1
|
Venkateshwarlu A, Akshayveer, Singh S, Melnik R. Piezoelectricity and flexoelectricity in biological cells: the role of cell structure and organelles. Biomech Model Mechanobiol 2024:10.1007/s10237-024-01895-7. [PMID: 39455540 DOI: 10.1007/s10237-024-01895-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024]
Abstract
Living tissues experience various external forces on cells, influencing their behaviour, physiology, shape, gene expression, and destiny through interactions with their environment. Despite much research done in this area, challenges remain in our better understanding of the behaviour of the cell in response to external stimuli, including the arrangement, quantity, and shape of organelles within the cell. This study explores the electromechanical behaviour of biological cells, including organelles like microtubules, mitochondria, nuclei, and cell membranes. A two-dimensional bio-electromechanical model for two distinct cell structures has been developed to analyze the behavior of the biological cell to the external electrical and mechanical responses. The piezoelectric and flexoelectric effects have been included via multiphysics coupling for the biological cell. All the governing equations have been discretized and solved by the finite element method. It is found that the longitudinal stress is absent and only the transverse stress plays a crucial role when the mechanical load is imposed on the top side of the cell through compressive displacement. The impact of flexoelectricity is elucidated by introducing a new parameter called the maximum electric potential ratio ( V R , max ). It has been found that V R , max depends upon the orientation angle and shape of the microtubules. The magnitude of V R , max exhibit huge change when we change the shape and orientation of the organelles, which in some cases (boundary condition (BC)-3) can reach to three times of regular shape organelles. Further, the study reveals that the number of microtubules significantly impacts effective elastic and piezoelectric coefficients, affecting cell behavior based on structure, microtubule orientation, and mechanical stress direction. The insight obtained from the current study can assist in advancements in medical therapies such as tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Akepogu Venkateshwarlu
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON, N2L 3C5, Canada.
| | - Akshayveer
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON, N2L 3C5, Canada
| | - Sundeep Singh
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada
| | - Roderick Melnik
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON, N2L 3C5, Canada
| |
Collapse
|
2
|
James EC, Tomaskovic‐Crook E, Crook JM. Engineering 3D Scaffold-Free Nanoparticle-Laden Stem Cell Constructs for Piezoelectric Enhancement of Human Neural Tissue Formation and Function. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310010. [PMID: 39049737 PMCID: PMC11516115 DOI: 10.1002/advs.202310010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/04/2024] [Indexed: 07/27/2024]
Abstract
Electrical stimulation (ES) of cellular systems can be utilized for biotechnological applications and electroceuticals (bioelectric medicine). Neural cell stimulation especially has a long history in neuroscience research and is increasingly applied for clinical therapies. Application of ES via conventional electrodes requires external connectors and power sources, hindering scientific and therapeutic applications. Here engineering novel 3D scaffold-free human neural stem cell constructs with integrated piezoelectric nanoparticles for enhanced neural tissue induction and function is described. Tetragonal barium titanate (BaTi03) nanoparticles are employed as piezoelectric stimulators prepared as cytocompatible dispersions, incorporated into 3D self-organizing neural spheroids, and activated wirelessly by ultrasound. Ultrasound delivery (low frequency; 40 kHz) is optimized for cell survival, and nanoparticle activation enabled ES throughout the spheroids during differentiation, tissue formation, and maturation. The resultant human neural tissues represent the first example of direct tissue loading with piezoelectric particles for ensuing 3D ultrasound-mediated piezoelectric enhancement of human neuronal induction from stem cells, including augmented neuritogenesis and synaptogenesis. It is anticipated that the platform described will facilitate advanced tissue engineering and in vitro modeling of human neural (and potentially non-neural) tissues, with modeling including tissue development and pathology, and applicable to preclinical testing and prototyping of both electroceuticals and pharmaceuticals.
Collapse
Affiliation(s)
- Emma Claire James
- ARC Centre of Excellence for Electromaterials ScienceIntelligent Polymer Research InstituteAIIM FacilityUniversity of WollongongFairy MeadowNSW2519Australia
- Arto Hardy Family Biomedical Innovation HubChris O'Brien LifehouseCamperdownNSW2050Australia
| | - Eva Tomaskovic‐Crook
- ARC Centre of Excellence for Electromaterials ScienceIntelligent Polymer Research InstituteAIIM FacilityUniversity of WollongongFairy MeadowNSW2519Australia
- Arto Hardy Family Biomedical Innovation HubChris O'Brien LifehouseCamperdownNSW2050Australia
- School of Medical SciencesFaculty of Medicine and HealthThe University of SydneyCamperdownNSW2006Australia
| | - Jeremy Micah Crook
- ARC Centre of Excellence for Electromaterials ScienceIntelligent Polymer Research InstituteAIIM FacilityUniversity of WollongongFairy MeadowNSW2519Australia
- Arto Hardy Family Biomedical Innovation HubChris O'Brien LifehouseCamperdownNSW2050Australia
- School of Medical SciencesFaculty of Medicine and HealthThe University of SydneyCamperdownNSW2006Australia
- Institute of Innovative MaterialsAIIM FacilityInnovation CampusFaculty of Engineering and Information SystemsUniversity of WollongongFairy MeadowNSW2519Australia
| |
Collapse
|
3
|
Zhang L, Ma M, Li J, Qiao K, Xie Y, Zheng Y. Stimuli-responsive microcarriers and their application in tissue repair: A review of magnetic and electroactive microcarrier. Bioact Mater 2024; 39:147-162. [PMID: 38808158 PMCID: PMC11130597 DOI: 10.1016/j.bioactmat.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/07/2024] [Accepted: 05/07/2024] [Indexed: 05/30/2024] Open
Abstract
Microcarrier applications have made great advances in tissue engineering in recent years, which can load cells, drugs, and bioactive factors. These microcarriers can be minimally injected into the defect to help reconstruct a good microenvironment for tissue repair. In order to achieve more ideal performance and face more complex tissue damage, an increasing amount of effort has been focused on microcarriers that can actively respond to external stimuli. These microcarriers have the functions of directional movement, targeted enrichment, material release control, and providing signals conducive to tissue repair. Given the high controllability and designability of magnetic and electroactive microcarriers, the research progress of these microcarriers is highlighted in this review. Their structure, function and applications, potential tissue repair mechanisms, and challenges are discussed. In summary, through the design with clinical translation ability, meaningful and comprehensive experimental characterization, and in-depth study and application of tissue repair mechanisms, stimuli-responsive microcarriers have great potential in tissue repair.
Collapse
Affiliation(s)
- LiYang Zhang
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Mengjiao Ma
- Beijing Wanjie Medical Device Co., Ltd, Beijing, China
| | - Junfei Li
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Kun Qiao
- Beijing Gerecov Technology Company Ltd., Beijing, China
| | - Yajie Xie
- Beijing Gerecov Technology Company Ltd., Beijing, China
| | - Yudong Zheng
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
4
|
Huang Y, Yao K, Zhang Q, Huang X, Chen Z, Zhou Y, Yu X. Bioelectronics for electrical stimulation: materials, devices and biomedical applications. Chem Soc Rev 2024; 53:8632-8712. [PMID: 39132912 DOI: 10.1039/d4cs00413b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Bioelectronics is a hot research topic, yet an important tool, as it facilitates the creation of advanced medical devices that interact with biological systems to effectively diagnose, monitor and treat a broad spectrum of health conditions. Electrical stimulation (ES) is a pivotal technique in bioelectronics, offering a precise, non-pharmacological means to modulate and control biological processes across molecular, cellular, tissue, and organ levels. This method holds the potential to restore or enhance physiological functions compromised by diseases or injuries by integrating sophisticated electrical signals, device interfaces, and designs tailored to specific biological mechanisms. This review explains the mechanisms by which ES influences cellular behaviors, introduces the essential stimulation principles, discusses the performance requirements for optimal ES systems, and highlights the representative applications. From this review, we can realize the potential of ES based bioelectronics in therapy, regenerative medicine and rehabilitation engineering technologies, ranging from tissue engineering to neurological technologies, and the modulation of cardiovascular and cognitive functions. This review underscores the versatility of ES in various biomedical contexts and emphasizes the need to adapt to complex biological and clinical landscapes it addresses.
Collapse
Affiliation(s)
- Ya Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Kuanming Yao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Qiang Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xingcan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhenlin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yu Zhou
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
5
|
Wang C, Zhou G, Guo X, Zhang W, Wu C. Electrical Stimulation Promotes Endocytosis of Magnetic Nanoparticles by Cancer Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2403381. [PMID: 39126240 DOI: 10.1002/smll.202403381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Indexed: 08/12/2024]
Abstract
Nanomaterials are increasingly used in biomedical imaging and cancer therapy, and how to improve the endocytosis of nanomaterials by cells is a key issue. The application of alternating current (AC) electrical stimulation to osteosarcoma cells (MG-63) here can increase the cellular endocytosis of Fe3O4 nanoparticles (diameter: 50 nm) by 52.46% via macropinocytosis. This can be ascribed to the decrease in F-actin content and the increase in intracellular Ca2+ concentration. Transmission electron microscope, immunofluorescence staining, western blot, flow cytometry, and inductively coupled plasma emission spectrometer analyses support this interpretation. The application of electrical stimulation decreases the cell viability in magnetic hyperthermia by 47.6% and increases the signal intensity of magnetic resonance imaging by 29%. Similar enhanced endocytosis is observed for breast cancer cells (MCF-7), glioblastoma cells (U-87 MG), melanoma cells (A-375), and bladder cancer cells (TCCSUP), and also for Fe3O4 nanoparticles with the diameters of 20 and 100 nm, and Zn0.54Co0.46Cr0.65Fe1.35O4 nanoparticles with the diameter of 70 nm. It seems the electrical stimulation has the potential to improve the diagnostic and therapeutic effects of magnetic nanoparticles by promoting endocytosis.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Guanlin Zhou
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Xu Guo
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Wei Zhang
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Chengwei Wu
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
6
|
Liu K, Yan S, Liu Y, Liu J, Li R, Zhao L, Liu B. Conductive and alignment-optimized porous fiber conduits with electrical stimulation for peripheral nerve regeneration. Mater Today Bio 2024; 26:101064. [PMID: 38698883 PMCID: PMC11063606 DOI: 10.1016/j.mtbio.2024.101064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024] Open
Abstract
Autologous nerve transplantation (ANT) is currently considered the gold standard for treating long-distance peripheral nerve defects. However, several challenges associated with ANT, such as limited availability of donors, donor site injury, mismatched nerve diameters, and local neuroma formation, remain unresolved. To address these issues comprehensively, we have developed porous poly(lactic-co-glycolic acid) (PLGA) electrospinning fiber nerve guide conduits (NGCs) that are optimized in terms of alignment and conductive coating to facilitate peripheral nerve regeneration (PNR) under electrical stimulation (ES). The physicochemical and biological properties of aligned porous PLGA fibers and poly(3,4-ethylenedioxythiophene):polystyrene sodium sulfonate (PEDOT:PSS) coatings were characterized through assessments of electrical conductivity, surface morphology, mechanical properties, hydrophilicity, and cell proliferation. Material degradation experiments demonstrated the biocompatibility in vivo of electrospinning fiber films with conductive coatings. The conductive NGCs combined with ES effectively facilitated nerve regeneration. The designed porous aligned NGCs with conductive coatings exhibited suitable physicochemical properties and excellent biocompatibility, thereby significantly enhancing PNR when combined with ES. This combination of porous aligned NGCs with conductive coatings and ES holds great promise for applications in the field of PNR.
Collapse
Affiliation(s)
- Kai Liu
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, 130021, China
- Engineering Laboratory of Tissue Engineering Biomaterials of Jilin Province, Changchun, 130021, China
| | - Shuai Yan
- Department of Operating Room, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yao Liu
- Engineering Laboratory of Tissue Engineering Biomaterials of Jilin Province, Changchun, 130021, China
- Department of Sport Medicine, Orthopedics Center, First Hospital of Jilin University, Changchun, 130021, China
| | - Jianfeng Liu
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, 130021, China
- Engineering Laboratory of Tissue Engineering Biomaterials of Jilin Province, Changchun, 130021, China
| | - Ruijun Li
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, 130021, China
- Engineering Laboratory of Tissue Engineering Biomaterials of Jilin Province, Changchun, 130021, China
| | - Lirong Zhao
- Department of Ultrasound, The First Hospital of Jilin University, Changchun, 130021, China
| | - Bin Liu
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, 130021, China
- Engineering Laboratory of Tissue Engineering Biomaterials of Jilin Province, Changchun, 130021, China
| |
Collapse
|
7
|
Ghosh S, Roy P, Lahiri D. Development of Anisotropic Electrically Conductive GNP-Reinforced PCL-Collagen Scaffold for Enhanced Neurogenic Differentiation under Electrical Stimulation. Chem Asian J 2024; 19:e202400061. [PMID: 38547362 DOI: 10.1002/asia.202400061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/20/2024] [Indexed: 04/26/2024]
Abstract
The internal electric field of the human body plays a crucial role in regulating various biological processes, such as, cellular interactions, embryonic development and the healing process. Electrical stimulation (ES) modulates cytoskeleton and calcium ion activities to restore nervous system functioning. When exposed to electrical fields, stem cells respond similarly to neurons, muscle cells, blood vessel linings, and connective tissue (fibroblasts), depending on their environment. This study develops cost-effective electroconductive scaffolds for regenerative therapy. This was achieved by incorporating carboxy functionalized graphene nanoplatelets (GNPs) into a Polycaprolactone (PCL)-collagen matrix. ES was used to assess the scaffolds' propensity to boost neuronal differentiation from MSCs. This study reported that aligned GNP-reinforced PCL-Collagen scaffolds demonstrate substantial MSC differentiation with ES. This work effectively develops scaffolds using a simple, cost-effective synthesis approach. The direct coupling approach generated a homogeneous electric field to stimulate cells cultured on GNP-reinforced scaffolds. The scaffolds exhibited improved mechanical and electrical characteristics, as a result of the reinforcement with carbon nanofillers. In vitro results suggest that electrical stimulation helps differentiation of mesenchymal stem-like cells (MSC-like) towards neuronal. This finding holds great potential for the development of effective treatments for tissue injuries related to the nervous system.
