1
|
Gordon MT, Ziemba BP, Falke JJ. PDK1:PKCα heterodimer association-dissociation dynamics in single-molecule diffusion tracks on a target membrane. Biophys J 2023; 122:2301-2310. [PMID: 36733254 PMCID: PMC10257113 DOI: 10.1016/j.bpj.2023.01.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/01/2022] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Previous studies have documented the formation of a heterodimer between the two protein kinases PDK1 and PKCα on a lipid bilayer containing their target lipids. This work investigates the association-dissociation kinetics of this PDK1:PKCα heterodimer. The approach monitors the two-dimensional diffusion of single, membrane-associated PDK1 molecules for diffusivity changes as PKCα molecules bind and unbind. In the absence of PKCα, a membrane-associated PDK1 molecule exhibits high diffusivity (or large diffusion constant, D) because its membrane-contacting PH domain binds the target PIP3 lipid headgroup with little bilayer penetration, yielding minimal frictional drag against the bilayer. In contrast, membrane-associated PKCα contacts the bilayer via its C1A, C1B, and C2 domains, which each bind at least one target lipid with significant bilayer insertion, yielding a large frictional drag and low diffusivity. The present findings reveal that individual fluor-PDK1 molecules freely diffusing on the membrane surface undergo reversible switching between distinct high and low diffusivity states, corresponding to the PDK1 monomer and the PDK1:PKCα heterodimer, respectively. The observed single-molecule diffusion trajectories are converted to step length time courses, then subjected to two-state, hidden Markov modeling and dwell time analysis. The findings reveal that both the PDK1 monomer state and the PDK1:PKCα heterodimer state decay via simple exponential kinetics, yielding estimates of rate constants for state switching in both directions. Notably, the PDK1:PKCα heterodimer has been shown to competitively inhibit PDK1 phosphoactivation of AKT1, and is believed to play a tumor suppressor role by limiting excess activation of the highly oncogenic PDK1/AKT1/mTOR pathway. Thus, the present elucidation of the PDK1:PKCα association-dissociation kinetics has important biological and medical implications. More broadly, the findings illustrate the power of single-molecule diffusion measurements to reveal the kinetics of association-dissociation events in membrane signaling reactions that yield a large change in diffusive mobility.
Collapse
Affiliation(s)
- Moshe T Gordon
- Molecular Biophysics Program and Department of Biochemistry, University of Colorado, Boulder, Colorado
| | - Brian P Ziemba
- Molecular Biophysics Program and Department of Biochemistry, University of Colorado, Boulder, Colorado
| | - Joseph J Falke
- Molecular Biophysics Program and Department of Biochemistry, University of Colorado, Boulder, Colorado.
| |
Collapse
|
2
|
Nocka LM, Eisen TJ, Iavarone AT, Groves JT, Kuriyan J. Stimulation of the catalytic activity of the tyrosine kinase Btk by the adaptor protein Grb2. eLife 2023; 12:e82676. [PMID: 37159508 PMCID: PMC10132808 DOI: 10.7554/elife.82676] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 04/03/2023] [Indexed: 05/11/2023] Open
Abstract
The Tec-family kinase Btk contains a lipid-binding Pleckstrin homology and Tec homology (PH-TH) module connected by a proline-rich linker to a 'Src module', an SH3-SH2-kinase unit also found in Src-family kinases and Abl. We showed previously that Btk is activated by PH-TH dimerization, which is triggered on membranes by the phosphatidyl inositol phosphate PIP3, or in solution by inositol hexakisphosphate (IP6) (Wang et al., 2015, https://doi.org/10.7554/eLife.06074). We now report that the ubiquitous adaptor protein growth-factor-receptor-bound protein 2 (Grb2) binds to and substantially increases the activity of PIP3-bound Btk on membranes. Using reconstitution on supported-lipid bilayers, we find that Grb2 can be recruited to membrane-bound Btk through interaction with the proline-rich linker in Btk. This interaction requires intact Grb2, containing both SH3 domains and the SH2 domain, but does not require that the SH2 domain be able to bind phosphorylated tyrosine residues - thus Grb2 bound to Btk is free to interact with scaffold proteins via the SH2 domain. We show that the Grb2-Btk interaction recruits Btk to scaffold-mediated signaling clusters in reconstituted membranes. Our findings indicate that PIP3-mediated dimerization of Btk does not fully activate Btk, and that Btk adopts an autoinhibited state at the membrane that is released by Grb2.
Collapse
Affiliation(s)
- Laura M Nocka
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences, University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
| | - Timothy J Eisen
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences, University of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Anthony T Iavarone
- California Institute for Quantitative Biosciences, University of California, BerkeleyBerkeleyUnited States
- College of Chemistry Mass Spectrometry Facility, University of California, BerkeleyBerkeleyUnited States
| | - Jay T Groves
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences, University of California, BerkeleyBerkeleyUnited States
- Institute for Digital Molecular Analytics and Science, Nanyang Technological UniversitySingaporeSingapore
| | - John Kuriyan
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences, University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
3
|
Makkai G, Abraham IM, Barabas K, Godo S, Ernszt D, Kovacs T, Kovacs G, Szocs S, Janosi TZ. Maximum likelihood-based estimation of diffusion coefficient is quick and reliable method for analyzing estradiol actions on surface receptor movements. Front Neuroinform 2023; 17:1005936. [PMID: 36970656 PMCID: PMC10031098 DOI: 10.3389/fninf.2023.1005936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/21/2023] [Indexed: 03/11/2023] Open
Abstract
The rapid effects of estradiol on membrane receptors are in the focus of the estradiol research field, however, the molecular mechanisms of these non-classical estradiol actions are poorly understood. Since the lateral diffusion of membrane receptors is an important indicator of their function, a deeper understanding of the underlying mechanisms of non-classical estradiol actions can be achieved by investigating receptor dynamics. Diffusion coefficient is a crucial and widely used parameter to characterize the movement of receptors in the cell membrane. The aim of this study was to investigate the differences between maximum likelihood-based estimation (MLE) and mean square displacement (MSD) based calculation of diffusion coefficients. In this work we applied both MSD and MLE to calculate diffusion coefficients. Single particle trajectories were extracted from simulation as well as from α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor tracking in live estradiol-treated differentiated PC12 (dPC12) cells. The comparison of the obtained diffusion coefficients revealed the superiority of MLE over the generally used MSD analysis. Our results suggest the use of the MLE of diffusion coefficients because as it has a better performance, especially for large localization errors or slow receptor movements.
Collapse
Affiliation(s)
- Geza Makkai
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Nano-Bio-Imaging Core Facility at the Szentágothai Research Centre of the University of Pécs, Pécs, Hungary
| | - Istvan M. Abraham
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Klaudia Barabas
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Soma Godo
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - David Ernszt
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Tamas Kovacs
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Gergely Kovacs
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Szilard Szocs
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
| | - Tibor Z. Janosi
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Nano-Bio-Imaging Core Facility at the Szentágothai Research Centre of the University of Pécs, Pécs, Hungary
- *Correspondence: Tibor Z. Janosi,
| |
Collapse
|
4
|
Le Huray KIP, Wang H, Sobott F, Kalli AC. Systematic simulation of the interactions of pleckstrin homology domains with membranes. SCIENCE ADVANCES 2022; 8:eabn6992. [PMID: 35857458 PMCID: PMC9258823 DOI: 10.1126/sciadv.abn6992] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Pleckstrin homology (PH) domains can recruit proteins to membranes by recognition of phosphatidylinositol phosphate (PIP) lipids. Several family members are linked to diseases including cancer. We report the systematic simulation of the interactions of 100 mammalian PH domains with PIP-containing membranes. The observed PIP interaction hotspots recapitulate crystallographic binding sites and reveal a number of insights: (i) The β1 and β2 strands and their connecting loop constitute the primary PIP interaction site but are typically supplemented by interactions at the β3-β4 and β5-β6 loops; (ii) we reveal exceptional cases such as the Exoc8 PH domain; (iii) PH domains adopt different membrane-bound orientations and induce clustering of anionic lipids; and (iv) beyond family-level insights, our dataset sheds new light on individual PH domains, e.g., by providing molecular detail of secondary PIP binding sites. This work provides a global view of PH domain/membrane association involving multivalent association with anionic lipids.
Collapse
Affiliation(s)
- Kyle I. P. Le Huray
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Astbury Centre for Structural and Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - He Wang
- School of Computing, University of Leeds, Leeds, UK
| | - Frank Sobott
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Astbury Centre for Structural and Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Antreas C. Kalli
- Astbury Centre for Structural and Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
5
|
Jin R, Cao R, Baumgart T. Curvature dependence of BAR protein membrane association and dissociation kinetics. Sci Rep 2022; 12:7676. [PMID: 35538113 PMCID: PMC9091223 DOI: 10.1038/s41598-022-11221-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 04/18/2022] [Indexed: 11/09/2022] Open
Abstract
BAR (Bin/Amphiphysin/Rvs) domain containing proteins function as lipid bilayer benders and curvature sensors, and they contribute to membrane shaping involved in cell signaling and metabolism. The mechanism for their membrane shape sensing has been investigated by both equilibrium binding and kinetic studies. In prior research, stopped-flow spectroscopy has been used to deduce a positive dependence on membrane curvature for the binding rate constant, kon, of a BAR protein called endophilin. However, the impact of bulk diffusion of endophilin, on the kinetic binding parameters has not been thoroughly considered. Employing similar methods, and using lipid vesicles of multiple sizes, we obtained a linear dependence of kon on vesicle curvature. However, we found that the observed relation can be explained without considering the local curvature sensing ability of endophilin in the membrane association process. In contrast, the diffusion-independent unbinding rate constant (koff) obtained from stopped-flow measurements shows a negative dependence on membrane curvature, which is controlled/mediated by endophilin-membrane interactions. This latter dependency, in addition to protein-protein interactions on the membrane, explains the selective binding of BAR proteins to highly curved membranes in equilibrium binding experiments.
Collapse
Affiliation(s)
- Rui Jin
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Rui Cao
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA.,Division of Biostatistics, University of Minnesota, Minneapolis, MN, USA
| | - Tobias Baumgart
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Thompson CJ, Kienle DF, Schwartz DK. Enhanced Facilitated Diffusion of Membrane-Associating Proteins under Symmetric Confinement. J Phys Chem Lett 2022; 13:2901-2907. [PMID: 35333540 DOI: 10.1021/acs.jpclett.2c00227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The facilitated surface diffusion of transiently adsorbing molecules in a planar confined microenvironment (i.e., slit-like confinement) is highly relevant to biological phenomena, such as extracellular signaling, as well as numerous biotechnology systems. Here, we studied the surface diffusion of individual proteins confined between two symmetric lipid bilayer membranes, under a continuum of confinement heights, using single-molecule tracking and convex lens-induced confinement as well as hybrid, kinetic Monte Carlo simulations of a generalized continuous time random walk process. Surface diffusion was observed to vary non-monotonically with confinement height, exhibiting a maximum at a height of ∼750 nm, where diffusion was nearly 40% greater than that for a semi-infinite system. This demonstrated that planar confinement can, in fact, increase surface diffusion, qualitatively validating previous theoretical predictions. Simulations reproduced the experimental results and suggested that confinement enhancement of surface diffusion for symmetric systems is limited to cases where the adsorbate exhibits weak surface sticking.
