1
|
Geiger AB, Kennedy JG, Staker LG, Wensel TG, Casson RJ, Thomas PQ. Shining light on CRISPR/Cas9 therapeutics for inherited retinal diseases. Prog Retin Eye Res 2025; 107:101376. [PMID: 40482807 DOI: 10.1016/j.preteyeres.2025.101376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 05/30/2025] [Accepted: 05/30/2025] [Indexed: 06/16/2025]
Abstract
Inherited retinal diseases (IRDs), such as retinitis pigmentosa, are a heterogenous group of genetic eye diseases characterized by degeneration of photoreceptors. They are the leading cause of blindness in the working age population in high-income countries and are an ideal target for the expanding gene editing tool kit, including rapidly evolving CRISPR/Cas9 technology. In this review, we provide a comprehensive analysis of CRISPR/Cas9 technologies currently being explored as therapeutic interventions for IRDs. Given the challenges posed by the growing complexity and size of gene editing systems, the delivery of these therapeutics to the retina has necessitated innovative approaches. We review current delivery methods, including nanoparticles, virus-like particles and traditional viral vectors, highlighting their advantages and limitations. This review underscores the potential transformative impact of gene editing on genetic disease management, emphasising that advancements in these technologies, coupled with improved pre-clinical models, bring clinically safe and effective treatments for IRDs within view.
Collapse
Affiliation(s)
- A B Geiger
- Discipline of Reproduction and Development, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia; South Australian Health and Medical Research Institute (SAHMRI), Australia; Robinson Research Institute (RRI), The University of Adelaide, Adelaide, SA, Australia
| | - J G Kennedy
- Discipline of Reproduction and Development, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia; South Australian Health and Medical Research Institute (SAHMRI), Australia; Robinson Research Institute (RRI), The University of Adelaide, Adelaide, SA, Australia
| | - L G Staker
- Discipline of Reproduction and Development, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia; South Australian Health and Medical Research Institute (SAHMRI), Australia; Robinson Research Institute (RRI), The University of Adelaide, Adelaide, SA, Australia
| | - T G Wensel
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - R J Casson
- Discipline of Ophthalmology and Visual Science, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - P Q Thomas
- Discipline of Reproduction and Development, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia; South Australian Health and Medical Research Institute (SAHMRI), Australia; Robinson Research Institute (RRI), The University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
2
|
He X, Yan T, Song Z, Xiang L, Xiang J, Yang Y, Ren K, Bu J, Xu X, Li Z, Guo X, Lin B, Zhou Q, Lin G, Gu F. Correcting a patient-specific Rhodopsin mutation with adenine base editor in a mouse model. Mol Ther 2025:S1525-0016(25)00195-9. [PMID: 40119518 DOI: 10.1016/j.ymthe.2025.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 01/05/2025] [Accepted: 03/17/2025] [Indexed: 03/24/2025] Open
Abstract
Genome editing offers a great promise to treating human genetic diseases. To assess genome-editing-mediated therapeutic effects in vivo, an animal model is indispensable. The genomic disparities between mice and humans often impede the direct clinical application of genome-editing-mediated treatments using conventional mouse models. Thus, the generation of a mouse model with a humanized genomic segment containing a patient-specific mutation is highly sought after for translational research. In this study, we successfully developed a knockin mouse model for autosomal-dominant retinitis pigmentosa (adRP), designated as hT17M knockin, which incorporates a 75-nucleotide DNA segment with the T17M mutation (Rhodopsin-c.C50T; p.T17M). This model demonstrated significant reductions in electroretinogram amplitudes and exhibited disruptions in retinal structure. Subsequently, we administered an adeno-associated virus vectors carrying an adenine base editor (ABE) and a single-guide RNA specifically targeting the T17M mutation, achieving a peak correction rate of 39.7% at the RNA level and significantly improving retinal function in ABE-injected mice. These findings underscore that the hT17M knockin mouse model recapitulates the clinical features of adRP patients and exhibits therapeutic effects with ABE-mediated treatments. It offers a promising avenue for the development of gene-editing therapies for RP.
Collapse
Affiliation(s)
- Xiaoxue He
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, Hunan 410081, China; School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang 325027, China
| | - Tong Yan
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang 325027, China
| | - Zongming Song
- Henan Eye Hospital, Henan Eye Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University and People's Hospital of Henan University, Zhengzhou, Henan 450003, China
| | - Lue Xiang
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang 325027, China
| | - Jiayang Xiang
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang 325027, China
| | - Yeqin Yang
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Kaiqun Ren
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, Hunan 410081, China
| | - Jicheng Bu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan 410006, China
| | - Xilin Xu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, Hunan 410081, China; Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan 410006, China
| | - Zhuo Li
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan 410006, China
| | - Xiaowei Guo
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, Hunan 410081, China
| | - Bin Lin
- School of Optometry, Hong Kong Polytechnic University, Hong Kong HJ502, China
| | - Qinghua Zhou
- Department of Anesthesiology, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Ge Lin
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan 410006, China
| | - Feng Gu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, Hunan 410081, China; School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang 325027, China; Guangxiu Hospital Affiliated with Hunan Normal University (Hunan Guangxiu Hospital), Changsha, Hunan 410119, China.
| |
Collapse
|
3
|
Oger MJL, Vermeulen O, Lambert J, Madanu TL, Kestemont P, Cornet V. Down to size: Exploring the influence of plastic particle Dimensions on physiological and nervous responses in early-stage zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124094. [PMID: 38703983 DOI: 10.1016/j.envpol.2024.124094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
The chorion is the first protective barrier set to prevent numerous pollutants from damaging the developing embryo. However, depending on their size, some nanoplastics (NPs) can pass through this barrier and reach the embryo, while all microplastics (MPs) remain on the outside. This study brings a straight approach to compare MPs and NPs, and assess their direct and indirect effects on zebrafish embryos and larvae. Zebrafish eggs were exposed before 2 h post fertilization (hpf) to polystyrene MPs (5 μm) and NPs (250 nm) at a concentration of 1000 μg/L until 96 hpf. Physiotoxicity and neurotoxicity were assessed prior and post-hatching through several biomarkers. Response to hypoxia (upregulation of hif-1aa and hif-1ab) were found in embryos exposed to MPs, and partly found in those exposed to NPs. Embryos exposed to NPs showed significant tachycardia, reduced O2 consumption and increased apoptosis in the eyes, whereas MPs affected the expressions of all genes related to the neurodevelopment of embryos (elavl3, pax2a, pax6a, act1b). Post-hatching, physiological responses were muted. MPs and NPs exposures ended by evaluating larval behaviours during dark-and-light cycles. Both sizes of plastic particles negatively affected the visual motor response (VMR) and vibrational startle response (VSR). Thigmotaxis levels were significantly increased by NPs whereas MPs showed anxiolytic properties. This study shows that both MPs and NPs affect the physiology and neurodevelopment of zebrafish at different levels, before and after hatching.
Collapse
Affiliation(s)
- Mathilde J L Oger
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles, 61-B-5000, Namur, Belgium.
| | - Océane Vermeulen
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles, 61-B-5000, Namur, Belgium
| | - Jérôme Lambert
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles, 61-B-5000, Namur, Belgium
| | - Thomas L Madanu
- Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, Rue de Bruxelles, 61-B-5000, Namur, Belgium
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles, 61-B-5000, Namur, Belgium
| | - Valérie Cornet
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles, 61-B-5000, Namur, Belgium
| |
Collapse
|
4
|
Rutan Woods CT, Makia MS, Lewis TR, Crane R, Zeibak S, Yu P, Kakakhel M, Castillo CM, Arshavsky VY, Naash MI, Al-Ubaidi MR. Downregulation of rhodopsin is an effective therapeutic strategy in ameliorating peripherin-2-associated inherited retinal disorders. Nat Commun 2024; 15:4756. [PMID: 38834544 PMCID: PMC11150396 DOI: 10.1038/s41467-024-48846-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 05/15/2024] [Indexed: 06/06/2024] Open
Abstract
Given the absence of approved treatments for pathogenic variants in Peripherin-2 (PRPH2), it is imperative to identify a universally effective therapeutic target for PRPH2 pathogenic variants. To test the hypothesis that formation of the elongated discs in presence of PRPH2 pathogenic variants is due to the presence of the full complement of rhodopsin in absence of the required amounts of functional PRPH2. Here we demonstrate the therapeutic potential of reducing rhodopsin levels in ameliorating disease phenotype in knockin models for p.Lys154del (c.458-460del) and p.Tyr141Cys (c.422 A > G) in PRPH2. Reducing rhodopsin levels improves physiological function, mitigates the severity of disc abnormalities, and decreases retinal gliosis. Additionally, intravitreal injections of a rhodopsin-specific antisense oligonucleotide successfully enhance the physiological function of photoreceptors and improves the ultrastructure of discs in mutant mice. Presented findings shows that reducing rhodopsin levels is an effective therapeutic strategy for the treatment of inherited retinal degeneration associated with PRPH2 pathogenic variants.
Collapse
Affiliation(s)
| | - Mustafa S Makia
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Tylor R Lewis
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Ryan Crane
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Stephanie Zeibak
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Paul Yu
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Mashal Kakakhel
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Carson M Castillo
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Vadim Y Arshavsky
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA.
| | - Muayyad R Al-Ubaidi
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
5
|
Motipally SI, Kolson DR, Guan T, Kolandaivelu S. Aberrant lipid accumulation and retinal pigmental epithelium dysfunction in PRCD-deficient mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584131. [PMID: 38558979 PMCID: PMC10979840 DOI: 10.1101/2024.03.08.584131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Progressive Rod-Cone Degeneration (PRCD) is an integral membrane protein found in photoreceptor outer segment (OS) disc membranes and its function remains unknown. Mutations in Prcd are implicated in Retinitis pigmentosa (RP) in humans and multiple dog breeds. PRCD-deficient models exhibit decreased levels of cholesterol in the plasma. However, potential changes in the retinal cholesterol remain unexplored. In addition, impaired phagocytosis observed in these animal models points to potential deficits in the retinal pigment epithelium (RPE). Here, using a Prcd -/- murine model we investigated the alterations in the retinal cholesterol levels and impairments in the structural and functional integrity of the RPE. Lipidomic and immunohistochemical analyses show a 5-fold increase in the levels of cholesteryl esters (C.Es) and accumulation of neutral lipids in the PRCD-deficient retina, respectively, indicating alterations in total retinal cholesterol. Longitudinal fundus and spectral domain optical coherence tomography (SD-OCT) examinations showed focal lesions and RPE hyperreflectivity. Strikingly, the RPE of Prcd -/- mice exhibited age-related pathological features such as neutral lipid deposits, lipofuscin accumulation, Bruch's membrane (BrM) thickening and drusenoid focal deposits, mirroring an Age-related Macular Degeneration (AMD)-like phenotype. We propose that the extensive lipofuscin accumulation likely impairs lysosomal function, leading to the defective phagocytosis observed in Prcd -/- mice. Our findings support the dysregulation of retinal cholesterol homeostasis in the absence of PRCD. Further, we demonstrate that progressive photoreceptor degeneration in Prcd -/- mice is accompanied by progressive structural and functional deficits in the RPE, which likely exacerbates vision loss over time.
Collapse
|
6
|
Kandoi S, Martinez C, Chen KX, Mehine M, Reddy LVK, Mansfield BC, Duncan JL, Lamba DA. Disease modeling and pharmacological rescue of autosomal dominant retinitis pigmentosa associated with RHO copy number variation. eLife 2024; 12:RP90575. [PMID: 38661530 PMCID: PMC11045220 DOI: 10.7554/elife.90575] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Retinitis pigmentosa (RP), a heterogenous group of inherited retinal disorder, causes slow progressive vision loss with no effective treatments available. Mutations in the rhodopsin gene (RHO) account for ~25% cases of autosomal dominant RP (adRP). In this study, we describe the disease characteristics of the first-ever reported mono-allelic copy number variation (CNV) in RHO as a novel cause of adRP. We (a) show advanced retinal degeneration in a male patient (68 years of age) harboring four transcriptionally active intact copies of rhodopsin, (b) recapitulated the clinical phenotypes using retinal organoids, and (c) assessed the utilization of a small molecule, Photoregulin3 (PR3), as a clinically viable strategy to target and modify disease progression in RP patients associated with RHO-CNV. Patient retinal organoids showed photoreceptors dysgenesis, with rod photoreceptors displaying stunted outer segments with occasional elongated cilia-like projections (microscopy); increased RHO mRNA expression (quantitative real-time PCR [qRT-PCR] and bulk RNA sequencing); and elevated levels and mislocalization of rhodopsin protein (RHO) within the cell body of rod photoreceptors (western blotting and immunohistochemistry) over the extended (300 days) culture time period when compared against control organoids. Lastly, we utilized PR3 to target NR2E3, an upstream regulator of RHO, to alter RHO expression and observed a partial rescue of RHO protein localization from the cell body to the inner/outer segments of rod photoreceptors in patient organoids. These results provide a proof-of-principle for personalized medicine and suggest that RHO expression requires precise control. Taken together, this study supports the clinical data indicating that RHO-CNV associated adRPdevelops as a result of protein overexpression, thereby overloading the photoreceptor post-translational modification machinery.
