1
|
D'Amico M, Di Franco E, Cerutti E, Barresi V, Condorelli D, Diaspro A, Lanzanò L. A phasor-based approach to improve optical sectioning in any confocal microscope with a tunable pinhole. Microsc Res Tech 2022; 85:3207-3216. [PMID: 35686877 PMCID: PMC9542401 DOI: 10.1002/jemt.24178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/26/2022] [Accepted: 05/29/2022] [Indexed: 01/20/2023]
Abstract
Confocal fluorescence microscopy is a well‐established imaging technique capable of generating thin optical sections of biological specimens. Optical sectioning in confocal microscopy is mainly determined by the size of the pinhole, a small aperture placed in front of a point detector. In principle, imaging with a closed pinhole provides the highest degree of optical sectioning. In practice, the dramatic reduction of signal‐to‐noise ratio (SNR) at smaller pinhole sizes makes challenging the use of pinhole sizes significantly smaller than 1 Airy Unit (AU). Here, we introduce a simple method to “virtually” perform confocal imaging at smaller pinhole sizes without the dramatic reduction of SNR. The method is based on the sequential acquisition of multiple confocal images acquired at different pinhole aperture sizes and image processing based on a phasor analysis. The implementation is conceptually similar to separation of photons by lifetime tuning (SPLIT), a technique that exploits the phasor analysis to achieve super‐resolution, and for this reason we call this method SPLIT‐pinhole (SPLIT‐PIN). We show with simulated data that the SPLIT‐PIN image can provide improved optical sectioning (i.e., virtually smaller pinhole size) but better SNR with respect to an image obtained with closed pinhole. For instance, two images acquired at 2 and 1 AU can be combined to obtain a SPLIT‐PIN image with a virtual pinhole size of 0.2 AU but with better SNR. As an example of application to biological imaging, we show that SPLIT‐PIN improves confocal imaging of the apical membrane in an in vitro model of the intestinal epithelium.
Collapse
Affiliation(s)
- Morgana D'Amico
- Department of Physics and Astronomy "Ettore Majorana", University of Catania, Catania, Italy
| | - Elisabetta Di Franco
- Department of Physics and Astronomy "Ettore Majorana", University of Catania, Catania, Italy
| | - Elena Cerutti
- Department of Physics and Astronomy "Ettore Majorana", University of Catania, Catania, Italy.,Nanoscopy, CHT Erzelli, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Vincenza Barresi
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Catania, Italy
| | - Daniele Condorelli
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Catania, Italy
| | - Alberto Diaspro
- Nanoscopy, CHT Erzelli, Istituto Italiano di Tecnologia, Genoa, Italy.,DIFILAB, Department of Physics, University of Genoa, Genoa, Italy
| | - Luca Lanzanò
- Department of Physics and Astronomy "Ettore Majorana", University of Catania, Catania, Italy.,Nanoscopy, CHT Erzelli, Istituto Italiano di Tecnologia, Genoa, Italy
| |
Collapse
|
2
|
Yin J, Huang L, Wu L, Li J, James TD, Lin W. Small molecule based fluorescent chemosensors for imaging the microenvironment within specific cellular regions. Chem Soc Rev 2021; 50:12098-12150. [PMID: 34550134 DOI: 10.1039/d1cs00645b] [Citation(s) in RCA: 198] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The microenvironment (local environment), including viscosity, temperature, polarity, hypoxia, and acidic-basic status (pH), plays indispensable roles in cellular processes. Significantly, organelles require an appropriate microenvironment to perform their specific physiological functions, and disruption of the microenvironmental homeostasis could lead to malfunctions of organelles, resulting in disorder and disease development. Consequently, monitoring the microenvironment within specific organelles is vital to understand organelle-related physiopathology. Over the past few years, many fluorescent probes have been developed to help reveal variations in the microenvironment within specific cellular regions. Given that a comprehensive understanding of the microenvironment in a particular cellular region is of great significance for further exploration of life events, a thorough summary of this topic is urgently required. However, there has not been a comprehensive and critical review published recently on small-molecule fluorescent chemosensors for the cellular microenvironment. With this review, we summarize the recent progress since 2015 towards small-molecule based fluorescent probes for imaging the microenvironment within specific cellular regions, including the mitochondria, lysosomes, lipid drops, endoplasmic reticulum, golgi, nucleus, cytoplasmic matrix and cell membrane. Further classifications at the suborganelle level, according to detection of microenvironmental factors by probes, including polarity, viscosity, temperature, pH and hypoxia, are presented. Notably, in each category, design principles, chemical synthesis, recognition mechanism, fluorescent signals, and bio-imaging applications are summarized and compared. In addition, the limitations of the current microenvironment-sensitive probes are analyzed and the prospects for future developments are outlined. In a nutshell, this review comprehensively summarizes and highlights recent progress towards small molecule based fluorescent probes for sensing and imaging the microenvironment within specific cellular regions since 2015. We anticipate that this summary will facilitate a deeper understanding of the topic and encourage research directed towards the development of probes for the detection of cellular microenvironments.