Collapse
Affiliation(s)
- Connor J Thompson
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Daniel F Kienle
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Daniel K Schwartz
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
7
|
Gordon MT, Ziemba BP, Falke JJ. Single-molecule studies reveal regulatory interactions between master kinases PDK1, AKT1, and PKC. Biophys J 2021; 120:5657-5673. [PMID: 34673053 DOI: 10.1016/j.bpj.2021.10.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/30/2021] [Accepted: 10/13/2021] [Indexed: 12/26/2022] Open
Abstract
Leukocyte migration is controlled by a leading-edge chemosensory pathway that generates the regulatory lipid phosphatidylinositol-3,4,5-trisphosphate (PIP3), a growth signal, thereby driving leading-edge expansion up attractant gradients toward sites of infection, inflammation, or tissue damage. PIP3 also serves as an important growth signal in growing cells and oncogenesis. The kinases PDK1, AKT1 or PKB, and PKCα are key components of a plasma-membrane-based PIP3 and Ca2+ signaling circuit that regulates these processes. PDK1 and AKT1 are recruited to the membrane by PIP3, whereas PKCα is recruited to the membrane by Ca2+. All three of these master kinases phosphoregulate an array of protein targets. For example, PDK1 activates AKT1, PKCα, and other AGC kinases by phosphorylation at key sites. PDK1 is believed to form PDK1-AKT1 and PDK1-PKCα heterodimers stabilized by a PDK1-interacting fragment (PIF) interaction between the PDK1 PIF pocket and the PIF motif of the AGC binding partner. Here, we present the first, to our knowledge, single-molecule studies of full-length PDK1 and AKT1 on target membrane surfaces, as well as their interaction with full-length PKCα. These studies directly detect membrane-bound PDK1-AKT1 and PDK1-PKCα heterodimers stabilized by PIF interactions formed at physiological ligand concentrations. PKCα exhibits eightfold higher PDK1 affinity than AKT1 and can competitively displace AKT1 from PDK1-AKT1 heterodimers. Ensemble activity measurements under matched conditions reveal that PDK1 activates AKT1 via a cis mechanism by phosphorylating an AKT1 molecule in the same PDK1-AKT1 heterodimer, whereas PKCα acts as a competitive inhibitor of this phosphoactivation reaction by displacing AKT1 from PDK1. Overall, the findings provide insights into the binding and regulatory interactions of the three master kinases on their target membrane and suggest that a recently described tumor suppressor activity of PKC isoforms may arise from its ability to downregulate PDK1-AKT1 phosphoactivation in the PIP3-PDK1-AKT1-mTOR pathway linked to cell growth and oncogenesis.
Collapse
Affiliation(s)
- Moshe T Gordon
- Molecular Biophysics Program and Department of Biochemistry, University of Colorado, Boulder, Colorado
| | - Brian P Ziemba
- Molecular Biophysics Program and Department of Biochemistry, University of Colorado, Boulder, Colorado
| | - Joseph J Falke
- Molecular Biophysics Program and Department of Biochemistry, University of Colorado, Boulder, Colorado.
| |
Collapse
|
8
|
Geragotelis AD, Freites JA, Tobias DJ. Anomalous Diffusion of Peripheral Membrane Signaling Proteins from All-Atom Molecular Dynamics Simulations. J Phys Chem B 2021; 125:9990-9998. [PMID: 34459592 DOI: 10.1021/acs.jpcb.1c04905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Peripheral membrane proteins bind transiently to membrane surfaces as part of many signaling pathways. The bound proteins perform two-dimensional (2-D) diffusion on the membrane surface during the recruitment function. To better understand the interplay between the 2-D diffusion of these protein domains and their membrane binding modes, we performed multimicrosecond all-atom molecular dynamics simulations of two regulatory domains, a C2 domain and a pleckstrin homology (PH) domain, in their experimentally determined bound configuration to a lipid bilayer. The protein bound configurations are preserved throughout the simulation trajectories. Both protein domains exhibit anomalous diffusion with distinct features in their dynamics that reflect their different modes of binding. An analysis of their diffusive behavior reveals common features with the diffusion of lipid molecules in lipid bilayers, suggesting that the 2-D motion of protein domains bound to the membrane surface is modulated by the viscoelastic nature of the lipid bilayer.
Collapse
Affiliation(s)
- Andrew D Geragotelis
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - J Alfredo Freites
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Douglas J Tobias
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| |
Collapse
|
9
|
Tennakoon M, Senarath K, Kankanamge D, Chadee DN, Karunarathne A. A short C-terminal peptide in Gγ regulates Gβγ signaling efficacy. Mol Biol Cell 2021; 32:1446-1458. [PMID: 34106735 PMCID: PMC8351738 DOI: 10.1091/mbc.e20-11-0750] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/03/2021] [Accepted: 06/04/2021] [Indexed: 01/03/2023] Open
Abstract
G protein beta-gamma (Gβγ) subunits anchor to the plasma membrane (PM) through the carboxy-terminal (CT) prenyl group in Gγ. This interaction is crucial for the PM localization and functioning of Gβγ, allowing GPCR-G protein signaling to proceed. The diverse Gγ family has 12 members, and we have recently shown that the signaling efficacies of major Gβγ effectors are Gγ-type dependent. This dependency is due to the distinct series of membrane-interacting abilities of Gγ. However, the molecular process allowing for Gβγ subunits to exhibit a discrete and diverse range of Gγ-type-dependent membrane affinities is unclear and cannot be explained using only the type of prenylation. The present work explores the unique designs of membrane-interacting CT residues in Gγ as a major source for this Gγ-type-dependent Gβγ signaling. Despite the type of prenylation, the results show signaling efficacy at the PM, and associated cell behaviors of Gβγ are governed by crucially located specific amino acids in the five to six residue preprenylation region of Gγ. The provided molecular picture of Gγ-membrane interactions may explain how cells gain Gγ-type-dependent G protein-GPCR signaling as well as how Gβγ elicits selective signaling at various subcellular compartments.
Collapse
Affiliation(s)
- Mithila Tennakoon
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606
| | - Kanishka Senarath
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606
| | - Dinesh Kankanamge
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606
| | - Deborah N. Chadee
- Department of Biological Sciences, The University of Toledo, Toledo, OH 43606
| | - Ajith Karunarathne
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606
| |
Collapse
|
10
|
Sponholtz MR, Senning EN. The Pleckstrin Homology Domain of PLCδ1 Exhibits Complex Dissociation Properties at the Inner Leaflet of Plasma Membrane Sheets. ACS Chem Neurosci 2021; 12:2072-2078. [PMID: 34048227 DOI: 10.1021/acschemneuro.1c00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Using total internal reflection fluorescence microscopy, we followed the dissociation of GFP-tagged pleckstrin homology (PH) domains of AKT and PLCδ1 from the plasma membranes of rapidly unroofed cells. We found that the AKT-PH-GFP and PLCδ1-PH-GFP dissociation kinetics can be distinguished by their effective koff values of 0.39 ± 0.05 and 0.56 ± 0.16 s-1, respectively. Furthermore, we identified substantial rebinding events in measurements of PLCδ1-PH-GFP dissociation kinetics. By applying inositol triphosphate (IP3) to samples during the unroofing process, we measured a much larger koff of 1.54 ± 0.42 s-1 for PLCδ1-PH-GFP, indicating that rebinding events are significantly suppressed through competitive action by IP3 for the same PH domain binding site as phosphatidylinositol 4,5-bisphosphate (PIP2). We discuss the complex character of our PLCδ1-PH-GFP fluorescence decays in the context of membrane receptor and ligand theory to address the question of how free PIP2 levels modulate the interaction between membrane-associated proteins and the plasma membrane.
Collapse
Affiliation(s)
- Madeline R. Sponholtz
- Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Eric N. Senning
- Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
11
|
Orré T, Joly A, Karatas Z, Kastberger B, Cabriel C, Böttcher RT, Lévêque-Fort S, Sibarita JB, Fässler R, Wehrle-Haller B, Rossier O, Giannone G. Molecular motion and tridimensional nanoscale localization of kindlin control integrin activation in focal adhesions. Nat Commun 2021; 12:3104. [PMID: 34035280 PMCID: PMC8149821 DOI: 10.1038/s41467-021-23372-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/21/2021] [Indexed: 12/20/2022] Open
Abstract
Focal adhesions (FAs) initiate chemical and mechanical signals involved in cell polarity, migration, proliferation and differentiation. Super-resolution microscopy revealed that FAs are organized at the nanoscale into functional layers from the lower plasma membrane to the upper actin cytoskeleton. Yet, how FAs proteins are guided into specific nano-layers to promote interaction with given targets is unknown. Using single protein tracking, super-resolution microscopy and functional assays, we link the molecular behavior and 3D nanoscale localization of kindlin with its function in integrin activation inside FAs. We show that immobilization of integrins in FAs depends on interaction with kindlin. Unlike talin, kindlin displays free diffusion along the plasma membrane outside and inside FAs. We demonstrate that the kindlin Pleckstrin Homology domain promotes membrane diffusion and localization to the membrane-proximal integrin nano-layer, necessary for kindlin enrichment and function in FAs. Using kindlin-deficient cells, we show that kindlin membrane localization and diffusion are crucial for integrin activation, cell spreading and FAs formation. Thus, kindlin uses a different route than talin to reach and activate integrins, providing a possible molecular basis for their complementarity during integrin activation.
Collapse
Affiliation(s)
- Thomas Orré
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR, Bordeaux, France
| | - Adrien Joly
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR, Bordeaux, France
| | - Zeynep Karatas
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR, Bordeaux, France
| | - Birgit Kastberger
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, Geneva 4, Switzerland
| | - Clément Cabriel
- Institut des Sciences Moléculaires d'Orsay, CNRS UMR8214, Univ. Paris-Sud, Université Paris Saclay, Orsay, Cedex, France
| | | | - Sandrine Lévêque-Fort
- Institut des Sciences Moléculaires d'Orsay, CNRS UMR8214, Univ. Paris-Sud, Université Paris Saclay, Orsay, Cedex, France
| | - Jean-Baptiste Sibarita
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR, Bordeaux, France
| | | | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, Geneva 4, Switzerland
| | - Olivier Rossier
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR, Bordeaux, France.
| | - Grégory Giannone
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR, Bordeaux, France.
| |
Collapse
|
12
|
The G-Protein Rab5A Activates VPS34 Complex II, a Class III PI3K, by a Dual Regulatory Mechanism. Biophys J 2020; 119:2205-2218. [PMID: 33137306 DOI: 10.1016/j.bpj.2020.10.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/04/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023] Open
Abstract
VPS34 complex II (VPS34CII) is a 386-kDa assembly of the lipid kinase subunit VPS34 and three regulatory subunits that altogether function as a prototypical class III phosphatidylinositol-3-kinase (PI3K). When the active VPS34CII complex is docked to the cytoplasmic surface of endosomal membranes, it phosphorylates its substrate lipid (phosphatidylinositol, PI) to generate the essential signaling lipid phosphatidylinositol-3-phosphate (PI3P). In turn, PI3P recruits an array of signaling proteins containing PI3P-specific targeting domains (including FYVE, PX, and PROPPINS) to the membrane surface, where they initiate key cell processes. In endocytosis and early endosome development, net VPS34CII-catalyzed PI3P production is greatly amplified by Rab5A, a small G protein of the Ras GTPase superfamily. Moreover, VPS34CII and Rab5A are each strongly linked to multiple human diseases. Thus, a molecular understanding of the mechanism by which Rab5A activates lipid kinase activity will have broad impacts in both signaling biology and medicine. Two general mechanistic models have been proposed for small G protein activation of PI3K lipid kinases. 1) In the membrane recruitment mechanism, G protein association increases the density of active kinase on the membrane. And 2) in the allosteric activation mechanism, G protein allosterically triggers an increase in the specific activity (turnover rate) of the membrane-bound kinase molecule. This study employs an in vitro single-molecule approach to elucidate the mechanism of GTP-Rab5A-associated VPS34CII kinase activation in a reconstituted GTP-Rab5A-VPS34CII-PI3P-PX signaling pathway on a target membrane surface. The findings reveal that both membrane recruitment and allosteric mechanisms make important contributions to the large increase in VPS34CII kinase activity and PI3P production triggered by membrane-anchored GTP-Rab5A. Notably, under near-physiological conditions in the absence of other activators, membrane-anchored GTP-Rab5A provides strong, virtually binary on-off switching and is required for VPS34CII membrane binding and PI3P production.