Collapse
Affiliation(s)
- Souvik Ghosh
- Biomaterials and Multiscale Mechanics Lab, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, 247667, Roorkee, Uttarakhand, India
- Molecular Endocrinology Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, 247667, Roorkee, Uttarakhand, India
- Centre of Nanotechnology, Indian Institute of Technology Roorkee, 247667, Roorkee, Uttarakhand, India
- Present address: Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, 13210, Syracuse, NY, USA
| | - Partha Roy
- Molecular Endocrinology Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, 247667, Roorkee, Uttarakhand, India
| | - Debrupa Lahiri
- Biomaterials and Multiscale Mechanics Lab, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, 247667, Roorkee, Uttarakhand, India
- Centre of Nanotechnology, Indian Institute of Technology Roorkee, 247667, Roorkee, Uttarakhand, India
| |
Collapse
|
8
|
Hahn F, Ferrandez-Montero A, Queri M, Vancaeyzeele C, Plesse C, Agniel R, Leroy-Dudal J. Electroactive 4D Porous Scaffold Based on Conducting Polymer as a Responsive and Dynamic In Vitro Cell Culture Platform. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5613-5626. [PMID: 38278772 PMCID: PMC10859895 DOI: 10.1021/acsami.3c16686] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
In vivo, cells reside in a 3D porous and dynamic microenvironment. It provides biochemical and biophysical cues that regulate cell behavior in physiological and pathological processes. In the context of fundamental cell biology research, tissue engineering, and cell-based drug screening systems, a challenge is to develop relevant in vitro models that could integrate the dynamic properties of the cell microenvironment. Taking advantage of the promising high internal phase emulsion templating, we here designed a polyHIPE scaffold with a wide interconnected porosity and functionalized its internal 3D surface with a thin layer of electroactive conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) to turn it into a 4D electroresponsive scaffold. The resulting scaffold was cytocompatible with fibroblasts, supported cellular infiltration, and hosted cells, which display a 3D spreading morphology. It demonstrated robust actuation in ion- and protein-rich complex culture media, and its electroresponsiveness was not altered by fibroblast colonization. Thanks to customized electrochemical stimulation setups, the electromechanical response of the polyHIPE/PEDOT scaffolds was characterized in situ under a confocal microscope and showed 10% reversible volume variations. Finally, the setups were used to monitor in real time and in situ fibroblasts cultured into the polyHIPE/PEDOT scaffold during several cycles of electromechanical stimuli. Thus, we demonstrated the proof of concept of this tunable scaffold as a tool for future 4D cell culture and mechanobiology studies.
Collapse
Affiliation(s)
- Franziska Hahn
- Equipe
de Recherche sur les Relations Matrice Extracellulaire-Cellules (ERRMECe),
Groupe Matrice Extracellulaire et Physiopathologie (MECuP), I-Mat, CY Cergy Paris Université, 95000 Neuville
sur Oise, France
- Laboratoire
de Physicochimie des Polymères et des Interfaces (LPPI), I-Mat, CY Cergy Paris Université, 95000 Neuville sur Oise, France
| | - Ana Ferrandez-Montero
- Equipe
de Recherche sur les Relations Matrice Extracellulaire-Cellules (ERRMECe),
Groupe Matrice Extracellulaire et Physiopathologie (MECuP), I-Mat, CY Cergy Paris Université, 95000 Neuville
sur Oise, France
- Laboratoire
de Physicochimie des Polymères et des Interfaces (LPPI), I-Mat, CY Cergy Paris Université, 95000 Neuville sur Oise, France
- Instituto
de Ceramica y Vidrio (ICV), CSIC, Campus Cantoblanco, Kelsen 5., 28049 Madrid, Spain
| | - Mélodie Queri
- Equipe
de Recherche sur les Relations Matrice Extracellulaire-Cellules (ERRMECe),
Groupe Matrice Extracellulaire et Physiopathologie (MECuP), I-Mat, CY Cergy Paris Université, 95000 Neuville
sur Oise, France
- Laboratoire
de Physicochimie des Polymères et des Interfaces (LPPI), I-Mat, CY Cergy Paris Université, 95000 Neuville sur Oise, France
| | - Cédric Vancaeyzeele
- Laboratoire
de Physicochimie des Polymères et des Interfaces (LPPI), I-Mat, CY Cergy Paris Université, 95000 Neuville sur Oise, France
| | - Cédric Plesse
- Laboratoire
de Physicochimie des Polymères et des Interfaces (LPPI), I-Mat, CY Cergy Paris Université, 95000 Neuville sur Oise, France
| | - Rémy Agniel
- Equipe
de Recherche sur les Relations Matrice Extracellulaire-Cellules (ERRMECe),
Groupe Matrice Extracellulaire et Physiopathologie (MECuP), I-Mat, CY Cergy Paris Université, 95000 Neuville
sur Oise, France
| | - Johanne Leroy-Dudal
- Equipe
de Recherche sur les Relations Matrice Extracellulaire-Cellules (ERRMECe),
Groupe Matrice Extracellulaire et Physiopathologie (MECuP), I-Mat, CY Cergy Paris Université, 95000 Neuville
sur Oise, France
| |
Collapse
|
9
|
Liu L, Liu X, Chen Y, Kong M, Zhang J, Jiang M, Zhou H, Yang J, Chen X, Zhang Z, Wu C, Jiang X, Zhang J. Paxillin/HDAC6 regulates microtubule acetylation to promote directional migration of keratinocytes driven by electric fields. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119628. [PMID: 37949303 DOI: 10.1016/j.bbamcr.2023.119628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/18/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
Endogenous electric fields (EFs) have been demonstrated to facilitate wound healing by directing the migration of epidermal cells. Despite the identification of numerous molecules and signaling pathways that are crucial for the directional migration of keratinocytes under EFs, the underlying molecular mechanisms remain undefined. Previous studies have indicated that microtubule (MT) acetylation is linked to cell migration, while Paxillin exerts a significant influence on cell motility. Therefore, we postulated that Paxillin could enhance EF-induced directional migration of keratinocytes by modulating MT acetylation. In the present study, we observed that EFs (200 mV/mm) induced migration of human immortalized epidermal cells (HaCaT) towards the anode, while upregulating Paxillin, downregulating HDAC6, and increasing the level of microtubule acetylation. Our findings suggested that Paxillin plays a pivotal role in inhibiting HDAC6-mediated microtubule acetylation during directional migration under EF regulation. Conversely, downregulation of Paxillin decreased microtubule acetylation and electrotaxis of epidermal cells by promoting HDAC6 expression, and this effect could be reversed by the addition of tubacin, an HDAC6-specific inhibitor. Furthermore, we observed that EFs also mediated the polarization of Paxillin and acetylated α-tubulin, which is critical for directional migration. In conclusion, our study revealed that MT acetylation in EF-guided keratinocyte migration is regulated by the Paxillin/HDAC6 signaling pathway, providing a novel theoretical foundation for the molecular mechanism of EF-guided directional migration of keratinocytes.
Collapse
Affiliation(s)
- Luojia Liu
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Xiaoqiang Liu
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Ying Chen
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Meng Kong
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Jinghong Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Min Jiang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Hongling Zhou
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Jinrui Yang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Xu Chen
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Ze Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Chao Wu
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China
| | - Xupin Jiang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China.
| | - Jiaping Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 400038 Chongqing, China.
| |
Collapse
|
10
|
Qin C, Qi Z, Pan S, Xia P, Kong W, Sun B, Du H, Zhang R, Zhu L, Zhou D, Yang X. Advances in Conductive Hydrogel for Spinal Cord Injury Repair and Regeneration. Int J Nanomedicine 2023; 18:7305-7333. [PMID: 38084124 PMCID: PMC10710813 DOI: 10.2147/ijn.s436111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
Spinal cord injury (SCI) treatment represents a major challenge in clinical practice. In recent years, the rapid development of neural tissue engineering technology has provided a new therapeutic approach for spinal cord injury repair. Implanting functionalized electroconductive hydrogels (ECH) in the injury area has been shown to promote axonal regeneration and facilitate the generation of neuronal circuits by reshaping the microenvironment of SCI. ECH not only facilitate intercellular electrical signaling but, when combined with electrical stimulation, enable the transmission of electrical signals to electroactive tissue and activate bioelectric signaling pathways, thereby promoting neural tissue repair. Therefore, the implantation of ECH into damaged tissues can effectively restore physiological functions related to electrical conduction. This article focuses on the dynamic pathophysiological changes in the SCI microenvironment and discusses the mechanisms of electrical stimulation/signal in the process of SCI repair. By examining electrical activity during nerve repair, we provide insights into the mechanisms behind electrical stimulation and signaling during SCI repair. We classify conductive biomaterials, and offer an overview of the current applications and research progress of conductive hydrogels in spinal cord repair and regeneration, aiming to provide a reference for future explorations and developments in spinal cord regeneration strategies.
Collapse
Affiliation(s)
- Cheng Qin
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Zhiping Qi
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Su Pan
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Peng Xia
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Weijian Kong
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Bin Sun
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Haorui Du
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Renfeng Zhang
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Longchuan Zhu
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Dinghai Zhou
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Xiaoyu Yang
- Department of Orthopedic Surgery, the Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| |
Collapse
|
11
|
Lau LN, Cho JH, Jo YH, Yeo ISL. Biological effects of gamma-ray sterilization on 3 mol% yttria-stabilized tetragonal zirconia polycrystal: An in vitro study. J Prosthet Dent 2023; 130:936.e1-936.e9. [PMID: 37802736 DOI: 10.1016/j.prosdent.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/08/2023]
Abstract
STATEMENT OF PROBLEM Selecting the sterilization method is important because sterilization can alter the surface chemistry of implant materials, including zirconia, and influence their cellular biocompatibility. Studies on the biological effects of sterilization on implant materials are lacking. PURPOSE The purpose of this in vitro study was to evaluate the biocompatibility of gamma-ray irradiated 3 mol% yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP) compared with unirradiated titanium, 3Y-TZP, and pure gold. MATERIAL AND METHODS Disk-shaped specimens each of commercially pure grade 4 titanium, 3Y-TZP, gamma-rayed 3Y-TZP, and pure gold were prepared and evaluated for osteogenic potential by using a clonal murine cell line of immature osteoblasts derived from mice (MC3T3-E1 cells). The surface topography (n=3), chemical analysis of the disks (n=3), and cell morphology cultured on these surfaces were examined using scanning electron microscopy, confocal laser scanning microscopy, and energy dispersive spectroscopy. Cellular biocompatibility was analyzed for 1 and 3 days after seeding. Cell adhesion and spreading were evaluated using confocal laser scanning microscopy (n=3). Cell proliferation was evaluated using methyl thiazolyl tetrazolium assay (n=3). Kruskal-Wallis and Bonferroni corrections were used to evaluate the statistical significance of the intergroup differences (α=.05). RESULTS Gamma-ray sterilization of 3Y-TZP showed significantly higher surface roughness compared with titanium and gold (P<.002). On day 1, the proliferation and adhesion of MC3T3-E1 cells cultured on gamma-rayed 3Y-TZP were significantly higher than those cultured on gold (P<.05); however, cell spreading was significantly lower than that of titanium on days 1 and 3 (P<.05). On day 3, cell proliferation of gamma-rayed 3Y-TZP was significantly lower than that of unirradiated 3Y-TZP (P<.05). Cell adhesion of gamma-rayed 3Y-TZP was slightly lower than that of zirconia and titanium but without significant difference (P>.05). CONCLUSIONS Gamma-rayed zirconia exhibited increased surface roughness compared with titanium and significantly decreased bioactivity compared with titanium and zirconia. The use of gamma-ray sterilization on zirconia is not promising regarding biocompatibility, and the effect of this sterilization method on implant materials warrants further investigation.
Collapse
Affiliation(s)
- Le Na Lau
- Graduate student, Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Jun-Ho Cho
- Clinical Instructor, Department of Prosthodontics, Seoul National University Dental Hospital, Seoul, Republic of Korea
| | - Ye-Hyeon Jo
- Senior Researcher, Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - In-Sung Luke Yeo
- Professor, Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea..
| |
Collapse
|
12
|
Eftekhari BS, Song D, Janmey PA. Electrical Stimulation of Human Mesenchymal Stem Cells on Conductive Substrates Promotes Neural Priming. Macromol Biosci 2023; 23:e2300149. [PMID: 37571815 PMCID: PMC10880582 DOI: 10.1002/mabi.202300149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/29/2023] [Indexed: 08/13/2023]
Abstract
Electrical stimulation (ES) within a conductive scaffold is potentially beneficial in encouraging the differentiation of stem cells toward a neuronal phenotype. To improve stem cell-based regenerative therapies, it is essential to use electroconductive scaffolds with appropriate stiffnesses to regulate the amount and location of ES delivery. Herein, biodegradable electroconductive substrates with different stiffnesses are fabricated from chitosan-grafted-polyaniline (CS-g-PANI) copolymers. Human mesenchymal stem cells (hMSCs) cultured on soft conductive scaffolds show a morphological change with significant filopodial elongation after electrically stimulated culture along with upregulation of neuronal markers and downregulation of glial markers. Compared to stiff conductive scaffolds and non-conductive CS scaffolds, soft conductive CS-g-PANI scaffolds promote increased expression of microtubule-associated protein 2 (MAP2) and neurofilament heavy chain (NF-H) after application of ES. At the same time, there is a decrease in the expression of the glial markers glial fibrillary acidic protein (GFAP) and vimentin after ES. Furthermore, the elevation of intracellular calcium [Ca2+ ] during spontaneous, cell-generated Ca2+ transients further suggests that electric field stimulation of hMSCs cultured on conductive substrates can promote a neural-like phenotype. The findings suggest that the combination of the soft conductive CS-g-PANI substrate and ES is a promising new tool for enhancing neuronal tissue engineering outcomes.