Collapse
Affiliation(s)
- Junling Yin
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, People's Republic of China
| | - Ling Huang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China.
| | - Luling Wu
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Jiangfeng Li
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Weiying Lin
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China.
| |
Collapse
|
3
|
Barnoy EA, Popovtzer R, Fixler D. Fluorescence for biological logic gates. JOURNAL OF BIOPHOTONICS 2020; 13:e202000158. [PMID: 32537894 DOI: 10.1002/jbio.202000158] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 05/03/2023]
Abstract
Biological logic gates are smart probes able to respond to biological conditions in behaviors similar to computer logic gates, and they pose a promising challenge for modern medicine. Researchers are creating many kinds of smart nanostructures that can respond to various biological parameters such as pH, ion presence, and enzyme activity. Each of these conditions alone might be interesting in a biological sense, but their interactions are what define specific disease conditions. Researchers over the past few decades have developed a plethora of stimuli-responsive nanodevices, from activatable fluorescent probes to DNA origami nanomachines, many explicitly defining logic operations. Whereas many smart configurations have been explored, in this review we focus on logic operations actuated through fluorescent signals. We discuss the applicability of fluorescence as a means of logic gate implementation, and consider the use of both fluorescence intensity as well as fluorescence lifetime.
Collapse
Affiliation(s)
- Eran A Barnoy
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Rachela Popovtzer
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Dror Fixler
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| |
Collapse
|
4
|
Prasannan D, Vasu ST, Arunkumar C, Parameswaran P. Development of alkyne-BODIPYs as viscosity sensitive fluorescent probes for enumeration of bacterial cells. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424620500194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We report a series of alkyne-functionalized meso-aryl boron dipyrrin (BODIPY) molecular rotors sensitive to viscosity. The planar and twisted conformation within the molecular structure decides the viscosity-dependent behavior. The variations in fluorescence lifetime and intensity were appreciable to the local viscosity. Hence, the dye has been successfully employed in the enumeration of microbes by considering the proportionate fluorescence intensity of the BODIPYs as an index of the number of cells per mL. With increasing cells per mL, the viscosity of the bacterial solution is increased. Consequently, the fluorescence intensity of the sample containing BODIPY tends to increase due to the restricted rotation in the viscous medium. The BODIPY probe offers high sensitivity and is easier than other conventional techniques of colony-forming unit (CFU) determination. The theoretical studies indicate that intramolecular charge transfer is responsible for the enhanced fluorescence intensity in a highly viscous solvent.
Collapse
Affiliation(s)
- Dijo Prasannan
- Bioinorganic Materials Research Laboratory, Department of Chemistry, National Institute of Technology Calicut, NIT Campus P.O., Calicut, India-673 601, India
| | - Suchithra Tharamel Vasu
- School of Biotechnology, National Institute of Technology Calicut, NIT Campus P.O., Calicut, India-673 601, India
| | - Chellaiah Arunkumar
- Bioinorganic Materials Research Laboratory, Department of Chemistry, National Institute of Technology Calicut, NIT Campus P.O., Calicut, India-673 601, India
| | - Pattiyil Parameswaran
- Theoretical and Computational Chemistry Laboratory, Department of Chemistry, National Institute of Technology Calicut, NIT Campus P.O., Calicut, India-673 601, India
| |
Collapse
|
5
|
Polita A, Toliautas S, Žvirblis R, Vyšniauskas A. The effect of solvent polarity and macromolecular crowding on the viscosity sensitivity of a molecular rotor BODIPY-C10. Phys Chem Chem Phys 2020; 22:8296-8303. [DOI: 10.1039/c9cp06865a] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Viscosity is the key parameter of many biological systems such as live cells. It can be conveniently measured with ‘molecular rotors’ – fluorescent sensors of microviscosity. Here, we investigate one of the most applied molecular rotors BODIPY-C10.