Collapse
|
13
|
Thompson CJ, Su Z, Vu VH, Wu Y, Leckband DE, Schwartz DK. Cadherin clusters stabilized by a combination of specific and nonspecific cis-interactions. eLife 2020; 9:e59035. [PMID: 32876051 PMCID: PMC7505656 DOI: 10.7554/elife.59035] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022] Open
Abstract
We demonstrate a combined experimental and computational approach for the quantitative characterization of lateral interactions between membrane-associated proteins. In particular, weak, lateral (cis) interactions between E-cadherin extracellular domains tethered to supported lipid bilayers, were studied using a combination of dynamic single-molecule Förster Resonance Energy Transfer (FRET) and kinetic Monte Carlo (kMC) simulations. Cadherins are intercellular adhesion proteins that assemble into clusters at cell-cell contacts through cis- and trans- (adhesive) interactions. A detailed and quantitative understanding of cis-clustering has been hindered by a lack of experimental approaches capable of detecting and quantifying lateral interactions between proteins on membranes. Here single-molecule intermolecular FRET measurements of wild-type E-cadherin and cis-interaction mutants combined with simulations demonstrate that both nonspecific and specific cis-interactions contribute to lateral clustering on lipid bilayers. Moreover, the intermolecular binding and dissociation rate constants are quantitatively and independently determined, demonstrating an approach that is generalizable for other interacting proteins.
Collapse
Affiliation(s)
- Connor J Thompson
- Department of Chemical and Biological Engineering, University of Colorado BoulderBoulderUnited States
| | - Zhaoqian Su
- Department of Systems and Computational Biology, Albert Einstein College of MedicineBronxUnited States
| | - Vinh H Vu
- Department of Biochemistry and University of Illinois, Urbana-ChampaignUrbanaUnited States
| | - Yinghao Wu
- Department of Systems and Computational Biology, Albert Einstein College of MedicineBronxUnited States
| | - Deborah E Leckband
- Department of Biochemistry and University of Illinois, Urbana-ChampaignUrbanaUnited States
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana-ChampaignUrbanaUnited States
| | - Daniel K Schwartz
- Department of Chemical and Biological Engineering, University of Colorado BoulderBoulderUnited States
| |
Collapse
|
14
|
Hedayati M, Kipper MJ, Krapf D. Anomalous protein kinetics on low-fouling surfaces. Phys Chem Chem Phys 2020; 22:5264-5271. [PMID: 32095800 DOI: 10.1039/d0cp00326c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, protein-surface interactions were probed in terms of adsorption and desorption of a model protein, bovine serum albumin, on a low-fouling surface with single-molecule localization microscopy. Single-molecule experiments enable precise determination of both adsorption and desorption rates. Strikingly the experimental data show anomalous desorption kinetics, evident as a surface dwell time that exhibits a power-law distribution, i.e. a heavy-tailed rather than the expected exponential distribution. As a direct consequence of this heavy-tailed distribution, the average desorption rate depends upon the time scale of the experiment and the protein surface concentration does not reach equilibrium. Further analysis reveals that the observed anomalous desorption emerges due to the reversible formation of a small fraction of soluble protein multimers (small oligomers), such that each one desorbs from the surface with a different rate. The overall kinetics can be described by a series of elementary reactions, yielding simple scaling relations that predict experimental observations. This work reveals a mechanistic origin for anomalous desorption kinetics that can be employed to interpret observations where low-protein fouling surfaces eventually foul when in long-term contact with protein solutions. The work also provides new insights that can be used to define design principles for non-fouling surfaces and to predict their performance.
Collapse
Affiliation(s)
- Mohammadhasan Hedayati
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA.
| | - Matt J Kipper
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA. and School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA. and School of Advanced Materials Discovery, Colorado State University, Fort Collins, CO 80523, USA
| | - Diego Krapf
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA. and School of Advanced Materials Discovery, Colorado State University, Fort Collins, CO 80523, USA and Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
15
|
Yoshioka D, Fukushima S, Koteishi H, Okuno D, Ide T, Matsuoka S, Ueda M. Single-molecule imaging of PI(4,5)P 2 and PTEN in vitro reveals a positive feedback mechanism for PTEN membrane binding. Commun Biol 2020; 3:92. [PMID: 32111929 PMCID: PMC7048775 DOI: 10.1038/s42003-020-0818-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/10/2020] [Indexed: 01/21/2023] Open
Abstract
PTEN, a 3-phosphatase of phosphoinositide, regulates asymmetric PI(3,4,5)P3 signaling for the anterior-posterior polarization and migration of motile cells. PTEN acts through posterior localization on the plasma membrane, but the mechanism for this accumulation is poorly understood. Here we developed an in vitro single-molecule imaging assay with various lipid compositions and use it to demonstrate that the enzymatic product, PI(4,5)P2, stabilizes PTEN's membrane-binding. The dissociation kinetics and lateral mobility of PTEN depended on the PI(4,5)P2 density on artificial lipid bilayers. The basic residues of PTEN were responsible for electrostatic interactions with anionic PI(4,5)P2 and thus the PI(4,5)P2-dependent stabilization. Single-molecule imaging in living Dictyostelium cells revealed that these interactions were indispensable for the stabilization in vivo, which enabled efficient cell migration by accumulating PTEN posteriorly to restrict PI(3,4,5)P3 distribution to the anterior. These results suggest that PI(4,5)P2-mediated positive feedback and PTEN-induced PI(4,5)P2 clustering may be important for anterior-posterior polarization.
Collapse
Affiliation(s)
- Daisuke Yoshioka
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 565-0043, Japan
- Center for Biosystems Dynamics Research (BDR), RIKEN, Suita, Osaka, 565-0874, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Seiya Fukushima
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 565-0043, Japan
- Center for Biosystems Dynamics Research (BDR), RIKEN, Suita, Osaka, 565-0874, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hiroyasu Koteishi
- Center for Biosystems Dynamics Research (BDR), RIKEN, Suita, Osaka, 565-0874, Japan
| | - Daichi Okuno
- Center for Biosystems Dynamics Research (BDR), RIKEN, Suita, Osaka, 565-0874, Japan
| | - Toru Ide
- Graduate School of Natural Science and Technology, Okayama University, Okayama-shi, Okayama, 700-8530, Japan
| | - Satomi Matsuoka
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 565-0043, Japan.
- Center for Biosystems Dynamics Research (BDR), RIKEN, Suita, Osaka, 565-0874, Japan.
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Masahiro Ueda
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 565-0043, Japan.
- Center for Biosystems Dynamics Research (BDR), RIKEN, Suita, Osaka, 565-0874, Japan.
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
16
|
Xu C, Wan Z, Shaheen S, Wang J, Yang Z, Liu W. A PI(4,5)P2-derived "gasoline engine model" for the sustained B cell receptor activation. Immunol Rev 2020; 291:75-90. [PMID: 31402506 DOI: 10.1111/imr.12775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/14/2022]
Abstract
To efficiently initiate activation responses against rare ligands in the microenvironment, lymphocytes employ sophisticated mechanisms involving signaling amplification. Recently, a signaling amplification mechanism initiated from phosphatidylinositol (PI) 4, 5-biphosphate [PI(4,5)P2] hydrolysis and synthesis for sustained B cell activation has been reported. Antigen and B cell receptor (BCR) recognition triggered the prompt reduction of PI(4,5)P2 density within the BCR microclusters, which led to the positive feedback for the synthesis of PI(4,5)P2 outside of the BCR microclusters. At single molecule level, the diffusion of PI(4,5)P2 was slow, allowing for the maintenance of a PI(4,5)P2 density gradient between the inside and outside of the BCR microclusters and the persistent supply of PI(4,5)P2 from outside to inside of the BCR microclusters. Here, we review studies that have contributed to uncovering the molecular mechanisms of PI(4,5)P2-derived signaling amplification model. Based on these studies, we proposed a "gasoline engine model" in which the activation of B cell signaling inside the microclusters is similar to the working principle of burning gasoline within the engine chamber of a gasoline engine. We also discuss the evidences showing the potential universality of this model and future prospects.
Collapse
Affiliation(s)
- Chenguang Xu
- Center for Life Sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Zhengpeng Wan
- Center for Life Sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Samina Shaheen
- Center for Life Sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Jing Wang
- Center for Life Sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Zhiyong Yang
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California
| | - Wanli Liu
- Center for Life Sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| |
Collapse
|
17
|
Yamamoto E, Domański J, Naughton FB, Best RB, Kalli AC, Stansfeld PJ, Sansom MSP. Multiple lipid binding sites determine the affinity of PH domains for phosphoinositide-containing membranes. SCIENCE ADVANCES 2020; 6:eaay5736. [PMID: 32128410 PMCID: PMC7030919 DOI: 10.1126/sciadv.aay5736] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/03/2019] [Indexed: 05/19/2023]
Abstract
Association of peripheral proteins with lipid bilayers regulates membrane signaling and dynamics. Pleckstrin homology (PH) domains bind to phosphatidylinositol phosphate (PIP) molecules in membranes. The effects of local PIP enrichment on the interaction of PH domains with membranes is unclear. Molecular dynamics simulations allow estimation of the binding energy of GRP1 PH domain to PIP3-containing membranes. The free energy of interaction of the PH domain with more than two PIP3 molecules is comparable to experimental values, suggesting that PH domain binding involves local clustering of PIP molecules within membranes. We describe a mechanism of PH binding proceeding via an encounter state to two bound states which differ in the orientation of the protein relative to the membrane, these orientations depending on the local PIP concentration. These results suggest that nanoscale clustering of PIP molecules can control the strength and orientation of PH domain interaction in a concentration-dependent manner.
Collapse
Affiliation(s)
- Eiji Yamamoto
- Department of System Design Engineering, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Jan Domański
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | - Fiona B. Naughton
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
- Department of Physics, Arizona State University, Tempe, AZ 85287-1504, USA
| | - Robert B. Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | - Antreas C. Kalli
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
- Leeds Institute of Cardiovascular and Metabolic Medicine and Astbury Center for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Phillip J. Stansfeld
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Mark S. P. Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
18
|
Hedayati M, Marruecos DF, Krapf D, Kaar JL, Kipper MJ. Protein adsorption measurements on low fouling and ultralow fouling surfaces: A critical comparison of surface characterization techniques. Acta Biomater 2020; 102:169-180. [PMID: 31731023 DOI: 10.1016/j.actbio.2019.11.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/23/2019] [Accepted: 11/08/2019] [Indexed: 01/07/2023]
Abstract
Ultralow protein fouling behavior is a common target for new high-performance materials. Ultralow fouling is often defined based on the amount of irreversibly adsorbed protein (< 5 ng cm-2) measured by a surface ensemble averaging method. However, protein adsorption at solid interfaces is a dynamic process involving multiple steps, which may include adsorption, desorption, and irreversible protein denaturation. In order to better optimize the performance of antifouling surfaces, it is imperative to fully understand how proteins interact with surfaces, including kinetics of adsorption and desorption, conformation, stability, and amount of adsorbed proteins. Defining ultralow fouling surfaces based on a measurement at or near the limit of detection of a surface-averaged measurement may not capture all of this behavior. Single-molecule microscopy techniques can resolve individual protein-surface interactions with high temporal and spatial resolution. This information can be used to tune the properties of surfaces to better resist protein adsorption. In this work, we demonstrate how combining surface plasmon resonance, X-ray photoelectron spectroscopy, atomic force microscopy, and single-molecule localization microscopy provides a more complete picture of protein adsorption on low fouling and ultralow fouling polyelectrolyte multilayer and polymer brush surfaces, over different regimes of protein concentration. In this case, comparing the surfaces using surface plasmon resonance alone is insufficient to rank their resistance to protein adsorption. Our results suggest a revision of the accepted definition of ultralow fouling surfaces is timely: with the advent of time-resolved studies of protein adsorption kinetics at the single-molecule level, it is neither necessary nor sufficient to rely on a surface averaging techniques to qualify ultralow fouling surfaces. Since protein adsorption is a dynamic process, understanding how surface properties affect the kinetics of protein adsorption will enable the design of future generations of advanced antifouling materials. STATEMENT OF SIGNIFICANCE: The design of ultralow fouling surfaces is often optimized based on a single surface-averaging technique measuring the amount of irreversibly adsorbed protein. This work provides a critical comparison of alternative techniques for evaluating protein adsorption on low fouling and ultralow fouling surfaces, and demonstrates how additional information about the dynamics of protein-surface interactions at the interface can be obtained by application of single-molecule microscopy. This approach could be used to better elucidate mechanisms of protein resistance and design principles for advanced ultralow fouling materials.