Collapse
Affiliation(s)
- Sangeetha Kandoi
- Department of Ophthalmology, University of California, San FranciscoSan FranciscoUnited States
- Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research University of California, San FranciscoSan FranciscoUnited States
| | - Cassandra Martinez
- Department of Ophthalmology, University of California, San FranciscoSan FranciscoUnited States
- Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research University of California, San FranciscoSan FranciscoUnited States
| | - Kevin Xu Chen
- Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research University of California, San FranciscoSan FranciscoUnited States
| | | | - L Vinod K Reddy
- Department of Ophthalmology, University of California, San FranciscoSan FranciscoUnited States
- Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research University of California, San FranciscoSan FranciscoUnited States
| | - Brian C Mansfield
- Section on Cellular Differentiation, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Jacque L Duncan
- Department of Ophthalmology, University of California, San FranciscoSan FranciscoUnited States
| | - Deepak A Lamba
- Department of Ophthalmology, University of California, San FranciscoSan FranciscoUnited States
- Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research University of California, San FranciscoSan FranciscoUnited States
- Immunology and Regenerative Medicine, GenentechSouth San FranciscoUnited States
| |
Collapse
|
7
|
Sp S, Mitra RN, Zheng M, Chrispell JD, Wang K, Kwon YS, Weiss ER, Han Z. Gene augmentation for autosomal dominant retinitis pigmentosa using rhodopsin genomic loci nanoparticles in the P23H +/- knock-in murine model. Gene Ther 2023; 30:628-640. [PMID: 36935427 DOI: 10.1038/s41434-023-00394-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 02/13/2023] [Accepted: 02/28/2023] [Indexed: 03/21/2023]
Abstract
Gene therapy for autosomal dominant retinitis pigmentosa (adRP) is challenged by the dominant inheritance of the mutant genes, which would seemingly require a combination of mutant suppression and wild-type replacement of the appropriate gene. We explore the possibility that delivery of a nanoparticle (NP)-mediated full-length mouse genomic rhodopsin (gRho) or human genomic rhodopsin (gRHO) locus can overcome the dominant negative effects of the mutant rhodopsin in the clinically relevant P23H+/--knock-in heterozygous mouse model. Our results demonstrate that mice in both gRho and gRHO NP-treated groups exhibit significant structural and functional recovery of the rod photoreceptors, which lasted for 3 months post-injection, indicating a promising reduction in photoreceptor degeneration. We performed miRNA transcriptome analysis using next generation sequencing and detected differentially expressed miRNAs as a first step towards identifying miRNAs that could potentially be used as rhodopsin gene expression enhancers or suppressors for sustained photoreceptor rescue. Our results indicate that delivering an intact genomic locus as a transgene has a greater chance of success compared to the use of the cDNA for treatment of this model of adRP, emphasizing the importance of gene augmentation using a gDNA that includes regulatory elements.
Collapse
Affiliation(s)
- Simna Sp
- Department of Ophthalmology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rajendra N Mitra
- Department of Ophthalmology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Min Zheng
- Department of Ophthalmology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jared D Chrispell
- Department of Cell Biology and Physiology, the University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Kai Wang
- Department of Ophthalmology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yong-Su Kwon
- Department of Ophthalmology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ellen R Weiss
- Department of Cell Biology and Physiology, the University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Zongchao Han
- Department of Ophthalmology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Carolina Institute for NanoMedicine, the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Division of Pharmacoengineering & Molecular Pharmaceutics, Eshelman School of Pharmacy, the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
8
|
Lewis TR, Phan S, Castillo CM, Kim KY, Coppenrath K, Thomas W, Hao Y, Skiba NP, Horb ME, Ellisman MH, Arshavsky VY. Photoreceptor disc incisures form as an adaptive mechanism ensuring the completion of disc enclosure. eLife 2023; 12:e89160. [PMID: 37449984 PMCID: PMC10361718 DOI: 10.7554/elife.89160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023] Open
Abstract
The first steps of vision take place within a stack of tightly packed disc-shaped membranes, or 'discs', located in the outer segment compartment of photoreceptor cells. In rod photoreceptors, discs are enclosed inside the outer segment and contain deep indentations in their rims called 'incisures'. The presence of incisures has been documented in a variety of species, yet their role remains elusive. In this study, we combined traditional electron microscopy with three-dimensional electron tomography to demonstrate that incisures are formed only after discs become completely enclosed. We also observed that, at the earliest stage of their formation, discs are not round as typically depicted but rather are highly irregular in shape and resemble expanding lamellipodia. Using genetically manipulated mice and frogs and measuring outer segment protein abundances by quantitative mass spectrometry, we further found that incisure size is determined by the molar ratio between peripherin-2, a disc rim protein critical for the process of disc enclosure, and rhodopsin, the major structural component of disc membranes. While a high perpherin-2 to rhodopsin ratio causes an increase in incisure size and structural complexity, a low ratio precludes incisure formation. Based on these data, we propose a model whereby normal rods express a modest excess of peripherin-2 over the amount required for complete disc enclosure in order to ensure that this important step of disc formation is accomplished. Once the disc is enclosed, the excess peripherin-2 incorporates into the rim to form an incisure.
Collapse
Affiliation(s)
- Tylor R Lewis
- Department of Ophthalmology, Duke University Medical CenterDurhamUnited States
| | - Sebastien Phan
- National Center for Microscopy and Imaging Research, School of Medicine, University of California, San DiegoLa JollaUnited States
| | - Carson M Castillo
- Department of Ophthalmology, Duke University Medical CenterDurhamUnited States
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, School of Medicine, University of California, San DiegoLa JollaUnited States
| | - Kelsey Coppenrath
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus ResourceWoods HoleUnited States
| | - William Thomas
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus ResourceWoods HoleUnited States
| | - Ying Hao
- Department of Ophthalmology, Duke University Medical CenterDurhamUnited States
| | - Nikolai P Skiba
- Department of Ophthalmology, Duke University Medical CenterDurhamUnited States
| | - Marko E Horb
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus ResourceWoods HoleUnited States
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, School of Medicine, University of California, San DiegoLa JollaUnited States
| | - Vadim Y Arshavsky
- Department of Ophthalmology, Duke University Medical CenterDurhamUnited States
- Department of Pharmacology and Cancer Biology, Duke University Medical CenterDurhamUnited States
| |
Collapse
|
9
|
Lewis TR, Phan S, Castillo CM, Kim KY, Coppenrath K, Thomas W, Hao Y, Skiba NP, Horb ME, Ellisman MH, Arshavsky VY. Photoreceptor disc incisures form as an adaptive mechanism ensuring the completion of disc enclosure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535932. [PMID: 37066355 PMCID: PMC10104153 DOI: 10.1101/2023.04.06.535932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
The first steps of vision take place within a stack of tightly packed disc-shaped membranes, or "discs", located in the outer segment compartment of photoreceptor cells. In rod photoreceptors, discs are enclosed inside the outer segment and contain deep indentations in their rims called "incisures". The presence of incisures has been documented in a variety of species, yet their role remains elusive. In this study, we combined traditional electron microscopy with three-dimensional electron tomography to demonstrate that incisures are formed only after discs become completely enclosed. We also observed that, at the earliest stage of their formation, discs are not round as typically depicted but rather are highly irregular in shape and resemble expanding lamellipodia. Using genetically manipulated mice and frogs and measuring outer segment protein abundances by quantitative mass spectrometry, we further found that incisure size is determined by the molar ratio between peripherin-2, a disc rim protein critical for the process of disc enclosure, and rhodopsin, the major structural component of disc membranes. While a high perpherin-2 to rhodopsin ratio causes an increase in incisure size and structural complexity, a low ratio precludes incisure formation. Based on these data, we propose a model whereby normal rods express a modest excess of peripherin-2 over the amount required for complete disc enclosure in order to ensure that this important step of disc formation is accomplished. Once the disc is enclosed, the excess peripherin-2 incorporates into the rim to form an incisure.
Collapse
Affiliation(s)
- Tylor R. Lewis
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA, 27710
| | - Sebastien Phan
- National Center for Microscopy and Imaging Research, School of Medicine, University of California San Diego, La Jolla, CA, USA, 92093
| | - Carson M. Castillo
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA, 27710
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, School of Medicine, University of California San Diego, La Jolla, CA, USA, 92093
| | - Kelsey Coppenrath
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Woods Hole, MA, USA, 02543
| | - William Thomas
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Woods Hole, MA, USA, 02543
| | - Ying Hao
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA, 27710
| | - Nikolai P. Skiba
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA, 27710
| | - Marko E. Horb
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Woods Hole, MA, USA, 02543
| | - Mark H. Ellisman
- National Center for Microscopy and Imaging Research, School of Medicine, University of California San Diego, La Jolla, CA, USA, 92093
| | - Vadim Y. Arshavsky
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA, 27710
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA, 27710
| |
Collapse
|
10
|
Poria D, Kolesnikov AV, Lee TJ, Salom D, Palczewski K, Kefalov VJ. Investigating the Role of Rhodopsin F45L Mutation in Mouse Rod Photoreceptor Signaling and Survival. eNeuro 2023; 10:ENEURO.0330-22.2023. [PMID: 36823167 PMCID: PMC9997694 DOI: 10.1523/eneuro.0330-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 02/25/2023] Open
Abstract
Rhodopsin is the critical receptor molecule which enables vertebrate rod photoreceptor cells to detect a single photon of light and initiate a cascade of molecular events leading to visual perception. Recently, it has been suggested that the F45L mutation in the transmembrane helix of rhodopsin disrupts its dimerization in vitro To determine whether this mutation of rhodopsin affects its signaling properties in vivo, we generated knock-in mice expressing the rhodopsin F45L mutant. We then examined the function of rods in the mutant mice versus wild-type controls, using in vivo electroretinography and transretinal and single cell suction recordings, combined with morphologic analysis and spectrophotometry. Although we did not evaluate the effect of the F45L mutation on the state of dimerization of the rhodopsin in vivo, our results revealed that F45L-mutant mice exhibit normal retinal morphology, normal rod responses as measured both in vivo and ex vivo, and normal rod dark adaptation. We conclude that the F45L mutation does not affect the signaling properties of rhodopsin in its natural setting.
Collapse
Affiliation(s)
- Deepak Poria
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA 92697
| | - Alexander V Kolesnikov
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA 92697
| | - Tae Jun Lee
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110
| | - David Salom
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA 92697
| | - Krzysztof Palczewski
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA 92697
- Department of Chemistry, University of California, Irvine, CA 92697
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697
| | - Vladimir J Kefalov
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA 92697
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697
| |
Collapse
|
11
|
Motipally SI, Kolandaivelu S. Absence of PRCD Leads to Dysregulation in Lipid Homeostasis Resulting in Disorganization of Photoreceptor Outer Segment Structure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:389-394. [PMID: 37440062 DOI: 10.1007/978-3-031-27681-1_57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
The outer segments of photoreceptors are specialized sensory cilia crucial for light detection. Any disruption that alters outer segment morphology can impair photoreceptor function and therefore vision. Progressive rod-cone degeneration (PRCD) is an integral membrane protein exclusively present in the photoreceptor OS with an unknown function. Multiple mutations in PRCD are linked with retinitis pigmentosa. The most common PRCD mutation observed in both human and multiple dog breeds, PRCD-C2Y, lacks the lipid modification "palmitoylation," which is crucial for protein stability and trafficking to the OS. Previous studies including ours show impaired disc morphogenesis and rhodopsin distributions in the absence of PRCD, but the precise role of PRCD in maintaining OS structure and function remains unclear. In this chapter, we discuss the potential role of PRCD in the maintenance of photoreceptor OS structural and functional integrity.
Collapse
Affiliation(s)
- Sree I Motipally
- Departments of Neuroscience and Biochemistry, Robert C. Byrd Health Sciences Centre, WVU Eye Institute, Morgantown, WV, USA
| | - Saravanan Kolandaivelu
- Departments of Ophthalmology, Visual Sciences and Biochemistry, Robert C. Byrd Health Sciences Centre, WVU Eye Institute, Morgantown, WV, USA.
| |
Collapse
|
12
|
Fogg LG, Cortesi F, Gache C, Lecchini D, Marshall NJ, de Busserolles F. Developing and adult reef fish show rapid light-induced plasticity in their visual system. Mol Ecol 2023; 32:167-181. [PMID: 36261875 PMCID: PMC10099556 DOI: 10.1111/mec.16744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/06/2022] [Accepted: 10/17/2022] [Indexed: 12/29/2022]
Abstract
The visual capabilities of fish are optimized for their ecology and light environment over evolutionary time. Similarly, fish vision can adapt to regular changes in light conditions within their lifetime, e.g., ontogenetic or seasonal variation. However, we do not fully understand how vision responds to irregular short-term changes in the light environment, e.g., algal blooms and light pollution. In this study, we investigated the effect of short-term exposure to unnatural light conditions on opsin gene expression and retinal cell densities in juvenile and adult diurnal reef fish (convict surgeonfish; Acanthurus triostegus). Results revealed phenotypic plasticity in the retina across ontogeny, particularly during development. The most substantial differences at both molecular and cellular levels were found under constant dim light, while constant bright light and simulated artificial light at night had a lesser effect. Under dim light, juveniles and adults increased absolute expression of the cone opsin genes, sws2a, rh2c and lws, within a few days and juveniles also decreased densities of cones, inner nuclear layer cells and ganglion cells. These changes potentially enhanced vision under the altered light conditions. Thus, our study suggests that plasticity mainly comes into play when conditions are extremely different to the species' natural light environment, i.e., a diurnal fish in "constant night". Finally, in a rescue experiment on adults, shifts in opsin expression were reverted within 24 h. Overall, our study showed rapid, reversible light-induced changes in the retina of A. triostegus, demonstrating phenotypic plasticity in the visual system of a reef fish throughout life.