Collapse
Affiliation(s)
- Artūras Polita
- Center of Physical Sciences and Technology
- Vilnius
- Lithuania
| | - Stepas Toliautas
- Institute of Chemical Physics
- Faculty of Physics
- Vilnius University
- 10222 Vilnius
- Lithuania
| | - Rokas Žvirblis
- Center of Physical Sciences and Technology
- Vilnius
- Lithuania
| | | |
Collapse
|
6
|
Abbandonato G, Polli D, Viola D, Cerullo G, Storti B, Cardarelli F, Salomone F, Nifosì R, Signore G, Bizzarri R. Simultaneous Detection of Local Polarizability and Viscosity by a Single Fluorescent Probe in Cells. Biophys J 2019; 114:2212-2220. [PMID: 29742414 DOI: 10.1016/j.bpj.2018.02.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/14/2018] [Accepted: 02/14/2018] [Indexed: 11/29/2022] Open
Abstract
Many intracellular reactions are dependent on the dielectric ("polarity") and viscosity properties of their milieu. Fluorescence imaging offers a convenient strategy to report on such environmental properties. Yet, concomitant and independent monitoring of polarity and viscosity in cells at submicron scale is currently hampered by the lack of fluorescence probes characterized by unmixed responses to both parameters. Here, the peculiar photophysics of a green fluorescent protein chromophore analog is exploited for quantifying and imaging polarity and viscosity independently in living cells. We show that the polarity and viscosity profile around a novel hybrid drug-delivery peptide changes dramatically upon cell internalization via endosomes, shedding light on the spatiotemporal features of the release mechanism. Accordingly, our fluorescent probe opens the way to monitor the environmental effects on several processes relevant to cell biochemistry and nanomedicine.
Collapse
Affiliation(s)
| | - Dario Polli
- IFN-CNR and Dipartimento di Fisica, Politecnico di Milano, Milano, Italy; Center for Nano Science and Technology at Polimi, Istituto Italiano di Tecnologia, Milano, Italy
| | - Daniele Viola
- IFN-CNR and Dipartimento di Fisica, Politecnico di Milano, Milano, Italy
| | - Giulio Cerullo
- IFN-CNR and Dipartimento di Fisica, Politecnico di Milano, Milano, Italy
| | - Barbara Storti
- NEST, Scuola Normale Superiore and NANO-CNR, Pisa, Italy
| | - Francesco Cardarelli
- NEST, Scuola Normale Superiore and NANO-CNR, Pisa, Italy; Center for Nanotechnology Innovation at NEST, Istituto Italiano di Tecnologia, Pisa, Italy
| | | | | | - Giovanni Signore
- NEST, Scuola Normale Superiore and NANO-CNR, Pisa, Italy; Center for Nanotechnology Innovation at NEST, Istituto Italiano di Tecnologia, Pisa, Italy.
| | | |
Collapse
|
7
|
Abbandonato G, Storti B, Tonazzini I, Stöckl M, Subramaniam V, Montis C, Nifosì R, Cecchini M, Signore G, Bizzarri R. Lipid-Conjugated Rigidochromic Probe Discloses Membrane Alteration in Model Cells of Krabbe Disease. Biophys J 2018; 116:477-486. [PMID: 30709620 DOI: 10.1016/j.bpj.2018.11.3141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/15/2018] [Accepted: 11/16/2018] [Indexed: 01/06/2023] Open
Abstract
The plasma membrane of cells has a complex architecture based on the bidimensional liquid-crystalline bilayer arrangement of phospho- and sphingolipids, which in turn embeds several proteins and is connected to the cytoskeleton. Several studies highlight the spatial membrane organization into more ordered (Lo or lipid raft) and more disordered (Ld) domains. We here report on a fluorescent analog of the green fluorescent protein chromophore that, when conjugated to a phospholipid, enables the quantification of the Lo and Ld domains in living cells on account of its large fluorescence lifetime variation in the two phases. The domain composition is straightforwardly obtained by the phasor approach to confocal fluorescence lifetime imaging, a graphical method that does not require global fitting of the fluorescence decay in every spatial position of the sample. Our imaging strategy was applied to recover the domain composition in human oligodendrocytes at rest and under treatment with galactosylsphingosine (psychosine). Exogenous psychosine administration recapitulates many of the molecular fingerprints of a severe neurological disease, globoid cell leukodystrophy, better known as Krabbe disease. We found out that psychosine progressively destabilizes plasma membrane, as witnessed by a shrinking of the Lo fraction. The unchanged levels of galactosyl ceramidase, i.e., the enzyme lacking in Krabbe disease, upon psychosine treatment suggest that psychosine alters the plasma membrane structure by direct physical effect, as also recently demonstrated in model membranes.
