1
|
Arron HE, Marsh BD, Kell DB, Khan MA, Jaeger BR, Pretorius E. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: the biology of a neglected disease. Front Immunol 2024; 15:1386607. [PMID: 38887284 PMCID: PMC11180809 DOI: 10.3389/fimmu.2024.1386607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/11/2024] [Indexed: 06/20/2024] Open
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a chronic, debilitating disease characterised by a wide range of symptoms that severely impact all aspects of life. Despite its significant prevalence, ME/CFS remains one of the most understudied and misunderstood conditions in modern medicine. ME/CFS lacks standardised diagnostic criteria owing to variations in both inclusion and exclusion criteria across different diagnostic guidelines, and furthermore, there are currently no effective treatments available. Moving beyond the traditional fragmented perspectives that have limited our understanding and management of the disease, our analysis of current information on ME/CFS represents a significant paradigm shift by synthesising the disease's multifactorial origins into a cohesive model. We discuss how ME/CFS emerges from an intricate web of genetic vulnerabilities and environmental triggers, notably viral infections, leading to a complex series of pathological responses including immune dysregulation, chronic inflammation, gut dysbiosis, and metabolic disturbances. This comprehensive model not only advances our understanding of ME/CFS's pathophysiology but also opens new avenues for research and potential therapeutic strategies. By integrating these disparate elements, our work emphasises the necessity of a holistic approach to diagnosing, researching, and treating ME/CFS, urging the scientific community to reconsider the disease's complexity and the multifaceted approach required for its study and management.
Collapse
Affiliation(s)
- Hayley E. Arron
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Benjamin D. Marsh
- MRCPCH Consultant Paediatric Neurodisability, Exeter, Devon, United Kingdom
| | - Douglas B. Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - M. Asad Khan
- Directorate of Respiratory Medicine, Manchester University Hospitals, Wythenshawe Hospital, Manchester, United Kingdom
| | - Beate R. Jaeger
- Long COVID department, Clinic St Georg, Bad Aibling, Germany
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
2
|
Tschopp R, König RS, Rejmer P, Paris DH. Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): A preliminary survey among patients in Switzerland. Heliyon 2023; 9:e15595. [PMID: 37131449 PMCID: PMC10149204 DOI: 10.1016/j.heliyon.2023.e15595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 03/07/2023] [Accepted: 04/13/2023] [Indexed: 05/04/2023] Open
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a multi-factorial systemic chronic debilitating disease of poorly understood etiology and limited systematic evidence. The questionnaire and interview-based survey included 169 ME/CFS patients from the Swiss ME/CFS association. The majority of patients were females (72.2%), single (55.7%) and without children (62.5%). Only one third were working (full/part-time). The mean onset of ME/CFS was 31.6 years of age with 15% of patients being symptomatic before their 18th birthday. In this cohort, patients had documented ME/CFS for a mean 13.7 years, whereby half (50.3%) stated their condition was progressively worsening. Triggering events and times of disease onset were recalled by 90% of the participants. An infectious disease was associated with a singular or part of multiple events by 72.9% and 80.6%, respectively. Prior to disease onset, a third of the patients reported respiratory infections; followed by gastro-intestinal infections (15.4%) and tick-borne diseases (16.2%). Viral infections were recalled by 77.8% of the respondents, with Epstein Barr Virus being the most commonly reported agent. Patients self-reported an average number of 13 different symptoms, all described specific triggers of symptoms exacerbation and 82.2% suffered from co-morbidities. This study collated clinically relevant information on ME/CFS patients in Switzerland, highlighting the extent of disease severity, the associated factors negatively affecting daily life activities and work status as well as potential socio-economic impact.
Collapse
Affiliation(s)
- Rea Tschopp
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
- University of University of Basel, Switzerland
- Armauer Hansen Research Institute, Jimma Road, PO Box 1005, Addis Ababa, Ethiopia
- Corresponding author. Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland.