Collapse
Affiliation(s)
| | - Dawei Song
- Department of Physiology and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul A. Janmey
- Department of Bioengineering, University of Pennsylvania, Philadelphia, USA
- Department of Physiology and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
13
|
Saveh-Shemshaki N, Barajaa MA, Otsuka T, Mirdamadi ES, Nair LS, Laurencin CT. Electroconductivity, a regenerative engineering approach to reverse rotator cuff muscle degeneration. Regen Biomater 2023; 10:rbad099. [PMID: 38020235 PMCID: PMC10676522 DOI: 10.1093/rb/rbad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/25/2023] [Accepted: 10/28/2023] [Indexed: 12/01/2023] Open
Abstract
Muscle degeneration is one the main factors that lead to the high rate of retear after a successful repair of rotator cuff (RC) tears. The current surgical practices have failed to treat patients with chronic massive rotator cuff tears (RCTs). Therefore, regenerative engineering approaches are being studied to address the challenges. Recent studies showed the promising outcomes of electroactive materials (EAMs) on the regeneration of electrically excitable tissues such as skeletal muscle. Here, we review the most important biological mechanism of RC muscle degeneration. Further, the review covers the recent studies on EAMs for muscle regeneration including RC muscle. Finally, we will discuss the future direction toward the application of EAMs for the augmentation of RCTs.
Collapse
Affiliation(s)
- Nikoo Saveh-Shemshaki
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Farmington, CT 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Mohammed A Barajaa
- Department of Biomedical Engineering, Imam Abdulrahman Bin Faisal University, Dammam 31451, Saudi Arabia
| | - Takayoshi Otsuka
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Farmington, CT 06030, USA
| | - Elnaz S Mirdamadi
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Farmington, CT 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Lakshmi S Nair
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Farmington, CT 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Cato T Laurencin
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Farmington, CT 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
14
|
Li Z, He D, Guo B, Wang Z, Yu H, Wang Y, Jin S, Yu M, Zhu L, Chen L, Ding C, Wu X, Wu T, Gong S, Mao J, Zhou Y, Luo D, Liu Y. Self-promoted electroactive biomimetic mineralized scaffolds for bacteria-infected bone regeneration. Nat Commun 2023; 14:6963. [PMID: 37907455 PMCID: PMC10618168 DOI: 10.1038/s41467-023-42598-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 10/17/2023] [Indexed: 11/02/2023] Open
Abstract
Infected bone defects are a major challenge in orthopedic treatment. Native bone tissue possesses an endogenous electroactive interface that induces stem cell differentiation and inhibits bacterial adhesion and activity. However, traditional bone substitutes have difficulty in reconstructing the electrical environment of bone. In this study, we develop a self-promoted electroactive mineralized scaffold (sp-EMS) that generates weak currents via spontaneous electrochemical reactions to activate voltage-gated Ca2+ channels, enhance adenosine triphosphate-induced actin remodeling, and ultimately achieve osteogenic differentiation of mesenchymal stem cells by activating the BMP2/Smad5 pathway. Furthermore, we show that the electroactive interface provided by the sp-EMS inhibits bacterial adhesion and activity via electrochemical products and concomitantly generated reactive oxygen species. We find that the osteogenic and antibacterial dual functions of the sp-EMS depend on its self-promoting electrical stimulation. We demonstrate that in vivo, the sp-EMS achieves complete or nearly complete in situ infected bone healing, from a rat calvarial defect model with single bacterial infection, to a rabbit open alveolar bone defect model and a beagle dog vertical bone defect model with the complex oral bacterial microenvironment. This translational study demonstrates that the electroactive bone graft presents a promising therapeutic platform for complex defect repair.
Collapse
Affiliation(s)
- Zixin Li
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, PR China
- Department of Stomatology, Peking University People's Hospital, Beijing, 100044, PR China
| | - Danqing He
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases &National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, PR China
| | - Bowen Guo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, PR China
| | - Zekun Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, PR China
| | - Huajie Yu
- Fourth Clinical Division, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| | - Yu Wang
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases &National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, PR China
| | - Shanshan Jin
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases &National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, PR China
| | - Min Yu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases &National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, PR China
| | - Lisha Zhu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases &National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, PR China
| | - Liyuan Chen
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases &National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, PR China
| | - Chengye Ding
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases &National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, PR China
| | - Xiaolan Wu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases &National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, PR China
| | - Tianhao Wu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases &National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, PR China
| | - Shiqiang Gong
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Jing Mao
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Yanheng Zhou
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases &National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, PR China
| | - Dan Luo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, PR China.
| | - Yan Liu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China.
- National Center for Stomatology & National Clinical Research Center for Oral Diseases &National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & Translational Research Center for Orocraniofacial Stem Cells and Systemic Health, Beijing, 100081, PR China.
| |
Collapse
|
15
|
Wang P, Li M, Gao T, Fan J, Zhang D, Zhao Y, Zhao Y, Wang Y, Guo T, Gao X, Liu Y, Gao Y, Guan X, Sun X, Zhao J, Li H, Yang L. Vascular Electrical Stimulation with Wireless, Battery-Free, and Fully Implantable Features Reduces Atherosclerotic Plaque Formation Through Sirt1-Mediated Autophagy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300584. [PMID: 37267941 DOI: 10.1002/smll.202300584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/18/2023] [Indexed: 06/04/2023]
Abstract
Electrical stimulation (ES) is a safe and effective procedure in clinical rehabilitation with few adverse effects. However, studies on ES for atherosclerosis (AS) are scarce because ES does not provide a long-term intervention for chronic disease processes. Battery-free implants and surgically mounted them in the abdominal aorta of high-fat-fed Apolipoprotein E (ApoE-/- ) mice are used, which are electrically stimulated for four weeks using a wireless ES device to observe changes in atherosclerotic plaques. Results showed that there is almost no growth of atherosclerotic plaque at the stimulated site in AopE-/- mice after ES. RNA-sequencing (RNA-seq) analysis of Thp-1 macrophages reveal that the transcriptional activity of autophagy-related genes increase substantially after ES. Additionally, ES reduces lipid accumulation in macrophages by restoring ABCA1- and ABCG1-mediated cholesterol efflux. Mechanistically, it is demonstrated that ES reduced lipid accumulation through Sirtuin 1 (Sirt1)/Autophagy related 5 (Atg5) pathway-mediated autophagy. Furthermore, ES reverse autophagic dysfunction in macrophages of AopE-/- mouse plaques by restoring Sirt1, blunting P62 accumulation, and inhibiting the secretion of interleukin (IL)-6, resulting in the alleviation of atherosclerotic lesion formation. Here, a novel approach is shown in which ES can be used as a promising therapeutic strategy for AS treatment through Sirt1/Atg5 pathway-mediated autophagy.
Collapse
Affiliation(s)
- Pengyu Wang
- School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, P. R. China
| | - Manman Li
- School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, P. R. China
| | - Tielei Gao
- Department of Forensic Medicine, Harbin Medical University, Harbin, 150081, P. R. China
| | - Jiaying Fan
- School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, P. R. China
| | - Dengfeng Zhang
- School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, P. R. China
| | - Ying Zhao
- School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, P. R. China
| | - Yajie Zhao
- School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, P. R. China
| | - Yuqin Wang
- School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, P. R. China
| | - Tianwei Guo
- School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, P. R. China
| | - Xi Gao
- School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, P. R. China
| | - Yujun Liu
- School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, P. R. China
| | - Yang Gao
- Department of Pathology, Harbin Medical University-Daqing, Daqing, 163319, P. R. China
| | - Xue Guan
- School of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, 163319, P. R. China
| | - Xinyong Sun
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, P. R. China
| | - Jiyi Zhao
- Cardiovascular Care Unit, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, P. R. China
| | - Hong Li
- School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, P. R. China
| | - Liming Yang
- School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, P. R. China
- School of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, 163319, P. R. China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin Medical University, Harbin, 150081, P. R. China
| |
Collapse
|
16
|
Nosoudi N, Hasanzadeh A, Hart M, Weaver B. Advancements and Future Perspectives in Cell Electrospinning and Bio-Electrospraying. Adv Biol (Weinh) 2023; 7:e2300213. [PMID: 37438326 DOI: 10.1002/adbi.202300213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/29/2023] [Indexed: 07/14/2023]
Abstract
In recent years, researchers have tried to include living cells into electrospun nanofibers or droplets, leading to the field of live cell electrospinning and bio-electrospraying . In live cell electrospinning and bio-electrospraying, cells are embedded in a polymer and subject to the process of mechanical and electrical stimulation of the process. The resulting nanofiber mats or droplets with embedded cells have several potential applications in tissue engineering. The nanofiber structure provides a supportive and porous environment for cells to grow and interact with their surroundings. This can be favorable for tissue regeneration, where the goal is to create functional tissues that closely mimic the extracellular matrix. However, there are also challenges associated with live cell electrospinning and electrospraying, including maintaining cell viability and uniform cell distribution within the nanofiber mat. Additionally, the electrospinning/electrospraying process can have an impact on cell behavior, phenotype, and genotype, which must be cautiously monitored and studied. Overall, the goal of this review paper is to provide a comprehensive and critical analysis of the existing literature on cell electrospinning and bio-electrospraying.
Collapse
Affiliation(s)
- Nasim Nosoudi
- Biomedical Engineering Department, College of Engineering and Computer Science, Marshall University, Huntington, WV, 25755-2586, USA
| | - Amin Hasanzadeh
- Department of Polymer Engineering, Amirkabir University of Technology, Tehran, 1591634311, Iran
| | - Madeline Hart
- Biomedical Engineering Department, College of Engineering and Computer Science, Marshall University, Huntington, WV, 25755-2586, USA
| | - Baylee Weaver
- Biomedical Engineering Department, College of Engineering and Computer Science, Marshall University, Huntington, WV, 25755-2586, USA
| |
Collapse
|
17
|
Zhou G, Wang C, Wu C, Zhang W. Active learning model for extracting elastic modulus of cell on substrate. Biophys J 2023; 122:2489-2499. [PMID: 37147802 PMCID: PMC10323012 DOI: 10.1016/j.bpj.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/02/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023] Open
Abstract
The cell elastic modulus (Ec) is widely used as the mechanics-based marker to analyze the biological effects of substrates on cells. However, the employment of the Hertz model to extract the apparent Ec can cause errors due to the disobedience of the small deformation assumption and the infinite half-space assumption, as well as an inability to deduct the deformation of the substrate. So far, no model can effectively solve the errors caused by the above-mentioned aspects simultaneously. In response to this, herein, we propose an active learning model to extract Ec. The numerical calculation with finite element suggests the good prediction accuracy of the model. The indentation experiments on both hydrogel and cell indicate that the established model can efficiently reduce the error caused by the method of extracting Ec. The application of this model may facilitate our understanding about the role of Ec in correlating the stiffness of substrate and the biological behavior of cell.
Collapse
Affiliation(s)
- Guanlin Zhou
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - Chao Wang
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - Chengwei Wu
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - Wei Zhang
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, China.
| |
Collapse
|
18
|
Jeon HJ, Lim HG, Shung KK, Lee OJ, Kim MG. Automated cell-type classification combining dilated convolutional neural networks with label-free acoustic sensing. Sci Rep 2022; 12:19873. [PMID: 36400803 PMCID: PMC9674693 DOI: 10.1038/s41598-022-22075-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/10/2022] [Indexed: 11/19/2022] Open
Abstract
This study aimed to automatically classify live cells based on their cell type by analyzing the patterns of backscattered signals of cells with minimal effect on normal cell physiology and activity. Our previous studies have demonstrated that label-free acoustic sensing using high-frequency ultrasound at a high pulse repetition frequency (PRF) can capture and analyze a single object from a heterogeneous sample. However, eliminating possible errors in the manual setting and time-consuming processes when postprocessing integrated backscattering (IB) coefficients of backscattered signals is crucial. In this study, an automated cell-type classification system that combines a label-free acoustic sensing technique with deep learning-empowered artificial intelligence models is proposed. We applied an one-dimensional (1D) convolutional autoencoder to denoise the signals and conducted data augmentation based on Gaussian noise injection to enhance the robustness of the proposed classification system to noise. Subsequently, denoised backscattered signals were classified into specific cell types using convolutional neural network (CNN) models for three types of signal data representations, including 1D CNN models for waveform and frequency spectrum analysis and two-dimensional (2D) CNN models for spectrogram analysis. We evaluated the proposed system by classifying two types of cells (e.g., RBC and PNT1A) and two types of polystyrene microspheres by analyzing their backscattered signal patterns. We attempted to discover cell physical properties reflected on backscattered signals by controlling experimental variables, such as diameter and structure material. We further evaluated the effectiveness of the neural network models and efficacy of data representations by comparing their accuracy with that of baseline methods. Therefore, the proposed system can be used to classify reliably and precisely several cell types with different intrinsic physical properties for personalized cancer medicine development.