Collapse
Affiliation(s)
- Gerardo Abbandonato
- NEST, Scuola Normale Superiore and Istituto Nanoscienze CNR (NANO-CNR), Piazza San Silvestro, Pisa, Italy
| | - Barbara Storti
- NEST, Scuola Normale Superiore and Istituto Nanoscienze CNR (NANO-CNR), Piazza San Silvestro, Pisa, Italy
| | - Ilaria Tonazzini
- NEST, Scuola Normale Superiore and Istituto Nanoscienze CNR (NANO-CNR), Piazza San Silvestro, Pisa, Italy
| | - Martin Stöckl
- Bioimaging Center, Department of Biology, Universität Konstanz, Konstanz, Germany
| | - Vinod Subramaniam
- Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Nanobiophysics, MESA+ Institute for Nanotechnology and MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Costanza Montis
- Department of Chemistry and CSGI, University of Florence, Florence, Italy
| | - Riccardo Nifosì
- NEST, Scuola Normale Superiore and Istituto Nanoscienze CNR (NANO-CNR), Piazza San Silvestro, Pisa, Italy
| | - Marco Cecchini
- NEST, Scuola Normale Superiore and Istituto Nanoscienze CNR (NANO-CNR), Piazza San Silvestro, Pisa, Italy
| | - Giovanni Signore
- NEST, Scuola Normale Superiore and Istituto Nanoscienze CNR (NANO-CNR), Piazza San Silvestro, Pisa, Italy; Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Pisa, Italy.
| | - Ranieri Bizzarri
- NEST, Scuola Normale Superiore and Istituto Nanoscienze CNR (NANO-CNR), Piazza San Silvestro, Pisa, Italy; Department of Chemistry and CSGI, University of Florence, Florence, Italy.
| |
Collapse
|
8
|
Macchiagodena M, Del Frate G, Brancato G, Chandramouli B, Mancini G, Barone V. Computational study of the DPAP molecular rotor in various environments: from force field development to molecular dynamics simulations and spectroscopic calculations. Phys Chem Chem Phys 2018; 19:30590-30602. [PMID: 29115317 DOI: 10.1039/c7cp04688j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Fluorescent molecular rotors (FMRs) belong to an important class of environment-sensitive dyes capable of acting as nanoprobes in the measurement of viscosity and polarity of their micro-environment. FMRs have found widespread applications in various research fields, ranging from analytical to biochemical sciences, for example in intracellular imaging studies or in volatile organic compound detection. Here, a computational investigation of a recently proposed FMR, namely 4-(diphenylamino)phthalonitrile (DPAP), in various chemical environments is presented. A purposely developed molecular mechanics force field is proposed and then applied to simulate the rotor in a high- and low-polar solvent (i.e., acetonitrile, tetrahydrofuran, o-xylene and cyclohexane), a polymer matrix and a lipid membrane. Subtle effects of the molecular interactions with the embedding medium, the structural fluctuations of the rotor and its rotational dynamics are analyzed in some detail. The results correlate with a previous work, thus supporting the reliability of the model, and provide further insights into the environment-specific properties of the dye. In particular, it is shown how molecular diffusion and rotational correlation times of the FMR are affected by the surrounding medium and how the molecular orientation of the dye becomes anisotropic once immersed in the lipid bilayer. Moreover, a qualitative correlation between the FMR rotational dynamics and the fluorescence lifetime is detected, a result in line with the observed viscosity dependence of its emission. Finally, optical absorption spectra are computed and successfully compared with their experimental counterparts.
