the feasibility of including a monoclonal antibody as a solid formulation inside an auto-injector pen. Specifically, the objective was to evaluate the drug stability after a concentration (to reduce the amount of solvent and space needed) and freeze-drying procedure. A preliminary screening of excipients to improve stability was also performed. The nano-DSC results showed that mannitol improved the stability of the concentrated, freeze-dried antibody in comparison to its counterpart without it. However, a small instability of the CH2 domain was still found for mannitol samples, which will warrant further investigation. The present results serve as a stepping stone towards advancing future drug delivery systems that will ultimately improve the patient experience and associated drug adherence.
Collapse
Affiliation(s)
- Fatima Garcia-Villen
- NanoBioCel Group, Laboratory of Pharmaceutics, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain (L.S.-d.-B.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| | - Idoia Gallego
- NanoBioCel Group, Laboratory of Pharmaceutics, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain (L.S.-d.-B.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| | - Myriam Sainz-Ramos
- NanoBioCel Group, Laboratory of Pharmaceutics, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain (L.S.-d.-B.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| | - Jorge Ordoyo-Pascual
- NanoBioCel Group, Laboratory of Pharmaceutics, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain (L.S.-d.-B.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| | - Sandra Ruiz-Alonso
- NanoBioCel Group, Laboratory of Pharmaceutics, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain (L.S.-d.-B.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| | - Laura Saenz-del-Burgo
- NanoBioCel Group, Laboratory of Pharmaceutics, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain (L.S.-d.-B.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| | - Conor O’Mahony
- Tyndall National Institute, University College Cork, T12 R5CP Cork, Ireland;
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain (L.S.-d.-B.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| |
Collapse
|
44
|
Chowdhury AA, Manohar N, Witek MA, Woldeyes MA, Majumdar R, Qian KK, Kimball WD, Xu S, Lanzaro A, Truskett TM, Johnston KP. Subclass Effects on Self-Association and Viscosity of Monoclonal Antibodies at High Concentrations. Mol Pharm 2023; 20:2991-3008. [PMID: 37191356 DOI: 10.1021/acs.molpharmaceut.3c00023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The effects of a subclass of monoclonal antibodies (mAbs) on protein-protein interactions, formation of reversible oligomers (clusters), and viscosity (η) are not well understood at high concentrations. Herein, we quantify a short-range anisotropic attraction between the complementarity-determining region (CDR) and CH3 domains (KCDR-CH3) for vedolizumab IgG1, IgG2, or IgG4 subclasses by fitting small-angle X-ray scattering (SAXS) structure factor Seff(q) data with an extensive library of 12-bead coarse-grained (CG) molecular dynamics simulations. The KCDR-CH3 bead attraction strength was isolated from the strength of long-range electrostatic repulsion for the full mAb, which was determined from the theoretical net charge and a scaling parameter ψ to account for solvent accessibility and ion pairing. At low ionic strength (IS), the strongest short-range attraction (KCDR-CH3) and consequently the largest clusters and highest η were observed with IgG1, the subclass with the most positively charged CH3 domain. Furthermore, the trend in KCDR-CH3 with the subclass followed the electrostatic interaction energy between the CDR and CH3 regions calculated with the BioLuminate software using the 3D mAb structure and molecular interaction potentials. Whereas the equilibrium cluster size distributions and fractal dimensions were determined from fits of SAXS with the MD simulations, the degree of cluster rigidity under flow was estimated from the experimental η with a phenomenological model. For the systems with the largest clusters, especially IgG1, the inefficient packing of mAbs in the clusters played the largest role in increasing η, whereas for other systems, the relative contribution from stress produced by the clusters was more significant. The ability to relate η to short-range attraction from SAXS measurements at high concentrations and to theoretical characterization of electrostatic patches on the 3D surface is not only of fundamental interest but also of practical value for mAb discovery, processing, formulation, and subcutaneous delivery.
