1
|
Tsutsui H, Jinno Y, Mizutani N, Okamura Y. Structural change of the cytoplasmic N-terminus and S1 segment of voltage-sensing phosphatase reported by Anap. Acta Physiol (Oxf) 2024; 240:e14137. [PMID: 38502065 DOI: 10.1111/apha.14137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Voltage-sensing phosphatase contains a structurally conserved S1-S4-based voltage-sensor domain, which undergoes a conformational transition in response to membrane potential change. Unlike that of channels, it is functional even in isolation and is therefore advantageous for studying the transition mechanism, but its nature has not yet been fully elucidated. This study aimed to address whether the cytoplasmic N-terminus and S1 exhibit structural change. METHODS Anap, an environment-sensitive unnatural fluorescent amino acid, was site-specifically introduced to the voltage sensor domain to probe local structural changes by using oocyte voltage clamp and photometry. Tetramethylrhodamine was also used to probe some extracellularly accessible positions. In total, 51 positions were investigated. RESULTS We detected robust voltage-dependent signals from widely distributed positions including N-terminus and S1. In addition, response to hyperpolarization was observed at the extracellular end of S1, reflecting the local structure flexibility of the voltage-sensor domain in the down-state. We also found that the mechanical coupling between the voltage-sensor and phosphatase domains affects the depolarization-induced optical signals but not the hyperpolarization-induced signals. CONCLUSIONS These results fill a gap between the previous interpretations from the structural and biophysical approaches and should provide important insights into the mechanisms of the voltage-sensor domain transition as well as its coupling with the effector.
Collapse
Affiliation(s)
- Hidekazu Tsutsui
- School of Materials Science, JAIST, Nomi, Ishikawa, Japan
- Laboratory of Integrative Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yuka Jinno
- Laboratory of Integrative Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Natsuki Mizutani
- Laboratory of Integrative Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yasushi Okamura
- Laboratory of Integrative Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
2
|
García-Morales A, Pulido NO, Balleza D. Relation between flexibility and intrinsically disorder regions in thermosensitive TRP channels reveal allosteric effects. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2024; 53:77-90. [PMID: 37777680 DOI: 10.1007/s00249-023-01682-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/06/2023] [Accepted: 08/20/2023] [Indexed: 10/02/2023]
Abstract
How a protein propagates the conformational changes throughout its structure remains largely unknown. In thermosensitive TRP channels, this allosteric communication is triggered by ligand interaction or in response to temperature changes. Because dynamic allostery suggests a dynamic role of disordered regions, in this work we set out to thoroughly evaluate these regions in six thermosensitive TRP channels. Thus, by contrasting the intrinsic flexibility of the transmembrane region as a function of the degree of disorder in those proteins, we discovered several residues that do not show a direct correlation in both parameters. This kind of structural discrepancy revealed residues that are either reported to be dynamic, functionally relevant or are involved in signal propagation and probably part of allosteric networks. These discrepant, potentially dynamic regions are not exclusive of TRP channels, as this same correlation was found in the Kv Shaker channel.
Collapse
Affiliation(s)
- Abigail García-Morales
- Unidad de Investigación y Desarrollo en Alimentos, Instituto Tecnológico de Veracruz, Tecnológico Nacional de México, Calz. Miguel Angel de Quevedo 2779 Col Formando Hogar, 91897, Veracruz, Ver, Mexico
| | - Nancy O Pulido
- Escuela de Ingeniería y Ciencias, Instituto Tecnológico y de Estudios Superiores de Monterrey, Cuernavaca, Mexico
| | - Daniel Balleza
- Unidad de Investigación y Desarrollo en Alimentos, Instituto Tecnológico de Veracruz, Tecnológico Nacional de México, Calz. Miguel Angel de Quevedo 2779 Col Formando Hogar, 91897, Veracruz, Ver, Mexico.
| |
Collapse
|
3
|
Lu H, Ding W, Xiao H, Dai M, Xue Y, Jia Z, Guo J, Wu M, Shen B, Zhao R. Association of the P441L KCNQ1 variant with severity of long QT syndrome and risk of cardiac events. Front Cardiovasc Med 2022; 9:922335. [PMID: 36386331 PMCID: PMC9659898 DOI: 10.3389/fcvm.2022.922335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 09/12/2022] [Indexed: 11/27/2022] Open
Abstract
Dysfunction of potassium voltage-gated channel subfamily Q member 1 (KCNQ1) is a primary cause of long QT syndrome type 1 (LQT1). Here, we report a missense mutation P441L in KCNQ1 C-terminus of a 37-year-old woman with severe LQT1 phenotype. Variant P441L transporting to the plasma membrane and interacting with KCNE1 were both markedly decreased, leading to potassium efflux disorder and eventually LQT1. Mutations between the C-terminal helix A and helix B of KCNQ1 have linked with low cardiac event risk, however, we firstly find variant P441L causing a severe LQT1 phenotype with a high risk of cardiac events.
Collapse
Affiliation(s)
- Haoyang Lu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wen Ding
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Hui Xiao
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Manyu Dai
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yangcheng Xue
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhuoran Jia
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jie Guo
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mengzuo Wu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bing Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Bing Shen,
| | - Ren Zhao
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Ren Zhao,
| |
Collapse
|
4
|
Groome JR, Bayless-Edwards L. Roles for Countercharge in the Voltage Sensor Domain of Ion Channels. Front Pharmacol 2020; 11:160. [PMID: 32180723 PMCID: PMC7059764 DOI: 10.3389/fphar.2020.00160] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/07/2020] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated ion channels share a common structure typified by peripheral, voltage sensor domains. Their S4 segments respond to alteration in membrane potential with translocation coupled to ion permeation through a central pore domain. The mechanisms of gating in these channels have been intensely studied using pioneering methods such as measurement of charge displacement across a membrane, sequencing of genes coding for voltage-gated ion channels, and the development of all-atom molecular dynamics simulations using structural information from prokaryotic and eukaryotic channel proteins. One aspect of this work has been the description of the role of conserved negative countercharges in S1, S2, and S3 transmembrane segments to promote sequential salt-bridge formation with positively charged residues in S4 segments. These interactions facilitate S4 translocation through the lipid bilayer. In this review, we describe functional and computational work investigating the role of these countercharges in S4 translocation, voltage sensor domain hydration, and in diseases resulting from countercharge mutations.