| | - Rahel S. König
- Faculty of Medicine, University of Basel, Klingelbergstrasse 61, 4056 Basel, Switzerland
| | - Protazy Rejmer
- Seegarten Clinic, Seestrasse 155A, 8802 Kilchberg ZH, Switzerland
| | - Daniel H. Paris
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
- University of University of Basel, Switzerland
| |
Collapse
|
3
|
Gandasegui IM, Laka LA, Gargiulo PÁ, Gómez-Esteban JC, Sánchez JVL. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Neurological Entity? MEDICINA (KAUNAS, LITHUANIA) 2021; 57:1030. [PMID: 34684066 PMCID: PMC8540700 DOI: 10.3390/medicina57101030] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/02/2021] [Accepted: 09/22/2021] [Indexed: 12/18/2022]
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a disorder of unknown physiopathology with multisystemic repercussions, framed in ICD-11 under the heading of neurology (8E49). There is no specific test to support its clinical diagnosis. Our objective is to review the evidence in neuroimaging and dysautonomia evaluation in order to support the neurological involvement and to find biomarkers serving to identify and/or monitor the pathology. The symptoms typically appear acutely, although they can develop progressively over years; an essential trait for diagnosis is "central" fatigue together with physical and/or mental exhaustion after a small effort. Neuroimaging reveals various morphological, connectivity, metabolic, and functional alterations of low specificity, which can serve to complement the neurological study of the patient. The COMPASS-31 questionnaire is a useful tool to triage patients under suspect of dysautonomia, at which point they may be redirected for deeper evaluation. Recently, alterations in heart rate variability, the Valsalva maneuver, and the tilt table test, together with the presence of serum autoantibodies against adrenergic, cholinergic, and serotonin receptors were shown in a subgroup of patients. This approach provides a way to identify patient phenotypes. Broader studies are needed to establish the level of sensitivity and specificity necessary for their validation. Neuroimaging contributes scarcely to the diagnosis, and this depends on the identification of specific changes. On the other hand, dysautonomia studies, carried out in specialized units, are highly promising in order to support the diagnosis and to identify potential biomarkers. ME/CFS orients towards a functional pathology that mainly involves the autonomic nervous system, although not exclusively.
Collapse
Affiliation(s)
- Iñigo Murga Gandasegui
- LaNCE-Neuropharm Group, Neuroscience Department, University of the Basque Country (UPV-EHU), 48940 Leioa, Bizkaia, Spain; (L.A.L.); (J.-C.G.-E.); (J.-V.L.S.)
| | - Larraitz Aranburu Laka
- LaNCE-Neuropharm Group, Neuroscience Department, University of the Basque Country (UPV-EHU), 48940 Leioa, Bizkaia, Spain; (L.A.L.); (J.-C.G.-E.); (J.-V.L.S.)
| | - Pascual-Ángel Gargiulo
- Experimental Psychology Laboratory, CONICET, Department Pathology, Universidad Nacional de Cuyo, Mendoza 5500, Argentina;
| | - Juan-Carlos Gómez-Esteban
- LaNCE-Neuropharm Group, Neuroscience Department, University of the Basque Country (UPV-EHU), 48940 Leioa, Bizkaia, Spain; (L.A.L.); (J.-C.G.-E.); (J.-V.L.S.)
- Neurodegenerative Disease Group, Biocruces Research Institute, 48903 Barakaldo, Bizkaia, Spain
| | - José-Vicente Lafuente Sánchez
- LaNCE-Neuropharm Group, Neuroscience Department, University of the Basque Country (UPV-EHU), 48940 Leioa, Bizkaia, Spain; (L.A.L.); (J.-C.G.-E.); (J.-V.L.S.)