Collapse
Affiliation(s)
- Mohammadhasan Hedayati
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80526, USA
| | - David Faulón Marruecos
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Diego Krapf
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80526, USA; School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80526, USA; School of Advanced Materials Discovery, Colorado State University, Fort Collins, CO 80526, USA
| | - Joel L Kaar
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Matt J Kipper
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80526, USA; School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80526, USA; School of Advanced Materials Discovery, Colorado State University, Fort Collins, CO 80526, USA.
| |
Collapse
|
19
|
Damiati S, Scheberl A, Zayni S, Damiati SA, Schuster B, Kompella UB. Albumin-bound nanodiscs as delivery vehicle candidates: Development and characterization. Biophys Chem 2019; 251:106178. [DOI: 10.1016/j.bpc.2019.106178] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 04/28/2019] [Accepted: 04/28/2019] [Indexed: 10/26/2022]
|
20
|
Xu C, Fang Y, Yang Z, Jing Y, Zhang Y, Liu C, Liu W. MARCKS regulates tonic and chronic active B cell receptor signaling. Leukemia 2019; 33:710-729. [PMID: 30209404 DOI: 10.1038/s41375-018-0244-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 06/12/2018] [Accepted: 07/30/2018] [Indexed: 01/16/2023]
Abstract
Tonic or chronic active B-cell receptor (BCR) signaling is essential for the survival of normal or some malignant B cells, respectively. However, the molecular mechanism regulating the strength of these two types of BCR signaling remains unknown. Here, using high-speed high-resolution single-molecule tracking in live cells, we identified that PKCβ, STIM1, and IP3R1/2/3 molecules affected the lateral Brownian mobile behavior of BCRs on the plasma membrane of quiescent B cells, which was correlated to the strength of BCR signaling. Further mechanistic studies revealed that these three molecules influenced BCR mobility by regulating the membrane tethering of MARCKS to the inner leaflet of the plasma membrane. Indeed, membrane-untethered or deficiency of MARCKS significantly decreased, while membrane-tethered or overexpression of MARCKS drastically increased the lateral mobility of BCRs. Functional experiments indicated that the membrane-tethered MARCKS suppressed the survival and/or proliferation in both B-cell tumor cells and mouse primary splenic B cells in vitro and in vivo. Mechanistically, we found that membrane-tethered MARCKS increased BCR lateral mobility, and thus decreased BCR nanoclustering by disturbing the interaction between cortical F-actin and the inner leaflet of the plasma membrane, resulting in the suppression of the strength of both tonic and chronic active BCR signaling. Conclusively, MARCKS is a newly identified molecule regulating the strength of BCR signaling by modulating cytoskeleton and plasma membrane interactions, both in the physiological and pathological conditions, suggesting that MARCKS is a putative target for drug design.
Collapse
Affiliation(s)
- Chenguang Xu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Yan Fang
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Zhiyong Yang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Yukai Jing
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yonghui Zhang
- School of Pharmaceutical Sciences, Collaborative Innovation Center for Biotherapy, Tsinghua University, Beijing, 100084, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Wanli Liu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, 100084, China.
- Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing, 100084, China.
| |
Collapse
|
21
|
Pemberton JG, Balla T. Polyphosphoinositide-Binding Domains: Insights from Peripheral Membrane and Lipid-Transfer Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1111:77-137. [PMID: 30483964 DOI: 10.1007/5584_2018_288] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Within eukaryotic cells, biochemical reactions need to be organized on the surface of membrane compartments that use distinct lipid constituents to dynamically modulate the functions of integral proteins or influence the selective recruitment of peripheral membrane effectors. As a result of these complex interactions, a variety of human pathologies can be traced back to improper communication between proteins and membrane surfaces; either due to mutations that directly alter protein structure or as a result of changes in membrane lipid composition. Among the known structural lipids found in cellular membranes, phosphatidylinositol (PtdIns) is unique in that it also serves as the membrane-anchored precursor of low-abundance regulatory lipids, the polyphosphoinositides (PPIn), which have restricted distributions within specific subcellular compartments. The ability of PPIn lipids to function as signaling platforms relies on both non-specific electrostatic interactions and the selective stereospecific recognition of PPIn headgroups by specialized protein folds. In this chapter, we will attempt to summarize the structural diversity of modular PPIn-interacting domains that facilitate the reversible recruitment and conformational regulation of peripheral membrane proteins. Outside of protein folds capable of capturing PPIn headgroups at the membrane interface, recent studies detailing the selective binding and bilayer extraction of PPIn species by unique functional domains within specific families of lipid-transfer proteins will also be highlighted. Overall, this overview will help to outline the fundamental physiochemical mechanisms that facilitate localized interactions between PPIn lipids and the wide-variety of PPIn-binding proteins that are essential for the coordinate regulation of cellular metabolism and membrane dynamics.
Collapse
Affiliation(s)
- Joshua G Pemberton
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
22
|
Wang J, Xu L, Shaheen S, Liu S, Zheng W, Sun X, Li Z, Liu W. Growth of B Cell Receptor Microclusters Is Regulated by PIP 2 and PIP 3 Equilibrium and Dock2 Recruitment and Activation. Cell Rep 2018; 21:2541-2557. [PMID: 29186690 DOI: 10.1016/j.celrep.2017.10.117] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/18/2017] [Accepted: 10/29/2017] [Indexed: 01/24/2023] Open
Abstract
The growth of B cell receptor (BCR) microclusters upon antigen stimulation drives B cell activation. Here, we show that PI3K-mediated PIP3 production is required for the growth of BCR microclusters. This growth is likely inhibited by PTEN and dependent on its plasma membrane binding and lipid phosphatase activities. Mechanistically, we find that PIP3-dependent recruitment and activation of a guanine nucleotide exchange factor, Dock2, is required for the sustained growth of BCR microclusters through remodeling of the F-actin cytoskeleton. As a consequence, Dock2 deficiency significantly disrupts the structure of the B cell immunological synapse. Finally, we find that primary B cells from systemic lupus erythematosus (SLE) patients exhibit more prominent BCR and PI3K microclusters than B cells from healthy controls. These results demonstrate the importance of a PI3K- and PTEN-governed PIP2 and PIP3 equilibrium in regulating the activation of B cells through Dock2-controlled growth of BCR microclusters.
Collapse
Affiliation(s)
- Jing Wang
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Liling Xu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Samina Shaheen
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Sichen Liu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Wenjie Zheng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiaolin Sun
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing 100044, China
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing 100044, China
| | - Wanli Liu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
23
|
Xu C, Xie H, Guo X, Gong H, Liu L, Qi H, Xu C, Liu W. A PIP 2-derived amplification loop fuels the sustained initiation of B cell activation. Sci Immunol 2018; 2:2/17/eaan0787. [PMID: 29150438 DOI: 10.1126/sciimmunol.aan0787] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 10/04/2017] [Indexed: 12/28/2022]
Abstract
Lymphocytes have evolved sophisticated signaling amplification mechanisms to efficiently activate downstream signaling after detection of rare ligands in their microenvironment. B cell receptor microscopic clusters (BCR microclusters) are assembled on the plasma membrane and recruit signaling molecules for the initiation of lymphocyte signaling after antigen binding. We identified a signaling amplification loop derived from phosphatidylinositol 4,5-biphosphate (PIP2) for the sustained B cell activation. Upon antigen recognition, PIP2 was depleted by phospholipase C-γ2 (PLC-γ2) within the BCR microclusters and was regenerated by phosphatidic acid-dependent type I phosphatidylinositol 4-phosphate 5-kinase outside the BCR microclusters. The hydrolysis of PIP2 inside the BCR microclusters induced a positive feedback mechanism for its synthesis outside the BCR microclusters. The falling gradient of PIP2 across the boundary of BCR microclusters was important for the efficient formation of BCR microclusters. Our results identified a PIP2-derived amplification loop that fuels the sustained initiation of B cell activation.
Collapse
Affiliation(s)
- Chenguang Xu
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Hengyi Xie
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Xingdong Guo
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Haipeng Gong
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (MOE), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hai Qi
- Tsinghua-Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Chenqi Xu
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,School of Life Science, ShanghaiTech University, Shanghai 201210, China
| | - Wanli Liu
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
24
|
Wan Z, Xu C, Chen X, Xie H, Li Z, Wang J, Ji X, Chen H, Ji Q, Shaheen S, Xu Y, Wang F, Tang Z, Zheng JS, Chen W, Lou J, Liu W. PI(4,5)P2 determines the threshold of mechanical force-induced B cell activation. J Cell Biol 2018; 217:2565-2582. [PMID: 29685902 PMCID: PMC6028545 DOI: 10.1083/jcb.201711055] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/06/2018] [Accepted: 04/05/2018] [Indexed: 12/14/2022] Open
Abstract
B lymphocytes use B cell receptors (BCRs) to sense the chemical and physical features of antigens. The activation of isotype-switched IgG-BCR by mechanical force exhibits a distinct sensitivity and threshold in comparison with IgM-BCR. However, molecular mechanisms governing these differences remain to be identified. In this study, we report that the low threshold of IgG-BCR activation by mechanical force is highly dependent on tethering of the cytoplasmic tail of the IgG-BCR heavy chain (IgG-tail) to the plasma membrane. Mechanistically, we show that the positively charged residues in the IgG-tail play a crucial role by highly enriching phosphatidylinositol (4,5)-biphosphate (PI(4,5)P2) into the membrane microdomains of IgG-BCRs. Indeed, manipulating the amounts of PI(4,5)P2 within IgG-BCR membrane microdomains significantly altered the threshold and sensitivity of IgG-BCR activation. Our results reveal a lipid-dependent mechanism for determining the threshold of IgG-BCR activation by mechanical force.
Collapse
Affiliation(s)
- Zhengpeng Wan
- Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Chenguang Xu
- Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Xiangjun Chen
- Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Hengyi Xie
- Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Zongyu Li
- Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Jing Wang
- Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Xingyu Ji
- Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Haodong Chen
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, China
| | - Qinghua Ji
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Samina Shaheen
- Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Yang Xu
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Fei Wang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, China
| | - Zhuo Tang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, China
| | - Ji-Shen Zheng
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Wei Chen
- School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Jizhong Lou
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Wanli Liu
- Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China .,Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China
| |
Collapse
|
25
|
Senarath K, Kankanamge D, Samaradivakara S, Ratnayake K, Tennakoon M, Karunarathne A. Regulation of G Protein βγ Signaling. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 339:133-191. [PMID: 29776603 DOI: 10.1016/bs.ircmb.2018.02.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heterotrimeric guanine nucleotide-binding proteins (G proteins) deliver external signals to the cell interior, upon activation by the external signal stimulated G protein-coupled receptors (GPCRs).While the activated GPCRs control several pathways independently, activated G proteins control the vast majority of cellular and physiological functions, ranging from vision to cardiovascular homeostasis. Activated GPCRs dissociate GαGDPβγ heterotrimer into GαGTP and free Gβγ. Earlier, GαGTP was recognized as the primary signal transducer of the pathway and Gβγ as a passive signaling modality that facilitates the activity of Gα. However, Gβγ later found to regulate more number of pathways than GαGTP does. Once liberated from the heterotrimer, free Gβγ interacts and activates a diverse range of signaling regulators including kinases, lipases, GTPases, and ion channels, and it does not require any posttranslation modifications. Gβγ family consists of 48 members, which show cell- and tissue-specific expressions, and recent reports show that cells employ the subtype diversity in Gβγ to achieve desired signaling outcomes. In addition to activated GPCRs, which induce free Gβγ generation and the rate of GTP hydrolysis in Gα, which sequester Gβγ in the heterotrimer, terminating Gβγ signaling, additional regulatory mechanisms exist to regulate Gβγ activity. In this chapter, we discuss structure and function, subtype diversity and its significance in signaling regulation, effector activation, regulatory mechanisms as well as the disease relevance of Gβγ in eukaryotes.