Collapse
Affiliation(s)
- Amjad A Chowdhury
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Neha Manohar
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Marta A Witek
- Eli Lilly and Company, Indianapolis, Indiana 46225, United States
| | | | - Ranajoy Majumdar
- Eli Lilly and Company, Indianapolis, Indiana 46225, United States
| | - Ken K Qian
- Eli Lilly and Company, Indianapolis, Indiana 46225, United States
| | - William D Kimball
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Shifeng Xu
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Alfredo Lanzaro
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Thomas M Truskett
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Physics, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Keith P Johnston
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
45
|
CRISPR-Cas adaptation in Escherichia coli. Biosci Rep 2023; 43:232582. [PMID: 36809461 PMCID: PMC10011333 DOI: 10.1042/bsr20221198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/23/2023] Open
Abstract
Prokaryotes use the adaptive immunity mediated via the Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR associated (CRISPR-Cas) system for protection against invading elements such as phages and plasmids. The immunity is achieved by capturing small DNA fragments or spacers from foreign nucleic acids (protospacers) and integrating them into the host CRISPR locus. This step of CRISPR-Cas immunity called 'naïve CRISPR adaptation' requires the conserved Cas1-Cas2 complex and is often supported by variable host proteins that assist in spacer processing and integration. Bacteria that have acquired new spacers become immune to the same invading elements when reinfected. CRISPR-Cas immunity can also be updated by integrating new spacers from the same invading elements, a process called 'primed adaptation'. Only properly selected and integrated spacers are functional in the next steps of CRISPR immunity when their processed transcripts are used for RNA-guided target recognition and interference (target degradation). Capturing, trimming, and integrating new spacers in the correct orientation are universal steps of adaptation to all CRISPR-Cas systems, but some details are CRISPR-Cas type-specific and species-specific. In this review, we provide an overview of the mechanisms of CRISPR-Cas class 1 type I-E adaptation in Escherichia coli as a general model for adaptation processes (DNA capture and integration) that have been studied in detail. We focus on the role of host non-Cas proteins involved in adaptation, particularly on the role of homologous recombination.
Collapse
|
46
|
Tomioka Y, Sato R, Takahashi R, Nagatoishi S, Shiba K, Tsumoto K, Arakawa T, Akuta T. Agarose native gel electrophoresis analysis of thermal aggregation controlled by Hofmeister series. Biophys Chem 2023; 296:106977. [PMID: 36857888 DOI: 10.1016/j.bpc.2023.106977] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023]
Abstract
The effects of salting-in and salting-out salts defined by Hofmeister series on the solution state of bovine serum albumin (BSA) in 50 mM Tris-HCl buffer at pH 7.4 before and after thermal unfolding at 80 °C for 5 min were examined using agarose native gel electrophoresis and mass photometry. Gel electrophoresis showed that salting-in MgCl2, CaCl2 and NaSCN resulted in formation of intermediate structures of BSA upon heating on native gel, while heating in buffer alone resulted in aggregated bands. Mass photometry showed large loss of monomer and oligomers when heated in this buffer, but retaining these structures in the presence of 1 M MgCl2 and NaSCN. To our surprise, salting-out MgSO4 also showed a similar effect on gel electrophoresis and mass photometry. Salting-out NaCl and (NH4)2SO4 resulted in smearing and aggregated bands, which were supported by mass photometry. Aggregation-suppressive ArgHCl also showed oligomer aggregates upon gel electrophoresis and mass photometry.
