1
|
Jewell MP, Ashour Z, Baird CH, Manco Johnson M, Warren BB, Wufsus AR, Pallini C, Dockal M, Kjalke M, Neeves KB. Concizumab improves clot formation in hemophilia A under flow. J Thromb Haemost 2024; 22:2438-2448. [PMID: 38815755 PMCID: PMC11343664 DOI: 10.1016/j.jtha.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/01/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Inhibition of tissue factor pathway inhibitor (TFPI) is an emerging therapeutic strategy for treatment of hemophilia. Concizumab is a monoclonal antibody that binds TFPI and blocks its inhibition of factor (F)Xa thereby extending the initiation of coagulation and compensating for lack of FVIII or FIX. OBJECTIVES The objective of this in vitro study was to evaluate how concizumab affects clot formation in hemophilia A under flow. METHODS Blood was collected from normal controls or people with hemophilia A. An anti-FVIII antibody was added to normal controls to simulate hemophilia A with inhibitory antibodies to FVIII. Whole blood and recombinant activated FVII (rFVIIa, 25 nM) or concizumab (200, 1000, and 4000 ng/mL) were perfused at 100 s-1 over a surface micropatterned with tissue factor (TF) and collagen-related peptide. Platelet and fibrin(ogen) accumulation were measured by confocal microscopy. Static thrombin generation in plasma was measured in response to rFVIIa and concizumab. RESULTS Concizumab (1000 and 4000 ng/mL) and rFVIIa both rescued (93%-101%) total platelet accumulation, but only partially rescued (53%-63%) fibrin(ogen) incorporation to normal control levels in simulated hemophilia A. Results using congenital hemophilia A blood confirmed effects of rFVIIa and concizumab. While these 2 agents had similar effect on clot formation under flow, concizumab enhanced thrombin generation in plasma under static conditions to a greater extent than rFVIIa. CONCLUSION TFPI inhibition by concizumab enhanced activation and aggregation of platelets and fibrin clot formation in hemophilia A to levels comparable with that of rFVIIa.
Collapse
Affiliation(s)
- Megan P Jewell
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Zaina Ashour
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christine H Baird
- Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA; Hemophilia and Thrombosis Center, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Marilyn Manco Johnson
- Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA; Hemophilia and Thrombosis Center, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Beth Boulden Warren
- Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA; Hemophilia and Thrombosis Center, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Adam R Wufsus
- Rare Blood Disorders, Medical Affairs Rare Disease, Novo Nordisk Inc, Plainsboro, New Jersey, USA
| | - Chiara Pallini
- Rare Blood Disorders, Rare Disease Research, Novo Nordisk, Måløv, Denmark
| | - Michael Dockal
- Rare Blood Disorders, Rare Disease Research, Novo Nordisk, Måløv, Denmark
| | - Marianne Kjalke
- Rare Blood Disorders, Rare Disease Research, Novo Nordisk, Måløv, Denmark
| | - Keith B Neeves
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA; Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA; Hemophilia and Thrombosis Center, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
2
|
El Sayed R, Lucas CJ, Cebull HL, Nahab FB, Haussen DC, Allen JW, Oshinski JN. Subjects with carotid webs demonstrate pro-thrombotic hemodynamics compared to subjects with carotid atherosclerosis. Sci Rep 2024; 14:10092. [PMID: 38698141 PMCID: PMC11066020 DOI: 10.1038/s41598-024-60666-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024] Open
Abstract
Carotid artery webs (CaW) are non-atherosclerotic projections into the vascular lumen and have been linked to up to one-third of cryptogenic strokes in younger patients. Determining how CaW affects local hemodynamics is essential for understanding clot formation and stroke risk. Computational fluid dynamics simulations were used to investigate patient-specific hemodynamics in carotid artery bifurcations with CaW, bifurcations with atherosclerotic lesions having a similar degree of lumen narrowing, and with healthy carotid bifurcations. Simulations were conducted using segmented computed tomography angiography geometries with inlet boundary conditions extracted from 2D phase contrast MRI scans. The study included carotid bifurcations with CaW (n = 13), mild atherosclerosis (n = 7), and healthy bifurcation geometries (n = 6). Hemodynamic parameters associated with vascular dysfunction and clot formation, including shear rate, oscillatory shear index (OSI), low velocity, and flow stasis were calculated and compared between the subject groups. Patients with CaW had significantly larger regions containing low shear rate, high OSI, low velocity, and flow stasis in comparison to subjects with mild atherosclerosis or normal bifurcations. These abnormal hemodynamic metrics in patients with CaW are associated with clot formation and vascular dysfunction and suggest that hemodynamic assessment may be a tool to assess stroke risk in these patients.
Collapse
Affiliation(s)
- Retta El Sayed
- Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Carissa J Lucas
- Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA
| | - Hannah L Cebull
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Fadi B Nahab
- Department of Neurology, Emory University, Atlanta, GA, USA
| | | | - Jason W Allen
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, IN, USA
| | - John N Oshinski
- Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA.
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA.
| |
Collapse
|
3
|
Eyisoylu H, Hazekamp ED, Cruts J, Koenderink GH, de Maat MPM. Flow affects the structural and mechanical properties of the fibrin network in plasma clots. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:8. [PMID: 38285167 PMCID: PMC10824866 DOI: 10.1007/s10856-024-06775-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024]
Abstract
The fibrin network is one of the main components of thrombi. Altered fibrin network properties are known to influence the development and progression of thrombotic disorders, at least partly through effects on the mechanical stability of fibrin. Most studies investigating the role of fibrin in thrombus properties prepare clots under static conditions, missing the influence of blood flow which is present in vivo. In this study, plasma clots in the presence and absence of flow were prepared inside a Chandler loop. Recitrated plasma from healthy donors were spun at 0 and 30 RPM. The clot structure was characterized using scanning electron microscopy and confocal microscopy and correlated with the stiffness measured by unconfined compression testing. We quantified fibrin fiber density, pore size, and fiber thickness and bulk stiffness at low and high strain values. Clots formed under flow had thinner fibrin fibers, smaller pores, and a denser fibrin network with higher stiffness values compared to clots formed in absence of flow. Our findings indicate that fluid flow is an essential factor to consider when developing physiologically relevant in vitro thrombus models used in researching thrombectomy outcomes or risk of embolization.
Collapse
Affiliation(s)
- Hande Eyisoylu
- Department of Hematology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Emma D Hazekamp
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Janneke Cruts
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Gijsje H Koenderink
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands.
| | - Moniek P M de Maat
- Department of Hematology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
4
|
Sperling C, Maitz MF, Körber V, Hänsel S, Werner C. Advanced in vitro hemocompatibility assessment of biomaterials using a new flow incubation system. BIOMATERIALS ADVANCES 2023; 153:213555. [PMID: 37478769 DOI: 10.1016/j.bioadv.2023.213555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/21/2023] [Accepted: 07/06/2023] [Indexed: 07/23/2023]
Abstract
Physiologically relevant in vitro hemocompatibility assessment of biomaterials remains challenging. We present a new setup that enables standardized whole blood incubation of biomedical materials under flow. A blood volume of 2 mL is recirculated over test surfaces in a custom-made parallel plate incubation system to determine the activation of hemostasis and inflammation. Controlled physiological shear rates between 125 s-1 and 1250 s-1 and minimized contact to air are combined with a natural-like pumping process. A unique feature of this setup allows tracing adhesion of blood cells to test surfaces microscopically in situ. Validation testing was performed in comparison to previously applied whole blood incubation methodologies. Experiments with the newly developed setup showed that even small obstacles to blood flow activate blood (independent of materials-induced blood activation levels); that adhesion of blood cells to biomaterials equilibrates within 5 to 10 min; that high shear rates (1250 compared to 375 s-1) induce platelet activation; and that hemolysis, platelet factor 4 (PF4) release and platelet loss - but not thrombin formation - depend on shear rate (within the range investigated, 125 to 1250 s-1).
Collapse
Affiliation(s)
- Claudia Sperling
- Institute Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany.
| | - Manfred F Maitz
- Institute Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany.
| | - Vincent Körber
- Institute Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany
| | - Stefanie Hänsel
- Institute Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany
| | - Carsten Werner
- Institute Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany
| |
Collapse
|
5
|
Zeng Z, Nallan Chakravarthula T, Christodoulides A, Hall A, Alves NJ. Effect of Chandler loop shear and tubing size on thrombus architecture. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:24. [PMID: 37173603 PMCID: PMC10182104 DOI: 10.1007/s10856-023-06721-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/17/2023] [Indexed: 05/15/2023]
Abstract
Thrombosis can lead to a wide variety of life-threatening circumstances. As current thrombolytic drug screening models often poorly predict drug profiles, leading to failure of thrombolytic therapy or clinical translation, more representative clot substrates are necessary for drug evaluation. Utilizing a Chandler loop device to form clot analogs at high shear has gained popularity in stroke societies. However, shear-dependent clot microstructure has not been fully addressed and low shear conditions are often overlooked. We herein characterized the impact of wall shear rate (126 to 951 s-1) on clot properties in the Chandler loop. Different revolutions (20-60) per minute and tubing sizes (3.2 to 7.9 mm) were employed to create different sized clots to mimic various thrombosis applications. Increased shear resulted in decreased RBC counts (76.9 ± 4.3% to 17.6 ± 0.9%) and increased fibrin (10 to 60%) based on clot histology. Increased fibrin sheet morphology and platelet aggregates were observed at higher shear under scanning electron microscope. These results show the significant impact of shear and tubing size on resulting clot properties and demonstrate the capability of forming a variety of reproducible in-vivo-like clot analogs in the Chandler loop device controlling for simple parameters to tune clot characteristics.
Collapse
Affiliation(s)
- Ziqian Zeng
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Tanmaye Nallan Chakravarthula
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Alexei Christodoulides
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Abigail Hall
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nathan J Alves
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
6
|
Jimenez JM, Tuttle T, Guo Y, Miles D, Buganza-Tepole A, Calve S. Multiscale mechanical characterization and computational modeling of fibrin gels. Acta Biomater 2023; 162:292-303. [PMID: 36965611 PMCID: PMC10313219 DOI: 10.1016/j.actbio.2023.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/28/2023] [Accepted: 03/17/2023] [Indexed: 03/27/2023]
Abstract
Fibrin is a naturally occurring protein network that forms a temporary structure to enable remodeling during wound healing. It is also a common tissue engineering scaffold because the structural properties can be controlled. However, to fully characterize the wound healing process and improve the design of regenerative scaffolds, understanding fibrin mechanics at multiple scales is necessary. Here, we present a strategy to quantify both the macroscale (1-10 mm) stress-strain response and the deformation of the mesoscale (10-1000 µm) network structure during unidirectional tensile tests. The experimental data were then used to inform a computational model to accurately capture the mechanical response of fibrin gels. Simultaneous mechanical testing and confocal microscopy imaging of fluorophore-conjugated fibrin gels revealed up to an 88% decrease in volume coupled with increase in volume fraction in deformed gels, and non-affine fiber alignment in the direction of deformation. Combination of the computational model with finite element analysis enabled us to predict the strain fields that were observed experimentally within heterogenous fibrin gels with spatial variations in material properties. These strategies can be expanded to characterize and predict the macroscale mechanics and mesoscale network organization of other heterogeneous biological tissues and matrices. STATEMENT OF SIGNIFICANCE: Fibrin is a naturally-occurring scaffold that supports cellular growth and assembly of de novo tissue and has tunable material properties. Characterization of meso- and macro-scale mechanics of fibrin gel networks can advance understanding of the wound healing process and impact future tissue engineering approaches. Using structural and mechanical characteristics of fibrin gels, a theoretical and computational model that can predict multiscale fibrin network mechanics was developed. These data and model can be used to design gels with tunable properties.