Collapse
|
26
|
Buckles TC, Ziemba BP, Masson GR, Williams RL, Falke JJ. Single-Molecule Study Reveals How Receptor and Ras Synergistically Activate PI3Kα and PIP 3 Signaling. Biophys J 2017; 113:2396-2405. [PMID: 29211993 PMCID: PMC5738497 DOI: 10.1016/j.bpj.2017.09.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/15/2017] [Accepted: 09/15/2017] [Indexed: 02/07/2023] Open
Abstract
Cellular pathways controlling chemotaxis, growth, survival, and oncogenesis are activated by receptor tyrosine kinases and small G-proteins of the Ras superfamily that stimulate specific isoforms of phosphatidylinositol-3-kinase (PI3K). These PI3K lipid kinases phosphorylate the constitutive lipid phosphatidylinositol-4,5-bisphosphate (PIP2) to produce the signaling lipid phosphatidylinositol-3,4,5-trisphosphate (PIP3). Progress has been made in understanding direct, moderate PI3K activation by receptors. In contrast, the mechanism by which receptors and Ras synergistically activate PI3K to much higher levels remains unclear, and two competing models have been proposed: membrane recruitment versus activation of the membrane-bound enzyme. To resolve this central mechanistic question, this study employs single-molecule imaging to investigate PI3K activation in a six-component pathway reconstituted on a supported lipid bilayer. The findings reveal that simultaneous activation by a receptor activation loop (from platelet-derived growth factor receptor, a receptor tyrosine kinase) and H-Ras generates strong, synergistic activation of PI3Kα, yielding a large increase in net kinase activity via the membrane recruitment mechanism. Synergy requires receptor phospho-Tyr and two anionic lipids (phosphatidylserine and PIP2) to make PI3Kα competent for bilayer docking, as well as for subsequent binding and phosphorylation of substrate PIP2 to generate product PIP3. Synergy also requires recruitment to membrane-bound H-Ras, which greatly speeds the formation of a stable, membrane-bound PI3Kα complex, modestly slows its off rate, and dramatically increases its equilibrium surface density. Surprisingly, H-Ras binding significantly inhibits the specific kinase activity of the membrane-bound PI3Kα molecule, but this minor enzyme inhibition is overwhelmed by the marked enhancement of membrane recruitment. The findings have direct impacts for the fields of chemotaxis, innate immunity, inflammation, carcinogenesis, and drug design.
Collapse
Affiliation(s)
- Thomas C Buckles
- Molecular Biophysics Program and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado
| | - Brian P Ziemba
- Molecular Biophysics Program and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado
| | - Glenn R Masson
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Roger L Williams
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Joseph J Falke
- Molecular Biophysics Program and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado.
| |
Collapse
|
27
|
Neumann BM, Kenney D, Wen Q, Gericke A. Microfluidic device as a facile in vitro tool to generate and investigate lipid gradients. Chem Phys Lipids 2017; 210:109-121. [PMID: 29102758 DOI: 10.1016/j.chemphyslip.2017.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/05/2017] [Accepted: 10/23/2017] [Indexed: 01/13/2023]
Abstract
This work describes a method that utilizes a microfluidic gradient generator to develop lateral lipid gradients in supported lipid bilayers (SLB). The new methodology provides freedom of choice with respect to the lipid composition of the SLB. In addition, the device has the ability to create a protein or bivalent cation gradient in the aqueous phase above the lipid bilayer which can elicit a gradient specific response in the SLB. To highlight these features we demonstrate that we can create a phosphoinositide gradient on various length scales, ranging from 2mm to 50μm. We further show that a Ca2+ gradient in the aqueous phase above the SLB causes anionic lipid clustering mirroring the cation gradient. We demonstrate this effect for mixed phosphatidylcholine/phosphatidylinositol-4,5-bisphosphate bilayers and fora mixed phosphatidylcholine/phosphatidylserine bilayers. The biomimetic platform can be combined with a Total Internal Reflection Fluorescence (TIRF) microscopy setup, which allows for the convenient observation of the time evolution of the gradient and the interaction of ligands with the lipid bilayer. The method provides unprecedented access to study the dynamics and mechanics of protein-lipid interactions on membranes with micron level gradients, mimicking plasma membrane gradients observed in organisms such as Dictyostelium discodeum and neutrophils.
Collapse
Affiliation(s)
- Brittany M Neumann
- Worcester Polytechnic Institute, Department of Chemistry and Biochemistry, USA
| | - Devin Kenney
- Bridgewater State University, Department of Chemical Sciences, USA
| | - Qi Wen
- Worcester Polytechnic Institute, Department of Physics, USA
| | - Arne Gericke
- Worcester Polytechnic Institute, Department of Chemistry and Biochemistry, USA.
| |
Collapse
|
28
|
Ma L, Cai Y, Li Y, Jiao J, Wu Z, O'Shaughnessy B, De Camilli P, Karatekin E, Zhang Y. Single-molecule force spectroscopy of protein-membrane interactions. eLife 2017; 6:30493. [PMID: 29083305 PMCID: PMC5690283 DOI: 10.7554/elife.30493] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/29/2017] [Indexed: 12/17/2022] Open
Abstract
Many biological processes rely on protein–membrane interactions in the presence of mechanical forces, yet high resolution methods to quantify such interactions are lacking. Here, we describe a single-molecule force spectroscopy approach to quantify membrane binding of C2 domains in Synaptotagmin-1 (Syt1) and Extended Synaptotagmin-2 (E-Syt2). Syts and E-Syts bind the plasma membrane via multiple C2 domains, bridging the plasma membrane with synaptic vesicles or endoplasmic reticulum to regulate membrane fusion or lipid exchange, respectively. In our approach, single proteins attached to membranes supported on silica beads are pulled by optical tweezers, allowing membrane binding and unbinding transitions to be measured with unprecedented spatiotemporal resolution. C2 domains from either protein resisted unbinding forces of 2–7 pN and had binding energies of 4–14 kBT per C2 domain. Regulation by bilayer composition or Ca2+ recapitulated known properties of both proteins. The method can be widely applied to study protein–membrane interactions.
Collapse
Affiliation(s)
- Lu Ma
- Department of Cell Biology, Yale University School of Medicine, New Haven, United States.,CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.,Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Yiying Cai
- Department of Cell Biology, Yale University School of Medicine, New Haven, United States.,Department of Neuroscience, Yale University School of Medicine, New Haven, United States.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States.,Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, United States
| | - Yanghui Li
- Department of Cell Biology, Yale University School of Medicine, New Haven, United States.,College of Optical and Electronic Technology, China Jiliang University, Hangzhou, China
| | - Junyi Jiao
- Department of Cell Biology, Yale University School of Medicine, New Haven, United States.,Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, United States
| | - Zhenyong Wu
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, United States.,Nanobiology Institute, Yale University, West Haven, United States
| | - Ben O'Shaughnessy
- Department of Chemical Engineering, Columbia University, New York, United States
| | - Pietro De Camilli
- Department of Cell Biology, Yale University School of Medicine, New Haven, United States.,Department of Neuroscience, Yale University School of Medicine, New Haven, United States.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States.,Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, United States.,Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, United States
| | - Erdem Karatekin
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, United States.,Nanobiology Institute, Yale University, West Haven, United States.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States.,Laboratoire de Neurophotonique, Faculté des Sciences Fondamentales et Biomédicales, Centre National de la Recherche Scientifique (CNRS) UMR 8250, Université Paris Descartes, Paris, France
| | - Yongli Zhang
- Department of Cell Biology, Yale University School of Medicine, New Haven, United States
| |
Collapse
|
29
|
Yamamoto E. Computational and theoretical approaches for studies of a lipid recognition protein on biological membranes. Biophys Physicobiol 2017; 14:153-160. [PMID: 29159013 PMCID: PMC5689545 DOI: 10.2142/biophysico.14.0_153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/26/2017] [Indexed: 01/13/2023] Open
Abstract
Many cellular functions, including cell signaling and related events, are regulated by the association of peripheral membrane proteins (PMPs) with biological membranes containing anionic lipids, e.g., phosphatidylinositol phosphate (PIP). This association is often mediated by lipid recognition modules present in many PMPs. Here, I summarize computational and theoretical approaches to investigate the molecular details of the interactions and dynamics of a lipid recognition module, the pleckstrin homology (PH) domain, on biological membranes. Multiscale molecular dynamics simulations using combinations of atomistic and coarse-grained models yielded results comparable to those of actual experiments and could be used to elucidate the molecular mechanisms of the formation of protein/lipid complexes on membrane surfaces, which are often difficult to obtain using experimental techniques. Simulations revealed some modes of membrane localization and interactions of PH domains with membranes in addition to the canonical binding mode. In the last part of this review, I address the dynamics of PH domains on the membrane surface. Local PIP clusters formed around the proteins exhibit anomalous fluctuations. This dynamic change in protein-lipid interactions cause temporally fluctuating diffusivity of proteins, i.e., the short-term diffusivity of the bound protein changes substantially with time, and may in turn contribute to the formation/dissolution of protein complexes in membranes.
Collapse
Affiliation(s)
- Eiji Yamamoto
- Graduate School of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
30
|
Ebner M, Lučić I, Leonard TA, Yudushkin I. PI(3,4,5)P 3 Engagement Restricts Akt Activity to Cellular Membranes. Mol Cell 2017; 65:416-431.e6. [PMID: 28157504 DOI: 10.1016/j.molcel.2016.12.028] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 10/19/2016] [Accepted: 12/29/2016] [Indexed: 01/13/2023]
Abstract
Protein kinase B/Akt regulates cellular metabolism, survival, and proliferation in response to hormones and growth factors. Hyperactivation of Akt is frequently observed in cancer, while Akt inactivation is associated with severe diabetes. Here, we investigated the molecular and cellular mechanisms that maintain Akt activity proportional to the activating stimulus. We show that binding of phosphatidylinositol-3,4,5-trisphosphate (PIP3) or PI(3,4)P2 to the PH domain allosterically activates Akt by promoting high-affinity substrate binding. Conversely, dissociation from PIP3 was rate limiting for Akt dephosphorylation, dependent on the presence of the PH domain. In cells, active Akt associated primarily with cellular membranes. In contrast, a transforming mutation that uncouples kinase activation from PIP3 resulted in the accumulation of hyperphosphorylated, active Akt in the cytosol. Our results suggest that intramolecular allosteric and cellular mechanisms cooperate to restrict Akt activity to cellular membranes, thereby enhancing the fidelity of Akt signaling and the specificity of downstream substrate phosphorylation.
Collapse
Affiliation(s)
- Michael Ebner
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, Vienna Biocenter (VBC), Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Iva Lučić
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, Vienna Biocenter (VBC), Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Thomas A Leonard
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, Vienna Biocenter (VBC), Campus Vienna Biocenter 5, 1030 Vienna, Austria; Department of Medical Biochemistry, Medical University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, 1030 Vienna, Austria.
| | - Ivan Yudushkin
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, Vienna Biocenter (VBC), Campus Vienna Biocenter 5, 1030 Vienna, Austria; Department of Medical Biochemistry, Medical University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, 1030 Vienna, Austria.
| |
Collapse
|
31
|
Glazier R, Salaita K. Supported lipid bilayer platforms to probe cell mechanobiology. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2017; 1859:1465-1482. [PMID: 28502789 PMCID: PMC5531615 DOI: 10.1016/j.bbamem.2017.05.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 05/09/2017] [Accepted: 05/09/2017] [Indexed: 12/15/2022]
Abstract
Mammalian and bacterial cells sense and exert mechanical forces through the process of mechanotransduction, which interconverts biochemical and physical signals. This is especially important in contact-dependent signaling, where ligand-receptor binding occurs at cell-cell or cell-ECM junctions. By virtue of occurring within these specialized junctions, receptors engaged in contact-dependent signaling undergo oligomerization and coupling with the cytoskeleton as part of their signaling mechanisms. While our ability to measure and map biochemical signaling within cell junctions has advanced over the past decades, physical cues remain difficult to map in space and time. Recently, supported lipid bilayer (SLB) technologies have emerged as a flexible platform to mimic and perturb cell-cell and cell-ECM junctions, allowing one to study membrane receptor mechanotransduction. Changing the lipid composition and underlying substrate tunes bilayer fluidity, and lipid and ligand micro- and nano-patterning spatially control positioning and clustering of receptors. Patterning metal gridlines within SLBs confines lipid mobility and introduces mechanical resistance. Here we review fundamental SLB mechanics and how SLBs can be engineered as tunable cell substrates for mechanotransduction studies. Finally, we highlight the impact of this work in understanding the biophysical mechanisms of cell adhesion. This article is part of a Special Issue entitled: Interactions between membrane receptors in cellular membranes edited by Kalina Hristova.