Collapse
Affiliation(s)
- Lily G. Fogg
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | - Fabio Cortesi
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | - Camille Gache
- PSL Research University, EPHE‐UPVD‐CNRS, UAR3278 CRIOBEPapetoaiFrench Polynesia
- Laboratoire d'Excellence “CORAIL”ParisFrance
| | - David Lecchini
- PSL Research University, EPHE‐UPVD‐CNRS, UAR3278 CRIOBEPapetoaiFrench Polynesia
- Laboratoire d'Excellence “CORAIL”ParisFrance
| | - N. Justin Marshall
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | - Fanny de Busserolles
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
13
|
Langouët M, Jolicoeur C, Javed A, Mattar P, Gearhart MD, Daiger SP, Bertelsen M, Tranebjærg L, Rendtorff ND, Grønskov K, Jespersgaard C, Chen R, Sun Z, Li H, Alirezaie N, Majewski J, Bardwell VJ, Sui R, Koenekoop RK, Cayouette M. Mutations in BCOR, a co-repressor of CRX/OTX2, are associated with early-onset retinal degeneration. SCIENCE ADVANCES 2022; 8:eabh2868. [PMID: 36070393 PMCID: PMC9451151 DOI: 10.1126/sciadv.abh2868] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/21/2022] [Indexed: 06/10/2023]
Abstract
Many transcription factors regulating the production, survival, and function of photoreceptor cells have been identified, but little is known about transcriptional co-regulators in retinal health and disease. Here, we show that BCL6 co-repressor (BCOR), a Polycomb repressive complex 1 factor mutated in various cancers, is involved in photoreceptor degenerative diseases. Using proteomics and transcription assays, we report that BCOR interacts with the transcription factors CRX and OTX2 and reduces their ability to activate the promoters of photoreceptor-specific genes. CUT&RUN sequencing further shows that BCOR shares genome-wide binding profiles with CRX/OTX2, consistent with a general co-repression activity. We also identify missense mutations in human BCOR in five families that have no evidence of cancer but present severe early-onset X-linked retinal degeneration. Last, we show that the human BCOR mutants cause degeneration when expressed in the mouse retina and have enhanced repressive activity on OTX2. These results uncover a role for BCOR in photoreceptors in both health and disease.
Collapse
Affiliation(s)
- Maéva Langouët
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
| | - Christine Jolicoeur
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
| | - Awais Javed
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
| | - Pierre Mattar
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
| | - Micah D. Gearhart
- Department of Genetics, Cell Biology and Development, Development Biology Center, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stephen P. Daiger
- EHGED Department, Human Genetics Center, School of Public Health, University of Texas HSC, Houston, TX 77030, USA
| | - Mette Bertelsen
- Department of Clinical Genetics, Rigshospitalet, The Kennedy Centre, Copenhagen, Denmark
- Department of Ophthalmology, Rigshospitalet, The Kennedy Centre, Glostrup, Denmark
| | - Lisbeth Tranebjærg
- Department of Clinical Genetics, Rigshospitalet, The Kennedy Centre, Copenhagen, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Denmark
| | - Nanna D. Rendtorff
- Department of Clinical Genetics, Rigshospitalet, The Kennedy Centre, Copenhagen, Denmark
| | - Karen Grønskov
- Department of Clinical Genetics, Rigshospitalet, The Kennedy Centre, Copenhagen, Denmark
| | - Catherine Jespersgaard
- Department of Clinical Genetics, Rigshospitalet, The Kennedy Centre, Copenhagen, Denmark
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Zixi Sun
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Hui Li
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Najmeh Alirezaie
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Jacek Majewski
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Vivian J. Bardwell
- Department of Genetics, Cell Biology and Development, Development Biology Center, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ruifang Sui
- Department of Ophthalmology, State Key Laboratory of Complex Severe and Rare diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Robert K. Koenekoop
- Departments of Pediatric Surgery, Human Genetics, Adult Ophthalmology and the McGill Ocular Genetics Laboratory, McGill University Health Center Research Institute, Montreal, QC, Canada
| | - Michel Cayouette
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
- Department of Anatomy and Cell Biology, Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
14
|
Liu X, Jia R, Meng X, Li Y, Yang L. Retinal degeneration in humanized mice expressing mutant rhodopsin under the control of the endogenous murine promoter. Exp Eye Res 2021; 215:108893. [PMID: 34919893 DOI: 10.1016/j.exer.2021.108893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/31/2021] [Accepted: 12/08/2021] [Indexed: 11/04/2022]
Abstract
RHO is one of the most common genetic causes of autosomal dominant retinitis Pigmentosa (adRP) and there is no effective therapy for this disease. While rapidly developed CRISPR/Cas9 gene editing technology presents a promising therapeutic strategy to treat adRP. A large number of studies for treating adRP using CRISPR/Cas9 have been performed based on transgenic mouse models which are affected with adRP caused by mutant mouse rhodopsin allele, the counterpart of human rhodopsin. Recently, some RHO humanized mouse models like T17M, P23H are generated, which permit testing of the therapeutic effect of CRISPR/Cas9 in preclinical in vivo systems, without putting humans at risk. While available humanized mouse models are few compared to the number of known RHO mutations, but it is time-consuming and costly to build humanized mice for each mutation. We wonder whether a humanized mouse model having several mutations simultaneously can be developed, although which rarely occurs in patients, to investigate the therapeutic effect of CRISPR/Cas9 for RHO-mediated adRP in preclinical in vivo systems. Homology directed repair strategy combing with CRISPR/Cas9 was employed to introduce human RHO genomic fragment containing the replacement of mouse exon1(mE1) after the start codon to mE5 before the stop codon and all introns by the human counterparts. The human rhodopsin could express under the control of the endogenous murine promoter both transcriptionally and translationally in vivo. Human rhodopsin in humanized mouse lines (without mutation) could replace murine rhodopsin morphologically and functionally. While human rhodopsin containing T17M, G51D, G114R, R135W and P171R mutations simultaneously in mutant humanized (Mut-Rhowt/hum and Mut-Rhohum/hum) mouse lines caused retinal degeneration. Mut-Rhohum/hum mice suffered from severe retinal degeneration with defective formation of rod outer segment, leaving nonrecordable electroretinogram (ERG) at 3 months. Mut- Rhowt/hum mice had a slower rate of photoreceptors loss. In 7-month-old Mut- Rhowt/hum mice, statistically reduced scotopic ERG responses were visible compared with age-matched WT mice, but the shortened outer segment and thinner outer nuclear layer could be observed from 3 months. From 7 months to 9 months, significantly abnormal scotopic ERG responses were visible and photoreceptors loss were also obvious in 9-month-old Mut-Rhowt/hum mice. In 12-month-old Mut- Rhowt/hum mice, statistically reduced scotopic and photopic ERG responses and retinal degeneration throughout the retina were visible. Because scotopic responses were more affected than photopic responses in mutant humanized mice, demonstrating that rods dysfunction was more severe than cones dysfunction and deteriorated earlier, the pattern of retinal degeneration caused by mutant human rhodopsin was a typical rod-cone decay. Immunocytochemistry in cells indicated human rhodopsin proteins with 5 mutations aggregated in the cytoplasm and were also retained in the endoplasmic reticulum. The mutant human rhodopsin also accumulated in rod inner segments and cellular bodies in vivo. In conclusion, our humanized models provide excellent opportunities to study the human rhodopsin expression patterns. Our mutant humanized heterozygotes can provide opportunities to explore gene editing therapies via CRISPR/Cas9 for these five mutations in preclinical studies, it is time-saving and cost-effective.
Collapse
Affiliation(s)
- Xiaozhen Liu
- Department of Ophthalmology, Peking University Third Hospital, Beijing, 100191, China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, 100191, China
| | - Ruixuan Jia
- Department of Ophthalmology, Peking University Third Hospital, Beijing, 100191, China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, 100191, China
| | - Xiang Meng
- Department of Ophthalmology, Peking University Third Hospital, Beijing, 100191, China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, 100191, China
| | - Ying Li
- Department of Ophthalmology, Peking University Third Hospital, Beijing, 100191, China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, 100191, China
| | - Liping Yang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, 100191, China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
15
|
Identification of small molecule allosteric modulators that act as enhancers/disrupters of rhodopsin oligomerization. J Biol Chem 2021; 297:101401. [PMID: 34774799 PMCID: PMC8665362 DOI: 10.1016/j.jbc.2021.101401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 11/27/2022] Open
Abstract
The elongated cilia of the outer segment of rod and cone photoreceptor cells can contain concentrations of visual pigments of up to 5 mM. The rod visual pigments, G protein–coupled receptors called rhodopsins, have a propensity to self-aggregate, a property conserved among many G protein–coupled receptors. However, the effect of rhodopsin oligomerization on G protein signaling in native cells is less clear. Here, we address this gap in knowledge by studying rod phototransduction. As the rod outer segment is known to adjust its size proportionally to overexpression or reduction of rhodopsin expression, genetic perturbation of rhodopsin cannot be used to resolve this question. Therefore, we turned to high-throughput screening of a diverse library of 50,000 small molecules and used a novel assay for the detection of rhodopsin dimerization. This screen identified nine small molecules that either disrupted or enhanced rhodopsin dimer contacts in vitro. In a subsequent cell-free binding study, we found that all nine compounds decreased intrinsic fluorescence without affecting the overall UV-visible spectrum of rhodopsin, supporting their actions as allosteric modulators. Furthermore, ex vivo electrophysiological recordings revealed that a disruptive, hit compound #7 significantly slowed down the light response kinetics of intact rods, whereas compound #1, an enhancing hit candidate, did not substantially affect the photoresponse kinetics but did cause a significant reduction in light sensitivity. This study provides a monitoring tool for future investigation of the rhodopsin signaling cascade and reports the discovery of new allosteric modulators of rhodopsin dimerization that can also alter rod photoreceptor physiology.
Collapse
|
16
|
Butler JM, Maruska KP. Opsin Expression Varies with Reproductive State in the Cichlid Fish Astatotilapia burtoni. Integr Comp Biol 2021; 61:240-248. [PMID: 33972997 DOI: 10.1093/icb/icab058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Animals use visual communication to convey crucial information about their identity, reproductive status, and sex. Plasticity in the auditory and olfactory systems has been well-documented, however, fewer studies have tested for plasticity in the visual system, a surprising detail since courtship and mate choice are largely dependent on visual signals across taxa. We previously found reproductive state-dependent plasticity in the eye of the highly social cichlid fish Astatotilapia burtoni. Male A. burtoni increase their courtship, including multicomponent visual displays, when around ovulated females, and ovulated females are more responsive to male visual courtship displays than non-ovulated females. Based on this, we hypothesized that ovulation status impacts visual capabilities in A. burtoni females. Using electroretinograms, we found that ovulated females had greater visual sensitivity at wavelengths corresponding to male courtship coloration compared with non-reproductively-receptive females. In addition, ovulated females had higher neural activation in the retina and higher mRNA expression levels of neuromodulatory receptors (e.g., sex-steroids; gonadotropins) in the eye than non-ovulated females. Here, we add to this body of work by testing the hypothesis that cone opsin expression changes with female reproductive state. Ovulated females had higher expression of short wavelength sensitive opsins (sws1, sws2a, sws2b) compared with mouthbrooding females. Further, expression of sws2a, the most abundant opsin in the A. burtoni eye, positively correlated with levels of circulating 11-ketotestosterone and estradiol and estrogen, androgen, and gonadotropin system receptor expression in the eye in females. These data indicate that reproductive state-dependent plasticity also occurs at the level of photoreceptors, not just through modulation of visual signals at downstream retinal layers. Collectively, these data provide crucial evidence linking endocrine modulation of visual plasticity to mate choice behaviors in females.
Collapse
Affiliation(s)
- Julie M Butler
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg, Baton Rouge, LA 70803, USA.,Department of Biology, Stanford University, 304 Gilbert, 371 Jane Stanford Way, Stanford, CA 94305, USA
| | - Karen P Maruska
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg, Baton Rouge, LA 70803, USA
| |
Collapse
|
17
|
Hebbar S, Lehmann M, Behrens S, Hälsig C, Leng W, Yuan M, Winkler S, Knust E. Mutations in the splicing regulator Prp31 lead to retinal degeneration in Drosophila. Biol Open 2021; 10:10/1/bio052332. [PMID: 33495354 PMCID: PMC7860132 DOI: 10.1242/bio.052332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Retinitis pigmentosa (RP) is a clinically heterogeneous disease affecting 1.6 million people worldwide. The second-largest group of genes causing autosomal dominant RP in human encodes regulators of the splicing machinery. Yet, how defects in splicing factor genes are linked to the aetiology of the disease remains largely elusive. To explore possible mechanisms underlying retinal degeneration caused by mutations in regulators of the splicing machinery, we induced mutations in Drosophila Prp31, the orthologue of human PRPF31, mutations in which are associated with RP11. Flies heterozygous mutant for Prp31 are viable and develop normal eyes and retina. However, photoreceptors degenerate under light stress, thus resembling the human disease phenotype. Degeneration is associated with increased accumulation of the visual pigment rhodopsin 1 and increased mRNA levels of twinfilin, a gene associated with rhodopsin trafficking. Reducing rhodopsin levels by raising animals in a carotenoid-free medium not only attenuates rhodopsin accumulation, but also retinal degeneration. Given a similar importance of proper rhodopsin trafficking for photoreceptor homeostasis in human, results obtained in flies presented here will also contribute to further unravel molecular mechanisms underlying the human disease. This paper has an associated First Person interview with the co-first authors of the article. Summary: Retinitis pigmentosa (RP) is a human disease resulting in blindness, which affects 1 in 4.000 people worldwide. So far >90 genes have been identified that are causally related to RP. Mutations in the splicing factor PRPF31 are linked to RP11. We induced mutations in the Drosophila orthologue Prp31 and show that flies heterozygous for Prp31 undergo light-dependent retinal degeneration. Degeneration is associated with increased accumulation of the light-sensitive molecule, rhodopsin 1. In fact, reducing rhodopsin levels by dietary intervention modifies the extent of retinal degeneration. This model will further contribute to better understand the aetiology of the human disease.