Collapse
Affiliation(s)
- James R. Groome
- Department of Biological Sciences, Idaho State University, Pocatello, ID, United States
| | - Landon Bayless-Edwards
- Department of Biological Sciences, Idaho State University, Pocatello, ID, United States
- Oregon Health and Sciences University School of Medicine, Portland, OR, United States
| |
Collapse
|
5
|
Kariev AM, Green ME. Quantum Calculation of Proton and Other Charge Transfer Steps in Voltage Sensing in the Kv1.2 Channel. J Phys Chem B 2019; 123:7984-7998. [DOI: 10.1021/acs.jpcb.9b05448] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alisher M. Kariev
- Department of Chemistry and Biochemistry, City College of New York, New York, New York 10011, United States
| | - Michael E. Green
- Department of Chemistry and Biochemistry, City College of New York, New York, New York 10011, United States
| |
Collapse
|
6
|
Tronin AY, Maciunas LJ, Grasty KC, Loll PJ, Ambaye HA, Parizzi AA, Lauter V, Geragotelis AD, Freites JA, Tobias DJ, Blasie JK. Voltage-Dependent Profile Structures of a Kv-Channel via Time-Resolved Neutron Interferometry. Biophys J 2019; 117:751-766. [PMID: 31378315 PMCID: PMC6712512 DOI: 10.1016/j.bpj.2019.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/27/2019] [Accepted: 07/09/2019] [Indexed: 10/26/2022] Open
Abstract
Available experimental techniques cannot determine high-resolution three-dimensional structures of membrane proteins under a transmembrane voltage. Hence, the mechanism by which voltage-gated cation channels couple conformational changes within the four voltage sensor domains, in response to either depolarizing or polarizing transmembrane voltages, to opening or closing of the pore domain's ion channel remains unresolved. Single-membrane specimens, composed of a phospholipid bilayer containing a vectorially oriented voltage-gated K+ channel protein at high in-plane density tethered to the surface of an inorganic multilayer substrate, were developed to allow the application of transmembrane voltages in an electrochemical cell. Time-resolved neutron reflectivity experiments, enhanced by interferometry enabled by the multilayer substrate, were employed to provide directly the low-resolution profile structures of the membrane containing the vectorially oriented voltage-gated K+ channel for the activated, open and deactivated, closed states of the channel under depolarizing and hyperpolarizing transmembrane voltages applied cyclically. The profile structures of these single membranes were dominated by the voltage-gated K+ channel protein because of the high in-plane density. Importantly, the use of neutrons allowed the determination of the voltage-dependent changes in both the profile structure of the membrane and the distribution of water within the profile structure. These two key experimental results were then compared to those predicted by three computational modeling approaches for the activated, open and deactivated, closed states of three different voltage-gated K+ channels in hydrated phospholipid bilayer membrane environments. Of the three modeling approaches investigated, only one state-of-the-art molecular dynamics simulation that directly predicted the response of a voltage-gated K+ channel within a phospholipid bilayer membrane to applied transmembrane voltages by utilizing very long trajectories was found to be in agreement with the two key experimental results provided by the time-resolved neutron interferometry experiments.
Collapse
Affiliation(s)
- Andrey Y Tronin
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lina J Maciunas
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Kimberly C Grasty
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Patrick J Loll
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Haile A Ambaye
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Andre A Parizzi
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Valeria Lauter
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | | | - J Alfredo Freites
- Department of Chemistry, University of California Irvine, Irvine, California
| | - Douglas J Tobias
- Department of Chemistry, University of California Irvine, Irvine, California
| | - J Kent Blasie
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
7
|
Wisedchaisri G, Tonggu L, McCord E, Gamal El-Din TM, Wang L, Zheng N, Catterall WA. Resting-State Structure and Gating Mechanism of a Voltage-Gated Sodium Channel. Cell 2019; 178:993-1003.e12. [PMID: 31353218 PMCID: PMC6688928 DOI: 10.1016/j.cell.2019.06.031] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/06/2019] [Accepted: 06/21/2019] [Indexed: 11/25/2022]
Abstract
Voltage-gated sodium (NaV) channels initiate action potentials in nerve, muscle, and other electrically excitable cells. The structural basis of voltage gating is uncertain because the resting state exists only at deeply negative membrane potentials. To stabilize the resting conformation, we inserted voltage-shifting mutations and introduced a disulfide crosslink in the VS of the ancestral bacterial sodium channel NaVAb. Here, we present a cryo-EM structure of the resting state and a complete voltage-dependent gating mechanism. The S4 segment of the VS is drawn intracellularly, with three gating charges passing through the transmembrane electric field. This movement forms an elbow connecting S4 to the S4-S5 linker, tightens the collar around the S6 activation gate, and prevents its opening. Our structure supports the classical "sliding helix" mechanism of voltage sensing and provides a complete gating mechanism for voltage sensor function, pore opening, and activation-gate closure based on high-resolution structures of a single sodium channel protein.