Collapse
Affiliation(s)
- Julian M Jimenez
- Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907, United States
| | - Tyler Tuttle
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Dr, Boulder, CO 80309, United States
| | - Yifan Guo
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Dalton Miles
- Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO 80303, United States
| | - Adrian Buganza-Tepole
- Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907, United States; School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, United States.
| | - Sarah Calve
- Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907, United States; Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Dr, Boulder, CO 80309, United States.
| |
Collapse
|
7
|
Bontekoe J, Matsumura J, Liu B. Thrombosis in the pathogenesis of abdominal aortic aneurysm. JVS Vasc Sci 2023; 4:100106. [PMID: 37564632 PMCID: PMC10410173 DOI: 10.1016/j.jvssci.2023.100106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/23/2023] [Indexed: 08/12/2023] Open
Abstract
Background Abdominal aortic aneurysms (AAAs) are a relatively common vascular pathology of the elderly with high morbidity potential. Irreversible degeneration of the aortic wall leads to lethal rupture if left untreated. Nearly all AAAs contain intraluminal thrombus (ILT) to a varying degree, yet the mechanisms explaining how thrombosis is disturbed in AAA are relatively unknown. This review examined the thrombotic complications associated with AAA, the impact of thrombosis on AAA surgical outcomes and AAA pathogenesis, and the use of antithrombotic therapy in the management of this disease. Methods A literature search of the PubMed database was conducted using relevant keywords related to thrombosis and AAAs. Results Thrombotic complications are relatively infrequent in AAA yet carry significant morbidity risks. The ILT can impact endovascular aneurysm repair by limiting anatomic suitability and influence the risk of endoleaks. Many of the pathologic mechanisms involved in AAA development, including hemodynamics, inflammation, oxidative stress, and aortic wall remodeling, contain pathways that interact with thrombosis. Conversely, the ILT can also be a source of biochemical stress and exacerbate these aneurysmal processes. In animal AAA models, antithrombotic therapies have shown favorable results in preventing and stabilizing AAA. Antiplatelet agents may be beneficial for reducing risks of major adverse cardiovascular events in AAA patients; however, neither antiplatelet nor anticoagulation is currently used solely for the management of AAA. Conclusions Thrombosis and ILT may have detrimental effects on AAA growth, rupture risk, and patient outcomes, yet there is limited understanding of the pathologic thrombotic mechanisms in aneurysmal disease at the molecular level. Preventing ILT using platelet and coagulation inhibitors may be a reasonable theoretical target for aneurysm progression and stability; however, the practical benefits of current antithrombotic therapies in AAA are unclear. Further research is needed to demonstrate the extent to which thrombosis impacts AAA pathogenesis and to develop novel pharmacologic strategies for the medical management of this disease.
Collapse
Affiliation(s)
- Jack Bontekoe
- Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI
| | - Jon Matsumura
- Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI
| | - Bo Liu
- Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI
- Department of Cellular and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI
| |
Collapse
|
8
|
Brubaker LS, Saini A, Nguyen TC, Martinez-Vargas M, Lam FW, Yao Q, Loor MM, Rosengart TK, Cruz MA. Aberrant Fibrin Clot Structure Visualized Ex Vivo in Critically Ill Patients With Severe Acute Respiratory Syndrome Coronavirus 2 Infection. Crit Care Med 2022; 50:e557-e568. [PMID: 35170535 PMCID: PMC9112654 DOI: 10.1097/ccm.0000000000005465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
OBJECTIVES Disseminated fibrin-rich microthrombi have been reported in patients who died from COVID-19. Our objective is to determine whether the fibrin clot structure and function differ between critically ill patients with or without COVID-19 and to correlate the structure with clinical coagulation biomarkers. DESIGN A cross-sectional observational study. Platelet poor plasma was used to analyze fibrin clot structure; the functional implications were determined by quantifying clot turbidity and porosity. SETTING ICU at an academic medical center and an academic laboratory. PATIENTS Patients admitted from July 1 to August 1, 2020, to the ICU with severe acute respiratory syndrome coronavirus 2 infection confirmed by reverse transcription-polymerase chain reaction or patients admitted to the ICU with sepsis. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Blood was collected from 36 patients including 26 ICU patients with COVID-19 and 10 ICU patients with sepsis but without COVID-19 at a median of 11 days after ICU admission (interquartile range, 3-16). The cohorts were similar in age, gender, body mass index, comorbidities, Sequential Organ Failure Assessment (SOFA) score, and mortality. More patients with COVID-19 (100% vs 70%; p = 0.003) required anticoagulation. Ex vivo fibrin clots formed from patients with COVID-19 appeared to be denser and to have smaller pores than those from patients with sepsis but without COVID-19 (percent area of fluorescent fibrin 48.1% [SD, 16%] vs 24.9% [SD, 18.8%]; p = 0.049). The turbidity and flow-through assays corroborated these data; fibrin clots had a higher maximum turbidity in patients with COVID-19 compared with patients without COVID-19 (0.168 vs 0.089 OD units; p = 0.003), and it took longer for buffer to flow through these clots (216 vs 103 min; p = 0.003). In patients with COVID-19, d-dimer levels were positively correlated with percent area of fluorescent fibrin (ρ = 0.714, p = 0.047). Denser clots (assessed by turbidity and thromboelastography) and higher SOFA scores were independently associated with delayed clot lysis. CONCLUSIONS We found aberrant fibrin clot structure and function in critically ill patients with COVID-19. These findings may contribute to the poor outcomes observed in COVID-19 patients with widespread fibrin deposition.
Collapse
Affiliation(s)
- Lisa S Brubaker
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX
| | - Arun Saini
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX
- Section of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine/Texas Children's Hospital, Houston, TX
| | - Trung C Nguyen
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX
- Section of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine/Texas Children's Hospital, Houston, TX
| | - Marina Martinez-Vargas
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Fong W Lam
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX
- Section of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine/Texas Children's Hospital, Houston, TX
| | - Qizhi Yao
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX
| | - Michele M Loor
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX
| | - Todd K Rosengart
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX
| | - Miguel A Cruz
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX
- Department of Medicine, Baylor College of Medicine, Houston, TX
| |
Collapse
|
9
|
Blood Flow Simulation to Determine the Risk of Thrombosis in the Fontan Circulation: Comparison between Atriopulmonary and Total Cavopulmonary Connections. FLUIDS 2022. [DOI: 10.3390/fluids7040138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Three-dimensional computational fluid dynamics (CFD) simulations were performed in the anastomotic region of the Fontan route between the venae cava and pulmonary arteries to investigate the risk of thrombosis due to blood stasis in the Fontan circulation. The finite volume method based on the time-averaged continuity and Navier–Stokes equations combined with the k-ω SST turbulent model was used in the CFD simulations. Low shear rate (SR) and SR on the wall (WSR) of <10 s−1 were used as markers to assess blood stasis as a cause of blood coagulation. Simulated blood flow velocity and both SR and WSR were reduced in the right atrium (RA) as the cavity of a flow channel in the atriopulmonary connection (APC) Fontan model, whereas the values increased in the total cavopulmonary connection (TCPC) Fontan model, which has no cavity. The volume of SR <10 s−1 and wall surface area of WSR <10 s−1 were, respectively, 4.6–261.8 cm3 and 1.2–38.3 cm2 in the APC Fontan model, and 0.1–0.3 cm3 and 0.1–0.6 cm2 in the TCPC Fontan model. The SR and WSR increased in the APC model with a normal-sized RA and the TCPC model as the flow rate of blood from the inferior vena cava increased with exercise; however, the SR and WSR in the RA decreased in the APC model with a dilated RA owing to the development of a recirculating flow. These findings suggest that the APC Fontan has a higher risk of thrombosis due to blood stasis than the TCPC Fontan and a higher RA dilation is associated with a higher risk of thrombosis from a fluid mechanics perspective.
Collapse
|
10
|
Abstract
Mechanical properties have been extensively studied in pure elastic or viscous materials; however, most biomaterials possess both physical properties in a viscoelastic component. How the biomechanics of a fibrin clot is related to its composition and the microenvironment where it is formed is not yet fully understood. This review gives an outline of the building mechanisms for blood clot mechanical properties and how they relate to clot function. The formation of a blood clot in health conditions or the formation of a dangerous thrombus go beyond the mere polymerization of fibrinogen into a fibrin network. The complex composition and localization of in vivo fibrin clots demonstrate the interplay between fibrin and/or fibrinogen and blood cells. Studying these protein–cell interactions and clot mechanical properties may represent new methods for the evaluation of cardiovascular diseases (the leading cause of death worldwide), creating new possibilities for clinical diagnosis, prognosis, and therapy. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Marco M. Domingues
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Filomena A. Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Nuno C. Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
11
|
Ghezelbash F, Liu S, Shirazi-Adl A, Li J. Blood clot behaves as a poro-visco-elastic material. J Mech Behav Biomed Mater 2022; 128:105101. [DOI: 10.1016/j.jmbbm.2022.105101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 10/19/2022]
|
12
|
Nguyen N, Thurgood P, Sekar NC, Chen S, Pirogova E, Peter K, Baratchi S, Khoshmanesh K. Microfluidic models of the human circulatory system: versatile platforms for exploring mechanobiology and disease modeling. Biophys Rev 2021; 13:769-786. [PMID: 34777617 DOI: 10.1007/s12551-021-00815-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
The human circulatory system is a marvelous fluidic system, which is very sensitive to biophysical and biochemical cues. The current animal and cell culture models do not recapitulate the functional properties of the human circulatory system, limiting our ability to fully understand the complex biological processes underlying the dysfunction of this multifaceted system. In this review, we discuss the unique ability of microfluidic systems to recapitulate the biophysical, biochemical, and functional properties of the human circulatory system. We also describe the remarkable capacity of microfluidic technologies for exploring the complex mechanobiology of the cardiovascular system, mechanistic studying of cardiovascular diseases, and screening cardiovascular drugs with the additional benefit of reducing the need for animal models. We also discuss opportunities for further advancement in this exciting field.