Collapse
Affiliation(s)
- Hyeon-Ju Jeon
- grid.482520.90000 0004 0578 4668Data Assimilation Group, Korea Institute of Atmospheric Prediction Systems, Seoul, 07071 Republic of Korea
| | - Hae Gyun Lim
- grid.412576.30000 0001 0719 8994Department of Biomedical Engineering, Pukyong National University, Busan, 48513 Republic of Korea
| | - K. Kirk Shung
- grid.42505.360000 0001 2156 6853Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089 USA
| | - O-Joun Lee
- grid.411947.e0000 0004 0470 4224Department of Artificial Intelligence, The Catholic University of Korea, Bucheon, 14662 Republic of Korea
| | - Min Gon Kim
- grid.42505.360000 0001 2156 6853Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089 USA
| |
Collapse
|
19
|
Li Y, Zhuang X, Niu F. Quantitative Investigation of the Link between Actin Cytoskeleton Dynamics and Cellular Behavior. MICROMACHINES 2022; 13:1885. [PMID: 36363906 PMCID: PMC9695820 DOI: 10.3390/mi13111885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Actin cytoskeleton reorganization, which is governed by actin-associated proteins, has a close relationship with the change of cell biological behavior. However, a perceived understanding of how actin mechanical property links to cell biological property remains unclear. This paper reports a label-free biomarker to indicate this interrelationship by using the actin cytoskeleton model and optical tweezers (OT) manipulation technology. Both biophysical and biochemical methods were employed, respectively, as stimuli for two case studies. By comparing the mechanical and biological experiment results of the leukemia cells under electrical field exposure and human mesenchymal stem cells (hMSC) under adipogenesis differentiation, we concluded that β-actin can function as an indicator in characterizing the alteration of cellular biological behavior during the change of actin cytoskeleton mechanical property. This study demonstrated an effective way to probe a quantitative understanding of how actin cytoskeleton reorganization reflects the interrelation between cell mechanical property and cell biological behavior.
Collapse
Affiliation(s)
- Ying Li
- Department of Mechanical and Electrical Engineering, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Xiaoru Zhuang
- Department of Mechanical and Electrical Engineering, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Fuzhou Niu
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou 215000, China
| |
Collapse
|
20
|
Machine learning method for extracting elastic modulus of cells. Biomech Model Mechanobiol 2022; 21:1603-1612. [PMID: 36001275 DOI: 10.1007/s10237-022-01609-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 07/01/2022] [Indexed: 11/02/2022]
Abstract
The Hertz contact mechanics model is commonly used to extract the elastic modulus of the cell, but the basic assumptions of the model are often not met in cell indentation experiments, which can lead to errors in the obtained elastic modulus of cell. The establishment of theoretical formulas or modification of the Hertz formulas has been proposed to reduce the errors introduced by indentation depth and cell thickness, but errors from cell radius and probe radius are largely neglected. Herein, we build a neural network model in machine learning to extract the elastic modulus of cell, which takes into account of four variables: indentation depth, cell thickness, cell radius, and probe radius. The validity of the model is demonstrated by the indentation experiment. The introduction of machine learning methods provides an alternative solution for extracting the elastic modulus of the cell and has potential for application.
Collapse
|
21
|
Kamalov A, Shishov M, Smirnova N, Kodolova-Chukhontseva V, Dobrovol’skaya I, Kolbe K, Didenko A, Ivan’kova E, Yudin V, Morganti P. Influence of Electric Field on Proliferation Activity of Human Dermal Fibroblasts. J Funct Biomater 2022; 13:89. [PMID: 35893457 PMCID: PMC9326723 DOI: 10.3390/jfb13030089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/22/2022] [Accepted: 06/26/2022] [Indexed: 11/16/2022] Open
Abstract
In this work, an electrically conductive composite based on thermoplastic polyimide and graphene was obtained and used as a bioelectrode for electrical stimulation of human dermal fibroblasts. The values of the electrical conductivity of the obtained composite films varied from 10-15 to 102 S/m with increasing graphene content (from 0 to 5.0 wt.%). The characteristics of ionic and electronic currents flowing through the matrix with the superposition of cyclic potentials ± 100 mV were studied. The high stability of the composite was established during prolonged cycling (130 h) in an electric field with a frequency of 0.016 Hz. It was established that the composite films based on polyimide and graphene have good biocompatibility and are not toxic to fibroblast cells. It was shown that preliminary electrical stimulation increases the proliferative activity of human dermal fibroblasts in comparison with intact cells. It is revealed that an electric field with a strength E = 0.02-0.04 V/m applied to the polyimide films containing 0.5-3.0 wt.% of the graphene nanoparticles activates cellular processes (adhesion, proliferation).
Collapse
Affiliation(s)
- Almaz Kamalov
- Research Laboratory “Polymer Materials for Tissue Engineering and Transplantology”, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia; (M.S.); (N.S.); (V.K.-C.); (I.D.); (K.K.); (A.D.); (E.I.); (V.Y.)
| | - Mikhail Shishov
- Research Laboratory “Polymer Materials for Tissue Engineering and Transplantology”, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia; (M.S.); (N.S.); (V.K.-C.); (I.D.); (K.K.); (A.D.); (E.I.); (V.Y.)
| | - Natalia Smirnova
- Research Laboratory “Polymer Materials for Tissue Engineering and Transplantology”, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia; (M.S.); (N.S.); (V.K.-C.); (I.D.); (K.K.); (A.D.); (E.I.); (V.Y.)
| | - Vera Kodolova-Chukhontseva
- Research Laboratory “Polymer Materials for Tissue Engineering and Transplantology”, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia; (M.S.); (N.S.); (V.K.-C.); (I.D.); (K.K.); (A.D.); (E.I.); (V.Y.)
| | - Irina Dobrovol’skaya
- Research Laboratory “Polymer Materials for Tissue Engineering and Transplantology”, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia; (M.S.); (N.S.); (V.K.-C.); (I.D.); (K.K.); (A.D.); (E.I.); (V.Y.)
| | - Konstantin Kolbe
- Research Laboratory “Polymer Materials for Tissue Engineering and Transplantology”, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia; (M.S.); (N.S.); (V.K.-C.); (I.D.); (K.K.); (A.D.); (E.I.); (V.Y.)
| | - Andrei Didenko
- Research Laboratory “Polymer Materials for Tissue Engineering and Transplantology”, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia; (M.S.); (N.S.); (V.K.-C.); (I.D.); (K.K.); (A.D.); (E.I.); (V.Y.)
| | - Elena Ivan’kova
- Research Laboratory “Polymer Materials for Tissue Engineering and Transplantology”, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia; (M.S.); (N.S.); (V.K.-C.); (I.D.); (K.K.); (A.D.); (E.I.); (V.Y.)
| | - Vladimir Yudin
- Research Laboratory “Polymer Materials for Tissue Engineering and Transplantology”, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia; (M.S.); (N.S.); (V.K.-C.); (I.D.); (K.K.); (A.D.); (E.I.); (V.Y.)
| | - Pierfrancesco Morganti
- R&D Unit, Academy of History of Healthcare Art, Lungotevere in Sassia 3, 00186 Rome, Italy;
| |
Collapse
|
22
|
Sachdev S, Potočnik T, Rems L, Miklavčič D. Revisiting the role of pulsed electric fields in overcoming the barriers to in vivo gene electrotransfer. Bioelectrochemistry 2022; 144:107994. [PMID: 34930678 DOI: 10.1016/j.bioelechem.2021.107994] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/15/2021] [Accepted: 11/02/2021] [Indexed: 12/21/2022]
Abstract
Gene therapies are revolutionizing medicine by providing a way to cure hitherto incurable diseases. The scientific and technological advances have enabled the first gene therapies to become clinically approved. In addition, with the ongoing COVID-19 pandemic, we are witnessing record speeds in the development and distribution of gene-based vaccines. For gene therapy to take effect, the therapeutic nucleic acids (RNA or DNA) need to overcome several barriers before they can execute their function of producing a protein or silencing a defective or overexpressing gene. This includes the barriers of the interstitium, the cell membrane, the cytoplasmic barriers and (in case of DNA) the nuclear envelope. Gene electrotransfer (GET), i.e., transfection by means of pulsed electric fields, is a non-viral technique that can overcome these barriers in a safe and effective manner. GET has reached the clinical stage of investigations where it is currently being evaluated for its therapeutic benefits across a wide variety of indications. In this review, we formalize our current understanding of GET from a biophysical perspective and critically discuss the mechanisms by which electric field can aid in overcoming the barriers. We also identify the gaps in knowledge that are hindering optimization of GET in vivo.
Collapse
Affiliation(s)
- Shaurya Sachdev
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia
| | - Tjaša Potočnik
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia
| | - Lea Rems
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia
| | - Damijan Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia.
| |
Collapse
|
23
|
Nosoudi N, Hart C, McKnight I, Esmaeilpour M, Ghomian T, Zadeh A, Raines R, Ramirez Vick JE. Differentiation of adipose-derived stem cells to chondrocytes using electrospraying. Sci Rep 2021; 11:24301. [PMID: 34934143 PMCID: PMC8692477 DOI: 10.1038/s41598-021-03824-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/08/2021] [Indexed: 01/02/2023] Open
Abstract
An important challenge in the fabrication of tissue engineered constructs for regenerative medical applications is the development of processes capable of delivering cells and biomaterials to specific locations in a consistent manner. Electrospraying live cells has been introduced in recent years as a cell seeding method, but its effect on phenotype nor genotype has not been explored. A promising candidate for the cellular component of these constructs are human adipose-derived stem cells (hASCs), which are multipotent stem cells that can be differentiated into fat, bone, and cartilage cells. They can be easily and safely obtained from adipose tissue, regardless of the age and sex of the donor. Moreover, these cells can be maintained and expanded in culture for long periods of time without losing their differentiation capacity. In this study, hASCs directly incorporated into a polymer solution were electrosprayed, inducing differentiation into chondrocytes, without the addition of any exogenous factors. Multiple studies have demonstrated the effects of exposing hASCs to biomolecules—such as soluble growth factors, chemokines, and morphogens—to induce chondrogenesis. Transforming growth factors (e.g., TGF-β) and bone morphogenetic proteins are particularly known to play essential roles in the induction of chondrogenesis. Although growth factors have great therapeutic potential for cell-based cartilage regeneration, these growth factor-based therapies have presented several clinical complications, including high dose requirements, low half-life, protein instability, higher costs, and adverse effects in vivo. The present data suggests that electrospraying has great potential as hASCs-based therapy for cartilage regeneration.
Collapse
Affiliation(s)
- Nasim Nosoudi
- Biomedical Engineering Department, College of Engineering and Computer Science, Marshall University, Huntington, WV, USA.
| | - Christoph Hart
- Biomedical Engineering Department, College of Engineering and Computer Science, Marshall University, Huntington, WV, USA
| | - Ian McKnight
- Biomedical Engineering Department, College of Engineering and Computer Science, Marshall University, Huntington, WV, USA
| | - Mehdi Esmaeilpour
- Mechanical Engineering Department, College of Engineering and Computer Science, Marshall University, Huntington, WV, USA
| | - Taher Ghomian
- Computer Sciences and Electrical Engineering Department, College of Engineering and Computer Science, Marshall University, Huntington, WV, USA
| | - Amir Zadeh
- Information Systems Department, College of Business, Wright State University, Dayton, OH, USA
| | - Regan Raines
- Biomedical Engineering Department, College of Engineering and Computer Science, Marshall University, Huntington, WV, USA
| | - Jaime E Ramirez Vick
- Biomedical, Industrial and Human Factors Engineering Department, College of Engineering, Wright State University, Dayton, OH, USA
| |
Collapse
|
24
|
Sharma V, Freedman KJ. Pressure-Biased Nanopores for Excluded Volume Metrology, Lipid Biomechanics, and Cell-Adhesion Rupturing. ACS NANO 2021; 15:17947-17958. [PMID: 34739757 DOI: 10.1021/acsnano.1c06393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanopore sensing has been widely used in applications ranging from DNA sequencing to disease diagnosis. To improve these capabilities, pressure-biased nanopores have been explored in the past to-primarily-increase the residence time of the analyte inside the pore. Here, we studied the effect of pressure on the ability to accurately quantify the excluded volume which depends on the current drop magnitude produced by a single entity. Using the calibration standard, the inverse current drop (1/ΔI) decreases linearly with increasing pressure, while the dwell drop reduces exponentially. We therefore had to derive a pressure-corrected excluded volume equation to accurately assess the volume of translocating species under applied pressure. Moreover, a method to probe deformation in nanoliposomes and a single cell is developed as a result. We show that the soft nanoliposomes and even cells deform significantly under applied pressure which can be probed in terms of the shape factor which was introduced in the excluded volume equation. The proposed work has practical applications in mechanobiology, namely, assessing the stiffness and mechanical rigidity of liposomal drug carriers. Pressure-biased pores also enabled multiple observations of cell-cell aggregates as well as their subsequent rupture, potentially allowing for the study of microbial symbioses or pathogen recognition by the human immune system.