Collapse
Affiliation(s)
| | - Lige Tonggu
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Eedann McCord
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | | | - Liguo Wang
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Ning Zheng
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| | - William A Catterall
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
8
|
Time-Resolved Neutron Interferometry and the Mechanism of Electromechanical Coupling in Voltage-Gated Ion Channels. Methods Enzymol 2018. [PMID: 29673535 DOI: 10.1016/bs.mie.2018.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The mechanism of electromechanical coupling for voltage-gated ion channels (VGICs) involved in neurological signal transmission, primarily Nav- and Kv-channels, remains unresolved. Anesthetics have been shown to directly impact this mechanism, at least for Kv-channels. Molecular dynamics computer simulations can now predict the structures of VGICs embedded within a hydrated phospholipid bilayer membrane as a function of the applied transmembrane voltage, but significant assumptions are still necessary. Nevertheless, these simulations are providing new insights into the mechanism of electromechanical coupling at the atomic level in 3-D. We show that time-resolved neutron interferometry can be used to investigate directly the profile structure of a VGIC, vectorially oriented within a single hydrated phospholipid bilayer membrane at the solid-liquid interface, as a function of the applied transmembrane voltage in the absence of any assumptions or potentially perturbing modifications of the VGIC protein and/or the host membrane. The profile structure is a projection of the membrane's 3-D structure onto the membrane normal and, in the absence of site-directed deuterium labeling, is provided at substantially lower spatial resolution than the atomic level. Nevertheless, this novel approach can be used to directly test the validity of the predictions from molecular dynamics simulations. We describe the key elements of our novel experimental approach, including why each is necessary and important to providing the essential information required for this critical comparison of "simulation" vs "experiment." In principle, the approach could be extended to higher spatial resolution and to include the effects of anesthetics on the electromechanical coupling mechanism in VGICs.
Collapse
|
9
|
Wu J, Ding WG, Horie M. Molecular pathogenesis of long QT syndrome type 1. J Arrhythm 2016; 32:381-388. [PMID: 27761162 PMCID: PMC5063268 DOI: 10.1016/j.joa.2015.12.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/16/2015] [Accepted: 12/17/2015] [Indexed: 01/08/2023] Open
Abstract
Long QT syndrome type 1 (LQT1) is a subtype of a congenital cardiac syndrome caused by mutation in the KCNQ1 gene, which encodes the α-subunit of the slow component of delayed rectifier K+ current (IKs) channel. Arrhythmias in LQT1 are characterized by prolongation of the QT interval on ECG, as well as the occurrence of life-threatening cardiac events, frequently triggered by adrenergic stimuli (e.g., physical or emotional stress). During the past two decades, much advancement has been made in understanding the molecular pathogenesis underlying LQT1. Uncovering the genotype-phenotype correlations in LQT1 is of clinical importance to better understand the gene-specific differences that may influence the propensity for developing life-threatening arrhythmias under specific conditions. Elucidation of these mechanisms will also help to improve the diagnosis and management of this cardiac disorder based on gene-specific considerations. This review describes the current medical consensus and recent developments regarding the molecular pathogenesis of LQT1 and provides a novel insight into the adrenergic regulation of this disease.
Collapse
Affiliation(s)
- Jie Wu
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, 710061, Xi׳an, China
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Otsu 520-2192, Japan
- Department of Physiology, Shiga University of Medical Science, Otsu 520-2192, Japan
| | - Wei-Guang Ding
- Department of Physiology, Shiga University of Medical Science, Otsu 520-2192, Japan
| | - Minoru Horie
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Otsu 520-2192, Japan
| |
Collapse
|
10
|
The topogenic function of S4 promotes membrane insertion of the voltage-sensor domain in the KvAP channel. Biochem J 2016; 473:4361-4372. [PMID: 27694387 DOI: 10.1042/bcj20160746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/20/2016] [Accepted: 09/30/2016] [Indexed: 11/17/2022]
Abstract
Voltage-dependent K+ (KV) channels control K+ permeability in response to shifts in the membrane potential. Voltage sensing in KV channels is mediated by the positively charged transmembrane domain S4. The best-characterized KV channel, KvAP, lacks the distinct hydrophilic region corresponding to the S3-S4 extracellular loop that is found in other K+ channels. In the present study, we evaluated the topogenic properties of the transmembrane regions within the voltage-sensing domain in KvAP. S3 had low membrane insertion activity, whereas S4 possessed a unique type-I signal anchor (SA-I) function, which enabled it to insert into the membrane by itself. S4 was also found to function as a stop-transfer signal for retention in the membrane. The length and structural nature of the extracellular S3-S4 loop affected the membrane insertion of S3 and S4, suggesting that S3 membrane insertion was dependent on S4. Replacement of charged residues within the transmembrane regions with residues of opposite charge revealed that Asp72 in S2 and Glu93 in S3 contributed to membrane insertion of S3 and S4, and increased the stability of S4 in the membrane. These results indicate that the SA-I function of S4, unique among K+ channels studied to date, promotes the insertion of S3 into the membrane, and that the charged residues essential for voltage sensing contribute to the membrane-insertion of the voltage sensor domain in KvAP.
Collapse
|
11
|
Kitjaruwankul S, Boonamnaj P, Fuklang S, Supunyabut C, Sompornpisut P. Shaping the Water Crevice To Accommodate the Voltage Sensor in a Down Conformation: A Molecular Dynamics Simulation Study. J Phys Chem B 2015; 119:6516-24. [DOI: 10.1021/acs.jpcb.5b00787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sunan Kitjaruwankul
- Graduate
School of Nanoscience and Technology, Chulalongkorn University, Bangkok 10330, Thailand
| | - Panisak Boonamnaj
- Department
of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sunit Fuklang
- Department
of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chirayut Supunyabut
- Department
of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pornthep Sompornpisut
- Department
of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
12
|
Voltage Sensing in Membranes: From Macroscopic Currents to Molecular Motions. J Membr Biol 2015; 248:419-30. [PMID: 25972106 DOI: 10.1007/s00232-015-9805-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/24/2015] [Indexed: 01/06/2023]
Abstract
Voltage-sensing domains (VSDs) are integral membrane protein units that sense changes in membrane electric potential, and through the resulting conformational changes, regulate a specific function. VSDs confer voltage-sensitivity to a large superfamily of membrane proteins that includes voltage-gated Na[Formula: see text], K[Formula: see text], Ca[Formula: see text] ,and H[Formula: see text] selective channels, hyperpolarization-activated cyclic nucleotide-gated channels, and voltage-sensing phosphatases. VSDs consist of four transmembrane segments (termed S1 through S4). Their most salient structural feature is the highly conserved positions for charged residues in their sequences. S4 exhibits at least three conserved triplet repeats composed of one basic residue (mostly arginine) followed by two hydrophobic residues. These S4 basic side chains participate in a state-dependent internal salt-bridge network with at least four acidic residues in S1-S3. The signature of voltage-dependent activation in electrophysiology experiments is a transient current (termed gating or sensing current) upon a change in applied membrane potential as the basic side chains in S4 move across the membrane electric field. Thus, the unique structural features of the VSD architecture allow for competing requirements: maintaining a series of stable transmembrane conformations, while allowing charge motion, as briefly reviewed here.