Collapse
Affiliation(s)
- Ngan Nguyen
- School of Engineering, RMIT University, Melbourne, Australia
| | - Peter Thurgood
- School of Engineering, RMIT University, Melbourne, Australia
| | - Nadia Chandra Sekar
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
| | - Sheng Chen
- School of Engineering, RMIT University, Melbourne, Australia
| | - Elena Pirogova
- School of Engineering, RMIT University, Melbourne, Australia
| | - Karlheinz Peter
- Baker Heart and Diabetes Institute, Melbourne, Australia.,Department of Cardiometabolic Health, The University of Melbourne, Parkville, Australia
| | - Sara Baratchi
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
| | | |
Collapse
|
13
|
Takeishi N, Shigematsu T, Enosaki R, Ishida S, Ii S, Wada S. Development of a mesoscopic framework spanning nanoscale protofibril dynamics to macro-scale fibrin clot formation. J R Soc Interface 2021; 18:20210554. [PMID: 34753310 PMCID: PMC8580471 DOI: 10.1098/rsif.2021.0554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/14/2021] [Indexed: 11/23/2022] Open
Abstract
Thrombi form a micro-scale fibrin network consisting of an interlinked structure of nanoscale protofibrils, resulting in haemostasis. It is theorized that the mechanical effect of the fibrin clot is caused by the polymeric protofibrils between crosslinks, or to their dynamics on a nanoscale order. Despite a number of studies, however, it is still unknown, how the nanoscale protofibril dynamics affect the formation of the macro-scale fibrin clot and thus its mechanical properties. A mesoscopic framework would be useful to tackle this multi-scale problem, but it has not yet been established. We thus propose a minimal mesoscopic model for protofibrils based on Brownian dynamics, and performed numerical simulations of protofibril aggregation. We also performed stretch tests of polymeric protofibrils to quantify the elasticity of fibrin clots. Our model results successfully captured the conformational properties of aggregated protofibrils, e.g., strain-hardening response. Furthermore, the results suggest that the bending stiffness of individual protofibrils increases to resist extension.
Collapse
Affiliation(s)
- Naoki Takeishi
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama Toyonaka, Osaka 560-8531, Japan
| | - Taiki Shigematsu
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama Toyonaka, Osaka 560-8531, Japan
| | - Ryogo Enosaki
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama Toyonaka, Osaka 560-8531, Japan
| | - Shunichi Ishida
- Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Satoshi Ii
- Graduate School of Systems Design, Tokyo Metropolitan University, 1-1 Minami-Osawa Hachioji, Tokyo 192-0397, Japan
| | - Shigeo Wada
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
14
|
Williams D, Leuthardt EC, Genin GM, Zayed M. Tailoring of arteriovenous graft-to-vein anastomosis angle to attenuate pathological flow fields. Sci Rep 2021; 11:12153. [PMID: 34108499 PMCID: PMC8190231 DOI: 10.1038/s41598-021-90813-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 05/04/2021] [Indexed: 02/05/2023] Open
Abstract
Arteriovenous grafts are routinely placed to facilitate hemodialysis in patients with end stage renal disease. These grafts are conduits between higher pressure arteries and lower pressure veins. The connection on the vein end of the graft, known as the graft-to-vein anastomosis, fails frequently and chronically due to high rates of stenosis and thrombosis. These failures are widely believed to be associated with pathologically high and low flow shear strain rates at the graft-to-vein anastomosis. We hypothesized that consistent with pipe flow dynamics and prior work exploring vein-to-artery anastomosis angles in arteriovenous fistulas, altering the graft-to-vein anastomosis angle can reduce the incidence of pathological shear rate fields. We tested this via computational fluid dynamic simulations of idealized arteriovenous grafts, using the Bird-Carreau constitutive law for blood. We observed that low graft-to-vein anastomosis angles ([Formula: see text]) led to increased incidence of pathologically low shear rates, and that high graft-to-vein anastomosis angles ([Formula: see text]) led to increased incidence of pathologically high shear rates. Optimizations predicted that an intermediate ([Formula: see text]) graft-to-anastomosis angle was optimal. Our study demonstrates that graft-to-vein anastomosis angles can significantly impact pathological flow fields, and can be optimized to substantially improve arteriovenous graft patency rates.
Collapse
Affiliation(s)
- Dillon Williams
- Vascular Surgery Biomedical Research Laboratory, Washington University School of Medicine, Saint Louis, MO, 60613, USA
- Center for Innovation in Neuroscience and Technology, Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, MO, 60613, USA
| | - Eric C Leuthardt
- Center for Innovation in Neuroscience and Technology, Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, MO, 60613, USA
- Department of Biomedical Engineering, Washington University, Saint Louis, MO, 63130, USA
| | - Guy M Genin
- Center for Innovation in Neuroscience and Technology, Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, MO, 60613, USA.
- Department of Biomedical Engineering, Washington University, Saint Louis, MO, 63130, USA.
- NSF Science and Technology Center for Engineering MechanoBiology, Washington University in St. Louis, Saint Louis, USA.
| | - Mohamed Zayed
- Vascular Surgery Biomedical Research Laboratory, Washington University School of Medicine, Saint Louis, MO, 60613, USA.
- Center for Innovation in Neuroscience and Technology, Department of Neurological Surgery, Washington University School of Medicine, Saint Louis, MO, 60613, USA.
- Department of Biomedical Engineering, Washington University, Saint Louis, MO, 63130, USA.
| |
Collapse
|
15
|
Yesudasan S, Averett RD. Fracture mechanics analysis of fibrin fibers using mesoscale and continuum level methods. INFORMATICS IN MEDICINE UNLOCKED 2021; 23. [PMID: 33981824 PMCID: PMC8112576 DOI: 10.1016/j.imu.2021.100524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Computational models for simulating and predicting fibrin fiber fracture are important tools for studying bulk mechanical properties and mechanobiological response of fibrin networks in physiological conditions. In this work, we employed a new strategy to model the mechanical response of a single fibrin fiber using a collection of bundled protofibrils and modeled the time-dependent properties using discrete particle simulations. Using a systematic characterization of the parameters, this model can be used to mimic the elastic behavior of fibrin fibers accurately and also to simulate fibrin fiber fracture. In addition, a continuum model was modified and used to obtain the individual fibrin fiber fracture toughness properties. Using this model and the experimentally available fibrin mechanical properties, we predicted the range of fracture toughness (1 to k P a m ) values of a typical fibrin fiber of diameter 100 nm and its critical flaw size to rupture (~4 nm), both of which are not currently available in the literature. The models can be collectively used as a foundation for simulating the mechanical behavior of fibrin clots. Moreover, the tunable discrete mesoscopic model that was employed can be extended to simulate and estimate the mechanical properties of other biological or synthetic fibers.
Collapse
Affiliation(s)
- Sumith Yesudasan
- Department of Engineering Technology, Sam Houston State University, Huntsville, TX, 77341, USA
| | - Rodney D Averett
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
16
|
Gimbel AA, Hsiao JC, Kim ES, Lewis DJ, Risoleo TF, Urban JN, Borenstein JT. A high gas transfer efficiency microfluidic oxygenator for extracorporeal respiratory assist applications in critical care medicine. Artif Organs 2021; 45:E247-E264. [PMID: 33561881 DOI: 10.1111/aor.13935] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/10/2021] [Accepted: 02/05/2021] [Indexed: 12/15/2022]
Abstract
Advances in microfluidics technologies have spurred the development of a new generation of microfluidic respiratory assist devices, constructed using microfabrication techniques capable of producing microchannel dimensions similar to those found in human capillaries and gas transfer films in the same thickness range as the alveolar membrane. These devices have been tested in laboratory settings and in some cases in extracorporeal animal experiments, yet none have been advanced to human clinical studies. A major challenge in the development of microfluidic oxygenators is the difficulty in scaling the technology toward high blood flows necessary to support adult humans; such scaling efforts are often limited by the complexity of the fabrication process and the manner in which blood is distributed in a three-dimensional network of microchannels. Conceptually, a central advantage of microfluidic oxygenators over existing hollow-fiber membrane-based configurations is the potential for shallower channels and thinner gas transfer membranes, features that reduce oxygen diffusion distances, to result in a higher gas transfer efficiency defined as the ratio of the volume of oxygen transferred to the blood per unit time to the active surface area of the gas transfer membrane. If this ratio is not significantly higher than values reported for hollow fiber membrane oxygenators (HFMO), then the expected advantage of the microfluidic approach would not be realized in practice, potentially due to challenges encountered in blood distribution strategies when scaling microfluidic designs to higher flow rates. Here, we report on scaling of a microfluidic oxygenator design from 4 to 92 mL/min blood flow, within an order of magnitude of the flow rate required for neonatal applications. This scaled device is shown to have a gas transfer efficiency higher than any other reported system in the literature, including other microfluidic prototypes and commercial HFMO cartridges. While the high oxygen transfer efficiency is a promising advance toward clinical scaling of a microfluidic architecture, it is accompanied by an excessive blood pressure drop in the circuit, arising from a combination of shallow gas transfer channels and equally shallow distribution manifolds. Therefore, next-generation microfluidic oxygenators will require novel design and fabrication strategies to minimize pressure drops while maintaining very high oxygen transfer efficiencies.
Collapse
Affiliation(s)
| | | | - Ernest S Kim
- Bioengineering Division, Draper, Cambridge, MA, USA
| | | | | | | | | |
Collapse
|
17
|
Caruso C, Lam WA. Point-of-Care Diagnostic Assays and Novel Preclinical Technologies for Hemostasis and Thrombosis. Semin Thromb Hemost 2021; 47:120-128. [PMID: 33636744 DOI: 10.1055/s-0041-1723798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hemostasis is a complex wound-healing process involving numerous mechanical and biochemical mechanisms and influenced by many factors including platelets, coagulation factors, and endothelial components. Slight alterations in these mechanisms can lead to either prothrombotic or bleeding consequences, and such hemostatic imbalances can lead to significant clinical consequences with resultant morbidity and mortality. An ideal hemostasis assay would not only address all the unique processes involved in clot formation and resolution but also take place under flow conditions to account for endothelial involvement. Global assays do exist; however, these assays are not flow based. Flow-based assays have been limited secondary to their large blood volume requirements and low throughput, limiting potential clinical applications. Microfluidic-based assays address the aforementioned limitations of both global and flow-based assays by utilizing standardized devices that require low blood volumes, offer reproducible analysis, and have functionality under a range of shear stresses and flow conditions. While still largely confined to the preclinical space, here we aim to discuss these novel technologies and potential clinical implications, particularly in comparison to the current, commercially available point-of-care assays.