Collapse
Affiliation(s)
- Vinay Sharma
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
- Department of Materials Engineering, Indian Institute of Technology Jammu, Jammu 181221, Jammu and Kashmir, India
| | - Kevin J Freedman
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| |
Collapse
|
25
|
Chang CY, Park JH, Ouh IO, Gu NY, Jeong SY, Lee SA, Lee YH, Hyun BH, Kim KS, Lee J. Novel method to repair articular cartilage by direct reprograming of prechondrogenic mesenchymal stem cells. Eur J Pharmacol 2021; 911:174416. [PMID: 34606836 DOI: 10.1016/j.ejphar.2021.174416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 12/27/2022]
Abstract
Age-related cartilage loss is worsened by the limited regenerative capacity of chondrocytes. The role of cell-based therapies using mesenchymal stem cells is gaining interest. Adipose tissue-derived mesenchymal stem cells (ADSCs) are an attractive source to generate the optimal number of chondrocytes required to repair a cartilage defect and regenerate hyaline articular cartilage. Here, we report an outstanding technique to prepare chondrocytes for cartilage repair using canine ADSCs. We hypothesized that external electrical fields promote prechondrogenic condensation without requiring genetic modifications or exogenous factors. We analyzed the effect of electrical stimulation (ES) on the differentiation of ADSC micromass into chondrocytes. Highly compact structures were formed within 3 days of ES of canine ADSC micromass. The expression of type I collagen gene was abolished in these cells compared with that in control micromass cultures and monolayer cultures. We further found that ES enhanced the production of proteoglycan, a highly produced extracellular matrix component in chondrocytes. Additionally, single-cell RNA sequencing analysis showed that canine ADSC micromass undergoing ES developed a prechondrogenic cell aggregation, suggesting their metabolic conversion, biogenesis, and calcium ion change. Collectively, our findings demonstrate the capacity of ES to drive the chondrogenesis of ADSCs in the absence of exogenous factors and confirm its commercial potential as a budget-friendly therapy for the repair of cartilage defects.
Collapse
Affiliation(s)
- Chi Young Chang
- Hanyang Digitech, 332-7, Samsung 1-ro, Hwaseong, Gyeonggi-do, 18380, Republic of Korea; Youth Bio Global, 273, Digital-ro, Guro-gu, Seoul, 08381, Republic of Korea
| | - Ju Hyun Park
- Hanyang Digitech, 332-7, Samsung 1-ro, Hwaseong, Gyeonggi-do, 18380, Republic of Korea; Youth Bio Global, 273, Digital-ro, Guro-gu, Seoul, 08381, Republic of Korea
| | - In-Ohk Ouh
- Viral Disease Research Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Na-Yeon Gu
- Viral Disease Research Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon, Gyeongsangbuk-do, 39660, Republic of Korea
| | - So Yeon Jeong
- Viral Disease Research Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Se-A Lee
- Viral Disease Research Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Yoon-Hee Lee
- Viral Disease Research Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Bang-Hun Hyun
- Viral Disease Research Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Ki Suk Kim
- Hanyang Digitech, 332-7, Samsung 1-ro, Hwaseong, Gyeonggi-do, 18380, Republic of Korea
| | - Jienny Lee
- Viral Disease Research Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon, Gyeongsangbuk-do, 39660, Republic of Korea; Division of Regenerative Medicine Safety Control, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, 187 Osongsaengmyeong 2-ro, Cheongju, Chungcheongbuk-do, 28159, Republic of Korea.
| |
Collapse
|
26
|
Guo R, Liao M, Ma X, Hu Y, Qian X, Xiao M, Gao X, Chai R, Tang M. Cochlear implant-based electric-acoustic stimulation modulates neural stem cell-derived neural regeneration. J Mater Chem B 2021; 9:7793-7804. [PMID: 34586130 DOI: 10.1039/d1tb01029h] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cochlear implantation is considered to be the best therapeutic method for profound sensorineural hearing loss, but insufficient numbers of functional spiral ganglion neurons hinder the clinical effects of cochlear implantation. Stem cell transplantation has the potential to provide novel strategies for spiral ganglion neuron regeneration after injury. However, some obstacles still need to be overcome, such as low survival and uncontrolled differentiation. Several novel technologies show promise for modulating neural stem cell behaviors to address these issues. Here, a device capable of electrical stimulation was designed by combining a cochlear implant with a graphene substrate. Neural stem cells (NSCs) were cultured on the graphene substrate and subjected to electrical stimulation transduced from sound waves detected by the cochlear implant. Cell behaviors were studied, and this device showed good biocompatibility for NSCs. More importantly, electric-acoustic stimulation with higher frequencies and amplitudes induced NSC death and apoptosis, and electric-acoustic stimulation could promote NSCs to proliferate and differentiate into neurons only when low-frequency stimulation was supplied. The present study provides experimental evidence for understanding the regulatory role of electric-acoustic stimulation on NSCs and highlights the potentials of the above-mentioned device in stem cell therapy for hearing loss treatment.
Collapse
Affiliation(s)
- Rongrong Guo
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College, Soochow University, Suzhou, 215000, China. .,State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.,Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, School of Life Science and Technology, Southeast University, Nanjing 210096, China.
| | - Menghui Liao
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, School of Life Science and Technology, Southeast University, Nanjing 210096, China. .,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xiaofeng Ma
- Department of Otorhinolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, China.,Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, Jiangsu 210008, China. .,Research Institution of Otorhinolaryngology, Nanjing, Jiangsu 210008, P. R. China
| | - Yangnan Hu
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, School of Life Science and Technology, Southeast University, Nanjing 210096, China. .,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xiaoyun Qian
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, Jiangsu 210008, China. .,Research Institution of Otorhinolaryngology, Nanjing, Jiangsu 210008, P. R. China
| | - Miao Xiao
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College, Soochow University, Suzhou, 215000, China.
| | - Xia Gao
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, Jiangsu 210008, China. .,Research Institution of Otorhinolaryngology, Nanjing, Jiangsu 210008, P. R. China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, School of Life Science and Technology, Southeast University, Nanjing 210096, China. .,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Mingliang Tang
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College, Soochow University, Suzhou, 215000, China. .,Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, School of Life Science and Technology, Southeast University, Nanjing 210096, China. .,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| |
Collapse
|
27
|
Dutta SD, Park T, Ganguly K, Patel DK, Bin J, Kim MC, Lim KT. Evaluation of the Sensing Potential of Stem Cell-Secreted Proteins via a Microchip Device under Electromagnetic Field Stimulation. ACS APPLIED BIO MATERIALS 2021; 4:6853-6864. [PMID: 35006985 DOI: 10.1021/acsabm.1c00561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Most bone tissue engineering models fail to demonstrate the complex cellular functions of living bone; therefore, most translational studies on bone tissue are performed in live models. To reduce the need for live models, we developed a stimulated microchip model for monitoring protein secretion during osteogenesis using human mesenchymal stem cells (hMSCs). We established a bone microchip system for monitoring the in vitro differentiation and sensing the secreted proteins of hMSCs under a sinusoidal electromagnetic field (SEMF), which ameliorates bone healing in a biomimetic natural bone matrix. A 3 V-1 Hz SEMF biophysically stimulated osteogenesis by activating ERK-1/2 and promoting phosphorylation of p38 MAPK kinases. Exposure to a 3 V-1 Hz SEMF upregulated the expression of osteogenesis-related genes and enhanced the expression of key osteoregulatory proteins. We identified 23 proteins that were differentially expressed in stimulated human bone marrow mesenchymal stem cell secretomes or were absent in the control groups. Our on-chip stimulation technology is easy to use, versatile, and nondisruptive and should have diverse applications in regenerative medicine and cell-based therapies.
Collapse
Affiliation(s)
- Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Tusan Park
- Department of Bio-Industrial Machinery Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.,Smart Agriculture Innovation Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Dinesh K Patel
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jin Bin
- Department of Stomatology, Affiliated Hospital of Yanbian University, Yanji 136200, China
| | - Min-Cheol Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea.,Biomechagen Co., Ltd., Chuncheon 24341, Republic of Korea
| |
Collapse
|
28
|
Kim H, Lee ES, Kim J, Kim HD, Hwang NS. A cell surface-reducing microenvironment induces early osteogenic commitment. FEBS Lett 2021; 595:2147-2159. [PMID: 34245002 DOI: 10.1002/1873-3468.14160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 11/06/2022]
Abstract
Stem cell-based therapy has been highlighted as a potential avenue to promote tissue regeneration, where stimulation of stem cells to differentiate into the targeted cell type is essential. One of the factors that induce stem cells to differentiate is their surrounding microenvironment. In this study, the correlation between mild reductant and early osteogenic commitment was evaluated. A cell surface-reducing microenvironment significantly silenced the transforming growth factor (TGF)-β signaling pathway of mesenchymal stem cells (MSCs), followed by increased focal adhesion and inhibition of cell membrane protein dimerization. Furthermore, in vivo transplantation of MSCs exposed to the reducing microenvironment resulted in an early osteogenic commitment and neobone formation. Thus, these results highlight the potential of cell surface-reducing microenvironment to influence early osteogenic commitment.
Collapse
Affiliation(s)
- Hyunbum Kim
- School of Chemical and Biological Engineering, Seoul National University, Korea
| | - Eun-Seo Lee
- School of Chemical and Biological Engineering, Seoul National University, Korea
| | - Jiyong Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Hwan Drew Kim
- Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju, Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Seoul National University, Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Korea
- Institute of Chemical Processes, Seoul National University, Seoul, Korea
- BioMAX/N-Bio Institute, Institute of BioEngineering, Seoul National University, Korea
| |
Collapse
|
29
|
Liu Z, Wan X, Wang ZL, Li L. Electroactive Biomaterials and Systems for Cell Fate Determination and Tissue Regeneration: Design and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007429. [PMID: 34117803 DOI: 10.1002/adma.202007429] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/19/2020] [Indexed: 06/12/2023]
Abstract
During natural tissue regeneration, tissue microenvironment and stem cell niche including cell-cell interaction, soluble factors, and extracellular matrix (ECM) provide a train of biochemical and biophysical cues for modulation of cell behaviors and tissue functions. Design of functional biomaterials to mimic the tissue/cell microenvironment have great potentials for tissue regeneration applications. Recently, electroactive biomaterials have drawn increasing attentions not only as scaffolds for cell adhesion and structural support, but also as modulators to regulate cell/tissue behaviors and function, especially for electrically excitable cells and tissues. More importantly, electrostimulation can further modulate a myriad of biological processes, from cell cycle, migration, proliferation and differentiation to neural conduction, muscle contraction, embryogenesis, and tissue regeneration. In this review, endogenous bioelectricity and piezoelectricity are introduced. Then, design rationale of electroactive biomaterials is discussed for imitating dynamic cell microenvironment, as well as their mediated electrostimulation and the applying pathways. Recent advances in electroactive biomaterials are systematically overviewed for modulation of stem cell fate and tissue regeneration, mainly including nerve regeneration, bone tissue engineering, and cardiac tissue engineering. Finally, the significance for simulating the native tissue microenvironment is emphasized and the open challenges and future perspectives of electroactive biomaterials are concluded.
Collapse
Affiliation(s)
- Zhirong Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xingyi Wan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| | - Linlin Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
30
|
Kim TH, Jeon WY, Ji Y, Park EJ, Yoon DS, Lee NH, Park SM, Mandakhbayar N, Lee JH, Lee HH, Kim HW. Electricity auto-generating skin patch promotes wound healing process by activation of mechanosensitive ion channels. Biomaterials 2021; 275:120948. [PMID: 34157562 DOI: 10.1016/j.biomaterials.2021.120948] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/20/2021] [Accepted: 05/29/2021] [Indexed: 12/14/2022]
Abstract
Electricity constitutes a natural biophysical component that preserves tissue homeostasis and modulates many biological processes, including the repair of damaged tissues. Wound healing involves intricate cellular events, such as inflammation, angiogenesis, matrix synthesis, and epithelialization whereby multiple cell types sense the environmental cues to rebuild the structure and functions. Here, we report that electricity auto-generating glucose-responsive enzymatic-biofuel-cell (EBC) skin patch stimulates the wound healing process. Rat wounded-skin model and in vitro cell cultures showed that EBC accelerated wound healing by modulating inflammation while stimulating angiogenesis, fibroblast fuctionality and matrix synthesis. Of note, EBC-activated cellular bahaviors were linked to the signalings involved with calcium influx, which predominantly dependent on the mechanosensitive ion channels, primarily Piezo1. Inhibition of Piezo1-receptor impaired the EBC-induced key functions of both fibroblasts and endothelial cells in the wound healing. This study highlights the significant roles of electricity played in wound healing through activated mechanosensitive ion channels and the calcium influx, and suggests the possibility of the electricity auto-generating EBC-based skin patch for use as a wound healing device.
Collapse
Affiliation(s)
- Tae-Hyun Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
| | - Won-Yong Jeon
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; School of Chemical Engineering, Biomedical Institute for Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yunseong Ji
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
| | - Eun Ju Park
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way, #08-03 Innovis, 138634, Singapore
| | - Dong Suk Yoon
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
| | - Na-Hyun Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Sung-Min Park
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Cheonan, 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea.
| | - Hae-Hyoung Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Cheonan, 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
31
|
Warren D, Tomaskovic-Crook E, Wallace GG, Crook JM. Engineering in vitro human neural tissue analogs by 3D bioprinting and electrostimulation. APL Bioeng 2021; 5:020901. [PMID: 33834152 PMCID: PMC8019355 DOI: 10.1063/5.0032196] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/19/2021] [Indexed: 02/06/2023] Open
Abstract
There is a fundamental need for clinically relevant, reproducible, and standardized in vitro human neural tissue models, not least of all to study heterogenic and complex human-specific neurological (such as neuropsychiatric) disorders. Construction of three-dimensional (3D) bioprinted neural tissues from native human-derived stem cells (e.g., neural stem cells) and human pluripotent stem cells (e.g., induced pluripotent) in particular is appreciably impacting research and conceivably clinical translation. Given the ability to artificially and favorably regulate a cell's survival and behavior by manipulating its biophysical environment, careful consideration of the printing technique, supporting biomaterial and specific exogenously delivered stimuli, is both required and advantageous. By doing so, there exists an opportunity, more than ever before, to engineer advanced and precise tissue analogs that closely recapitulate the morphological and functional elements of natural tissues (healthy or diseased). Importantly, the application of electrical stimulation as a method of enhancing printed tissue development in vitro, including neuritogenesis, synaptogenesis, and cellular maturation, has the added advantage of modeling both traditional and new stimulation platforms, toward improved understanding of efficacy and innovative electroceutical development and application.