Collapse
|
13
|
Abstract
A dynamic transmembrane voltage field has been suggested as an intrinsic element in voltage sensor (VS) domains. Here, the dynamic field contribution to the VS energetics was analyzed via electrostatic calculations applied to a number of atomistic structures made available recently. We find that the field is largely static along with the molecular motions of the domain, and more importantly, it is minimally modified across VS variants. This finding implies that sensor domains transfer approximately the same amount of gating charges when moving the electrically charged S4 helix between fixed microscopic configurations. Remarkably, the result means that the observed operational diversity of the domain, including the extension, rate, and voltage dependence of the S4 motion, as dictated by the free energy landscape theory, must be rationalized in terms of dominant variations of its chemical free energy.
Collapse
|
14
|
Tronin A, Nordgren CE, Strzalka JW, Kuzmenko I, Worcester DL, Lauter V, Freites JA, Tobias DJ, Blasie JK. Direct evidence of conformational changes associated with voltage gating in a voltage sensor protein by time-resolved X-ray/neutron interferometry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:4784-4796. [PMID: 24697545 PMCID: PMC4007984 DOI: 10.1021/la500560w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Indexed: 06/03/2023]
Abstract
The voltage sensor domain (VSD) of voltage-gated cation (e.g., Na(+), K(+)) channels central to neurological signal transmission can function as a distinct module. When linked to an otherwise voltage-insensitive, ion-selective membrane pore, the VSD imparts voltage sensitivity to the channel. Proteins homologous with the VSD have recently been found to function themselves as voltage-gated proton channels or to impart voltage sensitivity to enzymes. Determining the conformational changes associated with voltage gating in the VSD itself in the absence of a pore domain thereby gains importance. We report the direct measurement of changes in the scattering-length density (SLD) profile of the VSD protein, vectorially oriented within a reconstituted phospholipid bilayer membrane, as a function of the transmembrane electric potential by time-resolved X-ray and neutron interferometry. The changes in the experimental SLD profiles for both polarizing and depolarizing potentials with respect to zero potential were found to extend over the entire length of the isolated VSD's profile structure. The characteristics of the changes observed were in qualitative agreement with molecular dynamics simulations of a related membrane system, suggesting an initial interpretation of these changes in terms of the VSD's atomic-level 3-D structure.
Collapse
Affiliation(s)
- Andrey
Y. Tronin
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - C. Erik Nordgren
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Joseph W. Strzalka
- X-ray
Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Ivan Kuzmenko
- X-ray
Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - David L. Worcester
- Department
of Physiology & Biophysics, University
of California Irvine, Irvine, California 92697, United States
| | - Valeria Lauter
- Spallation
Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - J. Alfredo Freites
- Department
of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Douglas J. Tobias
- Department
of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - J. Kent Blasie
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
15
|
Schow EV, Freites JA, Nizkorodov A, White SH, Tobias DJ. Coupling between the voltage-sensing and pore domains in a voltage-gated potassium channel. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1818:1726-36. [PMID: 22425907 DOI: 10.1016/j.bbamem.2012.02.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 02/24/2012] [Accepted: 02/28/2012] [Indexed: 10/28/2022]
Abstract
Voltage-dependent potassium (Kv), sodium (Nav), and calcium channels open and close in response to changes in transmembrane (TM) potential, thus regulating cell excitability by controlling ion flow across the membrane. An outstanding question concerning voltage gating is how voltage-induced conformational changes of the channel voltage-sensing domains (VSDs) are coupled through the S4-S5 interfacial linking helices to the opening and closing of the pore domain (PD). To investigate the coupling between the VSDs and the PD, we generated a closed Kv channel configuration from Aeropyrum pernix (KvAP) using atomistic simulations with experiment-based restraints on the VSDs. Full closure of the channel required, in addition to the experimentally determined TM displacement, that the VSDs be displaced both inwardly and laterally around the PD. This twisting motion generates a tight hydrophobic interface between the S4-S5 linkers and the C-terminal ends of the pore domain S6 helices in agreement with available experimental evidence.
Collapse
Affiliation(s)
- Eric V Schow
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| | | | | | | | | |
Collapse
|
16
|
The conserved phenylalanine in the K+ channel voltage-sensor domain creates a barrier with unidirectional effects. Biophys J 2013; 104:75-84. [PMID: 23332060 DOI: 10.1016/j.bpj.2012.11.3827] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 11/07/2012] [Accepted: 11/12/2012] [Indexed: 11/21/2022] Open
Abstract
Voltage-gated ion channels are crucial for regulation of electric activity of excitable tissues such as nerve cells, and play important roles in many diseases. During activation, the charged S4 segment in the voltage sensor domain translates across a hydrophobic core forming a barrier for the gating charges. This barrier is critical for channel function, and a conserved phenylalanine in segment S2 has previously been identified to be highly sensitive to substitutions. Here, we have studied the kinetics of K(v)1-type potassium channels (Shaker and K(v)1.2/2.1 chimera) through site-directed mutagenesis, electrophysiology, and molecular simulations. The F290L mutation in Shaker (F233L in K(v)1.2/2.1) accelerates channel closure by at least a factor 50, although opening is unaffected. Free energy profiles with the hydrophobic neighbors of F233 mutated to alanine indicate that the open state with the fourth arginine in S4 above the hydrophobic core is destabilized by ∼17 kJ/mol compared to the first closed intermediate. This significantly lowers the barrier of the first deactivation step, although the last step of activation is unaffected. Simulations of wild-type F233 show that the phenyl ring always rotates toward the extracellular side both for activation and deactivation, which appears to help stabilize a well-defined open state.