- Neurodegenerative Disease Group, Biocruces Research Institute, 48903 Barakaldo, Bizkaia, Spain
| |
Collapse
|
4
|
Wirth KJ, Scheibenbogen C. Pathophysiology of skeletal muscle disturbances in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). J Transl Med 2021; 19:162. [PMID: 33882940 PMCID: PMC8058748 DOI: 10.1186/s12967-021-02833-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic Fatigue Syndrome or Myalgic Encephaloymelitis (ME/CFS) is a frequent debilitating disease with an enigmatic etiology. The finding of autoantibodies against ß2-adrenergic receptors (ß2AdR) prompted us to hypothesize that ß2AdR dysfunction is of critical importance in the pathophysiology of ME/CFS. Our hypothesis published previously considers ME/CFS as a disease caused by a dysfunctional autonomic nervous system (ANS) system: sympathetic overactivity in the presence of vascular dysregulation by ß2AdR dysfunction causes predominance of vasoconstrictor influences in brain and skeletal muscles, which in the latter is opposed by the metabolically stimulated release of endogenous vasodilators (functional sympatholysis). An enigmatic bioenergetic disturbance in skeletal muscle strongly contributes to this release. Excessive generation of these vasodilators with algesic properties and spillover into the systemic circulation could explain hypovolemia, suppression of renin (paradoxon) and the enigmatic symptoms. In this hypothesis paper the mechanisms underlying the energetic disturbance in muscles will be explained and merged with the first hypothesis. The key information is that ß2AdR also stimulates the Na+/K+-ATPase in skeletal muscles. Appropriate muscular perfusion as well as function of the Na+/K+-ATPase determine muscle fatigability. We presume that dysfunction of the ß2AdR also leads to an insufficient stimulation of the Na+/K+-ATPase causing sodium overload which reverses the transport direction of the sodium-calcium exchanger (NCX) to import calcium instead of exporting it as is also known from the ischemia-reperfusion paradigm. The ensuing calcium overload affects the mitochondria, cytoplasmatic metabolism and the endothelium which further worsens the energetic situation (vicious circle) to explain postexertional malaise, exercise intolerance and chronification. Reduced Na+/K+-ATPase activity is not the only cause for cellular sodium loading. In poor energetic situations increased proton production raises intracellular sodium via sodium-proton-exchanger subtype-1 (NHE1), the most important proton-extruder in skeletal muscle. Finally, sodium overload is due to diminished sodium outward transport and enhanced cellular sodium loading. As soon as this disturbance would have occurred in a severe manner the threshold for re-induction would be strongly lowered, mainly due to an upregulated NHE1, so that it could repeat at low levels of exercise, even by activities of everyday life, re-inducing mitochondrial, metabolic and vascular dysfunction to perpetuate the disease.
Collapse
Affiliation(s)
| | - Carmen Scheibenbogen
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
5
|
Vashishtha S, Broderick G, Craddock TJA, Barnes ZM, Collado F, Balbin EG, Fletcher MA, Klimas NG. Leveraging Prior Knowledge to Recover Characteristic Immune Regulatory Motifs in Gulf War Illness. Front Physiol 2020; 11:358. [PMID: 32411011 PMCID: PMC7198798 DOI: 10.3389/fphys.2020.00358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/27/2020] [Indexed: 11/13/2022] Open
Abstract
Potentially linked to the basic physiology of stress response, Gulf War Illness (GWI) is a debilitating condition presenting with complex immune, endocrine and neurological symptoms. Here we interrogate the immune response to physiological stress by measuring 16 blood-borne immune markers at 8 time points before, during and after maximum exercise challenge in n = 12 GWI veterans and n = 11 healthy veteran controls deployed to the same theater. Immune markers were combined into functional sets and the dynamics of their joint expression described as classical rate equations. These empirical networks were further informed structurally by projection onto prior knowledge networks mined from the literature. Of the 49 literature-informed immune signaling interactions, 21 were found active in the combined exercise response data. However, only 4 signals were common to both subject groups while 7 were uniquely active in GWI and 10 uniquely active in healthy veterans. Feedforward mediation of IL-23 and IL-17 by IL-6 and IL-10 emerged as distinguishing control elements that were characteristically active in GWI versus healthy subjects. Simulated restructuring of the regulatory circuitry in GWI as a result of applying an IL-6 receptor antagonist in combination with either a Th1 (IL-2, IFNγ, and TNFα) or IL-23 receptor antagonist predicted a partial rescue of immune response elements previously associated with illness severity. Overall, results suggest that pharmacologically altering the topology of the immune response circuitry identified as active in GWI can inform on strategies that while not curative, may nonetheless deliver a reduction in symptom burden. A lasting and more complete remission in GWI may therefore require manipulation of a broader physiology, namely one that includes endocrine oversight of immune function.