Collapse
Affiliation(s)
- Sarita Hebbar
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Malte Lehmann
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Sarah Behrens
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Catrin Hälsig
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Weihua Leng
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Michaela Yuan
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Sylke Winkler
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Elisabeth Knust
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| |
Collapse
|
18
|
Sechrest ER, Murphy J, Senapati S, Goldberg AFX, Park PSH, Kolandaivelu S. Loss of PRCD alters number and packaging density of rhodopsin in rod photoreceptor disc membranes. Sci Rep 2020; 10:17885. [PMID: 33087780 PMCID: PMC7577997 DOI: 10.1038/s41598-020-74628-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023] Open
Abstract
Progressive rod-cone degeneration (PRCD) is a small protein localized to photoreceptor outer segment (OS) disc membranes. Several mutations in PRCD are linked to retinitis pigmentosa (RP) in canines and humans, and while recent studies have established that PRCD is required for high fidelity disc morphogenesis, its precise role in this process remains a mystery. To better understand the part which PRCD plays in disease progression as well as its contribution to photoreceptor OS disc morphogenesis, we generated a Prcd-KO animal model using CRISPR/Cas9. Loss of PRCD from the retina results in reduced visual function accompanied by slow rod photoreceptor degeneration. We observed a significant decrease in rhodopsin levels in Prcd-KO retina prior to photoreceptor degeneration. Furthermore, ultrastructural analysis demonstrates that rod photoreceptors lacking PRCD display disoriented and dysmorphic OS disc membranes. Strikingly, atomic force microscopy reveals that many disc membranes in Prcd-KO rod photoreceptor neurons are irregular, containing fewer rhodopsin molecules and decreased rhodopsin packing density compared to wild-type discs. This study strongly suggests an important role for PRCD in regulation of rhodopsin incorporation and packaging density into disc membranes, a process which, when dysregulated, likely gives rise to the visual defects observed in patients with PRCD-associated RP.
Collapse
Affiliation(s)
- Emily R Sechrest
- Department of Pharmaceutical Sciences, One Medical Center Drive, West Virginia University, Morgantown, WV, 26506-9193, USA.,Department of Ophthalmology and Visual Sciences, Eye Institute, One Medical Center Drive, West Virginia University, Morgantown, WV, 26506-9193, USA
| | - Joseph Murphy
- Department of Ophthalmology and Visual Sciences, Eye Institute, One Medical Center Drive, West Virginia University, Morgantown, WV, 26506-9193, USA.,Department of Biochemistry, One Medical Center Drive, West Virginia University, Morgantown, WV, 26506-9193, USA
| | - Subhadip Senapati
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | | | - Paul S-H Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Saravanan Kolandaivelu
- Department of Ophthalmology and Visual Sciences, Eye Institute, One Medical Center Drive, West Virginia University, Morgantown, WV, 26506-9193, USA. .,Department of Biochemistry, One Medical Center Drive, West Virginia University, Morgantown, WV, 26506-9193, USA.
| |
Collapse
|
19
|
Hauzman E. Adaptations and evolutionary trajectories of the snake rod and cone photoreceptors. Semin Cell Dev Biol 2020; 106:86-93. [PMID: 32359892 DOI: 10.1016/j.semcdb.2020.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 10/24/2022]
Abstract
Most vertebrates have duplex retinas, with two classes of photoreceptors, rods and cones. In the group of Snakes, however, distinct patterns of retinal morphology are associated with transitions between diurnal-nocturnal habits and reflect important adaptations of their visual system. Pure-cone, pure-rod and duplex retinas were described in different species, and this variability led Gordon Walls (1934) to formulate the transmutation theory, which suggests that rods and cones are not fixed entities, but can assume transitional states. Three opsin genes are expressed in retinas of most snake species, lws, rh1, and sws1, and recent studies have shown that the rhodopsin gene, rh1, is expressed in pure-cone retinas of diurnal snakes. This expression raised many questions about the nature of transmutation and functional aspects of the rhodopsin in a cone-like photoreceptor. Extreme differences in the retinal architecture of diurnal and nocturnal snakes also highlight the complexity of adaptations of their visual structures, which might have contributed to the adaptive radiation of this group and will be discussed in this review.
Collapse
Affiliation(s)
- Einat Hauzman
- Department of Experimental Psychology, Psychology Institute, University of São Paulo, Av. Professor Mello Moraes, 1721, Bloco A - D9. Butantã, São Paulo, CEP. 05508-030, Brazil.
| |
Collapse
|
20
|
Kawashima H, Ozawa Y, Toda E, Homma K, Osada H, Narimatsu T, Nagai N, Tsubota K. Neuroprotective and vision-protective effect of preserving ATP levels by AMPK activator. FASEB J 2020; 34:5016-5026. [PMID: 32090372 DOI: 10.1096/fj.201902387rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/17/2020] [Accepted: 01/22/2020] [Indexed: 12/24/2022]
Abstract
Progression of blinding diseases, such as age-related macular degeneration, is accelerated by light exposure. However, no particular intervention is applied to the photostress. Here, we report neuroprotective effects of the adenosine monophosphate (AMP)-activated protein kinase (AMPK) activator, 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR), on light-induced visual function impairment, photoreceptor disorders and death in mice. Increase in retinal ATP levels in response to photostress was transient, because oxygen consumption rate (OCR) and cytochrome c oxidase (CcO) activity were reduced under photostress. However, AICAR treatment preserved OCR, CcO activity, and high levels of retinal ATP after light exposure. AMPK knockdown in the photoreceptor-derived cell line revealed that AMPK targeted CcO activity. Further, our data indicated that photostress reduced mitochondrial respiratory function and ATP levels, while AICAR treatment promoted neuronal survival and retained visual function, stabilizing ATP levels through preserved CcO activity. The current study has provided proof of concept for providing cells with sufficient energy to promote cell survival in the presence of cellular stress. This is in contrast to the previous reports which primarily investigated therapeutic approaches to suppress stress signals. Hence, stabilization of the ATP supply may serve as a novel therapeutic approach to support tissue survival under stress and prevent neurodegeneration.
Collapse
Affiliation(s)
- Hirohiko Kawashima
- Laboratory of Retinal Cell Biology, Keio University School of Medicine, Tokyo, Japan.,Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Yoko Ozawa
- Laboratory of Retinal Cell Biology, Keio University School of Medicine, Tokyo, Japan.,Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Eriko Toda
- Laboratory of Retinal Cell Biology, Keio University School of Medicine, Tokyo, Japan
| | - Kohei Homma
- Laboratory of Retinal Cell Biology, Keio University School of Medicine, Tokyo, Japan
| | - Hideto Osada
- Laboratory of Retinal Cell Biology, Keio University School of Medicine, Tokyo, Japan
| | - Toshio Narimatsu
- Laboratory of Retinal Cell Biology, Keio University School of Medicine, Tokyo, Japan.,Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Norihiro Nagai
- Laboratory of Retinal Cell Biology, Keio University School of Medicine, Tokyo, Japan.,Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
21
|
Rodríguez-Muñoz A, Aller E, Jaijo T, González-García E, Cabrera-Peset A, Gallego-Pinazo R, Udaondo P, Salom D, García-García G, Millán JM. Expanding the Clinical and Molecular Heterogeneity of Nonsyndromic Inherited Retinal Dystrophies. J Mol Diagn 2020; 22:532-543. [PMID: 32036094 DOI: 10.1016/j.jmoldx.2020.01.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/01/2019] [Accepted: 01/12/2020] [Indexed: 12/21/2022] Open
Abstract
A cohort of 172 patients diagnosed clinically with nonsyndromic retinal dystrophies, from 110 families underwent full ophthalmologic examination, including retinal imaging, electrophysiology, and optical coherence tomography, when feasible. Molecular analysis was performed using targeted next-generation sequencing (NGS). Variants were filtered and prioritized according to the minimum allele frequency, and finally classified according to the American College of Medical Genetics and Genomics guidelines. Multiplex ligation-dependent probe amplification and array comparative genomic hybridization were performed to validate copy number variations identified by NGS. The diagnostic yield of this study was 62% of studied families. Thirty novel mutations were identified. The study found phenotypic intra- and interfamilial variability in families with mutations in C1QTNF5, CERKL, and PROM1; biallelic mutations in PDE6B in a unilateral retinitis pigmentosa patient; interocular asymmetry RP in 50% of the symptomatic RPGR-mutated females; the first case with possible digenism between CNGA1 and CNGB1; and a ROM1 duplication in two unrelated retinitis pigmentosa families. Ten unrelated cases were reclassified. This study highlights the clinical utility of targeted NGS for nonsyndromic inherited retinal dystrophy cases and the importance of full ophthalmologic examination, which allows new genotype-phenotype associations and expands the knowledge of this group of disorders. Identifying the cause of disease is essential to improve patient management, provide accurate genetic counseling, and take advantage of gene therapy-based treatments.
Collapse
Affiliation(s)
- Ana Rodríguez-Muñoz
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Unidad Mixta de Enfermedades raras IIS La Fe-Centro de Investigación Príncipe Felipe, Valencia, Spain; Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Elena Aller
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Unidad Mixta de Enfermedades raras IIS La Fe-Centro de Investigación Príncipe Felipe, Valencia, Spain; Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, Valencia, Spain; Genetics Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Teresa Jaijo
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Unidad Mixta de Enfermedades raras IIS La Fe-Centro de Investigación Príncipe Felipe, Valencia, Spain; Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, Valencia, Spain; Genetics Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Emilio González-García
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Departments of Neurophysiology, Hospital de Manises, Valencia, Spain
| | | | - Roberto Gallego-Pinazo
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Macula Unit, Oftalvist Clinic, Valencia, Spain
| | - Patricia Udaondo
- Ophthalmology, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - David Salom
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, Valencia, Spain; Departments of Ophthalmology, Hospital de Manises, Valencia, Spain
| | - Gema García-García
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Unidad Mixta de Enfermedades raras IIS La Fe-Centro de Investigación Príncipe Felipe, Valencia, Spain; Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, Valencia, Spain.
| | - José M Millán
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Unidad Mixta de Enfermedades raras IIS La Fe-Centro de Investigación Príncipe Felipe, Valencia, Spain; Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, Valencia, Spain.
| |
Collapse
|
22
|
Yau EH, Taggart RT, Zuber M, Trujillo AJ, Fayazi ZS, Butler MC, Sheflin LG, Breen JB, Yu D, Sullivan JM. Systematic Screening, Rational Development, and Initial Optimization of Efficacious RNA Silencing Agents for Human Rod Opsin Therapeutics. Transl Vis Sci Technol 2019; 8:28. [PMID: 31853424 PMCID: PMC6908138 DOI: 10.1167/tvst.8.6.28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/15/2019] [Indexed: 12/13/2022] Open
Abstract
Purpose To systematically evaluate human rod opsin (hRHO) mRNA for potential target sites sensitive to posttranscriptional gene silencing (PTGS) by hammerhead ribozyme (hhRz) or RNA interference (RNAi) in human cells. To develop a comprehensive strategy to identify and optimize lead candidate agents for PTGS gene therapeutics. Methods In multidisciplinary RNA drug discovery, computational mRNA accessibility and in vitro experimental methods using reverse transcription–polymerase chain reaction (RT-PCR) were used to map accessibility in full-length hRHO transcripts. HhRzs targeted predicted accessible and inaccessible sites and were screened for cellular knockdown using a bicistronic reporter construct. Lead hhRz and RNAi PTGS agents were rationally optimized for target knockdown in human cells. Results Systematic screening of hRHO mRNA targeting agents resulted in lead candidate identification of a novel hhRz embedded in an RNA scaffold. Rational optimization strategies identified a minimal 725 hhRz as the most active agent. Recently identified tertiary accessory elements did not enhance activity. A 725-short-hairpin RNA (shRNA) agent exerts log-order knockdown. Silent modulation of the 725-hhRz target site in hRHO mRNA resulted in resistance to knockdown. Conclusions Combining rational RNA drug design with cell-based screening allowed rapid identification of lead agents targeting hRHO. Optimization strategies identified the agent with highest intracellular activity. These agents have therapeutic potential in a mutation-independent strategy for adRP, or other degenerations where hRHO is a target. This approach can be broadly applied to any validated target mRNA, regardless of the disease. Translational Relevance This work establishes a platform approach to develop RNA biologicals for the treatment of human disease.