Collapse
Affiliation(s)
- Christina Caruso
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia
| | - Wilbur A Lam
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia.,Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
18
|
Role of Shear Stress and tPA Concentration in the Fibrinolytic Potential of Thrombi. Int J Mol Sci 2021; 22:ijms22042115. [PMID: 33672724 PMCID: PMC7924342 DOI: 10.3390/ijms22042115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 11/16/2022] Open
Abstract
The resolution of arterial thrombi is critically dependent on the endogenous fibrinolytic system. Using well-established and complementary whole blood models, we investigated the endogenous fibrinolytic potential of the tissue-type plasminogen activator (tPA) and the intra-thrombus distribution of fibrinolytic proteins, formed ex vivo under shear. tPA was present at physiologically relevant concentrations and fibrinolysis was monitored using an FITC-labelled fibrinogen tracer. Thrombi were formed from anticoagulated blood using a Chandler Loop and from non-anticoagulated blood perfused over specially-prepared porcine aorta strips under low (212 s−1) and high shear (1690 s−1) conditions in a Badimon Chamber. Plasminogen, tPA and plasminogen activator inhibitor-1 (PAI-1) concentrations were measured by ELISA. The tPA–PAI-1 complex was abundant in Chandler model thrombi serum. In contrast, free tPA was evident in the head of thrombi and correlated with fibrinolytic activity. Badimon thrombi formed under high shear conditions were more resistant to fibrinolysis than those formed at low shear. Plasminogen and tPA concentrations were elevated in thrombi formed at low shear, while PAI-1 concentrations were augmented at high shear rates. In conclusion, tPA primarily localises to the thrombus head in a free and active form. Thrombi formed at high shear incorporate less tPA and plasminogen and increased PAI-1, thereby enhancing resistance to degradation.
Collapse
|
19
|
Rajeeva Pandian NK, Walther BK, Suresh R, Cooke JP, Jain A. Microengineered Human Vein-Chip Recreates Venous Valve Architecture and Its Contribution to Thrombosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003401. [PMID: 33205630 PMCID: PMC7791597 DOI: 10.1002/smll.202003401] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/01/2020] [Indexed: 05/03/2023]
Abstract
Deep vein thrombosis (DVT) and its consequences are lethal, but current models cannot completely dissect its determinants-endothelium, flow, and blood constituents-together called Virchow's triad. Most models for studying DVT forego assessment of venous valves that serve as the primary sites of DVT formation. Therefore, the knowledge of DVT formed at the venous cusps has remained obscure due to lack of experimental models. Here, organ-on-chip methodology is leveraged to create a Vein-Chip platform integrating fully vascularized venous valves and its hemodynamic, as seen in vivo. These Vein-Chips reveal that vascular endothelium of valve cusps adapts to the locally disturbed microenvironment by expressing a different phenotype from the regions of uniform flow. This spatial adaptation of endothelial function recreated on the in vitro Vein-Chip platform is shown to protect the vein from thrombosis from disturbed flow in valves, but interestingly, cytokine stimulation reverses the effect and switches the valve endothelium to becoming prothrombotic. The platform eventually modulates the three factors of Virchow's triad and provides a systematic approach to investigate the determinants of fibrin and platelet dynamics of DVT. Therefore, this Vein-Chip offers a new preclinical approach to study venous pathophysiology and show effects of antithrombotic drug treatment.
Collapse
Affiliation(s)
| | - Brandon K Walther
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
- Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine and Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX, 77030, USA
| | - Rishi Suresh
- Texas A&M Health Science Center, College of Medicine, Bryan, TX, 77807, USA
| | - John P Cooke
- Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine and Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX, 77030, USA
| | - Abhishek Jain
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Bryan, TX, 77808, USA
| |
Collapse
|
20
|
Khan AA, Hardy LJ, Shantsila E, Lau YC, Philippou H, Lip GYH. Observations on clot properties in atrial fibrillation: Relation to renal function and choice of anticoagulant. Thromb Res 2020; 197:69-76. [PMID: 33189061 DOI: 10.1016/j.thromres.2020.10.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/25/2020] [Accepted: 10/31/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Atrial fibrillation (AF) is associated with increased risk of stroke and thromboembolism. Patients with AF have a higher incidence of renal impairment, which may influence the risks of systemic thromboembolism or bleeding. We determined how different oral anticoagulants affect plasma clot properties and whether progressive renal dysfunction affects plasma clot properties in patients on warfarin. MATERIALS AND METHODS We studied 257 patients with AF receiving oral anticoagulants. Furthermore, we recruited 192 separate patients with AF on warfarin and divided them in 4 groups based on estimated glomerular filtration rate (eGFR). Platelet poor plasma was prepared and clot formation and fibrinolysis was monitored kinetically up to 1 h. RESULTS Rate of clot formation was significantly slower with dabigatran and rivaroxaban. Time between 50% clotting and 50% lysis was prolonged in patients receiving warfarin compared to NOACs. Time to 50% lysis from maximum absorbance was significantly shorter in patients receiving rivaroxaban. Time between 50% clotting and 50% lysis became significantly prolonged with worsening eGFR. Time to 50% lysis from maximum absorbance was prolonged as renal function worsened. CONCLUSIONS Compared to warfarin, NOACs differently modulate coagulation and fibrinolysis under ex vivo conditions. Worsening renal function in AF patients on warfarin prolongs fibrinolysis, potentially increasing the risk of thrombosis.
Collapse
Affiliation(s)
- Ahsan A Khan
- Institute of Applied Health Research, University of Birmingham, United Kingdom
| | - Lewis J Hardy
- Division of Cardiovascular and Diabetes Research, Theme Thrombosis, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Eduard Shantsila
- Institute of Applied Health Research, University of Birmingham, United Kingdom
| | - Yee C Lau
- Institute of Applied Health Research, University of Birmingham, United Kingdom
| | - Helen Philippou
- Division of Cardiovascular and Diabetes Research, Theme Thrombosis, Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom; and Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
21
|
Hu X, Li Y, Li J, Chen H. Effects of altered blood flow induced by the muscle pump on thrombosis in a microfluidic venous valve model. LAB ON A CHIP 2020; 20:2473-2481. [PMID: 32543635 DOI: 10.1039/d0lc00287a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Deep vein thrombosis (DVT) often occurs in the lower limb veins of bedridden patients and greatly reduces the quality of life. The altered blood flow in venous valves induced by the insufficient efficacy of the muscle pump is commonly considered as a main factor. However, it is still a great challenge to observe the altered blood flow in real time, and its role in the formation of thrombi is poorly understood. Here we make a microfluidic venous valve model with flexible leaflets in a deformable channel that can mimic the motion of valves and the compression of vessels by muscle contraction, and identify the stasis and intermittent reflux in the valve pocket generated by the muscle pump. A thrombus forms in the stasis flow, while the intermittent reflux removes the fibrin and inhibits the growth of the thrombus. A flexible microfluidic device that can mimic the motion of valves and the contraction of vessels would have wide applications in the research on cardiovascular diseases.
Collapse
Affiliation(s)
- Xiangyu Hu
- State Key Laboratory of Tribology, Mechanical Engineering Department, Tsinghua University, Beijing, 100084, China.
| | | | | | | |
Collapse
|
22
|
Chernysh IN, Nagaswami C, Kosolapova S, Peshkova AD, Cuker A, Cines DB, Cambor CL, Litvinov RI, Weisel JW. The distinctive structure and composition of arterial and venous thrombi and pulmonary emboli. Sci Rep 2020; 10:5112. [PMID: 32198356 PMCID: PMC7083848 DOI: 10.1038/s41598-020-59526-x] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/21/2020] [Indexed: 11/09/2022] Open
Abstract
Although arterial and venous thromboembolic disorders are among the most frequent causes of mortality and morbidity, there has been little description of how the composition of thrombi and emboli depends on their vascular origin and age. We quantified the structure and composition of arterial and venous thrombi and pulmonary emboli using high-resolution scanning electron microscopy. Arterial thrombi contained a surprisingly large amount of fibrin, in addition to platelets. The composition of pulmonary emboli mirrored the most distal part of venous thrombi from which they originated, which differed from the structure of the body and head of the same thrombi. All thrombi and emboli contained few biconcave red blood cells but many polyhedrocytes or related forms of compressed red blood cells, demonstrating that these structures are a signature of clot contraction in vivo. Polyhedrocytes and intermediate forms comprised the major constituents of venous thrombi and pulmonary emboli. The structures within all of the thrombi and emboli were very tightly packed, in contrast to clots formed in vitro. There are distinctive, reproducible differences among arterial and venous thrombi and emboli related to their origin, destination and duration, which may have clinical implications for the understanding and treatment of thrombotic disorders.
Collapse
Affiliation(s)
- Irina N Chernysh
- University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | - Sofia Kosolapova
- University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | - Adam Cuker
- University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Douglas B Cines
- University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Carolyn L Cambor
- University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Rustem I Litvinov
- University of Pennsylvania School of Medicine, Philadelphia, PA, USA.,Kazan Federal University, Kazan, Russian Federation
| | - John W Weisel
- University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
23
|
Missing regions within the molecular architecture of human fibrin clots structurally resolved by XL-MS and integrative structural modeling. Proc Natl Acad Sci U S A 2020; 117:1976-1987. [PMID: 31924745 PMCID: PMC6995014 DOI: 10.1073/pnas.1911785117] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fibrinogen hexamers are major components of blood clots. After release of fibrinopeptides resulting in fibrin monomers, clot formation occurs through fibrin oligomerization followed by lateral aggregation, packing into fibrin fibers, and consequent branching. Shedding light on fibrin clots by in situ cross-linking mass spectrometry and structural modeling extends our current knowledge of the structure of fibrin with regard to receptor-binding hotspots. Further restraint-driven molecular docking reveals how fibrin oligomers laterally aggregate into clots and uncovers the molecular architecture of the clot to albumin interaction. We hypothesize this interaction is involved in the prevention of clot degradation. Mapping known mutations validates the generated structural model and, for a subset, brings their molecular mechanisms into view. Upon activation, fibrinogen forms large fibrin biopolymers that coalesce into clots which assist in wound healing. Limited insights into their molecular architecture, due to the sheer size and the insoluble character of fibrin clots, have restricted our ability to develop novel treatments for clotting diseases. The, so far resolved, disparate structural details have provided insights into linear elongation; however, molecular details like the C-terminal domain of the α-chain, the heparin-binding domain on the β-chain, and other functional domains remain elusive. To illuminate these dark areas, we applied cross-linking mass spectrometry (XL-MS) to obtain biochemical evidence in the form of over 300 distance constraints and combined this with structural modeling. These restraints additionally define the interaction network of the clots and provide molecular details for the interaction with human serum albumin (HSA). We were able to construct the structural models of the fibrinogen α-chain (excluding two highly flexible regions) and the N termini of the β-chain, confirm these models with known structural arrangements, and map how the structure laterally aggregates to form intricate lattices together with the γ-chain. We validate the final model by mapping mutations leading to impaired clot formation. From a list of 22 mutations, we uncovered structural features for all, including a crucial role for βArg’169 (UniProt: 196) in lateral aggregation. The resulting model can potentially serve for research on dysfibrinogenemia and amyloidosis as it provides insights into the molecular mechanisms of thrombosis and bleeding disorders related to fibrinogen variants. The structure is provided in the PDB-DEV repository (PDBDEV_00000030).