Collapse
|
9
|
Checcucci G, Storti B, Ghetti F, Signore G, Bizzarri R. Fluorescence lifetime microscopy reveals the biologically-related photophysical heterogeneity of oxyblepharismin in light-adapted (blue) Blepharisma japonicum cells. Photochem Photobiol Sci 2017. [PMID: 28636018 DOI: 10.1039/c7pp00072c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The step-up photophobic response of the heterotrich ciliate Blepharisma japonicum is mediated by a hypericinic pigment, blepharismin, which is not present in any of the known six families of photoreceptors, namely rhodopsins, phytochromes, xanthopsins, cryptochromes, phototropins, and BLUF proteins. Upon irradiation, native cells become light-adapted (blue) by converting blepharismin into the photochemically stable oxyblepharismin (OxyBP). So far, OxyBP has been investigated mainly from a photophysical point of view in vitro, either alone or complexed with proteins. In this work, we exploit the vivid fluorescence of OxyBP to characterize its lifetime emission in blue B. Japonicum cells, on account of the recognized role of the fluorescence lifetime to provide physicochemical insights into the fluorophore environment at the nanoscale. In a biological context, OxyBP modifies its emission lifetime as compared to isotropic media. The phasor approach to fluorescence lifetime microscopy in confocal mode highlights that fluorescence originates from two excited states, whose relative balance changes throughout the cell body. Additionally, Cilia and kinetids, i.e., the organelles involved in photomovement, display lifetime asymmetry between the anterior and posterior part of the cell. From these data, some hypotheses on the phototransduction mechanism are proposed.
Collapse
Affiliation(s)
- G Checcucci
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, I-56127 Pisa, Italy.
| | | | | | | | | |
Collapse
|
10
|
Main photophysical properties of oxyblepharismin. Biophys Chem 2017; 229:5-10. [DOI: 10.1016/j.bpc.2017.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 05/19/2017] [Accepted: 05/19/2017] [Indexed: 11/22/2022]
|
11
|
Alhassawi FM, Corradini MG, Rogers MA, Ludescher RD. Potential applications of luminescent molecular rotors in food science and engineering. Crit Rev Food Sci Nutr 2017; 58:1902-1916. [DOI: 10.1080/10408398.2017.1278583] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Fatemah M. Alhassawi
- Department of Food Science, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Maria G. Corradini
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, USA
| | - Michael A. Rogers
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Richard D. Ludescher
- Department of Food Science, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
12
|
Ferri G, Storti B, Bizzarri R. Nucleocytoplasmic transport in cells with progerin-induced defective nuclear lamina. Biophys Chem 2017; 229:77-83. [PMID: 28712764 DOI: 10.1016/j.bpc.2017.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/14/2017] [Accepted: 06/14/2017] [Indexed: 10/19/2022]
Abstract
Recent data indicate that nuclear lamina (NL) plays a relevant role in many fundamental cellular functions. The peculiar role of NL in cells is dramatically demonstrated by the Hutchinson-Gilford progeria syndrome (HGPS), an inherited laminopathy that causes premature, rapid aging shortly after birth. In HGPS, a mutant form of Lamin A (progeria) leads to a dysmorphic NL structure, but how this perturbation is transduced into cellular changes is still largely unknown. Owing to the close structural relationship between NL and the Nuclear Pore Complex (NPC), in this work we test whether HGPS affects passive and active nucleo-cytoplasmic shuttling of cargoes by means of an established model based of fluorescence recovery after photobleaching. Our findings clearly demonstrate that dysmorphic NL is decoupled from the dynamic characteristics of passive and active transport towards and from the nucleus, as well as from the binding affinity of transport protein mediators.
Collapse
Affiliation(s)
- Gianmarco Ferri
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa, Italy; Center for Nanotechnology Innovation @ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Barbara Storti
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Ranieri Bizzarri
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa, Italy.
| |
Collapse
|
13
|
Su D, Teoh CL, Gao N, Xu QH, Chang YT. A Simple BODIPY-Based Viscosity Probe for Imaging of Cellular Viscosity in Live Cells. SENSORS 2016; 16:s16091397. [PMID: 27589762 PMCID: PMC5038675 DOI: 10.3390/s16091397] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 08/23/2016] [Accepted: 08/26/2016] [Indexed: 12/25/2022]
Abstract
Intracellular viscosity is a fundamental physical parameter that indicates the functioning of cells. In this work, we developed a simple boron-dipyrromethene (BODIPY)-based probe, BTV, for cellular mitochondria viscosity imaging by coupling a simple BODIPY rotor with a mitochondria-targeting unit. The BTV exhibited a significant fluorescence intensity enhancement of more than 100-fold as the solvent viscosity increased. Also, the probe showed a direct linear relationship between the fluorescence lifetime and the media viscosity, which makes it possible to trace the change of the medium viscosity. Furthermore, it was demonstrated that BTV could achieve practical applicability in the monitoring of mitochondrial viscosity changes in live cells through fluorescence lifetime imaging microscopy (FLIM).