Collapse
Affiliation(s)
- Danielle Warren
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Fairy Meadow, NSW 2519 Australia
| | | | - Gordon G. Wallace
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Fairy Meadow, NSW 2519 Australia
| | - Jeremy M. Crook
- Author to whom correspondence should be addressed:. Tel.: +61 2 4221 3011
| |
Collapse
|
32
|
Sun Y, Yuan Y, Wu W, Lei L, Zhang L. The effects of locomotion on bone marrow mesenchymal stem cell fate: insight into mechanical regulation and bone formation. Cell Biosci 2021; 11:88. [PMID: 34001272 PMCID: PMC8130302 DOI: 10.1186/s13578-021-00601-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 05/04/2021] [Indexed: 02/06/2023] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) refer to a heterogeneous population of cells with the capacity for self-renewal. BMSCs have multi-directional differentiation potential and can differentiate into chondrocytes, osteoblasts, and adipocytes under specific microenvironment or mechanical regulation. The activities of BMSCs are closely related to bone quality. Previous studies have shown that BMSCs and their lineage-differentiated progeny (for example, osteoblasts), and osteocytes are mechanosensitive in bone. Thus, a goal of this review is to discuss how these ubiquious signals arising from mechanical stimulation are perceived by BMSCs and then how the cells respond to them. Studies in recent years reported a significant effect of locomotion on the migration, proliferation and differentiation of BMSCs, thus, contributing to our bone mass. This regulation is realized by the various intersecting signaling pathways including RhoA/Rock, IFG, BMP and Wnt signalling. The mechanoresponse of BMSCs also provides guidance for maintaining bone health by taking appropriate exercises. This review will summarize the regulatory effects of locomotion/mechanical loading on BMSCs activities. Besides, a number of signalling pathways govern MSC fate towards osteogenic or adipocytic differentiation will be discussed. The understanding of mechanoresponse of BMSCs makes the foundation for translational medicine.
Collapse
Affiliation(s)
- Yuanxiu Sun
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yu Yuan
- School of Sport and Health, Guangzhou Sport University, Guangzhou, 510500, Guangdong, China
| | - Wei Wu
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China
| | - Le Lei
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China
| | - Lingli Zhang
- School of Physical Education & Sports Science, South China Normal University, 55 Zhongshan Road West, Tianhe District, Guangzhou, 510631, Guangdong, China.
| |
Collapse
|
33
|
Han SJ, Noh M, Jang J, Lee JB, Kim KS. Electric fields regulate cellular elasticity through intracellular Ca 2+ concentrations. J Cell Physiol 2021; 236:7450-7463. [PMID: 33993476 DOI: 10.1002/jcp.30417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 04/25/2021] [Accepted: 04/28/2021] [Indexed: 11/06/2022]
Abstract
Cellular elasticity is a key factor related to a broad range of physiological and pathological processes. The elasticity of a single cell has thus emerged as a potential biomarker to characterize the cellular state. Both internal and external stimuli affect cellular elasticity, and changes in elasticity can cause alterations in cellular characteristics or function. The application of electric fields (EFs) is a promising method that can be used to change cellular elasticity; however, the mechanisms underlying its effect remain unknown. Here, we demonstrate EFs-induced elasticity changes in human dermal fibroblasts and discuss the underlying mechanism related to actin polymerization. Cellular elasticity increases after EF (50 mV/mm) stimulation, reaching a maximum at 30 min before decreasing between 30 and 120 min. The cellular elasticity under EF stimulation, regardless of stimulation time, is higher than that of the control. F-actin regulates the elasticity of cells through gelsolin activation. We show changes in intracellular Ca2+ caused by EFs, which induced gelsolin activation and F-actin content changes. This result demonstrates a series of processes in which external electrical stimulation conditions regulate cellular elasticity.
Collapse
Affiliation(s)
- Se Jik Han
- Department of Biomedical Engineering, Graduate School, Kyung Hee University, Seoul, Korea.,Department of Biomedical Engineering, Kyung Hee University, Seoul, Korea
| | - Minjoo Noh
- Innovation Lab, Department of Innovation, Cosmax R&I Center, Gyeonggi do, Korea
| | - Jihui Jang
- Innovation Lab, Department of Innovation, Cosmax R&I Center, Gyeonggi do, Korea
| | - Jun Bae Lee
- Innovation Lab, Department of Innovation, Cosmax R&I Center, Gyeonggi do, Korea
| | - Kyung Sook Kim
- Department of Biomedical Engineering, Kyung Hee University, Seoul, Korea
| |
Collapse
|
34
|
The Biocompatibility of Wireless Power Charging System on Human Neural Cells. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The progress in technology and science leads to the invention and use of many electrical devices in the daily lives of humans. In addition to that, people have been easily exposed to increased newly generated artificial electromagnetic waves. Exponential use of modern electronic devices has automatically led to increase in electromagnetic wave exposure. Therefore, we constructed the prototype of wireless power charging system to study the biocompatibility of electromagnetic field (EMF) generated by this system on various human cell lines. There are many studies indicating the negative bio-effect of EMF on various types of cells, such as induction of apoptosis. From the other point of view, these effects could rather be beneficial in the way, that they could eliminate the progress of various diseases or disorders. For that reason, we compared the impact of EMF (87 kHz, 0.3–1.2 mT, 30 min) on human normal as well as cancer cell lines based on morphological and cellular level. Our results suggested that EMF generated by wireless power charging systems does not have any detrimental effect on cell morphology, viability and cytoskeletal structures of human neural cells.
Collapse
|
35
|
Guette-Marquet S, Roques C, Bergel A. Theoretical analysis of the electrochemical systems used for the application of direct current/voltage stimuli on cell cultures. Bioelectrochemistry 2021; 139:107737. [PMID: 33494030 DOI: 10.1016/j.bioelechem.2020.107737] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 12/31/2022]
Abstract
Endogenous electric fields drive many essential functions relating to cell proliferation, motion, differentiation and tissue development. They are usually mimicked in vitro by using electrochemical systems to apply direct current or voltage stimuli to cell cultures. The many studies devoted to this topic have given rise to a wide variety of experimental systems, whose results are often difficult to compare. Here, these systems are analysed from an electrochemical standpoint to help harmonize protocols and facilitate optimal understanding of the data produced. The theoretical analysis of single-electrode systems shows the necessity of measuring the Nernst potential of the electrode and of discussing the results on this basis rather than using the value of the potential gradient. The paper then emphasizes the great complexity that can arise when high cell voltage is applied to a single electrode, because of the possible occurrence of anode and cathode sites. An analysis of two-electrode systems leads to the advice to change experimental practices by applying current instead of voltage. It also suggests that the values of electric fields reported so far may have been considerably overestimated in macro-sized devices. It would consequently be wise to revisit this area by testing considerably lower electric field values.
Collapse
Affiliation(s)
- Simon Guette-Marquet
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Christine Roques
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Alain Bergel
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| |
Collapse
|
36
|
Gelmi A, Schutt CE. Stimuli-Responsive Biomaterials: Scaffolds for Stem Cell Control. Adv Healthc Mater 2021; 10:e2001125. [PMID: 32996270 PMCID: PMC11468740 DOI: 10.1002/adhm.202001125] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/18/2020] [Indexed: 12/28/2022]
Abstract
Stem cell fate is closely intertwined with microenvironmental and endogenous cues within the body. Recapitulating this dynamic environment ex vivo can be achieved through engineered biomaterials which can respond to exogenous stimulation (including light, electrical stimulation, ultrasound, and magnetic fields) to deliver temporal and spatial cues to stem cells. These stimuli-responsive biomaterials can be integrated into scaffolds to investigate stem cell response in vitro and in vivo, and offer many pathways of cellular manipulation: biochemical cues, scaffold property changes, drug release, mechanical stress, and electrical signaling. The aim of this review is to assess and discuss the current state of exogenous stimuli-responsive biomaterials, and their application in multipotent stem cell control. Future perspectives in utilizing these biomaterials for personalized tissue engineering and directing organoid models are also discussed.
Collapse
Affiliation(s)
- Amy Gelmi
- School of ScienceCollege of Science, Engineering and HealthRMIT UniversityMelbourneVIC3001Australia
| | - Carolyn E. Schutt
- Department of Biomedical EngineeringKnight Cancer Institute Cancer Early Detection Advanced Research Center (CEDAR)Oregon Health and Science UniversityPortlandOR97201USA
| |
Collapse
|
37
|
Zheng T, Huang Y, Zhang X, Cai Q, Deng X, Yang X. Mimicking the electrophysiological microenvironment of bone tissue using electroactive materials to promote its regeneration. J Mater Chem B 2020; 8:10221-10256. [PMID: 33084727 DOI: 10.1039/d0tb01601b] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The process of bone tissue repair and regeneration is complex and requires a variety of physiological signals, including biochemical, electrical and mechanical signals, which collaborate to ensure functional recovery. The inherent piezoelectric properties of bone tissues can convert mechanical stimulation into electrical effects, which play significant roles in bone maturation, remodeling and reconstruction. Electroactive materials, including conductive materials, piezoelectric materials and electret materials, can simulate the physiological and electrical microenvironment of bone tissue, thereby promoting bone regeneration and reconstruction. In this paper, the structures and performances of different types of electroactive materials and their applications in the field of bone repair and regeneration are reviewed, particularly by providing the results from in vivo evaluations using various animal models. Their advantages and disadvantages as bone repair materials are discussed, and the methods for tuning their performances are also described, with the aim of providing an up-to-date account of the proposed topics.
Collapse
Affiliation(s)
- Tianyi Zheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Yiqian Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| |
Collapse
|
38
|
Golubewa L, Kulahava T, Kunitskaya Y, Bulai P, Shuba M, Karpicz R. Enhancement of single-walled carbon nanotube accumulation in glioma cells exposed to low-strength electric field: Promising approach in cancer nanotherapy. Biochem Biophys Res Commun 2020; 529:647-651. [PMID: 32736687 DOI: 10.1016/j.bbrc.2020.06.100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/21/2020] [Indexed: 12/21/2022]
Abstract
The objective of the study is to determine the patterns of regulation of single-walled carbon nanotube accumulation, distribution, and agglomeration in glioma cells exposed to an external electric field. C6 glioma cells were treated with 5 μg/ml DNA wrapped single-walled carbon nanotubes and exposed to bi-phasic electric pulses (6.6 V/m, 200 Hz, pulse duration 1 ms). Nanotube accumulation was determined by Raman microspectroscopy and their intracellular local concentration was evaluated using the G-band intensity in Raman spectra of single-walled carbon nanotubes. It was revealed that the low-frequency and low-strength electric field stimulation of glioma cells exposed to single-walled carbon nanotubes led to facilitation and, thus, to amplification of nanotube accumulation inside the cells. The number of nanotubes in intracellular agglomerates increased from (28.8 ± 13.1) un./agglom. and (84.0 ± 28.7) un./agglom. in control samples to (60.6 ± 21.4) un./agglom. and (184.2 ± 53.4) un./agglom. for 1 h and 2 h stimulation, respectively. Thus, the tumor exposure to an external electric field makes it possible to more effectively regulate the accumulation and distribution of carbon nanotubes inside glioma cells allowing to reduce the applied therapeutic doses of carbon nanomaterial delivered anticancer drugs.
Collapse
Affiliation(s)
- Lena Golubewa
- Department of Molecular Compounds Physics, Center for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257, Vilnius, Lithuania; Institute for Nuclear Problems, Belarusian State University, Bobruiskaya str. 11, 220030, Minsk, Belarus.
| | - Tatsiana Kulahava
- Institute for Nuclear Problems, Belarusian State University, Bobruiskaya str. 11, 220030, Minsk, Belarus; Department of Biophysics, Belarusian State University, Nezavisimosti ave. 4, 220030, Minsk, Belarus.
| | - Yuliya Kunitskaya
- Department of Biophysics, Belarusian State University, Nezavisimosti ave. 4, 220030, Minsk, Belarus.
| | - Pavel Bulai
- Department of Biophysics, Belarusian State University, Nezavisimosti ave. 4, 220030, Minsk, Belarus.
| | - Mikhail Shuba
- Institute for Nuclear Problems, Belarusian State University, Bobruiskaya str. 11, 220030, Minsk, Belarus; Tomsk State University, Lenin Avenue 36, 634050, Tomsk, Russia.
| | - Renata Karpicz
- Department of Molecular Compounds Physics, Center for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257, Vilnius, Lithuania.
| |
Collapse
|
39
|
Han SJ, Moon D, Park MY, Kwon S, Noh M, Jang J, Lee JB, Kim KS. Electric field-induced changes in biomechanical properties in human dermal fibroblasts and a human skin equivalent. Skin Res Technol 2020; 26:914-922. [PMID: 32594564 DOI: 10.1111/srt.12894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/30/2020] [Indexed: 12/01/2022]
Abstract
PURPOSE An electric field (EF) can be used to change the mechanical properties of cells and skin tissues. We demonstrate EF-induced elasticity changes in human dermal fibroblasts (HDFs) and a human skin equivalent and identify the underlying principles related to the changes. METHODS HDFs and human skin equivalent were stimulated with electric fields of 1.0 V/cm. Change in cellular elasticity was determined by using atomic force microscopy. Effects of EF on the biomechanical and chemical properties of a human skin equivalent were analyzed. In cells and tissues, the effects of EF on biomarkers of cellular elasticity were investigated at the gene and protein levels. RESULTS In HDFs, the cellular elasticity was increased and the expression of biomarkers of cellular elasticity was regulated by the EF. Expression of the collagen protein in the human skin equivalent was changed by EF stimulation; however, changes in density and microstructure of the collagen fibrils were not significant. The viscoelasticity of the human skin equivalent increased in response to EF stimulation, but molecular changes were not observed in collagen. CONCLUSIONS Elasticity of cells and human skin equivalent can be regulated by electrical stimulation. Especially, the change in cellular elasticity was dependent on cell age.