Collapse
|
24
|
Movafaghi S, Wang W, Bark DL, Dasi LP, Popat KC, Kota AK. Hemocompatibility of Super-Repellent surfaces: Current and Future. MATERIALS HORIZONS 2019; 6:1596-1610. [PMID: 31903188 PMCID: PMC6941870 DOI: 10.1039/c9mh00051h] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Virtually all blood-contacting medical implants and devices initiate immunological events in the form of thrombosis and inflammation. Typically, patients receiving such implants are also given large doses of anticoagulants, which pose a high risk and a high cost to the patient. Thus, the design and development of surfaces with improved hemocompatibility and reduced dependence on anticoagulation treatments is paramount for the success of blood-contacting medical implants and devices. In the past decade, the hemocompatibility of super-repellent surfaces (i.e., surfaces that are extremely repellent to liquids) has been extensively investigated because such surfaces greatly reduce the blood-material contact area, which in turn reduces the area available for protein adsorption and blood cell or platelet adhesion, thereby offering the potential for improved hemocompatibility. In this review, we critically examine the progress made in characterizing the hemocompatibility of super-repellent surfaces, identify the unresolved challenges and highlight the opportunities for future research on developing medical implants and devices with super-repellent surfaces.
Collapse
Affiliation(s)
- Sanli Movafaghi
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Wei Wang
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - David L Bark
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Lakshmi P Dasi
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Ketul C Popat
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Arun K Kota
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
- Department of Chemical & Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
25
|
Yamaguchi M, Yokomori T, Ueda T. Quantitative Prediction of Fluid Flow Patterns with Gel Reaction in a Circular Flow Pipe. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2019. [DOI: 10.1252/jcej.18we351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Masaki Yamaguchi
- Graduate School of Science for Open Environmental Systems, Keio University
| | - Takeshi Yokomori
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University
| | - Toshihisa Ueda
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University
| |
Collapse
|
26
|
Wolberg AS. Modeling Venous Thrombosis In Vitro: More Than Just (Valve) Pocket Change. Arterioscler Thromb Vasc Biol 2019; 38:980-981. [PMID: 29695530 DOI: 10.1161/atvbaha.118.310919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Alisa S Wolberg
- From the Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill.
| |
Collapse
|
27
|
Microclot array elastometry for integrated measurement of thrombus formation and clot biomechanics under fluid shear. Nat Commun 2019; 10:2051. [PMID: 31053712 PMCID: PMC6499828 DOI: 10.1038/s41467-019-10067-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 04/15/2019] [Indexed: 11/08/2022] Open
Abstract
Blood clotting at the vascular injury site is a complex process that involves platelet adhesion and clot stiffening/contraction in the milieu of fluid flow. An integrated understanding of the hemodynamics and tissue mechanics regulating this process is currently lacking due to the absence of an experimental system that can simultaneously model clot formation and measure clot mechanics under shear flow. Here we develop a microfluidic-integrated microclot-array-elastometry system (clotMAT) that recapitulates dynamic changes in clot mechanics under physiological shear. Treatments with procoagulants and platelet antagonists and studies with diseased patient plasma demonstrate the ability of the system to assay clot biomechanics associated with common antiplatelet treatments and bleeding disorders. The changes of clot mechanics under biochemical treatments and shear flow demonstrate independent yet equally strong effects of these two stimulants on clot stiffening. This microtissue force sensing system may have future research and diagnostic potential for various bleeding disorders.
Collapse
|
28
|
Govindarajan V, Zhu S, Li R, Lu Y, Diamond SL, Reifman J, Mitrophanov AY. Impact of Tissue Factor Localization on Blood Clot Structure and Resistance under Venous Shear. Biophys J 2019; 114:978-991. [PMID: 29490257 PMCID: PMC5984989 DOI: 10.1016/j.bpj.2017.12.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/14/2017] [Accepted: 12/27/2017] [Indexed: 01/20/2023] Open
Abstract
The structure and growth of a blood clot depend on the localization of tissue factor (TF), which can trigger clotting during the hemostatic process or promote thrombosis when exposed to blood under pathological conditions. We sought to understand how the growth, structure, and mechanical properties of clots under flow are shaped by the simultaneously varying TF surface density and its exposure area. We used an eight-channel microfluidic device equipped with a 20- or 100-μm-long collagen surface patterned with lipidated TF of surface densities ∼0.1 and ∼2 molecules/μm2. Human whole blood was perfused at venous shear, and clot growth was continually measured. Using our recently developed computational model of clot formation, we performed simulations to gain insights into the clot’s structure and its resistance to blood flow. An increase in TF exposure area resulted not only in accelerated bulk platelet, thrombin, and fibrin accumulation, but also in increased height of the platelet mass and increased clot resistance to flow. Moreover, increasing the TF surface density or exposure area enhanced platelet deposition by approximately twofold, and thrombin and fibrin generation by greater than threefold, thereby increasing both clot size and its viscous resistance. Finally, TF effects on blood flow occlusion were more pronounced for the longer thrombogenic surface than for the shorter one. Our results suggest that TF surface density and its exposure area can independently enhance both the clot’s occlusivity and its resistance to blood flow. These findings provide, to our knowledge, new insights into how TF affects thrombus growth in time and space under flow.
Collapse
Affiliation(s)
- Vijay Govindarajan
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland
| | - Shu Zhu
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ruizhi Li
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yichen Lu
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Scott L Diamond
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland.
| | - Alexander Y Mitrophanov
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland
| |
Collapse
|
29
|
Cheng L, Wei GW, Leil T. Review of quantitative systems pharmacological modeling in thrombosis. COMMUNICATIONS IN INFORMATION AND SYSTEMS 2019; 19:219-240. [PMID: 34045928 DOI: 10.4310/cis.2019.v19.n3.a1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hemostasis and thrombosis are often thought as two sides of the same clotting mechanism whereas hemostasis is a natural protective mechanism to prevent bleeding and thrombosis is a blood clot abnormally formulated inside a blood vessel, blocking the normal blood flow. The evidence to date suggests that at least arterial thrombosis results from the same critical pathways of hemostasis. Analysis of these complex processes and pathways using quantitative systems pharmacological model-based approach can facilitate the delineation of the causal pathways that lead to the emergence of thrombosis. In this paper, we provide an overview of the main molecular and physiological mechanisms associated with hemostasis and thrombosis, and review the models and quantitative system pharmacological modeling approaches that are relevant in characterizing the interplay among the multiple factors and pathways of thrombosis. An emphasis is given to computational models for drug development. Future trends are discussed.
Collapse
Affiliation(s)
- Limei Cheng
- Clinical Pharmacology and Pharmacometrics Bristol-Myers Squibb, Princeton, NJ 08540, USA
| | - Guo-Wei Wei
- Department of Mathematics Michigan State University East Lansing, MI 48824 USA
| | - Tarek Leil
- Clinical Pharmacology and Pharmacometrics Bristol-Myers Squibb, Princeton, NJ 08540, USA
| |
Collapse
|
30
|
Tomaiuolo M, Brass LF, Stalker TJ. Regulation of Platelet Activation and Coagulation and Its Role in Vascular Injury and Arterial Thrombosis. Interv Cardiol Clin 2018; 6:1-12. [PMID: 27886814 DOI: 10.1016/j.iccl.2016.08.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hemostasis requires tightly regulated interaction of the coagulation system, platelets, blood cells, and vessel wall components at a site of vascular injury. Dysregulation of this response may result in excessive bleeding if the response is impaired, and pathologic thrombosis with vessel occlusion and tissue ischemia if the response is robust. Studies have elucidated the major molecular signaling pathways responsible for platelet activation and aggregation. Antithrombotic agents targeting these pathways are in clinical use. This review summarizes research examining mechanisms by which these multiple platelet signaling pathways are integrated at a site of vascular injury to produce an optimal hemostatic response.
Collapse
Affiliation(s)
- Maurizio Tomaiuolo
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA, 19104, USA
| | - Lawrence F Brass
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA, 19104, USA
| | - Timothy J Stalker
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA, 19104, USA.
| |
Collapse
|
31
|
Lu Y, Lee MY, Zhu S, Sinno T, Diamond SL. Multiscale simulation of thrombus growth and vessel occlusion triggered by collagen/tissue factor using a data-driven model of combinatorial platelet signalling. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2018; 34:523-546. [PMID: 27672182 PMCID: PMC5798174 DOI: 10.1093/imammb/dqw015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/23/2016] [Indexed: 12/23/2022]
Abstract
During clotting under flow, platelets bind and activate on collagen and release autocrinic factors such as ADP and thromboxane, while tissue factor (TF) on the damaged wall leads to localized thrombin generation. Towards patient-specific simulation of thrombosis, a multiscale approach was developed to account for: platelet signalling [neural network (NN) trained by pairwise agonist scanning (PAS), PAS-NN], platelet positions (lattice kinetic Monte Carlo, LKMC), wall-generated thrombin and platelet-released ADP/thromboxane convection–diffusion (partial differential equation, PDE) and flow over a growing clot (lattice Boltzmann). LKMC included shear-driven platelet aggregate restructuring. The PDEs for thrombin, ADP and thromboxane were solved by finite element method using cell activation-driven adaptive triangular meshing. At all times, intracellular calcium was known for each platelet by PAS-NN in response to its unique exposure to local collagen, ADP, thromboxane and thrombin. When compared with microfluidic experiments of human blood clotting on collagen/TF driven by constant pressure drop, the model accurately predicted clot morphology and growth with time. In experiments and simulations at TF at 0.1 and 10 molecule-TF/\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$\mu$\end{document}m\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$^{2}$\end{document} and initial wall shear rate of 200 s\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$^{-1}$\end{document}, the occlusive blockade of flow for a 60-\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$\mu$\end{document}m channel occurred relatively abruptly at 600 and 400 s, respectively (with no occlusion at zero TF). Prior to occlusion, intrathrombus concentrations reached 50 nM thrombin, ~ 1 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$\mu$\end{document}M thromboxane and ~ 10 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$\mu$\end{document}M ADP, while the wall shear rate on the rough clot peaked at ~ 1000–2000 s\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$^{-1}$\end{document}. Additionally, clotting on TF/collagen was accurately simulated for modulators of platelet cyclooxygenase-1, P2Y\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$_{1}$\end{document} and IP-receptor. This multiscale approach facilitates patient-specific simulation of thrombosis under hemodynamic and pharmacological conditions.