Collapse
Affiliation(s)
- Edwin H Yau
- Department of Pharmacology/Toxicology, University at Buffalo-SUNY, Buffalo, NY, USA.,Department of Ophthalmology (Ross Eye Institute), University at Buffalo-SUNY, Buffalo, NY, USA.,Current affiliation: Department of Medicine, Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Robert T Taggart
- Department of Ophthalmology (Ross Eye Institute), University at Buffalo-SUNY, Buffalo, NY, USA
| | - Mohammed Zuber
- Research Service, VA Western New York Healthcare System, Buffalo, NY, USA.,Current affiliation: Biologist, Office of Pesticide Programs, Environmental Protection Agency, Arlington, VA, USA
| | - Alexandria J Trujillo
- Department of Pharmacology/Toxicology, University at Buffalo-SUNY, Buffalo, NY, USA.,Department of Ophthalmology (Ross Eye Institute), University at Buffalo-SUNY, Buffalo, NY, USA
| | - Zahra S Fayazi
- Department of Ophthalmology (Ross Eye Institute), University at Buffalo-SUNY, Buffalo, NY, USA
| | - Mark C Butler
- Department of Ophthalmology (Ross Eye Institute), University at Buffalo-SUNY, Buffalo, NY, USA.,Research Service, VA Western New York Healthcare System, Buffalo, NY, USA.,Current affiliation: Custom ColLABorators, Buffalo, NY, USA
| | - Lowell G Sheflin
- Department of Pharmacology/Toxicology, University at Buffalo-SUNY, Buffalo, NY, USA
| | - Jennifer B Breen
- Department of Ophthalmology (Ross Eye Institute), University at Buffalo-SUNY, Buffalo, NY, USA.,Current affiliation: Research Analyst II, Athenex, Buffalo, NY, USA
| | - Dian Yu
- Department of Ophthalmology (Ross Eye Institute), University at Buffalo-SUNY, Buffalo, NY, USA.,Current affiliation: Washington National Eye Center, Medstar Georgetown University Hospital/Medstar Washington Hospital, Washington, DC, USA
| | - Jack M Sullivan
- Department of Pharmacology/Toxicology, University at Buffalo-SUNY, Buffalo, NY, USA.,Department of Ophthalmology (Ross Eye Institute), University at Buffalo-SUNY, Buffalo, NY, USA.,Research Service, VA Western New York Healthcare System, Buffalo, NY, USA.,Department of Physiology/Biophysics, University at Buffalo-SUNY, Buffalo, NY, USA.,Neuroscience Program, University at Buffalo-SUNY, Buffalo, NY, USA.,SUNY Eye Institute, Albany, NY, USA.,RNA Institute at University at Albany-SUNY, Albany, NY, USA
| |
Collapse
|
23
|
Zhao DY, Pöge M, Morizumi T, Gulati S, Van Eps N, Zhang J, Miszta P, Filipek S, Mahamid J, Plitzko JM, Baumeister W, Ernst OP, Palczewski K. Cryo-EM structure of the native rhodopsin dimer in nanodiscs. J Biol Chem 2019; 294:14215-14230. [PMID: 31399513 PMCID: PMC6768649 DOI: 10.1074/jbc.ra119.010089] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/02/2019] [Indexed: 02/03/2023] Open
Abstract
Imaging of rod photoreceptor outer-segment disc membranes by atomic force microscopy and cryo-electron tomography has revealed that the visual pigment rhodopsin, a prototypical class A G protein-coupled receptor (GPCR), can organize as rows of dimers. GPCR dimerization and oligomerization offer possibilities for allosteric regulation of GPCR activity, but the detailed structures and mechanism remain elusive. In this investigation, we made use of the high rhodopsin density in the native disc membranes and of a bifunctional cross-linker that preserves the native rhodopsin arrangement by covalently tethering rhodopsins via Lys residue side chains. We purified cross-linked rhodopsin dimers and reconstituted them into nanodiscs for cryo-EM analysis. We present cryo-EM structures of the cross-linked rhodopsin dimer as well as a rhodopsin dimer reconstituted into nanodiscs from purified monomers. We demonstrate the presence of a preferential 2-fold symmetrical dimerization interface mediated by transmembrane helix 1 and the cytoplasmic helix 8 of rhodopsin. We confirmed this dimer interface by double electron-electron resonance measurements of spin-labeled rhodopsin. We propose that this interface and the arrangement of two protomers is a prerequisite for the formation of the observed rows of dimers. We anticipate that the approach outlined here could be extended to other GPCRs or membrane receptors to better understand specific receptor dimerization mechanisms.
Collapse
Affiliation(s)
- Dorothy Yanling Zhao
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Matthias Pöge
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Takefumi Morizumi
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Sahil Gulati
- Gavin Herbert Eye Institute and the Department of Ophthalmology, University of California, Irvine, California 92697
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106
| | - Ned Van Eps
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jianye Zhang
- Gavin Herbert Eye Institute and the Department of Ophthalmology, University of California, Irvine, California 92697
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106
| | - Przemyslaw Miszta
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw 02-093, Poland
| | - Slawomir Filipek
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw 02-093, Poland
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Jürgen M Plitzko
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Oliver P Ernst
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute and the Department of Ophthalmology, University of California, Irvine, California 92697
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
24
|
Han IC, Burnight ER, Ulferts MJ, Worthington KS, Russell SR, Sohn EH, Mullins RF, Stone EM, Tucker BA, Wiley LA. Helper-Dependent Adenovirus Transduces the Human and Rat Retina but Elicits an Inflammatory Reaction When Delivered Subretinally in Rats. Hum Gene Ther 2019; 30:1371-1384. [PMID: 31456426 DOI: 10.1089/hum.2019.159] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The identification of >100 genes causing inherited retinal degeneration and the promising results of recent gene augmentation trials have led to an increase in the number of studies investigating the preclinical efficacy of viral-mediated gene transfer. Despite success using adeno-associated viruses, many disease-causing genes, such as ABCA4 or USH2A, are too large to fit into these vectors. One option for large gene delivery is the family of integration-deficient helper-dependent adenoviruses (HDAds), which efficiently transduce postmitotic neurons. However, HDAds have been shown in other organ systems to elicit an immune response, and the immunogenicity of HDAds in the retina has not been characterized. In this study, HDAd serotype 5 (HDAd5) was found to successfully transduce rod and cone photoreceptors in ex vivo human retinal organ cultures. The ocular inflammatory response to subretinal injection of the HDAd5 was evaluated using a rat model. Subretinal injection of HDAd5 carrying cytomegalovirus promoter-driven enhanced green fluorescent protein (HDAd5-CMVp-eGFP) elicited a robust inflammatory response by 3 days postinjection. This reaction included vitreous infiltration of ionized calcium-binding adapter molecule 1 (Iba1)-positive monocytes and increased expression of the proinflammatory protein, intercellular adhesion molecule 1 (ICAM-1). By 7 days postinjection, most Iba1-positive infiltrates migrated into the neural retina and ICAM-1 expression was significantly increased compared with buffer-injected control eyes. At 14 days postinjection, Iba1-positive cells persisted in the retinas of HDAd5-injected eyes, and there was thinning of the outer nuclear layer. Subretinal injection of an empty HDAd5 virus was used to confirm that the inflammatory response was in response to the HDAd5 vector and not due to eGFP-induced overexpression cytotoxicity. Subretinal injection of lower doses of HDAd5 dampened the inflammatory response, but also eGFP expression. Despite their larger carrying capacity, further work is needed to elucidate the inflammatory pathways involved and to identify an immunomodulation paradigm sufficient for safe and effective transfer of large genes to the retina using HDAd5.
Collapse
Affiliation(s)
- Ian C Han
- The University of Iowa Institute for Vision Research, University of Iowa, Iowa City, Iowa.,Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Erin R Burnight
- The University of Iowa Institute for Vision Research, University of Iowa, Iowa City, Iowa.,Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Mallory J Ulferts
- The University of Iowa Institute for Vision Research, University of Iowa, Iowa City, Iowa.,Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Kristan S Worthington
- The University of Iowa Institute for Vision Research, University of Iowa, Iowa City, Iowa.,Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa
| | - Stephen R Russell
- The University of Iowa Institute for Vision Research, University of Iowa, Iowa City, Iowa.,Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Elliott H Sohn
- The University of Iowa Institute for Vision Research, University of Iowa, Iowa City, Iowa.,Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Robert F Mullins
- The University of Iowa Institute for Vision Research, University of Iowa, Iowa City, Iowa.,Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Edwin M Stone
- The University of Iowa Institute for Vision Research, University of Iowa, Iowa City, Iowa.,Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Budd A Tucker
- The University of Iowa Institute for Vision Research, University of Iowa, Iowa City, Iowa.,Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Luke A Wiley
- The University of Iowa Institute for Vision Research, University of Iowa, Iowa City, Iowa.,Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
25
|
Matsuda T, Oinuma I. Optimized CRISPR/Cas9-mediated in vivo genome engineering applicable to monitoring dynamics of endogenous proteins in the mouse neural tissues. Sci Rep 2019; 9:11309. [PMID: 31383899 PMCID: PMC6683140 DOI: 10.1038/s41598-019-47721-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/23/2019] [Indexed: 02/08/2023] Open
Abstract
To analyze the expression, localization, and functional dynamics of target proteins in situ, especially in living cells, it is important to develop a convenient, versatile, and efficient method to precisely introduce exogenous genes into the genome, which is applicable for labeling and engineering of the endogenous proteins of interest. By combining the CRISPR/Cas9 genome editing technology with an electroporation technique, we succeeded in creating knock-in alleles, from which GFP (RFP)-tagged endogenous proteins are produced, in neurons and glial cells in vivo in the developing mouse retina and brain. Correct gene targeting was confirmed by single-cell genotyping and Western blot analysis. Several gene loci were successfully targeted with high efficiency. Moreover, we succeeded in engineering the mouse genome to express foreign genes from the endogenous gene loci using a self-cleaving 2A peptide. Our method could be used to monitor the physiological changes in localization of endogenous proteins and expression levels of both mRNA and protein at a single cell resolution. This work discloses a powerful and widely applicable approach for visualization and manipulation of endogenous proteins in neural tissues.
Collapse
Affiliation(s)
- Takahiko Matsuda
- Laboratory of Cell and Molecular Biology, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-Cho, Ako-Gun, Hyogo, 678-1297, Japan
| | - Izumi Oinuma
- Laboratory of Cell and Molecular Biology, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-Cho, Ako-Gun, Hyogo, 678-1297, Japan. .,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida-Honmachi, Sakyo-Ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
26
|
Conley SM, Stuck MW, Watson JN, Zulliger R, Burnett JL, Naash MI. Prph2 initiates outer segment morphogenesis but maturation requires Prph2/Rom1 oligomerization. Hum Mol Genet 2019; 28:459-475. [PMID: 30307502 PMCID: PMC6337695 DOI: 10.1093/hmg/ddy359] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/05/2018] [Indexed: 12/15/2022] Open
Abstract
The retinal disease gene peripherin 2 (PRPH2) is essential for the formation of photoreceptor outer segments (OSs), where it functions in oligomers with and without its homologue ROM1. However, the precise role of these proteins in OS morphogenesis is not understood. By utilizing a knock-in mouse expressing a chimeric protein comprised of the body of Rom1 and the C-terminus of Prph2 (termed RRCT), we find that the Prph2 C-terminus is necessary and sufficient for the initiation of OSs, while OS maturation requires the body of Prph2 and associated large oligomers. Importantly, dominant-negative physiological and biochemical defects in RRCT heterozygous rods are rescued by removing Rom1, suggesting Rom1 is a regulator for OS formation. Our experiments evaluating Prph2 trafficking show that Rom1 is a key determinant of whether Prph2 complexes utilize conventional versus unconventional (Golgi bypass) secretory pathways to reach the OS. These findings significantly advance our understanding of the molecular underpinnings of OS morphogenesis and particularly the role of Rom1.
Collapse
Affiliation(s)
- Shannon M Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael W Stuck
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jamie N Watson
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rahel Zulliger
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Justin L Burnett
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA,To whom correspondence should be addressed at: Department of Biomedical Engineering University of Houston, 3517 Cullen Blvd., Room 2011, Houston, TX 77204-5060, USA. Tel: +713 7431651; E-mail:
| |
Collapse
|
27
|
Hopiavuori BR, Anderson RE, Agbaga MP. ELOVL4: Very long-chain fatty acids serve an eclectic role in mammalian health and function. Prog Retin Eye Res 2018; 69:137-158. [PMID: 30982505 PMCID: PMC6688602 DOI: 10.1016/j.preteyeres.2018.10.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/17/2018] [Accepted: 10/22/2018] [Indexed: 11/30/2022]
Abstract
ELOngation of Very Long chain fatty acids-4 (ELOVL4) is an elongase responsible for the biosynthesis of very long chain (VLC, ≥C28) saturated (VLC-SFA) and polyunsaturated (VLC-PUFA) fatty acids in brain, retina, skin, Meibomian glands, and testes. Fascinatingly, different mutations in this gene have been reported to cause vastly different phenotypes in humans. Heterozygous inheritance of seven different mutations in the coding sequence and 5' untranslated region of ELOVL4 causes autosomal dominant Stargardt-like macular dystrophy (STGD3), while homozygous inheritance of three more mutant variants causes severe seizures with ichthyosis, hypertonia, and even death. Some recent studies have described heterozygous inheritance in yet another three mutant ELOVL4 variants, two that cause spinocerebellar ataxia-34 (SCA34) with erythrokeratodermia (EKV) and one that causes SCA34 without EKV. We identified the specific enzymatic reactions catalyzed by ELOVL4 and, using a variety of genetically engineered mouse models, have actively searched for the mechanisms by which ELOVL4 impacts neural function and health. In this review, we critically compare and contrast the various animal model and case studies involving ELOVL4 deficiency via either mutation or deletion, and the resulting consequences on neuronal health and function in both the retina and central nervous system.
Collapse
Affiliation(s)
- Blake R Hopiavuori
- Oklahoma Center for Neurosciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Robert E Anderson
- Oklahoma Center for Neurosciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Martin-Paul Agbaga
- Oklahoma Center for Neurosciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
28
|
Crespo C, Soroldoni D, Knust E. A novel transgenic zebrafish line for red opsin expression in outer segments of photoreceptor cells. Dev Dyn 2018; 247:951-959. [PMID: 29603474 PMCID: PMC6099204 DOI: 10.1002/dvdy.24631] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Opsins are a group of light-sensitive proteins present in photoreceptor cells, which convert the energy of photons into electrochemical signals, thus allowing vision. Given their relevance, we aimed to visualize the two red opsins at subcellular scale in photoreceptor cells. RESULTS We generated a novel Zebrafish BAC transgenic line, which express fluorescently tagged, full-length Opsin 1 long-wave-sensitive 1 (Opn1lw1) and full-length Opsin 1 long-wave-sensitive 2 (Opn1lw2) under the control of their endogenous promoters. Both fusion proteins are localized in the outer segments of photoreceptor cells. During development, Opn1lw2-mKate2 is detected from the initial formation of outer segments onward. In contrast, Opn1lw1-mNeonGreen is first detected in juvenile Zebrafish at about 2 weeks postfertilization, and both opsins continue to be expressed throughout adulthood. It is important to note that the presence of the transgene did not significantly alter the size of outer segments. CONCLUSIONS We have generated a transgenic line that mimics the endogenous expression pattern of Opn1lw1 and Opn1lw2 in the developing and adult retina. In contrast to existing lines, our transgene design allows to follow protein localization. Hence, we expect that these lines could act as useful real-time reporters to directly measure phenomena in retinal development and disease models. Developmental Dynamics 247:951-959, 2018. © 2018 The Authors Developmental Dynamics published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.