Collapse
|
17
|
Krepkiy D, Gawrisch K, Swartz KJ. Structural interactions between lipids, water and S1-S4 voltage-sensing domains. J Mol Biol 2012; 423:632-47. [PMID: 22858867 PMCID: PMC3616881 DOI: 10.1016/j.jmb.2012.07.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 07/17/2012] [Accepted: 07/20/2012] [Indexed: 10/28/2022]
Abstract
Membrane proteins serve crucial signaling and transport functions, yet relatively little is known about their structures in membrane environments or how lipids interact with these proteins. For voltage-activated ion channels, X-ray structures suggest that the mobile voltage-sensing S4 helix would be exposed to the membrane, and functional studies reveal that lipid modification can profoundly alter channel activity. Here, we use solid-state NMR to investigate structural interactions of lipids and water with S1-S4 voltage-sensing domains and to explore whether lipids influence the structure of the protein. Our results demonstrate that S1-S4 domains exhibit extensive interactions with lipids and that these domains are heavily hydrated when embedded in a membrane. We also find evidence for preferential interactions of anionic lipids with S1-S4 domains and that these interactions have lifetimes on the timescale of ≤ 10(-3)s. Arg residues within S1-S4 domains are well hydrated and are positioned in close proximity to lipids, exhibiting local interactions with both lipid headgroups and acyl chains. Comparative studies with a positively charged lipid lacking a phosphodiester group reveal that this lipid modification has only modest effects on the structure and hydration of S1-S4 domains. Taken together, our results demonstrate that Arg residues in S1-S4 voltage-sensing domains reside in close proximity to the hydrophobic interior of the membrane yet are well hydrated, a requirement for carrying charge and driving protein motions in response to changes in membrane voltage.
Collapse
Affiliation(s)
- Dmitriy Krepkiy
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892 USA
| | - Klaus Gawrisch
- Laboratory of Membrane Biochemistry and Biophysics, National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892 USA
| | - Kenton J. Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
18
|
Peyser A, Nonner W. The sliding-helix voltage sensor: mesoscale views of a robust structure-function relationship. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 41:705-21. [PMID: 22907204 DOI: 10.1007/s00249-012-0847-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 07/17/2012] [Accepted: 07/27/2012] [Indexed: 10/28/2022]
Abstract
The voltage sensor (VS) domain of voltage-gated ion channels underlies the electrical excitability of living cells. We simulate a mesoscale model of the VS domain to determine the functional consequences of some of its physical elements. Our mesoscale model is based on VS charges, linear dielectrics, and whole-body motion, applied to an S4 "sliding helix." The electrostatics under voltage-clamped boundary conditions are solved consistently using a boundary-element method. Based on electrostatic configurational energy, statistical-mechanical expectations of the experimentally observable relation between displaced charge and membrane voltage are predicted. Consequences of the model are investigated for variations of S4 configuration (α- and 3(10)-helical), countercharge alignment with S4 charges, protein polarizability, geometry of the gating canal, screening of S4 charges by the baths, and fixed charges located at the bath interfaces. The sliding-helix VS domain has an inherent electrostatic stability in the explored parameter space: countercharges present in the region of weak dielectric always retain an equivalent S4 charge in that region but allow sliding movements displacing 3-4 e (0). That movement is sensitive to small energy variations (<2 kT) along the path dependent on a number of electrostatic parameters tested in our simulations. These simulations show how the slope of the relation between displaced charge and voltage could be tuned in a channel.
Collapse
Affiliation(s)
- Alexander Peyser
- Department of Physiology and Biophysics, University of Miami Computational Biophysics, German Research School for Simulation Sciences, Jülich, Germany.
| | | |
Collapse
|
19
|
Abstract
The structural model of a K(V) (K(+)-selective, voltage-gated) channel in the open state is known (Protein Data Bank ID code 2R9R). Each subunit of the channel has four negatively charged residues distributed in the transmembrane segments S1, S2, and S3 that bind to and facilitate the movement within the membrane of the positively charged, voltage-sensing residues of S4. When extrapolated to the closed state, the two outermost negatively charged residues are exposed to extracellular fluid and not bound to S4 residues, all of which have theoretically been driven inward by voltage. If this closed state model is correct, these residues are available to bind external cations. We examined the effects of La(3+) on voltage-gated Shaker K(+) channels. Addition of the trivalent cation La(3+) (50 μM) extracellularly markedly prolongs the lag that precedes channel opening and slows the subsequent rise of K(+) current (I(K)) at all voltages. Decay kinetics of I(K) at negative voltages are unaltered. Gating current (I(g)) recorded from a nonconducting mutant shows that La(3+) reduces the initial amplitude of I(g) nearly twofold. We postulate that, in the resting state, La(3+) binds to the unoccupied, outermost negative residues, hindering outward S4 motion, thus increasing the lag on activation and slowing the rise of I(K). In the activated state, La(3+) is displaced by outward movement of arginine residues in S4; La(3+), therefore, is not present to affect channel closing. The results give strong support to the closed state model of the K(V) channel and a clear explanation of the effect of multivalent cations on cellular excitability.