Collapse
Affiliation(s)
- Yichen Lu
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Mei Yan Lee
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Shu Zhu
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Talid Sinno
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Scott L Diamond
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia PA 19104, USA
| |
Collapse
|
32
|
Sutherland DW, Blanks ZD, Zhang X, Charest JL. Relationship Between Central Venous Catheter Protein Adsorption and Water Infused Surface Protection Mechanisms. Artif Organs 2018; 42:E369-E379. [DOI: 10.1111/aor.13274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/29/2018] [Accepted: 04/13/2018] [Indexed: 12/23/2022]
Affiliation(s)
- David W. Sutherland
- Department of Mechanical Engineering; Boston University; Boston MA USA
- Biomedical Microsystems; Draper; Cambridge MA USA
| | - Zachary D. Blanks
- Operations Research Center; Massachusetts Institute of Technology; Cambridge MA USA
- Machine Intelligence; Draper; Cambridge MA USA
| | - Xin Zhang
- Department of Mechanical Engineering; Boston University; Boston MA USA
| | | |
Collapse
|
33
|
Hosseinzadegan H, Tafti DK. A Predictive Model of Thrombus Growth in Stenosed Vessels with Dynamic Geometries. J Med Biol Eng 2018. [DOI: 10.1007/s40846-018-0443-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Swieringa F, Spronk HM, Heemskerk JW, van der Meijden PE. Integrating platelet and coagulation activation in fibrin clot formation. Res Pract Thromb Haemost 2018; 2:450-460. [PMID: 30046749 PMCID: PMC6046596 DOI: 10.1002/rth2.12107] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/31/2018] [Indexed: 12/21/2022] Open
Abstract
Platelets interact with the coagulation system in a multitude of ways, not only during the phases of thrombus formation, but also in specific areas within a formed thrombus. This review discusses current concepts of platelet control of thrombin generation, fibrin formation and structure, and anticoagulation. Indicated are how combined signalling via the platelet receptors for collagen (glycoprotein VI) and thrombin induces the secretion of (anti)coagulation factors, as well as surface exposure of phosphatidylserine, thereby catalysing thrombin generation. This procoagulant platelet response is also facilitated by the adhesive complexes glycoprotein Ib-V-IX and integrin αIIbβ3. In the buildup of a platelet-fibrin thrombus, the extrinsic, tissue factor-driven coagulation pathway is predominant in early stages, while the intrinsic, factor XII pathway seems to promote at later time points. Already early generation of thrombin enforces platelet responses and stimulates intra-thrombus heterogeneity with patches of loosely aggregated, contracted, and phosphatidylserine-exposing platelets. Fibrin actively formed on the surface of activated platelets supports thrombus growth, but also captures thrombin. The fibrin distribution in a thrombus appears to rely on the local procoagulant trigger and the blood flow rate. Clinical studies support the importance of the platelet-coagulation interplay, by showing beneficial effects of combination therapy in the secondary prevention of cardiovascular disease.
Collapse
Affiliation(s)
- Frauke Swieringa
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
- Leibniz Institute for Analytical SciencesISASDortmundGermany
| | - Henri M.H. Spronk
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Johan W.M. Heemskerk
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Paola E.J. van der Meijden
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
35
|
Lehmann M, Schoeman RM, Krohl PJ, Wallbank AM, Samaniuk JR, Jandrot-Perrus M, Neeves KB. Platelets Drive Thrombus Propagation in a Hematocrit and Glycoprotein VI-Dependent Manner in an In Vitro Venous Thrombosis Model. Arterioscler Thromb Vasc Biol 2018; 38:1052-1062. [PMID: 29472230 PMCID: PMC5920765 DOI: 10.1161/atvbaha.118.310731] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 02/06/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The objective of this study was to measure the role of platelets and red blood cells on thrombus propagation in an in vitro model of venous valvular stasis. APPROACH AND RESULTS A microfluidic model with dimensional similarity to human venous valves consists of a sinus distal to a sudden expansion, where for sufficiently high Reynolds numbers, 2 countercurrent vortices arise because of flow separation. The primary vortex is defined by the points of flow separation and reattachment. A secondary vortex forms in the deepest recess of the valve pocket characterized by low shear rates. An initial fibrin gel formed within the secondary vortex of a tissue factor-coated valve sinus. Platelets accumulated at the interface of the fibrin gel and the primary vortex. Red blood cells at physiological hematocrits were necessary to provide an adequate flux of platelets to support thrombus growth out of the valve sinus. A subpopulation of platelets that adhered to fibrin expose phosphatidylserine. Platelet-dependent thrombus growth was attenuated by inhibition of glycoprotein VI with a blocking Fab fragment or D-dimer. CONCLUSIONS A 3-step process regulated by hemodynamics was necessary for robust thrombus propagation: First, immobilized tissue factor initiates coagulation and fibrin deposition within a low flow niche defined by a secondary vortex in the pocket of a model venous valve. Second, a primary vortex delivers platelets to the fibrin interface in a red blood cell-dependent manner. Third, platelets adhere to fibrin, activate through glycoprotein VI, express phosphatidylserine, and subsequently promote thrombus growth beyond the valve sinus and into the bulk flow.
Collapse
Affiliation(s)
- Marcus Lehmann
- From the Chemical and Biological Engineering Department, Colorado School of Mines, Golden (M.L., R.M.S., P.J.K., A.M.W., J.R.S., K.B.N.)
| | - Rogier M Schoeman
- From the Chemical and Biological Engineering Department, Colorado School of Mines, Golden (M.L., R.M.S., P.J.K., A.M.W., J.R.S., K.B.N.)
| | - Patrick J Krohl
- From the Chemical and Biological Engineering Department, Colorado School of Mines, Golden (M.L., R.M.S., P.J.K., A.M.W., J.R.S., K.B.N.)
| | - Alison M Wallbank
- From the Chemical and Biological Engineering Department, Colorado School of Mines, Golden (M.L., R.M.S., P.J.K., A.M.W., J.R.S., K.B.N.)
| | - Joseph R Samaniuk
- From the Chemical and Biological Engineering Department, Colorado School of Mines, Golden (M.L., R.M.S., P.J.K., A.M.W., J.R.S., K.B.N.)
| | - Martine Jandrot-Perrus
- Laboratory of Vascular Translational Science, UMR_S1148, INSERM, University Paris Diderot, France (M.J.-P.)
| | - Keith B Neeves
- From the Chemical and Biological Engineering Department, Colorado School of Mines, Golden (M.L., R.M.S., P.J.K., A.M.W., J.R.S., K.B.N.)
- Department of Pediatrics, University of Colorado, Aurora (K.B.N.)
| |
Collapse
|
36
|
Yazdani A, Li H, Bersi MR, Di Achille P, Insley J, Humphrey JD, Karniadakis GE. Data-driven Modeling of Hemodynamics and its Role on Thrombus Size and Shape in Aortic Dissections. Sci Rep 2018; 8:2515. [PMID: 29410467 PMCID: PMC5802786 DOI: 10.1038/s41598-018-20603-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 01/22/2018] [Indexed: 11/21/2022] Open
Abstract
Aortic dissection is a pathology that manifests due to microstructural defects in the aortic wall. Blood enters the damaged wall through an intimal tear, thereby creating a so-called false lumen and exposing the blood to thrombogenic intramural constituents such as collagen. The natural history of this acute vascular injury thus depends, in part, on thrombus formation, maturation, and possible healing within the false lumen. A key question is: Why do some false lumens thrombose completely while others thrombose partially or little at all? An ability to predict the location and extent of thrombus in subjects with dissection could contribute significantly to clinical decision-making, including interventional design. We develop, for the first time, a data-driven particle-continuum model for thrombus formation in a murine model of aortic dissection. In the proposed model, we simulate a final-value problem in lieu of the original initial-value problem with significantly fewer particles that may grow in size upon activation, thus representing the local concentration of blood-borne species. Numerical results confirm that geometry and local hemodynamics play significant roles in the acute progression of thrombus. Despite geometrical differences between murine and human dissections, mouse models can provide considerable insight and have gained popularity owing to their reproducibility. Our results for three classes of geometrically different false lumens show that thrombus forms and extends to a greater extent in regions with lower bulk shear rates. Dense thrombi are less likely to form in high-shear zones and in the presence of strong vortices. The present data-driven study suggests that the proposed model is robust and can be employed to assess thrombus formation in human aortic dissections.
Collapse
Affiliation(s)
- Alireza Yazdani
- Division of Applied Mathematics, Brown University, Providence, RI, 02912, USA.
| | - He Li
- Division of Applied Mathematics, Brown University, Providence, RI, 02912, USA
| | - Matthew R Bersi
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Paolo Di Achille
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Joseph Insley
- Argonne National Laboratory, Argonne, IL 60439; Northern Illinois University, DeKalb, IL, 60115, USA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | | |
Collapse
|
37
|
Méndez Rojano R, Mendez S, Nicoud F. Introducing the pro-coagulant contact system in the numerical assessment of device-related thrombosis. Biomech Model Mechanobiol 2018; 17:815-826. [PMID: 29302840 DOI: 10.1007/s10237-017-0994-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/14/2017] [Indexed: 11/28/2022]
Abstract
Thrombosis is a major concern in blood-coated medical devices. Contact activation, which is the initial part of the coagulation cascade in device-related thrombosis, is not considered in current thrombus formation models. In the present study, pro-coagulant reactions including the contact activation system are coupled with a fluid solver in order to evaluate the potential of the contact system to initiate thrombin production. The biochemical/fluid model is applied to a backward-facing step configuration, a flow configuration that frequently appears in medical devices. In contrast to the in vivo thrombosis models in which a specific thrombotic zone (injury region) is set a priori by the user to initiate the coagulation reaction, a reactive surface boundary condition is applied to the whole device wall. Simulation results show large thrombin concentration in regions related to recirculation zones without the need of an a priori knowledge of the thrombus location. The numerical results align well with the regions prone to thrombosis observed in experimental results reported in the literature. This approach could complement thrombus formation models that take into account platelet activity and thrombus growth to optimize a wide range of medical devices.
Collapse
Affiliation(s)
- Rodrigo Méndez Rojano
- Institut Montpelliérain Alexander Grothendieck, CNRS, Univ. Montpellier, 2 Place Eugène Bataillon, 34095, Montpellier Cedex 5, France.
| | - Simon Mendez
- Institut Montpelliérain Alexander Grothendieck, CNRS, Univ. Montpellier, 2 Place Eugène Bataillon, 34095, Montpellier Cedex 5, France
| | - Franck Nicoud
- Institut Montpelliérain Alexander Grothendieck, CNRS, Univ. Montpellier, 2 Place Eugène Bataillon, 34095, Montpellier Cedex 5, France
| |
Collapse
|
38
|
Undas A. Fibrin clot properties and their modulation in thrombotic disorders. Thromb Haemost 2017; 112:32-42. [DOI: 10.1160/th14-01-0032] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 02/19/2014] [Indexed: 11/05/2022]
Abstract
SummaryAccumulating evidence indicates that accelerated formation of fibrin clots composed of compact, highly-branched networks with thin fibres which are relatively resistant to plasmin-mediated lysis can be commonly observed in patients with venous or arterial thrombosis. This review discusses characteristics of fibrin clot structure and function in patients with various thromboembolic manifestations, in particular myocardial infarction, ischaemic stroke and venous thromboembolism, based on the publications till December 2013. Moreover, factors will be presented that in vivo unfavourably determine altered fibrin clot properties in thrombotic disorders and modalities that can improve clot phenotype.