Collapse
Affiliation(s)
- Cátia Crespo
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Elisabeth Knust
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
29
|
Nandamuri SP, Yourick MR, Carleton KL. Adult plasticity in African cichlids: Rapid changes in opsin expression in response to environmental light differences. Mol Ecol 2017; 26:6036-6052. [PMID: 28926160 DOI: 10.1111/mec.14357] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/01/2017] [Accepted: 08/14/2017] [Indexed: 01/09/2023]
Abstract
Phenotypic plasticity allows organisms to adapt quickly to local environmental conditions and could facilitate adaptive radiations. Cichlids have recently undergone an adaptive radiation in Lake Malawi where they inhabit diverse light environments and tune their visual sensitivity through differences in cone opsin expression. While cichlid opsin expression is known to be plastic over development, whether adults remain plastic is unknown. Adult plasticity in visual tuning could play a role in cichlid radiations by enabling survival in changing environments and facilitating invasion into novel environments. Here we examine the existence of and temporal changes in adult visual plasticity of two closely related species. In complementary experiments, wild adult Metriaclima mbenji from Lake Malawi were moved to the lab under UV-deficient fluorescent lighting; while lab raised M. benetos were placed under UV-rich lighting designed to mimic light conditions in the wild. Surprisingly, adult cichlids in both experiments showed significant changes in the expression of the UV-sensitive single cone opsin, SWS1, in only 3 days. Modeling quantum catches in the light environments revealed a possible link between the light available to the SWS1 visual pigment and SWS1 expression. We conclude that adult cichlids can undergo rapid and significant changes in opsin expression in response to environmental light shifts that are relevant to their habitat and evolutionary history in Lake Malawi. This could have contributed to the rapid divergence characteristic of these fantastic fishes.
Collapse
Affiliation(s)
| | - Miranda R Yourick
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Karen L Carleton
- Department of Biology, University of Maryland, College Park, MD, USA
| |
Collapse
|
30
|
Feehan JM, Chiu CN, Stanar P, Tam BM, Ahmed SN, Moritz OL. Modeling Dominant and Recessive Forms of Retinitis Pigmentosa by Editing Three Rhodopsin-Encoding Genes in Xenopus Laevis Using Crispr/Cas9. Sci Rep 2017; 7:6920. [PMID: 28761125 PMCID: PMC5537283 DOI: 10.1038/s41598-017-07153-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/27/2017] [Indexed: 11/11/2022] Open
Abstract
The utility of Xenopus laevis, a common research subject for developmental biology, retinal physiology, cell biology, and other investigations, has been limited by lack of a robust gene knockout or knock-down technology. Here we describe manipulation of the X. laevis genome using CRISPR/Cas9 to model the human disorder retinitis pigmentosa, and to introduce point mutations or exogenous DNA sequences. We introduced and characterized in-frame and out-of-frame insertions and deletions in three genes encoding rhodopsin by co-injection of Cas9 mRNA, eGFP mRNA, and single guide RNAs into fertilized eggs. Deletions were characterized by direct sequencing and cloning; phenotypes were assessed by assays of rod opsin in retinal extracts, and confocal microscopy of cryosectioned and immunolabeled contralateral eyes. We obtained germline transmission of editing to F1 offspring. In-frame deletions frequently caused dominant retinal degeneration associated with rhodopsin biosynthesis defects, while frameshift phenotypes were consistent with knockout. We inserted eGFP or point mutations into rhodopsin genes by co-injection of repair fragments with homology to the Cas9 target sites. Our techniques can produce high frequency gene editing in X. laevis, permitting analysis in the F0 generation, and advancing the utility of X. laevis as a subject for biological research and disease modeling.
Collapse
Affiliation(s)
- Joanna M Feehan
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada, V5Z 3N9
- The Sainsbury Laboratory, Colney Ln, Norwich Research Park, Norwich, Norfolk, UK, NR4 7UH
| | - Colette N Chiu
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada, V5Z 3N9
| | - Paloma Stanar
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada, V5Z 3N9
| | - Beatrice M Tam
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada, V5Z 3N9
| | - Sheikh N Ahmed
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada, V5Z 3N9
| | - Orson L Moritz
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada, V5Z 3N9.
| |
Collapse
|
31
|
Bhattacharyya N, Darren B, Schott RK, Tropepe V, Chang BSW. Cone-like rhodopsin expressed in the all cone retina of the colubrid pine snake as a potential adaptation to diurnality. J Exp Biol 2017; 220:2418-2425. [DOI: 10.1242/jeb.156430] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/13/2017] [Indexed: 12/12/2022]
Abstract
Colubridae is the largest and most diverse family of snakes, with visual systems that reflect this diversity, encompassing a variety of retinal photoreceptor organizations. The transmutation theory proposed by Walls postulates that photoreceptors could evolutionarily transition between cell types in squamates, but few studies have tested this theory. Recently, evidence for transmutation and rod-like machinery in an all cone retina has been identified in a diurnal garter snake (Thamnophis), and it appears that the rhodopsin gene at least may be widespread among colubrid snakes. However, functional evidence supporting transmutation beyond the existence of the rhodopsin gene remains rare. We examined the all cone retina of another colubrid, Pituophis melanoleucus, thought to be more secretive/burrowing than Thamnophis. We found that P. melanoleucus expresses two cone opsins (SWS1, LWS) and rhodopsin (RH1) within the eye. Immunohistochemistry localized rhodopsin to the outer segment of photoreceptors in the all-cone retina of the snake and all opsin genes produced functional visual pigments when expressed in vitro. Consistent with other studies, we found that P. melanoleucus rhodopsin is extremely blue-shifted. Surprisingly, P. melanoleucus rhodopsin reacted with hydroxylamine, a typical cone opsin characteristic. These results support the idea that the rhodopsin-containing photoreceptors of P. melanoleucus are the products of evolutionary transmutation from rod ancestors, and suggests that this phenomenon may be widespread in colubrid snakes. We hypothesize that transmutation may be an adaptation for diurnal, brighter-light vision, which could result in increased spectral sensitivity and chromatic discrimination with the potential for colour vision.
Collapse
Affiliation(s)
- Nihar Bhattacharyya
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Benedict Darren
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Ryan K. Schott
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Vincent Tropepe
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto ON, M5T 3A9, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - Belinda S. W. Chang
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
32
|
Ploier B, Caro LN, Morizumi T, Pandey K, Pearring JN, Goren MA, Finnemann SC, Graumann J, Arshavsky VY, Dittman JS, Ernst OP, Menon AK. Dimerization deficiency of enigmatic retinitis pigmentosa-linked rhodopsin mutants. Nat Commun 2016; 7:12832. [PMID: 27694816 PMCID: PMC5059438 DOI: 10.1038/ncomms12832] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 08/03/2016] [Indexed: 02/05/2023] Open
Abstract
Retinitis pigmentosa (RP) is a blinding disease often associated with mutations in rhodopsin, a light-sensing G protein-coupled receptor and phospholipid scramblase. Most RP-associated mutations affect rhodopsin's activity or transport to disc membranes. Intriguingly, some mutations produce apparently normal rhodopsins that nevertheless cause disease. Here we show that three such enigmatic mutations—F45L, V209M and F220C—yield fully functional visual pigments that bind the 11-cis retinal chromophore, activate the G protein transducin, traffic to the light-sensitive photoreceptor compartment and scramble phospholipids. However, tests of scramblase activity show that unlike wild-type rhodopsin that functionally reconstitutes into liposomes as dimers or multimers, F45L, V209M and F220C rhodopsins behave as monomers. This result was confirmed in pull-down experiments. Our data suggest that the photoreceptor pathology associated with expression of these enigmatic RP-associated pigments arises from their unexpected inability to dimerize via transmembrane helices 1 and 5. Retinitis pigmentosa is often caused by mutations that affect the activity or transport of rhodopsin, but some mutations cause disease even though an apparently functional protein is produced. Here the authors show that three such enigmatic mutants retain scramblase activity but are unable to dimerize.
Collapse
Affiliation(s)
- Birgit Ploier
- Department of Biochemistry, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10065, USA
| | - Lydia N Caro
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Takefumi Morizumi
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Kalpana Pandey
- Department of Biochemistry, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10065, USA
| | - Jillian N Pearring
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Michael A Goren
- Department of Biochemistry, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10065, USA
| | - Silvia C Finnemann
- Department of Biological Sciences, Center for Cancer, Genetic Diseases and Gene Regulation, Fordham University, Bronx, New York 10458, USA
| | - Johannes Graumann
- Department of Biochemistry, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10065, USA.,Weill Cornell Medicine-Qatar, Qatar Foundation, Education City P.O.Box 24144, Doha, State of Qatar
| | - Vadim Y Arshavsky
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina 27710, USA.,Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Jeremy S Dittman
- Department of Biochemistry, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10065, USA
| | - Oliver P Ernst
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Anant K Menon
- Department of Biochemistry, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10065, USA
| |
Collapse
|
33
|
Goldberg AFX, Moritz OL, Williams DS. Molecular basis for photoreceptor outer segment architecture. Prog Retin Eye Res 2016; 55:52-81. [PMID: 27260426 DOI: 10.1016/j.preteyeres.2016.05.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/27/2016] [Accepted: 05/29/2016] [Indexed: 01/11/2023]
Abstract
To serve vision, vertebrate rod and cone photoreceptors must detect photons, convert the light stimuli into cellular signals, and then convey the encoded information to downstream neurons. Rods and cones are sensory neurons that each rely on specialized ciliary organelles to detect light. These organelles, called outer segments, possess elaborate architectures that include many hundreds of light-sensitive membranous disks arrayed one atop another in precise register. These stacked disks capture light and initiate the chain of molecular and cellular events that underlie normal vision. Outer segment organization is challenged by an inherently dynamic nature; these organelles are subject to a renewal process that replaces a significant fraction of their disks (up to ∼10%) on a daily basis. In addition, a broad range of environmental and genetic insults can disrupt outer segment morphology to impair photoreceptor function and viability. In this chapter, we survey the major progress that has been made for understanding the molecular basis of outer segment architecture. We also discuss key aspects of organelle lipid and protein composition, and highlight distributions, interactions, and potential structural functions of key OS-resident molecules, including: kinesin-2, actin, RP1, prominin-1, protocadherin 21, peripherin-2/rds, rom-1, glutamic acid-rich proteins, and rhodopsin. Finally, we identify key knowledge gaps and challenges that remain for understanding how normal outer segment architecture is established and maintained.
Collapse
Affiliation(s)
- Andrew F X Goldberg
- Eye Research Institute, Oakland University, 417 Dodge Hall, Rochester, MI, 48309, USA.
| | - Orson L Moritz
- Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, BC, Canada
| | - David S Williams
- Department of Ophthalmology and Jules Stein Eye Institute, Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
| |
Collapse
|
34
|
Evolutionary transformation of rod photoreceptors in the all-cone retina of a diurnal garter snake. Proc Natl Acad Sci U S A 2015; 113:356-61. [PMID: 26715746 DOI: 10.1073/pnas.1513284113] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vertebrate retinas are generally composed of rod (dim-light) and cone (bright-light) photoreceptors with distinct morphologies that evolved as adaptations to nocturnal/crepuscular and diurnal light environments. Over 70 years ago, the "transmutation" theory was proposed to explain some of the rare exceptions in which a photoreceptor type is missing, suggesting that photoreceptors could evolutionarily transition between cell types. Although studies have shown support for this theory in nocturnal geckos, the origins of all-cone retinas, such as those found in diurnal colubrid snakes, remain a mystery. Here we investigate the evolutionary fate of the rods in a diurnal garter snake and test two competing hypotheses: (i) that the rods, and their corresponding molecular machinery, were lost or (ii) that the rods were evolutionarily modified to resemble, and function, as cones. Using multiple approaches, we find evidence for a functional and unusually blue-shifted rhodopsin that is expressed in small single "cones." Moreover, these cones express rod transducin and have rod ultrastructural features, providing strong support for the hypothesis that they are not true cones, as previously thought, but rather are modified rods. Several intriguing features of garter snake rhodopsin are suggestive of a more cone-like function. We propose that these cone-like rods may have evolved to regain spectral sensitivity and chromatic discrimination as a result of ancestral losses of middle-wavelength cone opsins in early snake evolution. This study illustrates how sensory evolution can be shaped not only by environmental constraints but also by historical contingency in forming new cell types with convergent functionality.