Collapse
Affiliation(s)
- Roxanne Glazier
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, and Emory University, Atlanta, GA 30322, United States
| | - Khalid Salaita
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, and Emory University, Atlanta, GA 30322, United States; Department of Chemistry, Emory University, Atlanta, GA 30322, United States..
| |
Collapse
|
32
|
Regulation of PI3K by PKC and MARCKS: Single-Molecule Analysis of a Reconstituted Signaling Pathway. Biophys J 2017; 110:1811-1825. [PMID: 27119641 DOI: 10.1016/j.bpj.2016.03.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/09/2016] [Accepted: 03/07/2016] [Indexed: 12/19/2022] Open
Abstract
In chemotaxing ameboid cells, a complex leading-edge signaling circuit forms on the cytoplasmic leaflet of the plasma membrane and directs both actin and membrane remodeling to propel the leading edge up an attractant gradient. This leading-edge circuit includes a putative amplification module in which Ca(2+)-protein kinase C (Ca(2+)-PKC) is hypothesized to phosphorylate myristoylated alanine-rich C kinase substrate (MARCKS) and release phosphatidylinositol-4,5-bisphosphate (PIP2), thereby stimulating production of the signaling lipid phosphatidylinositol-3,4,5-trisphosphate (PIP3) by the lipid kinase phosphoinositide-3-kinase (PI3K). We investigated this hypothesized Ca(2+)-PKC-MARCKS-PIP2-PI3K-PIP3 amplification module and tested its key predictions using single-molecule fluorescence to measure the surface densities and activities of its protein components. Our findings demonstrate that together Ca(2+)-PKC and the PIP2-binding peptide of MARCKS modulate the level of free PIP2, which serves as both a docking target and substrate lipid for PI3K. In the off state of the amplification module, the MARCKS peptide sequesters PIP2 and thereby inhibits PI3K binding to the membrane. In the on state, Ca(2+)-PKC phosphorylation of the MARCKS peptide reverses the PIP2 sequestration, thereby releasing multiple PIP2 molecules that recruit multiple active PI3K molecules to the membrane surface. These findings 1) show that the Ca(2+)-PKC-MARCKS-PIP2-PI3K-PIP3 system functions as an activation module in vitro, 2) reveal the molecular mechanism of activation, 3) are consistent with available in vivo data, and 4) yield additional predictions that are testable in live cells. More broadly, the Ca(2+)-PKC-stimulated release of free PIP2 may well regulate the membrane association of other PIP2-binding proteins, and the findings illustrate the power of single-molecule analysis to elucidate key dynamic and mechanistic features of multiprotein signaling pathways on membrane surfaces.
Collapse
|
33
|
Yamamoto E, Akimoto T, Kalli AC, Yasuoka K, Sansom MSP. Dynamic interactions between a membrane binding protein and lipids induce fluctuating diffusivity. SCIENCE ADVANCES 2017; 3:e1601871. [PMID: 28116358 PMCID: PMC5249258 DOI: 10.1126/sciadv.1601871] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 12/07/2016] [Indexed: 05/08/2023]
Abstract
Pleckstrin homology (PH) domains are membrane-binding lipid recognition proteins that interact with phosphatidylinositol phosphate (PIP) molecules in eukaryotic cell membranes. Diffusion of PH domains plays a critical role in biological reactions on membrane surfaces. Although diffusivity can be estimated by long-time measurements, it lacks information on the short-time diffusive nature. We reveal two diffusive properties of a PH domain bound to the surface of a PIP-containing membrane using molecular dynamics simulations. One is fractional Brownian motion, attributed to the motion of the lipids with which the PH domain interacts. The other is temporally fluctuating diffusivity; that is, the short-time diffusivity of the bound protein changes substantially with time. Moreover, the diffusivity for short-time measurements is intrinsically different from that for long-time measurements. This fluctuating diffusivity results from dynamic changes in interactions between the PH domain and PIP molecules. Our results provide evidence that the complexity of protein-lipid interactions plays a crucial role in the diffusion of proteins on biological membrane surfaces. Changes in the diffusivity of PH domains and related membrane-bound proteins may in turn contribute to the formation/dissolution of protein complexes in membranes.
Collapse
Affiliation(s)
- Eiji Yamamoto
- Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Takuma Akimoto
- Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Antreas C. Kalli
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
- Leeds Institute of Cancer and Pathology, School of Medicine, St. James’s University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - Kenji Yasuoka
- Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Mark S. P. Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
34
|
Ziemba BP, Swisher GH, Masson G, Burke JE, Williams RL, Falke JJ. Regulation of a Coupled MARCKS-PI3K Lipid Kinase Circuit by Calmodulin: Single-Molecule Analysis of a Membrane-Bound Signaling Module. Biochemistry 2016; 55:6395-6405. [PMID: 27933776 DOI: 10.1021/acs.biochem.6b00908] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amoeboid cells that employ chemotaxis to travel up an attractant gradient possess a signaling network assembled on the leading edge of the plasma membrane that senses the gradient and remodels the actin mesh and cell membrane to drive movement in the appropriate direction. In leukocytes such as macrophages and neutrophils, and perhaps in other amoeboid cells as well, the leading edge network includes a positive feedback loop in which the signaling of multiple pathway components is cooperatively coupled. Cytoplasmic Ca2+ is a recently recognized component of the feedback loop at the leading edge where it stimulates phosphoinositide-3-kinase (PI3K) and the production of its product signaling lipid phosphatidylinositol 3,4,5-trisphosphate (PIP3). A previous study implicated Ca2+-activated protein kinase C (PKC) and the phosphatidylinositol 4,5-bisphosphate (PIP2) binding protein MARCKS as two important players in this signaling, because PKC phosphorylation of MARCKS releases free PIP2 that serves as the membrane binding target and substrate for PI3K. This study asks whether calmodulin (CaM), which is known to directly bind MARCKS, also stimulates PIP3 production by releasing free PIP2. Single-molecule fluorescence microscopy is used to quantify the surface density and enzyme activity of key protein components of the hypothesized Ca2+-CaM-MARCKS-PIP2-PI3K-PIP3 circuit. The findings show that CaM does stimulate PI3K lipid kinase activity by binding MARCKS and displacing it from PIP2 headgroups, thereby releasing free PIP2 that recruits active PI3K to the membrane and serves as the substrate for the generation of PIP3. The resulting CaM-triggered activation of PI3K is complete in seconds and is much faster than PKC-triggered activation, which takes minutes. Overall, the available evidence implicates both PKC and CaM in the coupling of Ca2+ and PIP3 signals and suggests these two different pathways have slow and fast activation kinetics, respectively.
Collapse
Affiliation(s)
- Brian P Ziemba
- Molecular Biophysics Program and Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309-0215, United States
| | - G Hayden Swisher
- Molecular Biophysics Program and Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309-0215, United States
| | - Glenn Masson
- Laboratory of Molecular Biology, Medical Research Council , Cambridge CB2 0QH, U.K
| | - John E Burke
- Laboratory of Molecular Biology, Medical Research Council , Cambridge CB2 0QH, U.K
| | - Roger L Williams
- Laboratory of Molecular Biology, Medical Research Council , Cambridge CB2 0QH, U.K
| | - Joseph J Falke
- Molecular Biophysics Program and Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309-0215, United States
| |
Collapse
|
35
|
Miyaguchi T, Akimoto T, Yamamoto E. Langevin equation with fluctuating diffusivity: A two-state model. Phys Rev E 2016; 94:012109. [PMID: 27575079 DOI: 10.1103/physreve.94.012109] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Indexed: 11/07/2022]
Abstract
Recently, anomalous subdiffusion, aging, and scatter of the diffusion coefficient have been reported in many single-particle-tracking experiments, though the origins of these behaviors are still elusive. Here, as a model to describe such phenomena, we investigate a Langevin equation with diffusivity fluctuating between a fast and a slow state. Namely, the diffusivity follows a dichotomous stochastic process. We assume that the sojourn time distributions of these two states are given by power laws. It is shown that, for a nonequilibrium ensemble, the ensemble-averaged mean-square displacement (MSD) shows transient subdiffusion. In contrast, the time-averaged MSD shows normal diffusion, but an effective diffusion coefficient transiently shows aging behavior. The propagator is non-Gaussian for short time and converges to a Gaussian distribution in a long-time limit; this convergence to Gaussian is extremely slow for some parameter values. For equilibrium ensembles, both ensemble-averaged and time-averaged MSDs show only normal diffusion and thus we cannot detect any traces of the fluctuating diffusivity with these MSDs. Therefore, as an alternative approach to characterizing the fluctuating diffusivity, the relative standard deviation (RSD) of the time-averaged MSD is utilized and it is shown that the RSD exhibits slow relaxation as a signature of the long-time correlation in the fluctuating diffusivity. Furthermore, it is shown that the RSD is related to a non-Gaussian parameter of the propagator. To obtain these theoretical results, we develop a two-state renewal theory as an analytical tool.
Collapse
Affiliation(s)
- Tomoshige Miyaguchi
- Department of Mathematics Education, Naruto University of Education, Tokushima 772-8502, Japan
| | - Takuma Akimoto
- Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Japan
| | - Eiji Yamamoto
- Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Japan
| |
Collapse
|
36
|
Shirey CM, Ward KE, Stahelin RV. Investigation of the biophysical properties of a fluorescently modified ceramide-1-phosphate. Chem Phys Lipids 2016; 200:32-41. [PMID: 27318040 DOI: 10.1016/j.chemphyslip.2016.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 06/14/2016] [Indexed: 12/11/2022]
Abstract
Ceramide-1-phosphate (C1P) is an important signaling sphingolipid and a metabolite of ceramide. C1P contains an anionic phosphomonoester head group and has been shown to regulate physiological and pathophysiological processes such as cell proliferation, inflammation, apoptosis, phagocytosis, and macrophage chemotaxis. Despite this mechanistic information on its role in intra- and intercellular communication, little information is available on the biophysical properties of C1P in biological membranes and how it interacts with effector proteins. Fluorescently labeled lipids have been a useful tool to understand the membrane behavior properties of lipids such as phosphatidylserine, cholesterol, and some phosphoinositides. However, to the best of our knowledge, fluorescently labeled C1P hasn't been implemented to investigate its ability to serve as a mimetic of endogenous C1P in cells or untagged C1P in in vitro experiments. Cellular and in vitro assays demonstrate TopFluor-C1P harbors a fluorescent group that is fully buried in the hydrocarbon core and fluoresces across the spectrum of physiological pH values. Moreover, TopFluor-C1P didn't affect cellular toxicity at concentrations employed, was as effective as unlabeled C1P in recruiting an established protein effector to intracellular membranes, and its subcellular localization recapitulated what is known for endogenous C1P. Notably, the diffusion coefficient of TopFluor-C1P was slower than that of TopFluor-phosphatidylserine or TopFluor-cholesterol in the plasma membrane and similar to that of other fluorescently labeled sphingolipids including ceramide and sphingomyelin. These studies demonstrate that TopFluor-C1P should be a reliable mimetic of C1P to study C1P membrane biophysical properties and C1P interactions with proteins.
Collapse
Affiliation(s)
- Carolyn M Shirey
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Katherine E Ward
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Robert V Stahelin
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine-South Bend, South Bend, IN 46617, United States.
| |
Collapse
|
37
|
Krapf D, Campagnola G, Nepal K, Peersen OB. Strange kinetics of bulk-mediated diffusion on lipid bilayers. Phys Chem Chem Phys 2016; 18:12633-41. [PMID: 27095275 PMCID: PMC4861227 DOI: 10.1039/c6cp00937a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Diffusion at solid-liquid interfaces is crucial in many technological and biophysical processes. Although its behavior seems to be deceivingly simple, recent studies showing passive superdiffusive transport suggest that diffusion on surfaces may hide rich complexities. In particular, bulk-mediated diffusion occurs when molecules are transiently released from the surface to perform three-dimensional excursions into the liquid bulk. This phenomenon bears the dichotomy where a molecule always return to the surface but the mean jump length is infinite. Such behavior is associated with a breakdown of the central limit theorem and weak ergodicity breaking. Here, we use single-particle tracking to study the statistics of bulk-mediated diffusion on a supported lipid bilayer. We find that the time-averaged mean square displacement (MSD) of individual trajectories, the archetypal measure in diffusion processes, does not converge to the ensemble MSD but it remains a random variable, even in the long observation-time limit. The distribution of time averages is shown to agree with a Lévy flight model. Our results also unravel intriguing anomalies in the statistics of displacements. The time-averaged MSD is shown to depend on experimental time and investigations of fractional moments show a scaling 〈|r(t)|(q)〉∼t(qν(q)) with non-linear exponents, i.e. ν(q) ≠ const. This type of behavior is termed strong anomalous diffusion and is rare among experimental observations.