Collapse
Affiliation(s)
- Yui Tomioka
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., 3333-26, Aza-Asayama, Kamitezuna Takahagi-shi, Ibaraki 318-0004, Japan.
| | - Ryo Sato
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., 3333-26, Aza-Asayama, Kamitezuna Takahagi-shi, Ibaraki 318-0004, Japan.
| | - Ryo Takahashi
- Refeyn Japan, K.K., 1-1-14, Sakuraguchi-cho, Nada-ku, Kobe, Hyogo 6570036, Japan.
| | - Satoru Nagatoishi
- The Institute of Medical Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | - Kohei Shiba
- Refeyn Japan, K.K., 1-1-14, Sakuraguchi-cho, Nada-ku, Kobe, Hyogo 6570036, Japan.
| | - Kouhei Tsumoto
- The Institute of Medical Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Tsutomu Arakawa
- Alliance Protein Laboratories, 13380 Pantera Rd, San Diego, CA 92130, USA.
| | - Teruo Akuta
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., 3333-26, Aza-Asayama, Kamitezuna Takahagi-shi, Ibaraki 318-0004, Japan.
| |
Collapse
|
47
|
Arakawa T, Tomioka Y, Nakagawa M, Sakuma C, Kurosawa Y, Ejima D, Tsumoto K, Akuta T. Non-Affinity Purification of Antibodies. Antibodies (Basel) 2023; 12:antib12010015. [PMID: 36810520 PMCID: PMC9944463 DOI: 10.3390/antib12010015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Currently, purification of antibodies is mainly carried out using a platform technology composed primarily of Protein A chromatography as a capture step, regardless of the scale. However, Protein A chromatography has a number of drawbacks, which are summarized in this review. As an alternative, we propose a simple small-scale purification protocol without Protein A that uses novel agarose native gel electrophoresis and protein extraction. For large-scale antibody purification, we suggest mixed-mode chromatography that can in part mimic the properties of Protein A resin, focusing on 4-Mercapto-ethyl-pyridine (MEP) column chromatography.
Collapse
Affiliation(s)
- Tsutomu Arakawa
- Alliance Protein Laboratories, San Diego, CA 92130, USA
- Correspondence:
| | - Yui Tomioka
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., Tahahagi 318-0004, Japan
| | - Masataka Nakagawa
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., Tahahagi 318-0004, Japan
| | - Chiaki Sakuma
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., Tahahagi 318-0004, Japan
| | - Yasunori Kurosawa
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., Tahahagi 318-0004, Japan
| | - Daisuke Ejima
- Bio-Diagnostic Reagent Technology Center, Sysmex Corporation, Sayama 350-1332, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Teruo Akuta
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., Tahahagi 318-0004, Japan
| |
Collapse
|
48
|
Moreira AS, Bezemer S, Faria TQ, Detmers F, Hermans P, Sierkstra L, Coroadinha AS, Peixoto C. Implementation of Novel Affinity Ligand for Lentiviral Vector Purification. Int J Mol Sci 2023; 24:3354. [PMID: 36834764 PMCID: PMC9966744 DOI: 10.3390/ijms24043354] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
The use of viral vectors as therapeutic products for multiple applications such as vaccines, cancer treatment, or gene therapies, has been growing exponentially. Therefore, improved manufacturing processes are needed to cope with the high number of functional particles required for clinical trials and, eventually, commercialization. Affinity chromatography (AC) can be used to simplify purification processes and generate clinical-grade products with high titer and purity. However, one of the major challenges in the purification of Lentiviral vectors (LVs) using AC is to combine a highly specific ligand with a gentle elution condition assuring the preservation of vector biological activity. In this work, we report for the first time the implementation of an AC resin to specifically purify VSV-G pseudotyped LVs. After ligand screening, different critical process parameters were assessed and optimized. A dynamic capacity of 1 × 1011 total particles per mL of resin was determined and an average recovery yield of 45% was found for the small-scale purification process. The established AC robustness was confirmed by the performance of an intermediate scale providing an infectious particles yield of 54%, which demonstrates the scalability and reproducibility of the AC matrix. Overall, this work contributes to increasing downstream process efficiency by delivering a purification technology that enables high purity, scalability, and process intensification in a single step, contributing to time-to-market reduction.