Collapse
|
39
|
Kastelowitz N, Tamura R, Onasoga A, Stalker TJ, White OR, Brown PN, Brodsky GL, Brass LF, Branchford BR, Di Paola J, Yin H. Peptides derived from MARCKS block coagulation complex assembly on phosphatidylserine. Sci Rep 2017; 7:4275. [PMID: 28655899 PMCID: PMC5487340 DOI: 10.1038/s41598-017-04494-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/16/2017] [Indexed: 01/27/2023] Open
Abstract
Blood coagulation involves activation of platelets and coagulation factors. At the interface of these two processes resides the lipid phosphatidylserine. Activated platelets expose phosphatidylserine on their outer membrane leaflet and activated clotting factors assemble into enzymatically active complexes on the exposed lipid, ultimately leading to the formation of fibrin. Here, we describe how small peptide and peptidomimetic probes derived from the lipid binding domain of the protein myristoylated alanine-rich C-kinase substrate (MARCKS) bind to phosphatidylserine exposed on activated platelets and thereby inhibit fibrin formation. The MARCKS peptides antagonize the binding of factor Xa to phosphatidylserine and inhibit the enzymatic activity of prothrombinase. In whole blood under flow, the MARCKS peptides colocalize with, and inhibit fibrin cross-linking, of adherent platelets. In vivo, we find that the MARCKS peptides circulate to remote injuries and bind to activated platelets in the inner core of developing thrombi.
Collapse
Affiliation(s)
- Noah Kastelowitz
- Department of Chemistry & Biochemistry and the BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | - Ryo Tamura
- Department of Chemistry & Biochemistry and the BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | - Abimbola Onasoga
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Timothy J Stalker
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ormacinda R White
- Department of Chemistry & Biochemistry and the BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | - Peter N Brown
- Department of Chemistry & Biochemistry and the BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | - Gary L Brodsky
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Lawrence F Brass
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brian R Branchford
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jorge Di Paola
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA.
| | - Hang Yin
- Department of Chemistry & Biochemistry and the BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA.
| |
Collapse
|
40
|
Govindarajan V, Rakesh V, Reifman J, Mitrophanov AY. Computational Study of Thrombus Formation and Clotting Factor Effects under Venous Flow Conditions. Biophys J 2017; 110:1869-1885. [PMID: 27119646 PMCID: PMC4850327 DOI: 10.1016/j.bpj.2016.03.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/03/2016] [Accepted: 03/08/2016] [Indexed: 11/24/2022] Open
Abstract
A comprehensive understanding of thrombus formation as a physicochemical process that has evolved to protect the integrity of the human vasculature is critical to our ability to predict and control pathological states caused by a malfunctioning blood coagulation system. Despite numerous investigations, the spatial and temporal details of thrombus growth as a multicomponent process are not fully understood. Here, we used computational modeling to investigate the temporal changes in the spatial distributions of the key enzymatic (i.e., thrombin) and structural (i.e., platelets and fibrin) components within a growing thrombus. Moreover, we investigated the interplay between clot structure and its mechanical properties, such as hydraulic resistance to flow. Our model relied on the coupling of computational fluid dynamics and biochemical kinetics, and was validated using flow-chamber data from a previous experimental study. The model allowed us to identify the distinct patterns characterizing the spatial distributions of thrombin, platelets, and fibrin accumulating within a thrombus. Our modeling results suggested that under the simulated conditions, thrombin kinetics was determined predominantly by prothrombinase. Furthermore, our simulations showed that thrombus resistance imparted by fibrin was ∼30-fold higher than that imparted by platelets. Yet, thrombus-mediated bloodflow occlusion was driven primarily by the platelet deposition process, because the height of the platelet accumulation domain was approximately twice that of the fibrin accumulation domain. Fibrinogen supplementation in normal blood resulted in a nonlinear increase in thrombus resistance, and for a supplemented fibrinogen level of 48%, the thrombus resistance increased by ∼2.7-fold. Finally, our model predicted that restoring the normal levels of clotting factors II, IX, and X while simultaneously restoring fibrinogen (to 88% of its normal level) in diluted blood can restore fibrin generation to ∼78% of its normal level and hence improve clot formation under dilution.
Collapse
Affiliation(s)
- Vijay Govindarajan
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland
| | - Vineet Rakesh
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland.
| | - Alexander Y Mitrophanov
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland
| |
Collapse
|
41
|
Zhang C, Neelamegham S. Application of microfluidic devices in studies of thrombosis and hemostasis. Platelets 2017; 28:434-440. [PMID: 28580870 DOI: 10.1080/09537104.2017.1319047] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Due to the importance of fluid flow during thrombotic episodes, it is quite appropriate to study clotting and bleeding processes in devices that have well-defined fluid shear environments. Two common devices for applying these defined shear stresses include the cone-and-plate viscometer and parallel-plate flow chamber. While such tools have many salient features, they require large amounts of blood or other protein components. With growth in the area of microfluidics over the last two decades, it has become feasible to miniaturize such flow devices. Such miniaturization not only enables saving of precious samples but also increases the throughput of fluid shear devices, thus enabling the design of combinatorial experiments and making the technique more accessible to the larger scientific community. In addition to simple flows that are common in traditional flow apparatus, more complex geometries that mimic stenosed arteries and the human microvasculature can also be generated. The composition of the microfluidics cell substrate can also be varied for diverse basic science investigations, and clinical investigations that aim to assay either individual patient coagulopathy or response to anti-coagulation treatment. This review summarizes the current state of the art for such microfluidic devices and their applications in the field of thrombosis and hemostasis.
Collapse
Affiliation(s)
- Changjie Zhang
- a Chemical and Biological Engineering, and Clinical & Translational Research Center , University at Buffalo, State University of New York , Buffalo , NY , USA
| | - Sriram Neelamegham
- a Chemical and Biological Engineering, and Clinical & Translational Research Center , University at Buffalo, State University of New York , Buffalo , NY , USA
| |
Collapse
|
42
|
Di Achille P, Tellides G, Humphrey J. Hemodynamics-driven deposition of intraluminal thrombus in abdominal aortic aneurysms. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2017; 33:10.1002/cnm.2828. [PMID: 27569676 PMCID: PMC5332472 DOI: 10.1002/cnm.2828] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 07/06/2016] [Accepted: 08/25/2016] [Indexed: 05/18/2023]
Abstract
Accumulating evidence suggests that intraluminal thrombus plays many roles in the natural history of abdominal aortic aneurysms. There is, therefore, a pressing need for computational models that can describe and predict the initiation and progression of thrombus in aneurysms. In this paper, we introduce a phenomenological metric for thrombus deposition potential and use hemodynamic simulations based on medical images from 6 patients to identify best-fit values of the 2 key model parameters. We then introduce a shape optimization method to predict the associated radial growth of the thrombus into the lumen based on the expectation that thrombus initiation will create a thrombogenic surface, which in turn will promote growth until increasing hemodynamically induced frictional forces prevent any further cell or protein deposition. Comparisons between predicted and actual intraluminal thrombus in the 6 patient-specific aneurysms suggest that this phenomenological description provides a good first estimate of thrombus deposition. We submit further that, because the biologically active region of the thrombus appears to be confined to a thin luminal layer, predictions of morphology alone may be sufficient to inform fluid-solid-growth models of aneurysmal growth and remodeling.
Collapse
Affiliation(s)
- P. Di Achille
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - G. Tellides
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| | - J.D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
43
|
Nagy M, Heemskerk JWM, Swieringa F. Use of microfluidics to assess the platelet-based control of coagulation. Platelets 2017; 28:441-448. [PMID: 28358995 DOI: 10.1080/09537104.2017.1293809] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This paper provides an overview of the various types of microfluidic devices that are employed to study the complex processes of platelet activation and blood coagulation in whole blood under flow conditions. We elaborate on how these devices are used to detect impaired platelet-dependent fibrin formation in blood from mice or patients with specific bleeding disorders. We provide a practical guide on how to assess formation of a platelet-fibrin thrombus under flow, using equipment that is present in most laboratories. In addition, we describe current insights on how blood flow and shear rate alter the location of platelet populations, von Willebrand factor, coagulation factors, and fibrin in a growing thrombus. Finally, we discuss possibilities and limitations for the clinical use of microfluidic devices to evaluate a hemostatic or prothrombotic tendency in patient blood samples.
Collapse
Affiliation(s)
- Magdolna Nagy
- a Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM) , Maastricht University , Maastricht , The Netherlands
| | - Johan W M Heemskerk
- a Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM) , Maastricht University , Maastricht , The Netherlands
| | - Frauke Swieringa
- a Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM) , Maastricht University , Maastricht , The Netherlands.,b Department of Bioanalytics , Leibniz Institute for Analytical Sciences - ISAS- e.V. , Dortmund , Germany
| |
Collapse
|
44
|
Zilberman-Rudenko J, Sylman JL, Garland KS, Puy C, Wong AD, Searson PC, McCarty OJT. Utility of microfluidic devices to study the platelet-endothelium interface. Platelets 2017; 28:449-456. [PMID: 28358586 DOI: 10.1080/09537104.2017.1280600] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The integration of biomaterials and understanding of vascular biology has led to the development of perfusable endothelialized flow models, which have been used as valuable tools to study the platelet-endothelium interface under shear. In these models, the parameters of geometry, compliance, biorheology, and cellular complexity are varied to recapitulate the physical biology of platelet recruitment and activation under physiologically relevant conditions of blood flow. In this review, we summarize the mechanistic insights learned from perfusable microvessel models and discuss the potential utility as well as challenges of endothelialized microfluidic devices to study platelet function in the bloodstream in vitro.