Collapse
|
35
|
Asteriti S, Grillner S, Cangiano L. A Cambrian origin for vertebrate rods. eLife 2015; 4. [PMID: 26095697 PMCID: PMC4502669 DOI: 10.7554/elife.07166] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/19/2015] [Indexed: 11/25/2022] Open
Abstract
Vertebrates acquired dim-light vision when an ancestral cone evolved into the rod photoreceptor at an unknown stage preceding the last common ancestor of extant jawed vertebrates (∼420 million years ago Ma). The jawless lampreys provide a unique opportunity to constrain the timing of this advance, as their line diverged ∼505 Ma and later displayed high-morphological stability. We recorded with patch electrodes the inner segment photovoltages and with suction electrodes the outer segment photocurrents of Lampetra fluviatilis retinal photoreceptors. Several key functional features of jawed vertebrate rods are present in their phylogenetically homologous photoreceptors in lamprey: crucially, the efficient amplification of the effect of single photons, measured by multiple parameters, and the flow of rod signals into cones. These results make convergent evolution in the jawless and jawed vertebrate lines unlikely and indicate an early origin of rods, implying strong selective pressure toward dim-light vision in Cambrian ecosystems. DOI:http://dx.doi.org/10.7554/eLife.07166.001 The eyes of humans and many other animals with backbones contain two different types of cells that can detect light, which are known as rod and cone cells. Rod cells are much more sensitive to light than cone cells. The rods allow us to see in dim light by amplifying weak light signals and transmitting information to other cells, including the cones themselves. It is thought that the rod cell evolved from the cone cell in the common ancestors of mammals, fish, and other animals with backbones and jaws at least 420 million years ago. Lampreys are jawless fish that diverged from the ancestors of jawed animals around 505 million years ago, in the middle of a period of great evolutionary innovation called the Cambrian. They have changed relatively little since that time so they provide a snapshot of what our ancestors' eyes might have been like back then. Like the rod and cone cells of jawed animals, the eyes of adult lampreys also have two types of photoreceptors. However, it was not clear whether the lamprey photoreceptor cells work in a similar way to rod and cone cells. Asteriti et al. collected lampreys in Sweden and France during their breeding season and used patch and suction electrodes to measure the activity of their photoreceptor cells. The experiments show that the short photoreceptor cells are more sensitive to light than the long photoreceptors and are able to amplify weak light signals. Also, the short photoreceptors send signals to the long photoreceptors in a similar way to how rod cells send information to cone cells. The similarities between lamprey photoreceptor cells and those of jawed animals support the idea that they have a common origin in evolutionary history. Therefore, Asteriti et al. conclude that the ability to see in low light evolved before these groups of animals diverged about 505 million years ago. The picture that emerges is one in which our remote ancestors inhabiting the Cambrian seas already possessed dim-light vision. This would have allowed them to colonize deep waters or to move at twilight, an adaptation suggestive of intense competition or predation from other life forms. DOI:http://dx.doi.org/10.7554/eLife.07166.002
Collapse
Affiliation(s)
- Sabrina Asteriti
- Department of Translational Research, University of Pisa, Pisa, Italy
| | - Sten Grillner
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Lorenzo Cangiano
- Department of Translational Research, University of Pisa, Pisa, Italy
| |
Collapse
|
36
|
Light regulates the ciliary protein transport and outer segment disc renewal of mammalian photoreceptors. Dev Cell 2015; 32:731-42. [PMID: 25805137 DOI: 10.1016/j.devcel.2015.01.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 10/28/2014] [Accepted: 01/21/2015] [Indexed: 12/21/2022]
Abstract
The outer segment (OS) of the rod photoreceptor is a light-sensing cilium containing ~1,000 membrane-bound discs. Each day, discs constituting the distal tenth of the OS are shed, whereas nascent discs are formed at the base of the OS through the incorporation of molecules transported from the inner segment. The mechanisms regulating these processes remain elusive. Here, we show that rhodopsin preferentially enters the OS in the dark. Photoexcitation of post-Golgi rhodopsins retains them in the inner segment. Disc-rim protein peripherin2/rds enters the OS following a rhythm complementary to that of rhodopsin. Light-dark cycle-regulated protein trafficking serves as a mechanism to segregate rhodopsin-rich and peripherin2/rds-rich discs into alternating stacks, which are flanked by characteristic cytoplasmic pockets. This periodic cytostructure divides the OS into approximately ten fractions, each containing discs synthesized in a single day. This mechanism may explain how the rod photoreceptor balances the quantity of discs added and removed daily.
Collapse
|
37
|
Azevedo AW, Doan T, Moaven H, Sokal I, Baameur F, Vishnivetskiy SA, Homan KT, Tesmer JJG, Gurevich VV, Chen J, Rieke F. C-terminal threonines and serines play distinct roles in the desensitization of rhodopsin, a G protein-coupled receptor. eLife 2015; 4:e05981. [PMID: 25910054 PMCID: PMC4438306 DOI: 10.7554/elife.05981] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/23/2015] [Indexed: 12/31/2022] Open
Abstract
Rod photoreceptors generate measurable responses to single-photon activation of individual molecules of the G protein-coupled receptor (GPCR), rhodopsin. Timely rhodopsin desensitization depends on phosphorylation and arrestin binding, which quenches G protein activation. Rhodopsin phosphorylation has been measured biochemically at C-terminal serine residues, suggesting that these residues are critical for producing fast, low-noise responses. The role of native threonine residues is unclear. We compared single-photon responses from rhodopsin lacking native serine or threonine phosphorylation sites. Contrary to expectation, serine-only rhodopsin generated prolonged step-like single-photon responses that terminated abruptly and randomly, whereas threonine-only rhodopsin generated responses that were only modestly slower than normal. We show that the step-like responses of serine-only rhodopsin reflect slow and stochastic arrestin binding. Thus, threonine sites play a privileged role in promoting timely arrestin binding and rhodopsin desensitization. Similar coordination of phosphorylation and arrestin binding may more generally permit tight control of the duration of GPCR activity.
Collapse
Affiliation(s)
- Anthony W Azevedo
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - Thuy Doan
- Department of Ophthalmology, University of Washington, Seattle, United States
| | - Hormoz Moaven
- Departments of Cell & Neurobiology and Ophthalmology, Zilkha Neurogenetic Institute, Keck School of Medicine of University of Southern California, Los Angeles, United States
| | - Iza Sokal
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| | - Faiza Baameur
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, United States
| | - Sergey A Vishnivetskiy
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, United States
| | - Kristoff T Homan
- Life Sciences Institute, Departments of Pharmacology and Biological Chemistry, University of Michigan, Ann Arbor, United States
| | - John JG Tesmer
- Life Sciences Institute, Departments of Pharmacology and Biological Chemistry, University of Michigan, Ann Arbor, United States
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, United States
| | - Jeannie Chen
- Departments of Cell & Neurobiology and Ophthalmology, Zilkha Neurogenetic Institute, Keck School of Medicine of University of Southern California, Los Angeles, United States
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
- Howard Hughes Medical Institute, University of Washington, Seattle, United States
| |
Collapse
|
38
|
Gunkel M, Schöneberg J, Alkhaldi W, Irsen S, Noé F, Kaupp UB, Al-Amoudi A. Higher-order architecture of rhodopsin in intact photoreceptors and its implication for phototransduction kinetics. Structure 2015; 23:628-38. [PMID: 25728926 DOI: 10.1016/j.str.2015.01.015] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/16/2015] [Accepted: 01/22/2015] [Indexed: 12/23/2022]
Abstract
The visual pigment rhodopsin belongs to the family of G protein-coupled receptors that can form higher oligomers. It is controversial whether rhodopsin forms oligomers and whether oligomers are functionally relevant. Here, we study rhodopsin organization in cryosections of dark-adapted mouse rod photoreceptors by cryoelectron tomography. We identify four hierarchical levels of organization. Rhodopsin forms dimers; at least ten dimers form a row. Rows form pairs (tracks) that are aligned parallel to the disk incisures. Particle-based simulation shows that the combination of tracks with fast precomplex formation, i.e. rapid association and dissociation between inactive rhodopsin and the G protein transducin, leads to kinetic trapping: rhodopsin first activates transducin from its own track, whereas recruitment of transducin from other tracks proceeds more slowly. The trap mechanism could produce uniform single-photon responses independent of rhodopsin lifetime. In general, tracks might provide a platform that coordinates the spatiotemporal interaction of signaling molecules.
Collapse
Affiliation(s)
- Monika Gunkel
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Johannes Schöneberg
- Computational Molecular Biology Group, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany
| | - Weaam Alkhaldi
- German Center of Neurodegenerative Diseases, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Stephan Irsen
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Frank Noé
- Computational Molecular Biology Group, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany
| | - U Benjamin Kaupp
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany.
| | - Ashraf Al-Amoudi
- German Center of Neurodegenerative Diseases, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany.
| |
Collapse
|
39
|
Han Z, Banworth MJ, Makkia R, Conley SM, Al-Ubaidi MR, Cooper MJ, Naash MI. Genomic DNA nanoparticles rescue rhodopsin-associated retinitis pigmentosa phenotype. FASEB J 2015; 29:2535-44. [PMID: 25713057 DOI: 10.1096/fj.15-270363] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 02/09/2015] [Indexed: 01/10/2023]
Abstract
Mutations in the rhodopsin gene cause retinal degeneration and clinical phenotypes including retinitis pigmentosa (RP) and congenital stationary night blindness. Effective gene therapies have been difficult to develop, however, because generating precise levels of rhodopsin expression is critical; overexpression causes toxicity, and underexpression would result in incomplete rescue. Current gene delivery strategies routinely use cDNA-based vectors for gene targeting; however, inclusion of noncoding components of genomic DNA (gDNA) such as introns may help promote more endogenous regulation of gene expression. Here we test the hypothesis that inclusion of genomic sequences from the rhodopsin gene can improve the efficacy of rhodopsin gene therapy in the rhodopsin knockout (RKO) mouse model of RP. We utilize our compacted DNA nanoparticles (NPs), which have the ability to transfer larger and more complex genetic constructs, to deliver murine rhodopsin cDNA or gDNA. We show functional and structural improvements in RKO eyes for up to 8 months after NP-mediated gDNA but not cDNA delivery. Importantly, in addition to improvements in rod function, we observe significant preservation of cone function at time points when cones in the RKO model are degenerated. These results suggest that inclusion of native expression elements, such as introns, can significantly enhance gene expression and therapeutic efficacy and may become an essential option in the array of available gene delivery tools.
Collapse
Affiliation(s)
- Zongchao Han
- *Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; and Copernicus Therapeutics, Incorporated, Cleveland, Ohio, USA
| | - Marcellus J Banworth
- *Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; and Copernicus Therapeutics, Incorporated, Cleveland, Ohio, USA
| | - Rasha Makkia
- *Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; and Copernicus Therapeutics, Incorporated, Cleveland, Ohio, USA
| | - Shannon M Conley
- *Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; and Copernicus Therapeutics, Incorporated, Cleveland, Ohio, USA
| | - Muayyad R Al-Ubaidi
- *Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; and Copernicus Therapeutics, Incorporated, Cleveland, Ohio, USA
| | - Mark J Cooper
- *Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; and Copernicus Therapeutics, Incorporated, Cleveland, Ohio, USA
| | - Muna I Naash
- *Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; and Copernicus Therapeutics, Incorporated, Cleveland, Ohio, USA
| |
Collapse
|
40
|
Palczewski K. Chemistry and biology of the initial steps in vision: the Friedenwald lecture. Invest Ophthalmol Vis Sci 2014; 55:6651-72. [PMID: 25338686 DOI: 10.1167/iovs.14-15502] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Visual transduction is the process in the eye whereby absorption of light in the retina is translated into electrical signals that ultimately reach the brain. The first challenge presented by visual transduction is to understand its molecular basis. We know that maintenance of vision is a continuous process requiring the activation and subsequent restoration of a vitamin A-derived chromophore through a series of chemical reactions catalyzed by enzymes in the retina and retinal pigment epithelium (RPE). Diverse biochemical approaches that identified key proteins and reactions were essential to achieve a mechanistic understanding of these visual processes. The three-dimensional arrangements of these enzymes' polypeptide chains provide invaluable insights into their mechanisms of action. A wealth of information has already been obtained by solving high-resolution crystal structures of both rhodopsin and the retinoid isomerase from pigment RPE (RPE65). Rhodopsin, which is activated by photoisomerization of its 11-cis-retinylidene chromophore, is a prototypical member of a large family of membrane-bound proteins called G protein-coupled receptors (GPCRs). RPE65 is a retinoid isomerase critical for regeneration of the chromophore. Electron microscopy (EM) and atomic force microscopy have provided insights into how certain proteins are assembled to form much larger structures such as rod photoreceptor cell outer segment membranes. A second challenge of visual transduction is to use this knowledge to devise therapeutic approaches that can prevent or reverse conditions leading to blindness. Imaging modalities like optical coherence tomography (OCT) and scanning laser ophthalmoscopy (SLO) applied to appropriate animal models as well as human retinal imaging have been employed to characterize blinding diseases, monitor their progression, and evaluate the success of therapeutic agents. Lately two-photon (2-PO) imaging, together with biochemical assays, are revealing functional aspects of vision at a new molecular level. These multidisciplinary approaches combined with suitable animal models and inbred mutant species can be especially helpful in translating provocative cell and tissue culture findings into therapeutic options for further development in animals and eventually in humans. A host of different approaches and techniques is required for substantial progress in understanding fundamental properties of the visual system.