Collapse
Affiliation(s)
- Diego Krapf
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | |
Collapse
|
38
|
Naughton FB, Kalli AC, Sansom MSP. Association of Peripheral Membrane Proteins with Membranes: Free Energy of Binding of GRP1 PH Domain with Phosphatidylinositol Phosphate-Containing Model Bilayers. J Phys Chem Lett 2016; 7:1219-24. [PMID: 26977543 PMCID: PMC5593124 DOI: 10.1021/acs.jpclett.6b00153] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Understanding the energetics of peripheral protein-membrane interactions is important to many areas of biophysical chemistry and cell biology. Estimating free-energy landscapes by molecular dynamics (MD) simulation is challenging for such systems, especially when membrane recognition involves complex lipids, e.g., phosphatidylinositol phosphates (PIPs). We combined coarse-grained MD simulations with umbrella sampling to quantify the binding of the well-explored GRP1 pleckstrin homology (PH) domain to model membranes containing PIP molecules. The experimentally observed preference of GRP1-PH for PIP3 over PIP2 was reproduced. Mutation of a key residue (K273A) within the canonical PIP-binding site significantly reduced the free energy of PIP binding. The presence of a noncanonical PIP-interaction site, observed experimentally in other PH domains but not previously in GRP1-PH, was also revealed. These studies demonstrate how combining coarse-grained simulations and umbrella sampling can unmask the molecular basis of the energetics of interactions between peripheral membrane proteins and complex cellular membranes.
Collapse
Affiliation(s)
- Fiona B. Naughton
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K
| | - Antreas C. Kalli
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K
| | - Mark S. P. Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K
- to whom correspondence should be addressed
| |
Collapse
|
39
|
Arauz E, Aggarwal V, Jain A, Ha T, Chen J. Single-Molecule Analysis of Lipid-Protein Interactions in Crude Cell Lysates. Anal Chem 2016; 88:4269-76. [PMID: 27015152 DOI: 10.1021/acs.analchem.5b04127] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recognition of signaling phospholipids by proteins is a critical requirement for the targeting and initiation of many signaling cascades. Most biophysical methods for measuring protein interactions with signaling phospholipids use purified proteins, which do not take into account the effect of post-translational modifications and other cellular components on these interactions. To potentially circumvent these problems, we have developed a single-molecule fluorescence approach to analyzing lipid-protein interactions in crude cell extracts. As a proof of principle for this assay, we show that a variety of lipid-binding domains (LBDs) can be recruited from cell lysates specifically onto their target phospholipids. With single-molecule analysis in real-time, our assay allows direct determination of binding kinetics for transient lipid-protein interactions and has revealed unique assembly properties and multiple binding modes of different LBDs. Whereas single-copy LBDs display transient interaction with lipid vesicles, tandem-repeat LBDs, often used as lipid biosensors, tend to form stable interactions that accumulate over time. We have extended the assay to study a cellular protein, Akt, and discovered marked differences in the lipid binding properties of the full-length protein compared to its PH domain. Importantly, we have found that phosphorylation of Akt at T308 and S473 does not affect the lipid binding behaviors of Akt, contrary to the long-standing model of Akt regulation. Overall, this work establishes the single-molecule lipid pulldown assay as a simple and highly sensitive approach to interrogating lipid-protein interactions in a setting that at least partly mimics the cellular environment.
Collapse
Affiliation(s)
| | | | | | - Taekjip Ha
- Howard Hughes Medical Institute, Baltimore, Maryland 21205, United States
| | | |
Collapse
|
40
|
Shi X, Kohram M, Zhuang X, Smith AW. Interactions and Translational Dynamics of Phosphatidylinositol Bisphosphate (PIP2) Lipids in Asymmetric Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:1732-1741. [PMID: 26829708 DOI: 10.1021/acs.langmuir.5b02814] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Phosphatidylinositol phosphate (PIP) lipids are critical to many cell signaling pathways, in part by acting as molecular beacons that recruit peripheral membrane proteins to specific locations within the plasma membrane. Understanding the biophysics of PIP-protein interactions is critical to developing a chemically detailed model of cell communication. Resolving such interactions is challenging, even in model membrane systems, because of the difficulty in preparing PIP-containing membranes with high fluidity and integrity. Here we report on a simple, vesicle-based protocol for preparing asymmetric supported lipid bilayers in which fluorescent PIP lipid analogues are found only on the top leaflet of the supported membrane facing the bulk solution. With this asymmetric distribution of lipids between the leaflets, the fluorescent signal from the PIP lipid analogue reports directly on interactions between the peripheral molecules and the top leaflet of the membrane. Asymmetric PIP-containing bilayers are an ideal platform to investigate the interaction of PIP with peripheral membrane proteins using fluorescence-based imaging approaches. We demonstrate their usefulness here with a combined fluorescence correlation spectroscopy and single particle tracking study of the interaction between PIP2 lipids and a polycationic polymer, quaternized polyvinylpyridine (QPVP). With this approach we are able to quantify the microscopic features of the mobility coupling between PIP2 lipids and polybasic QPVP. With single particle tracking we observe individual PIP2 lipids switch from Brownian to intermittent motion as they become transiently trapped by QPVP.
Collapse
Affiliation(s)
| | | | - Xiaodong Zhuang
- Institute of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University , 315 Jiangong Building, 800 Dongchuan Road, Shanghai 200240, China
| | | |
Collapse
|
41
|
Anomalous Dynamics of a Lipid Recognition Protein on a Membrane Surface. Sci Rep 2015; 5:18245. [PMID: 26657413 PMCID: PMC4677404 DOI: 10.1038/srep18245] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 11/11/2015] [Indexed: 12/12/2022] Open
Abstract
Pleckstrin homology (PH) domains are lipid-binding modules present in peripheral membrane proteins which interact with phosphatidyl-inositol phosphates (PIPs) in cell membranes. We use multiscale molecular dynamics simulations to characterize the localization and anomalous dynamics of the DAPP1 PH domain on the surface of a PIP-containing lipid bilayer. Both translational and rotational diffusion of the PH domain on the lipid membrane surface exhibit transient subdiffusion, with an exponent α ≈ 0.5 for times of less than 10 ns. In addition to a PIP3 molecule at the canonical binding site of the PH domain, we observe additional PIP molecules in contact with the protein. Fluctuations in the number of PIPs associated with the PH domain exhibit 1/f noise. We suggest that the anomalous diffusion and long-term correlated interaction of the PH domain with the membrane may contribute to an enhanced probability of encounter with target complexes on cell membrane surfaces.
Collapse
|
42
|
Campagnola G, Nepal K, Schroder BW, Peersen OB, Krapf D. Superdiffusive motion of membrane-targeting C2 domains. Sci Rep 2015; 5:17721. [PMID: 26639944 PMCID: PMC4671060 DOI: 10.1038/srep17721] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/04/2015] [Indexed: 11/09/2022] Open
Abstract
Membrane-targeting domains play crucial roles in the recruitment of signalling molecules to the plasma membrane. For most peripheral proteins, the protein-to-membrane interaction is transient. After proteins dissociate from the membrane they have been observed to rebind following brief excursions in the bulk solution. Such membrane hops can have broad implications for the efficiency of reactions on membranes. We study the diffusion of membrane-targeting C2 domains using single-molecule tracking in supported lipid bilayers. The ensemble-averaged mean square displacement (MSD) exhibits superdiffusive behaviour. However, traditional time-averaged MSD analysis of individual trajectories remains linear and does not reveal superdiffusion. Our observations are explained in terms of bulk excursions that introduce jumps with a heavy-tail distribution. These hopping events allow proteins to explore large areas in a short time. The experimental results are shown to be consistent with analytical models of bulk-mediated diffusion and numerical simulations.
Collapse
Affiliation(s)
- Grace Campagnola
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Kanti Nepal
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Bryce W Schroder
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Olve B Peersen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA.,School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Diego Krapf
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA.,Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
43
|
Ludolphs M, Schneeberger D, Soykan T, Schäfer J, Papadopoulos T, Brose N, Schindelin H, Steinem C. Specificity of Collybistin-Phosphoinositide Interactions: IMPACT OF THE INDIVIDUAL PROTEIN DOMAINS. J Biol Chem 2015; 291:244-54. [PMID: 26546675 DOI: 10.1074/jbc.m115.673400] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Indexed: 01/01/2023] Open
Abstract
The regulatory protein collybistin (CB) recruits the receptor-scaffolding protein gephyrin to mammalian inhibitory glycinergic and GABAergic postsynaptic membranes in nerve cells. CB is tethered to the membrane via phosphoinositides. We developed an in vitro assay based on solid-supported 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine membranes doped with different phosphoinositides on silicon/silicon dioxide substrates to quantify the binding of various CB2 constructs using reflectometric interference spectroscopy. Based on adsorption isotherms, we obtained dissociation constants and binding capacities of the membranes. Our results show that full-length CB2 harboring the N-terminal Src homology 3 (SH3) domain (CB2SH3+) adopts a closed and autoinhibited conformation that largely prevents membrane binding. This autoinhibition is relieved upon introduction of the W24A/E262A mutation, which conformationally "opens" CB2SH3+ and allows the pleckstrin homology domain to properly bind lipids depending on the phosphoinositide species with a preference for phosphatidylinositol 3-monophosphate and phosphatidylinositol 4-monophosphate. This type of membrane tethering under the control of the release of the SH3 domain of CB is essential for regulating gephyrin clustering.
Collapse
Affiliation(s)
- Michaela Ludolphs
- From the Institute of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany
| | - Daniela Schneeberger
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Tolga Soykan
- Department of Molecular Neurobiology, Max Planck Institute for Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany, and
| | - Jonas Schäfer
- From the Institute of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany
| | - Theofilos Papadopoulos
- Universitätsmedizin Göttingen, Department of Molecular Biology, Humboldtallee 23, 37073 Göttingen, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany, and
| | - Hermann Schindelin
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Claudia Steinem
- From the Institute of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany,
| |
Collapse
|
44
|
Vonkova I, Saliba AE, Deghou S, Anand K, Ceschia S, Doerks T, Galih A, Kugler K, Maeda K, Rybin V, van Noort V, Ellenberg J, Bork P, Gavin AC. Lipid Cooperativity as a General Membrane-Recruitment Principle for PH Domains. Cell Rep 2015; 12:1519-30. [DOI: 10.1016/j.celrep.2015.07.054] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 06/30/2015] [Accepted: 07/27/2015] [Indexed: 10/23/2022] Open
|
45
|
Akimoto T, Seki K. Transition from distributional to ergodic behavior in an inhomogeneous diffusion process: Method revealing an unknown surface diffusivity. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:022114. [PMID: 26382351 DOI: 10.1103/physreve.92.022114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Indexed: 06/05/2023]
Abstract
Diffusion of molecules in cells plays an important role in providing a biological reaction on the surface by finding a target on the membrane surface. The water retardation (slow diffusion) near the target assists the searching molecules to recognize the target. Here, we consider effects of the surface diffusivity on the effective diffusivity, where diffusion on the surface is slower than that in bulk. We show that the ensemble-averaged mean-square displacements increase linearly with time when the desorption rate from the surface is finite, which is valid even when the diffusion on the surface is anomalous (subdiffusion). Moreover, this slow diffusion on the surface affects the fluctuations of the time-averaged mean-square displacements (TAMSDs). We find that fluctuations of the TAMSDs remain large when the measurement time is smaller than a characteristic time, and decays according to an increase of the measurement time for a relatively large measurement time. Therefore, we find a transition from nonergodic (distributional) to ergodic diffusivity in a target search process. Moreover, this fluctuation analysis provides a method to estimate an unknown surface diffusivity.