Collapse
Affiliation(s)
- Se Jik Han
- Department of Biomedical Engineering, Graduate school, Kyung Hee University, Seoul, South Korea.,Department of Biomedical Engineering, College of medicine, Kyung Hee University, Seoul, South Korea
| | - Donggerami Moon
- Department of Biomedical Engineering, College of medicine, Kyung Hee University, Seoul, South Korea
| | - Moon Young Park
- Department of Biomedical Engineering, College of medicine, Kyung Hee University, Seoul, South Korea
| | - Sangwoo Kwon
- Department of Biomedical Engineering, College of medicine, Kyung Hee University, Seoul, South Korea
| | - Minjoo Noh
- Department of Innovation, Innovation Lab, Cosmax R&I Center, Gyeonggi-do, South Korea
| | - Jihui Jang
- Department of Innovation, Innovation Lab, Cosmax R&I Center, Gyeonggi-do, South Korea
| | - Jun Bae Lee
- Department of Innovation, Innovation Lab, Cosmax R&I Center, Gyeonggi-do, South Korea
| | - Kyung Sook Kim
- Department of Biomedical Engineering, College of medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
40
|
Lim HG, Liu HC, Yoon CW, Jung H, Kim MG, Yoon C, Kim HH, Shung KK. Investigation of cell mechanics using single-beam acoustic tweezers as a versatile tool for the diagnosis and treatment of highly invasive breast cancer cell lines: an in vitro study. MICROSYSTEMS & NANOENGINEERING 2020; 6:39. [PMID: 34567652 PMCID: PMC8433385 DOI: 10.1038/s41378-020-0150-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/10/2020] [Accepted: 02/18/2020] [Indexed: 05/27/2023]
Abstract
Advancements in diagnostic systems for metastatic cancer over the last few decades have played a significant role in providing patients with effective treatment by evaluating the characteristics of cancer cells. Despite the progress made in cancer prognosis, we still rely on the visual analysis of tissues or cells from histopathologists, where the subjectivity of traditional manual interpretation persists. This paper presents the development of a dual diagnosis and treatment tool using an in vitro acoustic tweezers platform with a 50 MHz ultrasonic transducer for label-free trapping and bursting of human breast cancer cells. For cancer cell detection and classification, the mechanical properties of a single cancer cell were quantified by single-beam acoustic tweezers (SBAT), a noncontact assessment tool using a focused acoustic beam. Cell-mimicking phantoms and agarose hydrogel spheres (AHSs) served to standardize the biomechanical characteristics of the cells. Based on the analytical comparison of deformability levels between the cells and the AHSs, the mechanical properties of the cells could be indirectly measured by interpolating the Young's moduli of the AHSs. As a result, the calculated Young's moduli, i.e., 1.527 kPa for MDA-MB-231 (highly invasive breast cancer cells), 2.650 kPa for MCF-7 (weakly invasive breast cancer cells), and 2.772 kPa for SKBR-3 (weakly invasive breast cancer cells), indicate that highly invasive cancer cells exhibited a lower Young's moduli than weakly invasive cells, which indicates a higher deformability of highly invasive cancer cells, leading to a higher metastasis rate. Single-cell treatment may also be carried out by bursting a highly invasive cell with high-intensity, focused ultrasound.
Collapse
Affiliation(s)
- Hae Gyun Lim
- Department of Creative IT Engineering, Pohang University of Science and Technology, Pohang, 37673 Republic of Korea
| | - Hsiao-Chuan Liu
- NIH Resource Center for Medical Ultrasonic Transducer Technology and Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089 USA
| | - Chi Woo Yoon
- NIH Resource Center for Medical Ultrasonic Transducer Technology and Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089 USA
| | - Hayong Jung
- NIH Resource Center for Medical Ultrasonic Transducer Technology and Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089 USA
| | - Min Gon Kim
- NIH Resource Center for Medical Ultrasonic Transducer Technology and Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089 USA
| | - Changhan Yoon
- Department of Biomedical Engineering, Inje University, Gimhae, Gyeongnam 50834 Republic of Korea
| | - Hyung Ham Kim
- Department of Creative IT Engineering, Pohang University of Science and Technology, Pohang, 37673 Republic of Korea
| | - K. Kirk Shung
- NIH Resource Center for Medical Ultrasonic Transducer Technology and Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089 USA
| |
Collapse
|
41
|
Graybill PM, Davalos RV. Cytoskeletal Disruption after Electroporation and Its Significance to Pulsed Electric Field Therapies. Cancers (Basel) 2020; 12:E1132. [PMID: 32366043 PMCID: PMC7281591 DOI: 10.3390/cancers12051132] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022] Open
Abstract
Pulsed electric fields (PEFs) have become clinically important through the success of Irreversible Electroporation (IRE), Electrochemotherapy (ECT), and nanosecond PEFs (nsPEFs) for the treatment of tumors. PEFs increase the permeability of cell membranes, a phenomenon known as electroporation. In addition to well-known membrane effects, PEFs can cause profound cytoskeletal disruption. In this review, we summarize the current understanding of cytoskeletal disruption after PEFs. Compiling available studies, we describe PEF-induced cytoskeletal disruption and possible mechanisms of disruption. Additionally, we consider how cytoskeletal alterations contribute to cell-cell and cell-substrate disruption. We conclude with a discussion of cytoskeletal disruption-induced anti-vascular effects of PEFs and consider how a better understanding of cytoskeletal disruption after PEFs may lead to more effective therapies.
Collapse
Affiliation(s)
- Philip M. Graybill
- BEMS Lab, Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA;
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Rafael V. Davalos
- BEMS Lab, Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA;
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA
- Virginia Tech–Wake Forest University, School of Biomedical Engineering and Sciences, Blacksburg, VA 24061, USA
| |
Collapse
|
42
|
Leppik L, Oliveira KMC, Bhavsar MB, Barker JH. Electrical stimulation in bone tissue engineering treatments. Eur J Trauma Emerg Surg 2020; 46:231-244. [PMID: 32078704 PMCID: PMC7113220 DOI: 10.1007/s00068-020-01324-1] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/04/2020] [Indexed: 12/20/2022]
Abstract
Electrical stimulation (EStim) has been shown to promote bone healing and regeneration both in animal experiments and clinical treatments. Therefore, incorporating EStim into promising new bone tissue engineering (BTE) therapies is a logical next step. The goal of current BTE research is to develop combinations of cells, scaffolds, and chemical and physical stimuli that optimize treatment outcomes. Recent studies demonstrating EStim's positive osteogenic effects at the cellular and molecular level provide intriguing clues to the underlying mechanisms by which it promotes bone healing. In this review, we discuss results of recent in vitro and in vivo research focused on using EStim to promote bone healing and regeneration and consider possible strategies for its application to improve outcomes in BTE treatments. Technical aspects of exposing cells and tissues to EStim in in vitro and in vivo model systems are also discussed.
Collapse
Affiliation(s)
- Liudmila Leppik
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, J.W. Goethe University, Frankfurt/Main, Germany.
| | - Karla Mychellyne Costa Oliveira
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, J.W. Goethe University, Frankfurt/Main, Germany
| | - Mit Balvantray Bhavsar
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, J.W. Goethe University, Frankfurt/Main, Germany
| | - John Howard Barker
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, J.W. Goethe University, Frankfurt/Main, Germany
| |
Collapse
|
43
|
Guo R, Ma X, Liao M, Liu Y, Hu Y, Qian X, Tang Q, Guo X, Chai R, Gao X, Tang M. Development and Application of Cochlear Implant-Based Electric-Acoustic Stimulation of Spiral Ganglion Neurons. ACS Biomater Sci Eng 2019; 5:6735-6741. [PMID: 33423491 DOI: 10.1021/acsbiomaterials.9b01265] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cochlear implants are currently the most effective treatment for profound sensorineural hearing loss. However, their therapeutic effect is limited by the survival and proper physiological function of spiral ganglion neurons (SGNs), which are targeted by the cochlear implant. It is therefore critical to explore the mechanism behind the effect of electric-acoustic stimulation (EAS) on the targeted SGNs. In this work, a biocompatible cochlear implant/graphene EAS system was created by combining a cochlear implant to provide the electrically transformed sound stimulation with graphene as the conductive neural interface. SGNs were cultured on the graphene and exposed to EAS from the cochlear implant. Neurite extension of SGNs was accelerated with long-term stimulation, which might contribute to the development of growth cones. Our system allows us to study the effects of cochlear implants on SGNs in a low-cost and time-saving way, and this might provide profound insights into the use of cochlear implants and thus be of benefit to the populations suffering from sensorineural hearing loss.
Collapse
Affiliation(s)
- Rongrong Guo
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.,Joint Research Institute of Southeast University and Monash University, Suzhou 215123, China
| | - Xiaofeng Ma
- Department of Otorhinolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, China.,Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, Jiangsu 210008, China.,Research Institution of Otorhinolaryngology, Nanjing, Jiangsu 210008, P. R. China
| | - Menghui Liao
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.,Joint Research Institute of Southeast University and Monash University, Suzhou 215123, China
| | - Yun Liu
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.,Joint Research Institute of Southeast University and Monash University, Suzhou 215123, China
| | - Yangnan Hu
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.,Joint Research Institute of Southeast University and Monash University, Suzhou 215123, China
| | - Xiaoyun Qian
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, Jiangsu 210008, China.,Research Institution of Otorhinolaryngology, Nanjing, Jiangsu 210008, P. R. China
| | - Qilin Tang
- The First Clinical Medical School, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Xing Guo
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166 Jiangsu, China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.,Joint Research Institute of Southeast University and Monash University, Suzhou 215123, China
| | - Xia Gao
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, Jiangsu 210008, China.,Research Institution of Otorhinolaryngology, Nanjing, Jiangsu 210008, P. R. China
| | - Mingliang Tang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.,Joint Research Institute of Southeast University and Monash University, Suzhou 215123, China
| |
Collapse
|
44
|
Shin TH, Lee DY, Ketebo AA, Lee S, Manavalan B, Basith S, Ahn C, Kang SH, Park S, Lee G. Silica-Coated Magnetic Nanoparticles Decrease Human Bone Marrow-Derived Mesenchymal Stem Cell Migratory Activity by Reducing Membrane Fluidity and Impairing Focal Adhesion. NANOMATERIALS 2019; 9:nano9101475. [PMID: 31627375 PMCID: PMC6835988 DOI: 10.3390/nano9101475] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/07/2019] [Accepted: 10/14/2019] [Indexed: 12/12/2022]
Abstract
For stem cell-based therapies, the fate and distribution of stem cells should be traced using non-invasive or histological methods and a nanomaterial-based labelling agent. However, evaluation of the biophysical effects and related biological functions of nanomaterials in stem cells remains challenging. Here, we aimed to investigate the biophysical effects of nanomaterials on stem cells, including those on membrane fluidity, using total internal reflection fluorescence microscopy, and traction force, using micropillars of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) labelled with silica-coated magnetic nanoparticles incorporating rhodamine B isothiocyanate (MNPs@SiO2(RITC)). Furthermore, to evaluate the biological functions related to these biophysical changes, we assessed the cell viability, reactive oxygen species (ROS) generation, intracellular cytoskeleton, and the migratory activity of MNPs@SiO2(RITC)-treated hBM-MSCs. Compared to that in the control, cell viability decreased by 10% and intracellular ROS increased by 2-fold due to the induction of 20% higher peroxidized lipid in hBM-MSCs treated with 1.0 µg/µL MNPs@SiO2(RITC). Membrane fluidity was reduced by MNPs@SiO2(RITC)-induced lipid oxidation in a concentration-dependent manner. In addition, cell shrinkage with abnormal formation of focal adhesions and ~30% decreased total traction force were observed in cells treated with 1.0 µg/µL MNPs@SiO2(RITC) without specific interaction between MNPs@SiO2(RITC) and cytoskeletal proteins. Furthermore, the migratory activity of hBM-MSCs, which was highly related to membrane fluidity and cytoskeletal abnormality, decreased significantly after MNPs@SiO2(RITC) treatment. These observations indicated that the migratory activity of hBM-MSCs was impaired by MNPs@SiO2(RITC) treatment due to changes in stem-cell biophysical properties and related biological functions, highlighting the important mechanisms via which nanoparticles impair migration of hBM-MSCs. Our findings indicate that nanoparticles used for stem cell trafficking or clinical applications should be labelled using optimal nanoparticle concentrations to preserve hBM-MSC migratory activity and ensure successful outcomes following stem cell localisation.