Collapse
Affiliation(s)
- Krzysztof Palczewski
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
| |
Collapse
|
41
|
Whited AM, Park PSH. Nanodomain organization of rhodopsin in native human and murine rod outer segment disc membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:26-34. [PMID: 25305340 DOI: 10.1016/j.bbamem.2014.10.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/25/2014] [Accepted: 10/01/2014] [Indexed: 01/31/2023]
Abstract
Biological membranes display distinct domains that organize membrane proteins and signaling molecules to facilitate efficient and reliable signaling. The organization of rhodopsin, a G protein-coupled receptor, in native rod outer segment disc membranes was investigated by atomic force microscopy. Atomic force microscopy revealed that rhodopsin is arranged into domains of variable size, which we refer to herein as nanodomains, in native membranes. Quantitative analysis of 150 disc membranes revealed that the physical properties of nanodomains are conserved in humans and mice and that the properties of individual disc membranes can be variable. Examining the variable properties of disc membranes revealed some of the factors contributing to the size of rod outer segment discs and the formation of nanodomains in the membrane. The diameter of rod outer segment discs was dependent on the number of rhodopsin molecules incorporated into the membrane but independent of the spatial density of rhodopsin. The number of nanodomains present in a single disc was also dependent on the number of rhodopsin molecules incorporated into the membrane. The size of the nanodomains was largely independent of the number or spatial density of rhodopsin in the membrane.
Collapse
Affiliation(s)
- Allison M Whited
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Paul S-H Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
42
|
Sandoval IM, Price BA, Gross AK, Chan F, Sammons JD, Wilson JH, Wensel TG. Abrupt onset of mutations in a developmentally regulated gene during terminal differentiation of post-mitotic photoreceptor neurons in mice. PLoS One 2014; 9:e108135. [PMID: 25264759 PMCID: PMC4180260 DOI: 10.1371/journal.pone.0108135] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/18/2014] [Indexed: 11/22/2022] Open
Abstract
For sensitive detection of rare gene repair events in terminally differentiated photoreceptors, we generated a knockin mouse model by replacing one mouse rhodopsin allele with a form of the human rhodopsin gene that causes a severe, early-onset form of retinitis pigmentosa. The human gene contains a premature stop codon at position 344 (Q344X), cDNA encoding the enhanced green fluorescent protein (EGFP) at its 3′ end, and a modified 5′ untranslated region to reduce translation rate so that the mutant protein does not induce retinal degeneration. Mutations that eliminate the stop codon express a human rhodopsin-EGFP fusion protein (hRho-GFP), which can be readily detected by fluorescence microscopy. Spontaneous mutations were observed at a frequency of about one per retina; in every case, they gave rise to single fluorescent rod cells, indicating that each mutation occurred during or after the last mitotic division. Additionally, the number of fluorescent rods did not increase with age, suggesting that the rhodopsin gene in mature rod cells is less sensitive to mutation than it is in developing rods. Thus, there is a brief developmental window, coinciding with the transcriptional activation of the rhodopsin locus, in which somatic mutations of the rhodopsin gene abruptly begin to appear.
Collapse
Affiliation(s)
- Ivette M. Sandoval
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Houston, Texas, United States of America
| | - Brandee A. Price
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Alecia K. Gross
- Department of Vision Science, University of Alabama Birmingham, Birmingham, Alabama, United States of America
| | - Fung Chan
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Houston, Texas, United States of America
| | - Joshua D. Sammons
- Department of Vision Science, University of Alabama Birmingham, Birmingham, Alabama, United States of America
| | - John H. Wilson
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Theodore G. Wensel
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
43
|
Lewin AS, Rossmiller B, Mao H. Gene augmentation for adRP mutations in RHO. Cold Spring Harb Perspect Med 2014; 4:a017400. [PMID: 25037104 DOI: 10.1101/cshperspect.a017400] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mutations in the gene for rhodopsin, RHO, cause autosomal dominant retinitis pigmentosa, a disease characterized by death of rod photoreceptor cells. At the end stage, when most rods are gone, cones die too, taking central vision with them. One goal of gene therapy, therefore, is to preserve central vision by promoting rod survival in the vicinity of the macula. Dominance in RHO mutations is associated with two phenomena: interference with the function of normal rhodopsin and intrinsic toxicity of the mutant protein. In the case of interference, increased production of the wild-type protein may be therapeutic, but in the case of toxicity, suppression of the mutant protein may also be needed. RHO augmentation has made use of advances in gene delivery to the retina using adeno-associated virus (AAV). Several strategies have been developed for suppression of rhodopsin expression, but because of the heterogeneity of RHO mutations they are not specific for the mutant allele: They suppress both mutant and wild-type RHO. Experiments in autosomal dominant retinitis pigmentosa (adRP) mouse models suggest that both RHO augmentation and supplementation plus suppression preserve the survival of rod cells.
Collapse
Affiliation(s)
- Alfred S Lewin
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida 32610
| | - Brian Rossmiller
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida 32610
| | - Haoyu Mao
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida 32610
| |
Collapse
|
44
|
Chakraborty D, Conley SM, Al-Ubaidi MR, Naash MI. Initiation of rod outer segment disc formation requires RDS. PLoS One 2014; 9:e98939. [PMID: 24897172 PMCID: PMC4045911 DOI: 10.1371/journal.pone.0098939] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 05/08/2014] [Indexed: 11/23/2022] Open
Abstract
Rod outer segment (OS) morphogenesis involves assembly of flattened discs circumscribed by a hairpin-like rim, however, the role of the rim and rim proteins such as retinal degeneration slow (RDS) and its homologue rod OS membrane protein-1 (ROM-1) in this process remains unclear. Here we show that without RDS, no disc/OS formation occurs, while without rhodopsin, small OS structures form containing aligned nascent discs. In the absence of both rhodopsin and RDS, RDS-associated degeneration is slowed, and ROM-1 is stabilized and trafficked to the OS. These animals (rho-/-/rds-/-) exhibit OSs slightly better than those lacking only RDS, but still without signs of disc formation. These results clearly demonstrate that OS morphogenesis is initiated by RDS-mediated rim formation, a process ROM-1 cannot recapitulate, with subsequent disc growth mediated by rhodopsin. The critical role of RDS in this process helps explain why photoreceptors are so sensitive to varied RDS levels, and why mutations in RDS cause debilitating retinal disease.
Collapse
Affiliation(s)
- Dibyendu Chakraborty
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Shannon M. Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Muayyad R. Al-Ubaidi
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Muna I. Naash
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| |
Collapse
|
45
|
Two-photon microscopy reveals early rod photoreceptor cell damage in light-exposed mutant mice. Proc Natl Acad Sci U S A 2014; 111:E1428-37. [PMID: 24706832 DOI: 10.1073/pnas.1317986111] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Atrophic age-related and juvenile macular degeneration are especially devastating due to lack of an effective cure. Two retinal cell types, photoreceptor cells and the adjacent retinal pigmented epithelium (RPE), reportedly display the earliest pathological changes. Abca4(-/-)Rdh8(-/-) mice, which mimic many features of human retinal degeneration, allowed us to determine the sequence of light-induced events leading to retinal degeneration. Using two-photon microscopy with 3D reconstruction methodology, we observed an initial strong retinoid-derived fluorescence and expansion of Abca4(-/-)Rdh8(-/-) mouse rod cell outer segments accompanied by macrophage infiltration after brief exposure of the retina to bright light. Additionally, light-dependent fluorescent compounds produced in rod outer segments were not transferred to the RPE of mice genetically defective in RPE phagocytosis. Collectively, these findings suggest that for light-induced retinopathies in mice, rod photoreceptors are the primary site of toxic retinoid accumulation and degeneration, followed by secondary changes in the RPE.
Collapse
|
46
|
Sakami S, Kolesnikov AV, Kefalov VJ, Palczewski K. P23H opsin knock-in mice reveal a novel step in retinal rod disc morphogenesis. Hum Mol Genet 2013; 23:1723-41. [PMID: 24214395 DOI: 10.1093/hmg/ddt561] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Retinal rod photoreceptor cells have double membrane discs located in their outer segments (ROS) that are continuously formed proximally from connecting cilia (CC) and phagocytized distally by the retinal pigmented epithelium. The major component of these rod discs, the light-sensitive visual pigment rhodopsin (Rho), consists of an opsin protein linked to 11-cis-retinal. The P23H mutation of rod opsin (P23H opsin) is the most common cause of human blinding autosomal dominant retinitis pigmentosa (adRP). A mouse model of adRP with this mutation (Rho(P23H/+)) shows low levels of P23H opsin protein, partial misalignment of discs and progressive retinal degeneration. However, the impact of mutant P23H opsin on the formation of abnormal discs is unclear and it is still unknown whether this mutant pigment can mediate phototransduction. Using transretinal ERG recordings, we demonstrate that P23H mutant Rho can trigger phototransduction but Rho(P23H/P23H) rods are ∼17 000-fold less sensitive to light than Rho(+/+) rods and produce abnormally fast photo-responses. By analyzing homozygous Rho(P23H/P23H) knock-in mice, we show that P23H opsin is transported to ciliary protrusions where it forms sagittally elongated discs. Transmission electron microscopy of postnatal day (PND) 14 Rho(P23H/+) mouse retina revealed disordered sagittally oriented discs before the onset of retinal degeneration. Surprisingly, we also observed smaller, immature sagittally oriented discs in PND14 Rho(+/)(-) and Rho(+/+) mice that were not seen in older animals. These findings provide fundamental insights into the pathogenesis of the P23H mutant opsin and reveal a novel early sagittally aligned disc formation step in normal ROS disc expansion.
Collapse
Affiliation(s)
- Sanae Sakami
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
47
|
Chakraborty D, Conley SM, Naash MI. Overexpression of retinal degeneration slow (RDS) protein adversely affects rods in the rd7 model of enhanced S-cone syndrome. PLoS One 2013; 8:e63321. [PMID: 23650562 PMCID: PMC3641132 DOI: 10.1371/journal.pone.0063321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 04/01/2013] [Indexed: 11/24/2022] Open
Abstract
The nuclear receptor NR2E3 promotes expression of rod photoreceptor genes while repressing cone genes. Mice lacking NR2E3 (Nr2e3rd7/rd7 referred to here as rd7) are a model for enhanced S-cone syndrome, a disease associated with increased sensitivity to blue light and night blindness. Rd7 retinas have reduced levels of the outer segment (OS) structural protein retinal degeneration slow (RDS). We test the hypothesis that increasing RDS levels would improve the Rd7 phenotype. Transgenic mice over-expressing normal mouse peripherin/RDS (NMP) in rods and cones were crossed onto the rd7 background. Disease phenotypes were assessed in NMP/rd7 eyes and compared to wild-type (WT) and rd7 eyes at postnatal day 30. NMP/rd7 retinas expressed total RDS (transgenic and endogenous) message at WT levels, and NMP protein was correctly localized to the OS. NMP/rd7 retinas have shorter OSs compared to rd7 and WT and significantly reduced number of rosettes. NMP/rd7 mice also exhibited significant deficits in scotopic ERG amplitudes compared to rd7 while photopic amplitudes remained unaffected. Protein levels of rhodopsin, RDS, and the RDS homologue ROM-1 were significantly reduced in the NMP/rd7 retinas compared to rd7. We show that correcting the levels of RDS gene expression does not improve the phenotype of the rd7 suggesting that RDS deficiency is not responsible for the defect in this model. We suggest that the specific rod defect in the NMP/rd7 is likely associated with ongoing problems in the rd7 that are related to the expression of cone genes in rod cells, a characteristic of the model.
Collapse
Affiliation(s)
- Dibyendu Chakraborty
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | | | | |
Collapse
|
48
|
Pearring JN, Salinas RY, Baker SA, Arshavsky VY. Protein sorting, targeting and trafficking in photoreceptor cells. Prog Retin Eye Res 2013; 36:24-51. [PMID: 23562855 DOI: 10.1016/j.preteyeres.2013.03.002] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/22/2013] [Accepted: 03/26/2013] [Indexed: 01/24/2023]
Abstract
Vision is the most fundamental of our senses initiated when photons are absorbed by the rod and cone photoreceptor neurons of the retina. At the distal end of each photoreceptor resides a light-sensing organelle, called the outer segment, which is a modified primary cilium highly enriched with proteins involved in visual signal transduction. At the proximal end, each photoreceptor has a synaptic terminal, which connects this cell to the downstream neurons for further processing of the visual information. Understanding the mechanisms involved in creating and maintaining functional compartmentalization of photoreceptor cells remains among the most fascinating topics in ocular cell biology. This review will discuss how photoreceptor compartmentalization is supported by protein sorting, targeting and trafficking, with an emphasis on the best-studied cases of outer segment-resident proteins.
Collapse
Affiliation(s)
- Jillian N Pearring
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
49
|
Tam BM, Lai CCL, Zong Z, Moritz OL. Generation of transgenic X. laevis models of retinal degeneration. Methods Mol Biol 2013; 935:113-125. [PMID: 23150364 DOI: 10.1007/978-1-62703-080-9_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Transgenic models are invaluable tools for researching retinal degenerative disease mechanisms. However, they are time-consuming and expensive to generate and maintain. We have developed an alternative to transgenic rodent models of retinal degeneration using transgenic Xenopus laevis. We have optimized this system to allow rapid analysis of transgene effects in primary transgenic animals, thereby providing an alternative to establishing transgenic lines, and simultaneously allowing rigorous comparisons between the effects of different transgenes.
Collapse
Affiliation(s)
- Beatrice M Tam
- Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
50
|
Abstract
Photoreceptors are exquisitely adapted to transform light stimuli into electrical signals that modulate neurotransmitter release. These cells are organized into several compartments including the unique outer segment (OS). Its whole function is to absorb light and transduce this signal into a change of membrane potential. Another compartment is the inner segment where much of metabolism and regulation of membrane potential takes place and that connects the OS and synapse. The synapse is the compartment where changes in membrane potentials are relayed to other neurons in the retina via release of neurotransmitter. The composition of the plasma membrane surrounding these compartments varies to accommodate their specific functions. In this chapter, we discuss the organization of the plasma membrane emphasizing the protein composition of each region as it relates to visual signaling. We also point out examples where mutations in these proteins cause visual impairment.
Collapse
Affiliation(s)
- Sheila A Baker
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.
| | | |
Collapse
|