Collapse
Affiliation(s)
- Ana Sofia Moreira
- IBET Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
- ITQB Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Sandra Bezemer
- Thermo Fisher Scientific, 2333 CH Leiden, The Netherlands
| | - Tiago Q. Faria
- IBET Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| | - Frank Detmers
- Thermo Fisher Scientific, 2333 CH Leiden, The Netherlands
| | - Pim Hermans
- Thermo Fisher Scientific, 2333 CH Leiden, The Netherlands
| | | | - Ana Sofia Coroadinha
- IBET Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| | - Cristina Peixoto
- IBET Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| |
Collapse
|
49
|
Spencer H, Gorecki A, Foley H, Phillips L, Abonnel MY, Meloni BP, Anderton RS. Poly-Arginine R18 Peptide Inhibits Heat-Induced Lysozyme Protein Aggregation: Implications for a Possible Therapeutic Role in Parkinson’s Disease. APPL BIOCHEM MICRO+ 2023. [DOI: 10.1134/s0003683823010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
50
|
Sato R, Tomioka Y, Sakuma C, Nakagawa M, Kurosawa Y, Shiba K, Arakawa T, Akuta T. Detection of concentration-dependent conformational changes in SARS-CoV-2 nucleoprotein by agarose native gel electrophoresis. Anal Biochem 2023; 662:114995. [PMID: 36427555 PMCID: PMC9681993 DOI: 10.1016/j.ab.2022.114995] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/02/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022]
Abstract
The nucleoprotein (NP) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is abundantly expressed during infection, making it a diagnostic target protein. We analyzed the structure of the NP in solution using a recombinant protein produced in E. coli. A codon-optimized Profinity eXact™-tagged NP cDNA was cloned into pET-3d vector and transformed into E. coli T7 Express. The recombinant protein was first purified via chromatographic step using an affinity tag-based system that was followed by tag cleavage with sodium fluoride, resulting in proteolytic removal of the N-terminal tag sequence. The digested sample was then loaded directly onto a size exclusion chromatography run in the presence of L-Arg-HCl, resulting in removal of host nucleic acids and endotoxin. The molecular mass of the main NP fraction was determined by mass photometry as a dimeric form of NP, consistent with the blue native PAGE results. Interestingly, analysis of the purified NP by our newly developed agarose native gel electrophoresis revealed that it behaved like an acidic protein at low concentration despite its alkaline isoelectric point (theoretical pI = 10) and displayed a unique character of concentration-dependent charge and shape changes. This study should shed light into the behavior of NP in the viral life cycle.
Collapse
Affiliation(s)
- Ryo Sato
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., 3333-26, Aza-Asayama, Kamitezuna Takahagi-shi, Ibaraki, 318-0004, Japan.
| | - Yui Tomioka
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., 3333-26, Aza-Asayama, Kamitezuna Takahagi-shi, Ibaraki, 318-0004, Japan.
| | - Chiaki Sakuma
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., 3333-26, Aza-Asayama, Kamitezuna Takahagi-shi, Ibaraki, 318-0004, Japan.
| | - Masataka Nakagawa
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., 3333-26, Aza-Asayama, Kamitezuna Takahagi-shi, Ibaraki, 318-0004, Japan.
| | - Yasunori Kurosawa
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., 3333-26, Aza-Asayama, Kamitezuna Takahagi-shi, Ibaraki, 318-0004, Japan; Abwiz Bio Inc., 9823 Pacific Heights Blvd., Suite J, San Diego, CA, 92121, USA.
| | - Kohei Shiba
- Refeyn Japan, K.K., 1-1-14, Sakuraguchi-cho, Nada-ku, Kobe, Hyogo, 6570036, Japan.
| | - Tsutomu Arakawa
- Alliance Protein Laboratories, 13380 Pantera Rd, San Diego, CA, 92130, USA.
| | - Teruo Akuta
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., 3333-26, Aza-Asayama, Kamitezuna Takahagi-shi, Ibaraki, 318-0004, Japan.
| |
Collapse
|