Collapse
Affiliation(s)
- Saurabh Vashishtha
- Department of Medicine, University of Alberta, Edmonton, AB, Canada.,Center for Clinical Systems Biology, Rochester General Hospital, Rochester, NY, United States
| | - Gordon Broderick
- Center for Clinical Systems Biology, Rochester General Hospital, Rochester, NY, United States.,Department of Biomedical Engineering, Kate Gleason College of Engineering, Rochester Institute of Technology, Rochester, NY, United States
| | - Travis J A Craddock
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States.,Departments of Psychology & Neuroscience, Computer Science and Clinical Immunology, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Zachary M Barnes
- Diabetes Research Institute, University of Miami, Miami, FL, United States.,Miami Veterans Affairs Medical Center, Miami, FL, United States
| | - Fanny Collado
- Miami Veterans Affairs Medical Center, Miami, FL, United States
| | - Elizabeth G Balbin
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States.,Miami Veterans Affairs Medical Center, Miami, FL, United States
| | - Mary Ann Fletcher
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States.,Departments of Psychology & Neuroscience, Computer Science and Clinical Immunology, Nova Southeastern University, Fort Lauderdale, FL, United States.,Miami Veterans Affairs Medical Center, Miami, FL, United States
| | - Nancy G Klimas
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States.,Departments of Psychology & Neuroscience, Computer Science and Clinical Immunology, Nova Southeastern University, Fort Lauderdale, FL, United States.,Miami Veterans Affairs Medical Center, Miami, FL, United States
| |
Collapse
|
6
|
Wirth K, Scheibenbogen C. A Unifying Hypothesis of the Pathophysiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): Recognitions from the finding of autoantibodies against ß2-adrenergic receptors. Autoimmun Rev 2020; 19:102527. [PMID: 32247028 DOI: 10.1016/j.autrev.2020.102527] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 01/16/2020] [Indexed: 12/14/2022]
Abstract
Myalgic Encephalomyelitis or Chronic Fatigue Syndrome (CFS/ME) is a complex and severely disabling disease with a prevalence of 0.3% and no approved treatment and therefore a very high medical need. Following an infectious onset patients suffer from severe central and muscle fatigue, chronic pain, cognitive impairment, and immune and autonomic dysfunction. Although the etiology of CFS/ME is not solved yet, there is numerous evidence for an autoantibody mediated dysregulation of the immune and autonomic nervous system. We found elevated ß2 adrenergic receptor (ß2AdR) and M3 acetylcholine receptor antibodies in a subset of CFS/ME patients. As both ß2AdR and M3 acetylcholine receptor are important vasodilators, we would expect their functional disturbance to result in vasoconstriction and hypoxemia. An impaired circulation and oxygen supply could result in many symptoms of ME/CFS. There are consistent reports of vascular dysfunction in ME/CFS. Muscular and cerebral hypoperfusion has been shown in ME/CFS in various studies and correlated with fatigue. Metabolic changes in ME/CFS are also in line with a concept of hypoxia and ischemia. Here we try to develop a unifying working concept for the complex pathomechanism of ME/CFS based on the presence of dysfunctional autoantibodies against ß2AdR and M3 acetylcholine receptor and extrapolate it to the pathophysiology of ME/CFS without an autoimmune pathogenesis.
Collapse
Affiliation(s)
- Klaus Wirth
- Sanofi-Aventis Deutschland, R&D, Frankfurt a.M., Germany.
| | - Carmen Scheibenbogen
- Institute for Medical Immunology, Charité University Medicine Berlin, Campus Virchow, Berlin, Germany.
| |
Collapse
|
7
|
Elevated blood lactate in resting conditions correlate with post-exertional malaise severity in patients with Myalgic encephalomyelitis/Chronic fatigue syndrome. Sci Rep 2019; 9:18817. [PMID: 31827223 PMCID: PMC6906377 DOI: 10.1038/s41598-019-55473-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/21/2019] [Indexed: 02/06/2023] Open
Abstract
Elevated blood lactate after moderate exercise was reported in some of patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). We hypothesised that blood lactate could be also elevated in resting conditions. We aimed investigating the frequency of elevated lactate at rest in ME/CFS patients, and comparing characteristics of ME/CFS patients with and without elevated lactate. Patients fulfilling international consensus criteria for ME/CFS who attended the internal medicine department of University hospital Angers-France between October 2011 and December 2017 were included retrospectively. All patients were systematically hospitalised for an aetiological workup and overall assessment. We reviewed their medical records for data related to the assessment: clinical characteristics, comorbidities, fatigue features, post-exertional malaise (PEM) severity, and results of 8 lactate measurements at rest. Patients having ≥1 lactate measurement ≥2 mmol/L defined elevated lactate group. The study included 123 patients. Elevated (n = 55; 44.7%) and normal (n = 68; 55.3%) lactate groups were comparable except for PEM, which was more severe in the elevated lactate group after adjusting for age at disease onset, sex, and comorbidities (OR 2.47, 95% CI: 1.10–5.55). ME/CFS patients with elevated blood lactate at rest may be at higher risk for more severe PEM. This finding may be of interest in ME/CFS management.