Collapse
Affiliation(s)
- Dongdong Su
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore.
| | - Chai Lean Teoh
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore.
| | - Nengyue Gao
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.
| | - Qing-Hua Xu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.
| | - Young-Tae Chang
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore.
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
14
|
Walker AS, Rablen PX, Schepartz A. Rotamer-Restricted Fluorogenicity of the Bis-Arsenical ReAsH. J Am Chem Soc 2016; 138:7143-50. [PMID: 27163487 PMCID: PMC5381806 DOI: 10.1021/jacs.6b03422] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fluorogenic dyes such as FlAsH and ReAsH are used widely to localize, monitor, and characterize proteins and their assemblies in live cells. These bis-arsenical dyes can become fluorescent when bound to a protein containing four proximal Cys thiols-a tetracysteine (Cys4) motif. Yet the mechanism by which bis-arsenicals become fluorescent upon binding a Cys4 motif is unknown, and this nescience limits more widespread application of this tool. Here we probe the origins of ReAsH fluorogenicity using both computation and experiment. Our results support a model in which ReAsH fluorescence depends on the relative orientation of the aryl chromophore and the appended arsenic chelate: the fluorescence is rotamer-restricted. Our results do not support a model in which fluorogenicity arises from the relief of ring strain. The calculations identify those As-aryl rotamers that support fluorescence and those that do not and correlate well with prior experiments. The rotamer-restricted model we propose is supported further by biophysical studies: the excited-state fluorescence lifetime of a complex between ReAsH and a protein bearing a high-affinity Cys4 motif is longer than that of ReAsH-EDT2, and the fluorescence intensity of ReAsH-EDT2 increases in solvents of increasing viscosity. By providing a higher resolution view of the structural basis for fluorogenicity, these results provide a clear strategy for the design of more selective bis-arsenicals and better-optimized protein targets, with a concomitant improvement in the ability to characterize previously invisible protein conformational changes and assemblies in live cells.
Collapse
Affiliation(s)
- Allison S. Walker
- Department of Chemistry, Yale University, 225 Prospect St., New Haven CT 06520
| | - Paul X. Rablen
- Department of Chemistry & Biochemistry, Swarthmore College, 500 College Ave., Swarthmore, PA 19081
| | - Alanna Schepartz
- Department of Chemistry, Yale University, 225 Prospect St., New Haven CT 06520
- Department of Molecular, Cellular, and Developmental Biology, Yale University, 225 Prospect St., New Haven CT 06520
| |
Collapse
|
15
|
G. Corradini M, Lavinia Wang Y, Le A, M. Waxman S, Zelent B, Chib R, Gryczynski I, D. Ludescher R. Identifying and selecting edible luminescent probes as sensors of food quality. AIMS BIOPHYSICS 2016. [DOI: 10.3934/biophy.2016.2.319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
16
|
Dent MR, López-Duarte I, Dickson CJ, Chairatana P, Anderson HL, Gould IR, Wylie D, Vyšniauskas A, Brooks NJ, Kuimova MK. Imaging plasma membrane phase behaviour in live cells using a thiophene-based molecular rotor. Chem Commun (Camb) 2016; 52:13269-13272. [DOI: 10.1039/c6cc05954f] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A thiophene-based molecular rotor was used to probe ordering and viscosity within artificial lipid bilayers and live cell plasma membranes.
Collapse
Affiliation(s)
| | - Ismael López-Duarte
- Department of Chemistry
- Imperial College London
- London
- UK
- Department of Chemistry
| | - Callum J. Dickson
- Computer-Aided Drug Discovery
- Global Discovery Chemistry
- Novartis Institutes for BioMedical Research
- Cambridge
- USA
| | - Phoom Chairatana
- Department of Chemistry
- Chemistry Research Laboratory
- Oxford University
- Oxford
- UK
| | - Harry L. Anderson
- Department of Chemistry
- Chemistry Research Laboratory
- Oxford University
- Oxford
- UK
| | - Ian R. Gould
- Department of Chemistry
- Imperial College London
- London
- UK
| | - Douglas Wylie
- Department of Chemistry
- Imperial College London
- London
- UK
| | | | | | | |
Collapse
|