Collapse
|
20
|
Khalili-Araghi F, Tajkhorshid E, Roux B, Schulten K. Molecular dynamics investigation of the ω-current in the Kv1.2 voltage sensor domains. Biophys J 2012; 102:258-67. [PMID: 22339862 DOI: 10.1016/j.bpj.2011.10.057] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 10/26/2011] [Accepted: 10/28/2011] [Indexed: 10/14/2022] Open
Abstract
Voltage sensor domains (VSD) are transmembrane proteins that respond to changes in membrane voltage and modulate the activity of ion channels, enzymes, or in the case of proton channels allow permeation of protons across the cell membrane. VSDs consist of four transmembrane segments, S1-S4, forming an antiparallel helical bundle. The S4 segment contains several positively charged residues, mainly arginines, located at every third position along the helix. In the voltage-gated Shaker K(+) channel, the mutation of the first arginine of S4 to a smaller uncharged amino acid allows permeation of cations through the VSD. These currents, known as ω-currents, pass through the VSD and are distinct from K(+) currents passing through the main ion conduction pore. Here we report molecular dynamics simulations of the ω-current in the resting-state conformation for Kv1.2 and for four of its mutants. The four tested mutants exhibit various degrees of conductivity for K(+) and Cl(-) ions, with a slight selectivity for K(+) over Cl(-). Analysis of the ion permeation pathway, in the case of a highly conductive mutant, reveals a negatively charged constriction region near the center of the membrane that might act as a selectivity filter to prevent permeation of anions through the pore. The residues R1 in S4 and E1 in S2 are located at the narrowest region of the ω-pore for the resting state conformation of the VSD, in agreement with experiments showing that the largest increase in current is produced by the double mutation E1D and R1S.
Collapse
Affiliation(s)
- Fatemeh Khalili-Araghi
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | | | | | | |
Collapse
|
21
|
Delemotte L, Klein ML, Tarek M. Molecular dynamics simulations of voltage-gated cation channels: insights on voltage-sensor domain function and modulation. Front Pharmacol 2012; 3:97. [PMID: 22654756 PMCID: PMC3361024 DOI: 10.3389/fphar.2012.00097] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 05/01/2012] [Indexed: 11/26/2022] Open
Abstract
Since their discovery in the 1950s, the structure and function of voltage-gated cation channels (VGCC) has been largely understood thanks to results stemming from electrophysiology, pharmacology, spectroscopy, and structural biology. Over the past decade, computational methods such as molecular dynamics (MD) simulations have also contributed, providing molecular level information that can be tested against experimental results, thereby allowing the validation of the models and protocols. Importantly, MD can shed light on elements of VGCC function that cannot be easily accessed through “classical” experiments. Here, we review the results of recent MD simulations addressing key questions that pertain to the function and modulation of the VGCC’s voltage-sensor domain (VSD) highlighting: (1) the movement of the S4-helix basic residues during channel activation, articulating how the electrical driving force acts upon them; (2) the nature of the VSD intermediate states on transitioning between open and closed states of the VGCC; and (3) the molecular level effects on the VSD arising from mutations of specific S4 positively charged residues involved in certain genetic diseases.
Collapse
Affiliation(s)
- Lucie Delemotte
- Equipe de Chimie et Biochimie Théoriques, UMR Synthèse et Réactivité de Systèmes Moléculaires Complexes, Centre National de la Recherche Scientifique Université de Lorraine Nancy, France
| | | | | |
Collapse
|
22
|
Cheng YM, Claydon TW. Voltage-dependent gating of HERG potassium channels. Front Pharmacol 2012; 3:83. [PMID: 22586397 PMCID: PMC3347040 DOI: 10.3389/fphar.2012.00083] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 04/16/2012] [Indexed: 12/20/2022] Open
Abstract
The mechanisms by which voltage-gated channels sense changes in membrane voltage and energetically couple this with opening of the ion conducting pore has been the source of significant interest. In voltage-gated potassium (Kv) channels, much of our knowledge in this area comes from Shaker-type channels, for which voltage-dependent gating is quite rapid. In these channels, activation and deactivation are associated with rapid reconfiguration of the voltage-sensing domain unit that is electromechanically coupled, via the S4-S5 linker helix, to the rate-limiting opening of an intracellular pore gate. However, fast voltage-dependent gating kinetics are not typical of all Kv channels, such as Kv11.1 (human ether-à-go-go related gene, hERG), which activates and deactivates very slowly. Compared to Shaker channels, our understanding of the mechanisms underlying slow hERG gating is much poorer. Here, we present a comparative review of the structure-function relationships underlying activation and deactivation gating in Shaker and hERG channels, with a focus on the roles of the voltage-sensing domain and the S4-S5 linker that couples voltage sensor movements to the pore. Measurements of gating current kinetics and fluorimetric analysis of voltage sensor movement are consistent with models suggesting that the hERG activation pathway contains a voltage independent step, which limits voltage sensor transitions. Constraints upon hERG voltage sensor movement may result from loose packing of the S4 helices and additional intra-voltage sensor counter-charge interactions. More recent data suggest that key amino acid differences in the hERG voltage-sensing unit and S4-S5 linker, relative to fast activating Shaker-type Kv channels, may also contribute to the increased stability of the resting state of the voltage sensor.
Collapse
Affiliation(s)
- Yen May Cheng
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University Burnaby, BC, Canada
| | | |
Collapse
|
23
|
Abstract
Voltage-gated ion channels open and close in response to changes in membrane potential, thereby enabling electrical signaling in excitable cells. The voltage sensitivity is conferred through four voltage-sensor domains (VSDs) where positively charged residues in the fourth transmembrane segment (S4) sense the potential. While an open state is known from the Kv1.2/2.1 X-ray structure, the conformational changes underlying voltage sensing have not been resolved. We present 20 additional interactions in one open and four different closed conformations based on metal-ion bridges between all four segments of the VSD in the voltage-gated Shaker K channel. A subset of the experimental constraints was used to generate Rosetta models of the conformations that were subjected to molecular simulation and tested against the remaining constraints. This achieves a detailed model of intermediate conformations during VSD gating. The results provide molecular insight into the transition, suggesting that S4 slides at least 12 Å along its axis to open the channel with a 3(10) helix region present that moves in sequence in S4 in order to occupy the same position in space opposite F290 from open through the three first closed states.