Collapse
|
8
|
Scheibenbogen C, Freitag H, Blanco J, Capelli E, Lacerda E, Authier J, Meeus M, Castro Marrero J, Nora-Krukle Z, Oltra E, Strand EB, Shikova E, Sekulic S, Murovska M. The European ME/CFS Biomarker Landscape project: an initiative of the European network EUROMENE. J Transl Med 2017; 15:162. [PMID: 28747192 PMCID: PMC5530475 DOI: 10.1186/s12967-017-1263-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 07/14/2017] [Indexed: 12/18/2022] Open
Abstract
Myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS) is a common and severe disease with a considerable social and economic impact. So far, the etiology is not known, and neither a diagnostic marker nor licensed treatments are available yet. The EUROMENE network of European researchers and clinicians aims to promote cooperation and advance research on ME/CFS. To improve diagnosis and facilitate the analysis of clinical trials surrogate markers are urgently needed. As a first step for developing such biomarkers for clinical use a database of active biomarker research in Europe was established called the ME/CFS EUROMENE Biomarker Landscape project and the results are presented in this review. Further we suggest strategies to improve biomarker development and encourage researchers to take these into consideration for designing and reporting biomarker studies.
Collapse
Affiliation(s)
- Carmen Scheibenbogen
- Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, Campus Virchow, Augustenburger Platz 1/Sudstrasse 2, 13353 Berlin, Germany
| | - Helma Freitag
- Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, Campus Virchow, Augustenburger Platz 1/Sudstrasse 2, 13353 Berlin, Germany
| | - Julià Blanco
- Institut de Recerca de la Sida IrsiCaixa-HIVACAT, Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, IGTP, UAB, Carretera del Canyet, s/n, 08916 Badalona, Spain
- Universitat de Vic-UCC, Carrer de la Sagrada Família, 7, 08500 Vic Barcelona, Spain
| | - Enrica Capelli
- Deptartment of Earth and Environmental Sciences, University of Pavia, Via Ferrata 7, 27100 Pavia, Italy
- Centre for Health Technologies (CHT), University of Pavia, Via Ferrata 5, 27100 Pavia, Italy
| | - Eliana Lacerda
- Clinical Research Department, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel St, Bloomsbury, London, WC1E 7HT UK
| | - Jerome Authier
- Faculty of Medicine, Paris Est-Creteil University, 8 rue du General Sarrail, 94000 Creteil, France
| | - Mira Meeus
- Pain in Motion International Research Group, Brussels, Belgium
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, Ghent University, St. Pietersnieuwstraat 33, 9000 Ghent, Belgium
- Department of Rehabilitation Sciences and Physiotherapy (MOVANT), Faculty of Medicine and Health Sciences, University of Antwerp, Prinsstraat 13, 2000 Antwerp, Belgium
| | - Jesus Castro Marrero
- Vall d’Hebron University Hospital, CFS/ME Unit, Universitat Autònoma de Barcelona, 119-129, Passeig de la Vall d’Hebron, 08035 Barcelona, Spain
| | - Zaiga Nora-Krukle
- August Kirchenstein Institute of Microbiology and Virology, Riga Stradins University, Dzirciema iela 16, Kurzemes rajons, Rīga, 1007 Latvia
| | - Elisa Oltra
- Facultad de Medicina, Universidad Católica de Valencia, San Vicente Mártir, Carrer de Quevedo, 2, 46001 Valencia, Spain
- Instituto Valenciano de Patología (IVP) de la Universidad Católica de Valencia San Vicente Mártir, Centro de Investigación Príncipe Felipe (CIPF), Carrer d’Eduardo Primo Yúfera, 3, 46012 Valencia, Spain
| | - Elin Bolle Strand
- Division of Medicine, CFS/ME Center, Oslo University Hospital, Aker, Trondheimsveien 235, 0586 Oslo, Norway
- Department of Paediatrics, Norwegian National Advisory Unit on CFS/ME, Rikshospitalet, Sognsvannsveien 20, 0372 Oslo, Norway
| | - Evelina Shikova
- Department of Virology, National Center of Infectious and Parasitic Diseases, 44A General Stoletov blvd., 1233 Sofia, Bulgaria
| | - Slobodan Sekulic
- Department of Neurology, Medical Faculty Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Modra Murovska
- August Kirchenstein Institute of Microbiology and Virology, Riga Stradins University, Dzirciema iela 16, Kurzemes rajons, Rīga, 1007 Latvia
| |
Collapse
|
9
|
Glassford JAG. The Neuroinflammatory Etiopathology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Front Physiol 2017; 8:88. [PMID: 28261110 PMCID: PMC5314655 DOI: 10.3389/fphys.2017.00088] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/01/2017] [Indexed: 12/30/2022] Open