Collapse
Affiliation(s)
- Takuma Akimoto
- Department of Mechanical Engineering, Keio University, Yokohama, 223-8522, Japan
| | - Kazuhiko Seki
- Nanosystem Research Institute, AIST, Tsukuba, 305-8565, Japan
| |
Collapse
|
46
|
Harishchandra RK, Neumann BM, Gericke A, Ross AH. Biophysical methods for the characterization of PTEN/lipid bilayer interactions. Methods 2015; 77-78:125-35. [PMID: 25697761 PMCID: PMC4388815 DOI: 10.1016/j.ymeth.2015.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 12/22/2022] Open
Abstract
PTEN, a tumor suppressor protein that dephosphorylates phosphoinositides at the 3-position of the inositol ring, is a cytosolic protein that needs to associate with the plasma membrane or other subcellular membranes to exert its lipid phosphatase function. Upon membrane association PTEN interacts with at least three different lipid entities: An anionic lipid that is present in sufficiently high concentration to create a negative potential that allows PTEN to interact electrostatically with the membrane, phosphatidylinositol-4,5-bisphosphate, which interacts with PTEN's N-terminal end and the substrate, usually phosphatidylinositol-3,4,5-trisphosphate. Many parameters influence PTEN's interaction with the lipid bilayer, for example, the lateral organization of the lipids or the presence of other chemical species like cholesterol or other lipids. To investigate systematically the different steps of PTEN's complex binding mechanism and to explore its dynamic behavior in the membrane bound state, in vitro methods need to be employed that allow for a systematic variation of the experimental conditions. In this review we survey a variety of methods that can be used to assess PTEN lipid binding affinity, the dynamics of its membrane association as well as its dynamic behavior in the membrane bound state.
Collapse
Affiliation(s)
- Rakesh K Harishchandra
- Worcester Polytechnic Institute, Department of Chemistry and Biochemistry, Worcester, MA 01605, USA
| | - Brittany M Neumann
- Worcester Polytechnic Institute, Department of Chemistry and Biochemistry, Worcester, MA 01605, USA
| | - Arne Gericke
- Worcester Polytechnic Institute, Department of Chemistry and Biochemistry, Worcester, MA 01605, USA
| | - Alonzo H Ross
- University of Massachusetts Medical School, Department of Biochemistry and Molecular Pharmacology, Worcester, MA 01605, USA.
| |
Collapse
|
47
|
Vasquez JK, Chantranuvatana K, Giardina DT, Coffman MD, Knight JD. Lateral diffusion of proteins on supported lipid bilayers: additive friction of synaptotagmin 7 C2A-C2B tandem domains. Biochemistry 2014; 53:7904-13. [PMID: 25437758 PMCID: PMC4278679 DOI: 10.1021/bi5012223] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
The
synaptotagmin (Syt) family of proteins contains tandem C2 domains,
C2A and C2B, which bind membranes in the presence of Ca2+ to trigger vesicle fusion during exocytosis. Despite recent progress,
the role and extent of interdomain interactions between C2A and C2B
in membrane binding remain unclear. To test whether the two domains
interact on a planar lipid bilayer (i.e., experience thermodynamic
interdomain contacts), diffusion of fluorescent-tagged C2A, C2B, and
C2AB domains from human Syt7 was measured using total internal reflection
fluorescence microscopy with single-particle tracking. The C2AB tandem
exhibits a lateral diffusion constant approximately half the value
of the isolated single domains and does not change when additional
residues are engineered into the C2A–C2B linker. This is the
expected result if C2A and C2B are separated when membrane-bound;
theory predicts that C2AB diffusion would be faster if the two domains
were close enough together to have interdomain contact. Stopped-flow
measurements of membrane dissociation kinetics further support an
absence of interdomain interactions, as dissociation kinetics of the
C2AB tandem remain unchanged when rigid or flexible linker extensions
are included. Together, the results suggest that the two C2 domains
of Syt7 bind independently to planar membranes, in contrast to reported
interdomain cooperativity in Syt1.
Collapse
Affiliation(s)
- Joseph K Vasquez
- Department of Chemistry, University of Colorado Denver , Denver, Colorado 80217, United States
| | | | | | | | | |
Collapse
|
48
|
Yasui M, Matsuoka S, Ueda M. PTEN hopping on the cell membrane is regulated via a positively-charged C2 domain. PLoS Comput Biol 2014; 10:e1003817. [PMID: 25211206 PMCID: PMC4161299 DOI: 10.1371/journal.pcbi.1003817] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 07/17/2014] [Indexed: 11/19/2022] Open
Abstract
PTEN, a tumor suppressor that is frequently mutated in a wide spectrum of cancers, exerts PI(3,4,5)P3 phosphatase activities that are regulated by its dynamic shuttling between the membrane and cytoplasm. Direct observation of PTEN in the interfacial environment can offer quantitative information about the shuttling dynamics, but remains elusive. Here we show that positively charged residues located in the cα2 helix of the C2 domain are necessary for the membrane localization of PTEN via stable electrostatic interactions in Dictyostelium discoideum. Single-molecule imaging analyses revealed that PTEN molecules moved distances much larger than expected had they been caused by lateral diffusion, a phenomenon we call “hopping.” Our novel single-particle tracking analysis method found that the cα2 helix aids in regulating the hopping and stable-binding states. The dynamically established membrane localization of PTEN was revealed to be essential for developmental processes and clarified a fundamental regulation mechanism of the protein quantity and activity on the plasma membrane. The plasma membrane is a major chemical reaction field in living cells, and the molecular mechanisms of protein-membrane interactions are important for many cellular functions. In this report, we have discovered that the PTEN protein, which transits between the cytoplasm and membrane, hops along the plasma membrane of living cells. We tracked individual PTEN molecules on the membrane by single molecule imaging and analyzed the hopping behavior by developing a novel analysis method, which measures the rebinding probability of membrane-bound proteins after detaching from the membrane. We found that positively charged amino acids in the C2 domain of PTEN, which were reported to be important for its phosphatase activity on the membrane, are required to suppress excessive hopping and stabilize PTEN membrane binding. The stable electrostatic interactions localize PTEN to the plasma membrane and play an indispensable role in regulating the size of the multicellular structures formed under a starving environment. Our results suggest electrostatic interactions between the protein and membrane regulate protein quantity and activity.
Collapse
Affiliation(s)
- Masato Yasui
- Laboratories for Nanobiology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- Laboratory for Cell Signaling Dynamics, QBiC (Quantitative Biology Center), RIKEN, Suita, Osaka, Japan
- Laboratory of Single Molecule Biology, Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Satomi Matsuoka
- Laboratory for Cell Signaling Dynamics, QBiC (Quantitative Biology Center), RIKEN, Suita, Osaka, Japan
- * E-mail:
| | - Masahiro Ueda
- Laboratories for Nanobiology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- Laboratory for Cell Signaling Dynamics, QBiC (Quantitative Biology Center), RIKEN, Suita, Osaka, Japan
- Laboratory of Single Molecule Biology, Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| |
Collapse
|
49
|
TrackArt: the user friendly interface for single molecule tracking data analysis and simulation applied to complex diffusion in mica supported lipid bilayers. BMC Res Notes 2014; 7:274. [PMID: 24885944 PMCID: PMC4021860 DOI: 10.1186/1756-0500-7-274] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 04/23/2014] [Indexed: 01/22/2023] Open
Abstract
Background Single molecule tracking (SMT) analysis of fluorescently tagged lipid and protein probes is an attractive alternative to ensemble averaged methods such as fluorescence correlation spectroscopy (FCS) or fluorescence recovery after photobleaching (FRAP) for measuring diffusion in artificial and plasma membranes. The meaningful estimation of diffusion coefficients and their errors is however not straightforward, and is heavily dependent on sample type, acquisition method, and equipment used. Many approaches require advanced computing and programming skills for their implementation. Findings Here we present TrackArt software, an accessible graphic interface for simulation and complex analysis of multiple particle paths. Imported trajectories can be filtered to eliminate spurious or corrupted tracks, and are then analyzed using several previously described methodologies, to yield single or multiple diffusion coefficients, their population fractions, and estimated errors. We use TrackArt to analyze the single-molecule diffusion behavior of a sphingolipid analog SM-Atto647N, in mica supported DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) bilayers. Fitting with a two-component diffusion model confirms the existence of two separate populations of diffusing particles in these bilayers on mica. As a demonstration of the TrackArt workflow, we characterize and discuss the effective activation energies required to increase the diffusion rates of these populations, obtained from Arrhenius plots of temperature-dependent diffusion. Finally, TrackArt provides a simulation module, allowing the user to generate models with multiple particle trajectories, diffusing with different characteristics. Maps of domains, acting as impermeable or permeable obstacles for particles diffusing with given rate constants and diffusion coefficients, can be simulated or imported from an image. Importantly, this allows one to use simulated data with a known diffusion behavior as a comparison for results acquired using particular algorithms on actual, “natural” samples whose diffusion behavior is to be extracted. It can also serve as a tool for demonstrating diffusion principles. Conclusions TrackArt is an open source, platform-independent, Matlab-based graphical user interface, and is easy to use even for those unfamiliar with the Matlab programming environment. TrackArt can be used for accurate simulation and analysis of complex diffusion data, such as diffusion in lipid bilayers, providing publication-quality formatted results.
Collapse
|
50
|
Ziemba BP, Li J, Landgraf KE, Knight JD, Voth GA, Falke JJ. Single-molecule studies reveal a hidden key step in the activation mechanism of membrane-bound protein kinase C-α. Biochemistry 2014; 53:1697-713. [PMID: 24559055 PMCID: PMC3971957 DOI: 10.1021/bi4016082] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
![]()
Protein
kinase C-α (PKCα) is a member of the conventional
family of protein kinase C isoforms (cPKCs) that regulate diverse
cellular signaling pathways, share a common activation mechanism,
and are linked to multiple pathologies. The cPKC domain structure
is modular, consisting of an N-terminal pseudosubstrate peptide, two
inhibitory domains (C1A and C1B), a targeting domain (C2), and a kinase
domain. Mature, cytoplasmic cPKCs are inactive until they are switched
on by a multistep activation reaction that occurs largely on the plasma
membrane surface. Often, this activation begins with a cytoplasmic
Ca2+ signal that triggers C2 domain targeting to the plasma
membrane where it binds phosphatidylserine (PS) and phosphatidylinositol
4,5-bisphosphate (PIP2). Subsequently, the appearance of
the signaling lipid diacylglycerol (DAG) activates the membrane-bound
enzyme by recruiting the inhibitory pseudosubstrate and one or both
C1 domains away from the kinase domain. To further investigate this
mechanism, this study has utilized single-molecule total internal
reflection fluorescence microscopy (TIRFM) to quantitate the binding
and lateral diffusion of full-length PKCα and fragments missing
specific domain(s) on supported lipid bilayers. Lipid binding events,
and events during which additional protein is inserted into the bilayer,
were detected by their effects on the equilibrium bound particle density
and the two-dimensional diffusion rate. In addition to the previously
proposed activation steps, the findings reveal a major, undescribed,
kinase-inactive intermediate. On bilayers containing PS or PS and
PIP2, full-length PKCα first docks to the membrane
via its C2 domain, and then its C1A domain embeds itself in the bilayer
even before DAG appears. The resulting pre-DAG intermediate with membrane-bound
C1A and C2 domains is the predominant state of PKCα while it
awaits the DAG signal. The newly detected, membrane-embedded C1A domain
of this pre-DAG intermediate confers multiple useful features, including
enhanced membrane affinity and longer bound state lifetime. The findings
also identify the key molecular step in kinase activation: because
C1A is already membrane-embedded in the kinase off state, recruitment
of C1B to the bilayer by DAG or phorbol ester is the key regulatory
event that stabilizes the kinase on state. More broadly, this study
illustrates the power of single-molecule methods in elucidating the
activation mechanisms and hidden regulatory states of membrane-bound
signaling proteins.
Collapse
Affiliation(s)
- Brian P Ziemba
- Department of Chemistry and Biochemistry and Molecular Biophysics Program, University of Colorado , Boulder, Colorado 80309-0596, United States
| | | | | | | | | | | |
Collapse
|