Collapse
|
24
|
Vargas E, Bezanilla F, Roux B. In search of a consensus model of the resting state of a voltage-sensing domain. Neuron 2012; 72:713-20. [PMID: 22153369 DOI: 10.1016/j.neuron.2011.09.024] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2011] [Indexed: 11/19/2022]
Abstract
Voltage-sensing domains (VSDs) undergo conformational changes in response to the membrane potential and are the critical structural modules responsible for the activation of voltage-gated channels. Structural information about the key conformational states underlying voltage activation is currently incomplete. Through the use of experimentally determined residue-residue interactions as structural constraints, we determine and refine a model of the Kv channel VSD in the resting conformation. The resulting structural model is in broad agreement with results that originate from various labs using different techniques, indicating the emergence of a consensus for the structural basis of voltage sensing.
Collapse
Affiliation(s)
- Ernesto Vargas
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | | | | |
Collapse
|
25
|
Sand RM, Atherton DM, Spencer AN, Gallin WJ. jShaw1, a low-threshold, fast-activating K(v)3 from the hydrozoan jellyfish Polyorchis penicillatus. ACTA ACUST UNITED AC 2011; 214:3124-37. [PMID: 21865525 DOI: 10.1242/jeb.057000] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Voltage-gated potassium (K(v)) channels work in concert with other ion channels to determine the frequency and duration of action potentials in excitable cells. Little is known about K(v)3 channels from invertebrates, but those that have been characterized generally display slow kinetics. Here, we report the cloning and characterization of jShaw1, the first K(v)3 isolated from a cnidarian, the jellyfish Polyorchis penicillatus, in comparison with mouse K(v)3.1 and K(v)3.2. Using a two-electrode voltage clamp on Xenopus laevis oocytes expressing the channels, we compared steady-state and kinetic properties of macroscopic currents. jShaw1 is fast activating, and opens at potentials approximately 40 mV more hyperpolarized than the mouse K(v)3 channels. There is an inverse relationship between the number of positive charges on the voltage sensor and the half-activation voltage of the channel, contrary to what would be expected with the simplest model of voltage sensitivity. jShaw1 has kinetic characteristics that are substantially different from the mammalian K(v)3 channels, including a much lower sensitivity of early activation rates to incremental voltage changes, and a much faster voltage-dependent transition in the last stages of opening. jShaw1 opening kinetics were affected little by pre-depolarization voltage, in contrast to both mouse channels. Similar to the mouse channels, jShaw1 was half-blocked by 0.7 mmol l(-1) tetraethyl ammonium and 5 mmol l(-1) 4-aminopyridine. Comparison of sequence and functional properties of jShaw1 with the mouse and other reported K(v)3 channels helps to illuminate the general relationship between amino acid sequence and electrophysiological activity in this channel family.
Collapse
Affiliation(s)
- Rheanna M Sand
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | | | | | | |
Collapse
|
26
|
Fernández-Ballester G, Fernández-Carvajal A, González-Ros JM, Ferrer-Montiel A. Ionic channels as targets for drug design: a review on computational methods. Pharmaceutics 2011; 3:932-53. [PMID: 24309315 PMCID: PMC3857065 DOI: 10.3390/pharmaceutics3040932] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 10/26/2011] [Accepted: 11/30/2011] [Indexed: 01/21/2023] Open
Abstract
Ion channels are involved in a broad range of physiological and pathological processes. The implications of ion channels in a variety of diseases, including diabetes, epilepsy, hypertension, cancer and even chronic pain, have signaled them as pivotal drug targets. Thus far, drugs targeting ion channels were developed without detailed knowledge of the molecular interactions between the lead compounds and the target channels. In recent years, however, the emergence of high-resolution structures for a plethora of ion channels paves the way for computer-assisted drug design. Currently, available functional and structural data provide an attractive platform to generate models that combine substrate-based and protein-based approaches. In silico approaches include homology modeling, quantitative structure-activity relationships, virtual ligand screening, similarity and pharmacophore searching, data mining, and data analysis tools. These strategies have been frequently used in the discovery and optimization of novel molecules with enhanced affinity and specificity for the selected therapeutic targets. In this review we summarize recent applications of in silico methods that are being used for the development of ion channel drugs.
Collapse
|
27
|
Börjesson SI, Elinder F. An electrostatic potassium channel opener targeting the final voltage sensor transition. ACTA ACUST UNITED AC 2011; 137:563-77. [PMID: 21624947 PMCID: PMC3105513 DOI: 10.1085/jgp.201110599] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Free polyunsaturated fatty acids (PUFAs) modulate the voltage dependence of voltage-gated ion channels. As an important consequence thereof, PUFAs can suppress epileptic seizures and cardiac arrhythmia. However, molecular details for the interaction between PUFA and ion channels are not well understood. In this study, we have localized the site of action for PUFAs on the voltage-gated Shaker K channel by introducing positive charges on the channel surface, which potentiated the PUFA effect. Furthermore, we found that PUFA mainly affects the final voltage sensor movement, which is closely linked to channel opening, and that specific charges at the extracellular end of the voltage sensor are critical for the PUFA effect. Because different voltage-gated K channels have different charge profiles, this implies channel-specific PUFA effects. The identified site and the pharmacological mechanism will potentially be very useful in future drug design of small-molecule compounds specifically targeting neuronal and cardiac excitability.