Collapse
Affiliation(s)
- Jevgenia Zilberman-Rudenko
- a Biomedical Engineering, School of Medicine , Oregon Health and Science University , Portland , OR , USA
| | - Joanna L Sylman
- a Biomedical Engineering, School of Medicine , Oregon Health and Science University , Portland , OR , USA
| | - Kathleen S Garland
- a Biomedical Engineering, School of Medicine , Oregon Health and Science University , Portland , OR , USA.,c Division of Pediatric Hematology/Oncology , Oregon Health and Science University , Portland , OR , USA
| | - Cristina Puy
- a Biomedical Engineering, School of Medicine , Oregon Health and Science University , Portland , OR , USA
| | - Andrew D Wong
- b Institute for Nanobiotechnology (INBT) , Johns Hopkins University , Baltimore , MD , USA.,d Department of Materials Science and Engineering , Johns Hopkins University , Baltimore , MD , USA
| | - Peter C Searson
- b Institute for Nanobiotechnology (INBT) , Johns Hopkins University , Baltimore , MD , USA.,d Department of Materials Science and Engineering , Johns Hopkins University , Baltimore , MD , USA
| | - Owen J T McCarty
- a Biomedical Engineering, School of Medicine , Oregon Health and Science University , Portland , OR , USA.,c Division of Pediatric Hematology/Oncology , Oregon Health and Science University , Portland , OR , USA
| |
Collapse
|
45
|
Wu WT, Jamiolkowski MA, Wagner WR, Aubry N, Massoudi M, Antaki JF. Multi-Constituent Simulation of Thrombus Deposition. Sci Rep 2017; 7:42720. [PMID: 28218279 PMCID: PMC5316946 DOI: 10.1038/srep42720] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/13/2017] [Indexed: 11/09/2022] Open
Abstract
In this paper, we present a spatio-temporal mathematical model for simulating the formation and growth of a thrombus. Blood is treated as a multi-constituent mixture comprised of a linear fluid phase and a thrombus (solid) phase. The transport and reactions of 10 chemical and biological species are incorporated using a system of coupled convection-reaction-diffusion (CRD) equations to represent three processes in thrombus formation: initiation, propagation and stabilization. Computational fluid dynamic (CFD) simulations using the libraries of OpenFOAM were performed for two illustrative benchmark problems: in vivo thrombus growth in an injured blood vessel and in vitro thrombus deposition in micro-channels (1.5 mm × 1.6 mm × 0.1 mm) with small crevices (125 μm × 75 μm and 125 μm × 137 μm). For both problems, the simulated thrombus deposition agreed very well with experimental observations, both spatially and temporally. Based on the success with these two benchmark problems, which have very different flow conditions and biological environments, we believe that the current model will provide useful insight into the genesis of thrombosis in blood-wetted devices, and provide a tool for the design of less thrombogenic devices.
Collapse
Affiliation(s)
- Wei-Tao Wu
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Megan A Jamiolkowski
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - William R Wagner
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nadine Aubry
- Department of Mechanical Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Mehrdad Massoudi
- U. S. Department of Energy, National Energy Technology Laboratory (NETL), PA, 15236, USA
| | - James F Antaki
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| |
Collapse
|
46
|
Byrnes JR, Wolberg AS. New findings on venous thrombogenesis. Hamostaseologie 2017; 37:25-35. [PMID: 27878206 PMCID: PMC5680039 DOI: 10.5482/hamo-16-09-0034] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/04/2016] [Indexed: 12/22/2022] Open
Abstract
Venous thrombosis (VT) is the third most common cause of cardiovascular death worldwide. Complications from VT and pulmonary embolism are the leading cause of lost disability-adjusted life years. Risks include genetic (e.g., non-O blood group, activated protein C resistance, hyperprothrombinemia) and acquired (e.g., age, surgery, cancer, pregnancy, immobilisation, female hormone use) factors. Pathophysiologic mechanisms that promote VT are incompletely understood, but involve abnormalities in blood coagulability, vessel function, and flow (so-called Virchow's Triad). Epidemiologic studies of humans, animal models, and biochemical and biophysical investigations have revealed contributions from extrinsic, intrinsic, and common pathways of coagulation, endothelial cells, leukocytes, red blood cells, platelets, cell-derived microvesicles, stasis-induced changes in vascular cells, and blood rheology. Knowledge of these mechanisms may yield new therapeutic targets. Characterisation of mechanisms that mediate VT formation and stability, particularly in aging, are needed to advance understanding of VT.
Collapse
Affiliation(s)
| | - Alisa S Wolberg
- Alisa S. Wolberg, Ph. D., Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 819 Brinkhous-Bullitt Building, CB #7525, Chapel Hill, NC 27599-7525, United States, Phone: (919) 962-8943, Fax: (919) 966-6718, E-Mail:
| |
Collapse
|
47
|
Abstract
Fibrinogen and fibrin are essential for hemostasis and are major factors in thrombosis, wound healing, and several other biological functions and pathological conditions. The X-ray crystallographic structure of major parts of fibrin(ogen), together with computational reconstructions of missing portions and numerous biochemical and biophysical studies, have provided a wealth of data to interpret molecular mechanisms of fibrin formation, its organization, and properties. On cleavage of fibrinopeptides by thrombin, fibrinogen is converted to fibrin monomers, which interact via knobs exposed by fibrinopeptide removal in the central region, with holes always exposed at the ends of the molecules. The resulting half-staggered, double-stranded oligomers lengthen into protofibrils, which aggregate laterally to make fibers, which then branch to yield a three-dimensional network. Much is now known about the structural origins of clot mechanical properties, including changes in fiber orientation, stretching and buckling, and forced unfolding of molecular domains. Studies of congenital fibrinogen variants and post-translational modifications have increased our understanding of the structure and functions of fibrin(ogen). The fibrinolytic system, with the zymogen plasminogen binding to fibrin together with tissue-type plasminogen activator to promote activation to the active proteolytic enzyme, plasmin, results in digestion of fibrin at specific lysine residues. In spite of a great increase in our knowledge of all these interconnected processes, much about the molecular mechanisms of the biological functions of fibrin(ogen) remains unknown, including some basic aspects of clotting, fibrinolysis, and molecular origins of fibrin mechanical properties. Even less is known concerning more complex (patho)physiological implications of fibrinogen and fibrin.
Collapse
Affiliation(s)
- John W Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| | - Rustem I Litvinov
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
48
|
Proteins behaving badly. Substoichiometric molecular control and amplification of the initiation and nature of amyloid fibril formation: lessons from and for blood clotting. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 123:16-41. [DOI: 10.1016/j.pbiomolbio.2016.08.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/14/2016] [Accepted: 08/19/2016] [Indexed: 02/08/2023]
|
49
|
Badiei N, Sowedan AM, Curtis DJ, Brown MR, Lawrence MJ, Campbell AI, Sabra A, Evans PA, Weisel JW, Chernysh IN, Nagaswami C, Williams PR, Hawkins K. Effects of unidirectional flow shear stresses on the formation, fractal microstructure and rigidity of incipient whole blood clots and fibrin gels. Clin Hemorheol Microcirc 2016; 60:451-64. [PMID: 25624413 PMCID: PMC4923731 DOI: 10.3233/ch-151924] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Incipient clot formation in whole blood and fibrin gels was studied by the rheometric techniques of controlled stress parallel superposition (CSPS) and small amplitude oscillatory shear (SAOS). The effects of unidirectional shear stress on incipient clot microstructure, formation kinetics and elasticity are reported in terms of the fractal dimension (df) of the fibrin network, the gel network formation time (TGP) and the shear elastic modulus, respectively. The results of this first haemorheological application of CSPS reveal the marked sensitivity of incipient clot microstructure to physiologically relevant levels of shear stress, these being an order of magnitude lower than have previously been studied by SAOS. CSPS tests revealed that exposure of forming clots to increasing levels of shear stress produces a corresponding elevation in df, consistent with the formation of tighter, more compact clot microstructures under unidirectional flow. A corresponding increase in shear elasticity was recorded. The scaling relationship established between shear elasticity and df for fibrin clots and whole blood confirms the fibrin network as the dominant microstructural component of the incipient clot in terms of its response to imposed stress. Supplementary studies of fibrin clot formation by rheometry and microscopy revealed the substantial additional network mass required to increase df and provide evidence to support the hypothesis that microstructural changes in blood clotted under unidirectional shear may be attributed to flow enhanced thrombin generation and activation. CSPS also identified a threshold value of unidirectional shear stress above which no incipient clot formation could be detected. CSPS was shown to be a valuable haemorheological tool for the study of the effects of physiological and pathological levels of shear on clot properties.
Collapse
Affiliation(s)
- N Badiei
- College of Engineering, Swansea University, Swansea, UK
| | - A M Sowedan
- College of Engineering, Swansea University, Swansea, UK.,College of Medicine, Swansea University, Swansea, UK
| | - D J Curtis
- College of Engineering, Swansea University, Swansea, UK
| | - M R Brown
- College of Engineering, Swansea University, Swansea, UK
| | - M J Lawrence
- College of Medicine, Swansea University, Swansea, UK.,NISCHR Clinical Haemostasis and Biomarker Research Unit, ABMU NHS Trust Hospital, Morriston, Swansea, UK
| | - A I Campbell
- College of Engineering, Swansea University, Swansea, UK
| | - A Sabra
- College of Medicine, Swansea University, Swansea, UK.,NISCHR Clinical Haemostasis and Biomarker Research Unit, ABMU NHS Trust Hospital, Morriston, Swansea, UK
| | - P A Evans
- College of Medicine, Swansea University, Swansea, UK.,NISCHR Clinical Haemostasis and Biomarker Research Unit, ABMU NHS Trust Hospital, Morriston, Swansea, UK
| | - J W Weisel
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - I N Chernysh
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - C Nagaswami
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - P R Williams
- College of Engineering, Swansea University, Swansea, UK
| | - K Hawkins
- College of Medicine, Swansea University, Swansea, UK.,NISCHR Clinical Haemostasis and Biomarker Research Unit, ABMU NHS Trust Hospital, Morriston, Swansea, UK
| |
Collapse
|
50
|
Zhu S, Herbig BA, Li R, Colace TV, Muthard RW, Neeves KB, Diamond SL. In microfluidico: Recreating in vivo hemodynamics using miniaturized devices. Biorheology 2016; 52:303-18. [PMID: 26600269 DOI: 10.3233/bir-15065] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Microfluidic devices create precisely controlled reactive blood flows and typically involve: (i) validated anticoagulation/pharmacology protocols, (ii) defined reactive surfaces, (iii) defined flow-transport regimes, and (iv) optical imaging. An 8-channel device can be run at constant flow rate or constant pressure drop for blood perfusion over a patterned collagen, collagen/kaolin, or collagen/tissue factor (TF) to measure platelet, thrombin, and fibrin dynamics during clot growth. A membrane-flow device delivers a constant flux of platelet agonists or coagulation enzymes into flowing blood. A trifurcated device sheaths a central blood flow on both sides with buffer, an ideal approach for on-chip recalcification of citrated blood or drug delivery. A side-view device allows clotting on a porous collagen/TF plug at constant pressure differential across the developing clot. The core-shell architecture of clots made in mouse models can be replicated in this device using human blood. For pathological flows, a stenosis device achieves shear rates of >100,000 s(-1) to drive plasma von Willebrand factor (VWF) to form thick long fibers on collagen. Similarly, a micropost-impingement device creates extreme elongational and shear flows for VWF fiber formation without collagen. Overall, microfluidics are ideal for studies of clotting, bleeding, fibrin polymerization/fibrinolysis, cell/clot mechanics, adhesion, mechanobiology, and reaction-transport dynamics.
Collapse
Affiliation(s)
- Shu Zhu
- Institute for Medicine and Engineering, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Bradley A Herbig
- Institute for Medicine and Engineering, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Ruizhi Li
- Institute for Medicine and Engineering, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas V Colace
- Institute for Medicine and Engineering, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan W Muthard
- Institute for Medicine and Engineering, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Keith B Neeves
- Department of Chemical and Biomolecular Engineering, Colorado School of Mines, Golden, CO, USA
| | - Scott L Diamond
- Institute for Medicine and Engineering, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|