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a debilitating multi-systemic chronic illness of unknown etiology, classified as a neurological disorder by the World Health Organization (WHO). The symptomatology of the condition appears to emanate from a variety of sources of chronic neurological disturbance and associated distortions, and chronicity, in noxious sensory signaling and neuroimmune activation. This article incorporates a summary review and discussion of biomedical research considered relevant to this essential conception perspective. It is intended to provide stakeholders with a concise, integrated outline disease model in order to help demystify this major public health problem. The primary etiopathological factors presented are: (A) Postural/biomechanical pain signaling, affecting adverse neuroexcitation, in the context of compression, constriction, strain, or damage of vertebral-regional bone and neuromuscular tissues; (B) Immune mediated inflammatory sequelae, in the context of prolonged immunotropic neurotrophic infection—with lymphotropic/gliotropic/glio-toxic varieties implicated in particular; (C) A combination of factors A and B. Sustained glial activation under such conditions is associated with oxidative and nitrosative stress, neuroinflammation, and neural sensitivity. These processes collectively enhance the potential for multi-systemic disarray involving endocrine pathway aberration, immune and mitochondrial dysfunction, and neurodegeneration, and tend toward still more intractable synergistic neuro-glial dysfunction (gliopathy), autoimmunity, and central neuronal sensitization.
Collapse
|
10
|
Caregiver burden and fatigue in caregivers of people with dementia: Measuring human herpesvirus (HHV)-6 and -7 DNA levels in saliva. Arch Gerontol Geriatr 2016; 66:42-8. [DOI: 10.1016/j.archger.2016.04.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 11/22/2022]
|
11
|
Mitoprotective dietary approaches for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Caloric restriction, fasting, and ketogenic diets. Med Hypotheses 2015; 85:690-3. [PMID: 26315446 DOI: 10.1016/j.mehy.2015.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 07/22/2015] [Accepted: 08/16/2015] [Indexed: 12/27/2022]
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome is an idiopathic illness characterized by debilitating fatigue and neuro-immune abnormalities. A growing body of evidence proposes mitochondrial dysfunction as a central perpetrator of the illness due to activation of immune-inflammatory pathways that burden the mitochondria. Under a model of mitochondrial dysfunction, this paper explores dietary strategies that are mitoprotective. Studied for decades, the cellular mechanisms of ketogenic diets, fasting, and caloric restriction now reveal mitochondria-specific mechanisms which could play a role in symptom reduction in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Future research should examine the physiological effects of these dietary strategies in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome.
Collapse
|
12
|
Jason LA, Zinn ML, Zinn MA. Myalgic Encephalomyelitis: Symptoms and Biomarkers. Curr Neuropharmacol 2015; 13:701-34. [PMID: 26411464 PMCID: PMC4761639 DOI: 10.2174/1570159x13666150928105725] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/09/2015] [Accepted: 07/14/2015] [Indexed: 01/01/2023] Open
Abstract
Myalgic Encephalomyelitis (ME) continues to cause significant morbidity worldwide with an estimated one million cases in the United States. Hurdles to establishing consensus to achieve accurate evaluation of patients with ME continue, fueled by poor agreement about case definitions, slow progress in development of standardized diagnostic approaches, and issues surrounding research priorities. Because there are other medical problems, such as early MS and Parkinson's Disease, which have some similar clinical presentations, it is critical to accurately diagnose ME to make a differential diagnosis. In this article, we explore and summarize advances in the physiological and neurological approaches to understanding, diagnosing, and treating ME. We identify key areas and approaches to elucidate the core and secondary symptom clusters in ME so as to provide some practical suggestions in evaluation of ME for clinicians and researchers. This review, therefore, represents a synthesis of key discussions in the literature, and has important implications for a better understanding of ME, its biological markers, and diagnostic criteria. There is a clear need for more longitudinal studies in this area with larger data sets, which correct for multiple testing.
Collapse
Affiliation(s)
- Leonard A. Jason
- Department of Psychology, Center for Community Research, DePaul University, Chicago, Illinois, United States
| | | | | |
Collapse
|