Collapse
Affiliation(s)
- Sara I Börjesson
- Department of Clinical and Experimental Medicine, Division of Cell Biology, Linköping University, Sweden
| | | |
Collapse
|
28
|
Wee CL, Chetwynd A, Sansom MSP. Membrane insertion of a voltage sensor helix. Biophys J 2011; 100:410-9. [PMID: 21244837 DOI: 10.1016/j.bpj.2010.12.3682] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 11/30/2010] [Accepted: 12/02/2010] [Indexed: 10/18/2022] Open
Abstract
Most membrane proteins contain a transmembrane (TM) domain made up of a bundle of lipid-bilayer-spanning α-helices. TM α-helices are generally composed of a core of largely hydrophobic amino acids, with basic and aromatic amino acids at each end of the helix forming interactions with the lipid headgroups and water. In contrast, the S4 helix of ion channel voltage sensor (VS) domains contains four or five basic (largely arginine) side chains along its length and yet adopts a TM orientation as part of an independently stable VS domain. Multiscale molecular dynamics simulations are used to explore how a charged TM S4 α-helix may be stabilized in a lipid bilayer, which is of relevance in the context of mechanisms of translocon-mediated insertion of S4. Free-energy profiles for insertion of the S4 helix into a phospholipid bilayer suggest that it is thermodynamically favorable for S4 to insert from water to the center of the membrane, where the helix adopts a TM orientation. This is consistent with crystal structures of Kv channels, biophysical studies of isolated VS domains in lipid bilayers, and studies of translocon-mediated S4 helix insertion. Decomposition of the free-energy profiles reveals the underlying physical basis for TM stability, whereby the preference of the hydrophobic residues of S4 to enter the bilayer dominates over the free-energy penalty for inserting charged residues, accompanied by local distortion of the bilayer and penetration of waters. We show that the unique combination of charged and hydrophobic residues in S4 allows it to insert stably into the membrane.
Collapse
Affiliation(s)
- Chze Ling Wee
- Department of Biochemistry, University of Oxford, United Kingdom
| | | | | |
Collapse
|
29
|
Mokrab Y, Sansom MSP. Interaction of diverse voltage sensor homologs with lipid bilayers revealed by self-assembly simulations. Biophys J 2011; 100:875-84. [PMID: 21320431 DOI: 10.1016/j.bpj.2010.11.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 11/17/2010] [Accepted: 11/18/2010] [Indexed: 12/31/2022] Open
Abstract
Voltage sensors (VS) domains couple the activation of ion channels/enzymes to changes in membrane voltage. We used molecular dynamics simulations to examine interactions with lipids of several VS homologs. VSs in intact channels in the activated state are exposed to phospholipids, leading to a characteristic local distortion of the lipid bilayer which decreases its thickness by ∼10 Å. This effect is mediated by a conserved hydrophilic stretch in the S4-S5 segment linking the VS and the pore domains, and may favor gating charges crossing the membrane. In cationic lipid bilayers lacking phosphate groups, VSs form fewer contacts with lipid headgroups. The S3-S4 paddle motifs show persistent interactions of individual lipid molecules, influenced by the hairpin loop. In conclusion, our results suggest common interactions with phospholipids for various VS homologs, providing insights into the molecular basis of their stabilization in the membrane and how they are altered by lipid modification.
Collapse
Affiliation(s)
- Younes Mokrab
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
30
|
Intermediate states of the Kv1.2 voltage sensor from atomistic molecular dynamics simulations. Proc Natl Acad Sci U S A 2011; 108:6109-14. [PMID: 21444776 DOI: 10.1073/pnas.1102724108] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The response of a membrane-bound Kv1.2 ion channel to an applied transmembrane potential has been studied using molecular dynamics simulations. Channel deactivation is shown to involve three intermediate states of the voltage sensor domain (VSD), and concomitant movement of helix S4 charges 10-15 Å along the bilayer normal; the latter being enabled by zipper-like sequential pairing of S4 basic residues with neighboring VSD acidic residues and membrane-lipid head groups. During the observed sequential transitions S4 basic residues pass through the recently discovered charge transfer center with its conserved phenylalanine residue, F(233). Analysis indicates that the local electric field within the VSD is focused near the F(233) residue and that it remains essentially unaltered during the entire process. Overall, the present computations provide an atomistic description of VSD response to hyperpolarization, add support to the sliding helix model, and capture essential features inferred from a variety of recent experiments.
Collapse
|
31
|
Schwaiger C, Bjelkmar P, Hess B, Lindahl E. 3₁₀-helix conformation facilitates the transition of a voltage sensor S4 segment toward the down state. Biophys J 2011; 100:1446-54. [PMID: 21402026 PMCID: PMC3059565 DOI: 10.1016/j.bpj.2011.02.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 12/20/2010] [Accepted: 02/02/2011] [Indexed: 10/18/2022] Open
Abstract
The activation of voltage-gated ion channels is controlled by the S4 helix, with arginines every third residue. The x-ray structures are believed to reflect an open-inactivated state, and models propose combinations of translation, rotation, and tilt to reach the resting state. Recently, experiments and simulations have independently observed occurrence of 3(10)-helix in S4. This suggests S4 might make a transition from α- to 3(10)-helix in the gating process. Here, we show 3(10)-helix structure between Q1 and R3 in the S4 segment of a voltage sensor appears to facilitate the early stage of the motion toward a down state. We use multiple microsecond-steered molecular simulations to calculate the work required for translating S4 both as α-helix and transformed to 3(10)-helix. The barrier appears to be caused by salt-bridge reformation simultaneous to R4 passing the F233 hydrophobic lock, and it is almost a factor-two lower with 3(10)-helix. The latter facilitates translation because R2/R3 line up to face E183/E226, which reduces the requirement to rotate S4. This is also reflected in a lower root mean-square deviation distortion of the rest of the voltage sensor. This supports the 3(10) hypothesis, and could explain some of the differences between the open-inactivated- versus activated-states.
Collapse
Affiliation(s)
| | | | | | - Erik Lindahl
- Theoretical and Computational Biophysics, Department of Theoretical Physics and Swedish e-Science Research Center, Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|