Collapse
Affiliation(s)
- Tae Hwan Shin
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea.
| | - Da Yeon Lee
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea.
| | | | - Seungah Lee
- Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si 17104, Korea.
| | | | - Shaherin Basith
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea.
| | - Chanyoung Ahn
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| | - Seong Ho Kang
- Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si 17104, Korea.
| | - Sungsu Park
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Korea.
| | - Gwang Lee
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea.
| |
Collapse
|
45
|
Naskar S, Kumaran V, Markandeya YS, Mehta B, Basu B. Neurogenesis-on-Chip: Electric field modulated transdifferentiation of human mesenchymal stem cell and mouse muscle precursor cell coculture. Biomaterials 2019; 226:119522. [PMID: 31669894 DOI: 10.1016/j.biomaterials.2019.119522] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 12/21/2022]
Abstract
A number of bioengineering strategies, using biophysical stimulation, are being explored to guide the human mesenchymal stem cells (hMScs) into different lineages. In this context, we have limited understanding on the transdifferentiation of matured cells to another functional-cell type, when grown with stem cells, in a constrained cellular microenvironment under biophysical stimulation. While addressing such aspects, the present work reports the influence of the electric field (EF) stimulation on the phenotypic and functionality modulation of the coculture of murine myoblasts (C2C12) with hMScs [hMSc:C2C12=1:10] in a custom designed polymethylmethacrylate (PMMA) based microfluidic device with in-built metal electrodes. The quantitative and qualitative analysis of the immunofluorescence study confirms that the cocultured cells in the conditioned medium with astrocytic feed, exhibit differentiation towards neural-committed cells under biophysical stimulation in the range of the endogenous physiological electric field strength (8 ± 0.06 mV/mm). The control experiments using similar culture protocols revealed that while C2C12 monoculture exhibited myotube-like fused structures, the hMScs exhibited the neurosphere-like clusters with SOX2, nestin, βIII-tubulin expression. The electrophysiological study indicates the significant role of intercellular calcium signalling among the differentiated cells towards transdifferentiation. Furthermore, the depolarization induced calcium influx strongly supports neural-like behaviour for the electric field stimulated cells in coculture. The intriguing results are explained in terms of the paracrine signalling among the transdifferentiated cells in the electric field stimulated cellular microenvironment. In summary, the present study establishes the potential for neurogenesis on-chip for the coculture of hMSc and C2C12 cells under tailored electric field stimulation, in vitro.
Collapse
Affiliation(s)
- Sharmistha Naskar
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India; Department of Chemical Engineering, Indian Institute of Science, Bangalore, 560012, India; Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India; Centres of Excellence and Innovation in Biotechnology - Translational Centre on Biomaterials for Orthopaedic and Dental Applications, Materials Research Centre, IISc, Bangalore, India
| | - Viswanathan Kumaran
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Yogananda S Markandeya
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India
| | - Bhupesh Mehta
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India
| | - Bikramjit Basu
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India; Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India; Centres of Excellence and Innovation in Biotechnology - Translational Centre on Biomaterials for Orthopaedic and Dental Applications, Materials Research Centre, IISc, Bangalore, India.
| |
Collapse
|
46
|
Vadlamani RA, Nie Y, Detwiler DA, Dhanabal A, Kraft AM, Kuang S, Gavin TP, Garner AL. Nanosecond pulsed electric field induced proliferation and differentiation of osteoblasts and myoblasts. J R Soc Interface 2019; 16:20190079. [PMID: 31213169 DOI: 10.1098/rsif.2019.0079] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Low-intensity electric fields can induce changes in cell differentiation and cytoskeletal stresses that facilitate manipulation of osteoblasts and mesenchymal stem cells; however, the application times (tens of minutes) are of the order of physiological mechanisms, which can complicate treatment consistency. Intense nanosecond pulsed electric fields (nsPEFs) can overcome these challenges by inducing similar stresses on shorter timescales while additionally inducing plasma membrane nanoporation, ion transport and intracellular structure manipulation. This paper shows that treating myoblasts and osteoblasts with five 300 ns PEFs with intensities from 1.5 to 25 kV cm-1 increased proliferation and differentiation. While nsPEFs above 5 kV cm-1 decreased myoblast population growth, 10 and 20 kV cm-1 trains increased myoblast population by approximately fivefold 48 h after exposure when all cell densities were set to the same level after exposure. Three trials of the PEF-treated osteoblasts showed that PEF trains between 2.5 and 10 kV cm-1 induced the greatest population growth compared to the control 48 h after treatment. Trains of nsPEFs between 1.5 and 5 kV cm-1 induced the most nodule formation in osteoblasts, indicating bone formation. These results demonstrate the potential utility for nsPEFs to rapidly modulate stem cells for proliferation and differentiation and motivate future experiments to optimize PEF parameters for in vivo applications.
Collapse
Affiliation(s)
- Ram Anand Vadlamani
- 1 School of Nuclear Engineering, Purdue University , West Lafayette, IN 47907 , USA
| | - Yaohui Nie
- 2 Department of Health and Kinesiology, Purdue University , West Lafayette, IN 47907 , USA
| | | | - Agni Dhanabal
- 3 Department of Agricultural and Biological Engineering, Purdue University , West Lafayette, IN 47907 , USA
| | - Alan M Kraft
- 1 School of Nuclear Engineering, Purdue University , West Lafayette, IN 47907 , USA
| | - Shihuan Kuang
- 4 Department of Animal Sciences, Purdue University , West Lafayette, IN 47907 , USA
| | - Timothy P Gavin
- 2 Department of Health and Kinesiology, Purdue University , West Lafayette, IN 47907 , USA
| | - Allen L Garner
- 1 School of Nuclear Engineering, Purdue University , West Lafayette, IN 47907 , USA.,3 Department of Agricultural and Biological Engineering, Purdue University , West Lafayette, IN 47907 , USA.,5 School of Electrical and Computer Engineering, Purdue University , West Lafayette, IN 47907 , USA
| |
Collapse
|
47
|
Electrical stimulation affects neural stem cell fate and function in vitro. Exp Neurol 2019; 319:112963. [PMID: 31125549 DOI: 10.1016/j.expneurol.2019.112963] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 04/29/2019] [Accepted: 05/19/2019] [Indexed: 11/22/2022]
Abstract
Electrical stimulation (ES) has been applied in cell culture system to enhance neural stem cell (NSC) proliferation, neuronal differentiation, migration, and integration. According to the mechanism of its function, ES can be classified into induced electrical (EFs) and electromagnetic fields (EMFs). EFs guide axonal growth and induce directional cell migration, whereas EMFs promote neurogenesis and facilitates NSCs to differentiate into functional neurons. Conductive nanomaterials have been used as functional scaffolds to provide mechanical support and biophysical cues in guiding neural cell growth and differentiation and building complex neural tissue patterns. Nanomaterials may have a combined effect of topographical and electrical cues on NSC migration and differentiation. Electrical cues may promote NSC neurogenesis via specific ion channel activation, such as SCN1α and CACNA1C. To accelerate the future application of ES in preclinical research, we summarized the specific setting, such as current frequency, intensity, and stimulation duration used in various ES devices, as well as the nanomaterials involved, in this review with the possible mechanisms elucidated. This review can be used as a checklist for ES work in stem cell research to enhance the translational process of NSCs in clinical application.
Collapse
|
48
|
Khan ZS, Santos JM, Vaz NG, Hussain F. Enhanced blebbing as a marker for metastatic prostate cancer. BIOMICROFLUIDICS 2019; 13:034110. [PMID: 31431812 PMCID: PMC6697032 DOI: 10.1063/1.5085346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/22/2019] [Indexed: 05/17/2023]
Abstract
Highly metastatic prostate cancer cells flowing through a microfluidic channel form plasma membrane blebs: they form 27% more than normal cells and have a lower stiffness (about 50%). Hypo-osmotic stress assays (with ∼ 50 % osmolarity) show 22% more blebbing of highly metastatic than moderately metastatic and 30% more than normal cells. Plasma membrane blebbing is known to provide important metastatic capabilities to cancer cells by aiding cell detachment from the primary tumor site and increasing cell deformability to promote cell migration through the extracellular matrix. Increased blebbing was attributed by others to decreased phosphorylated ezrin, radixin, and moesin (ERM) (p-ERM) protein expression-p-ERMs bind the plasma membrane to the actin cortex and reduced p-ERM expression can weaken membrane-cortex attachment. Myosin II also influences blebbing as myosin's natural contraction generates tension in the actin cortex. This increases cellular hydrostatic pressure, causes cortex rupture, cytoplasm flow out of the cortex, and hence blebbing. Highly metastatic cells are surprisingly found to express similar ezrin and myosin II levels but higher moesin levels in comparison with lowly metastatic or normal cells-suggesting that their levels, contrary to the literature [G. Charras and E. Paluch, Nat. Rev. Mol. Cell Biol. 9(9), 730-736 (2008); J.-Y. Tinevez, U. Schulze, G. Salbreux, J. Roensch, J.-F. Joanny, and E. Paluch, Proc. Natl. Acad. Sci. U.S.A. 106(44), 18581-18586 (2009); M. Bergert, S. D. Chandradoss, R. A. Desai, and E. Paluch, Proc. Natl. Acad. Sci. U.S.A. 109(36), 14434-14439 (2012); E. K. Paluch and E. Raz: Curr. Opin. Cell Biol. 25(5), 582-590 (2013)], are not important in metastatic prostate cell blebbing. Our results show that reduced F-actin is primarily responsible for increased blebbing in these metastatic cells. Blebbing can thus serve as a simple prognostic marker for the highly incident and lethal metastatic prostate cancer.
Collapse
Affiliation(s)
- Zeina S Khan
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| | - Julianna M Santos
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| | - Neil G Vaz
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| | - Fazle Hussain
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| |
Collapse
|
49
|
Shan Y, Gong Q, Wang J, Xu J, Wei Q, Liu C, Xue L, Wang S, Liu F. Measurements on ATP induced cellular fluctuations using real-time dual view transport of intensity phase microscopy. BIOMEDICAL OPTICS EXPRESS 2019; 10:2337-2354. [PMID: 31143493 PMCID: PMC6524602 DOI: 10.1364/boe.10.002337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/28/2019] [Accepted: 04/02/2019] [Indexed: 05/20/2023]
Abstract
Dual view transport of intensity phase microscopy is adopted to quantitatively study the regulation of adenosine triphosphate (ATP) on cellular mechanics. It extracts cell phases in real time from simultaneously captured under- and over-focus images. By computing the root-mean-square phase and correlation time, it is found that the cellular fluctuation amplitude and speed increased with ATP compared to those with ATP depletion. Besides, when adenylyl-imidodiphosphate (AMP-PNP) was introduced, it competed with ATP to bind to the ATP binding site, and the cellular fluctuation amplitude and speed decreased. The results prove that ATP is a factor in the regulation of cellular mechanics. To our best knowledge, it is the first time that the dual view transport of intensity phase microscopy was used for live cell phase imaging and analysis. Our work not only provides direct measurements on cellular fluctuations to study ATP regulation on cellular mechanics, but it also proves that our proposed dual view transport of intensity phase microscopy can be well used, especially in quantitative phase imaging of live cells in biological and medical applications.
Collapse
Affiliation(s)
- Yanke Shan
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- These authors contributed equally to this work
| | - Qingtao Gong
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Computational Optics Laboratory, School of Science, Jiangnan University, Wuxi, Jiangsu 214122, China
- These authors contributed equally to this work
| | - Jian Wang
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jing Xu
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Computational Optics Laboratory, School of Science, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qi Wei
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Computational Optics Laboratory, School of Science, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Cheng Liu
- Computational Optics Laboratory, School of Science, Jiangnan University, Wuxi, Jiangsu 214122, China
- Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Liang Xue
- College of Electronics and Information Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Shouyu Wang
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Computational Optics Laboratory, School of Science, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fei Liu
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
50
|
Kwon S, Lee DH, Han SJ, Yang W, Quan FS, Kim KS. Biomechanical properties of red blood cells infected by Plasmodium berghei ANKA. J Cell Physiol 2019; 234:20546-20553. [PMID: 30989677 DOI: 10.1002/jcp.28654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 03/12/2019] [Accepted: 03/19/2019] [Indexed: 12/31/2022]
Abstract
Malaria is a pathogenic disease in mammal species and typically causes destruction of red blood cells (RBCs). The malaria-infected RBCs undergoes alterations in morphology and its rheological properties, and the altered rheological properties of RBCs have a significant impact on disease pathophysiology. In this study, we investigated detailed topological and biomechanical properties of RBCs infected with malaria Plasmodium berghei ANKA using atomic force microscopy. Mouse (BALB/c) RBCs were obtained on Days 4, 10, and 14 after infection. We found that malaria-infected RBCs changed significantly in shape. The RBCs maintained a biconcave disk shape until Day 4 after infection and then became lopsided on Day 7 after infection. The central region of RBCs began to swell beginning on Day 10 after infection. More schizont stages were present on Days 10 and 14 compared with on Day 4. The malaria-infected RBCs also showed changes in mechanical properties and the cytoskeleton. The stiffness of infected RBCs increased 4.4-4.6-fold and their cytoskeletal F-actin level increased 18.99-67.85% compared with the control cells. The increase in F-actin depending on infection time was in good agreement with the increased stiffness of infected RBCs. Because more schizont stages were found at a late period of infection at Days 10 and 14, the significant changes in biomechanical properties might contribute to the destruction of RBCs, possibly resulting in the release of merozoites into the blood circulation.
Collapse
Affiliation(s)
- Sangwoo Kwon
- Department of Physics, Dongguk University, Seoul, Republic of Korea
| | - Dong-Hun Lee
- Department of Biomedical Engineering, Graduate School, Kyung Hee University, Seoul, Republic of Korea.,Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Se-Jik Han
- Department of Biomedical Engineering, Graduate School, Kyung Hee University, Seoul, Republic of Korea.,Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Woochul Yang
- Department of Physics, Dongguk University, Seoul, Republic of Korea
| | - Fu-Shi Quan
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea.,Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Kyung Sook Kim
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|