1
|
Li F, Coleman J, Redondo-Morata L, Kalyana Sundaram RV, Stroeva E, Rothman JE, Pincet F. Quantitative single-molecule analysis of assembly and Ca 2+-dependent disassembly of synaptotagmin oligomers on lipid bilayers. Commun Biol 2024; 7:1608. [PMID: 39627539 PMCID: PMC11615320 DOI: 10.1038/s42003-024-07317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024] Open
Abstract
Synaptotagmin-1 (Syt-1) self-assembles into ring-like oligomers, and genetic and biochemical evidence suggest that oligomerization is needed to clamp synaptic vesicles and stabilize them for Ca2+-evoked release. However, oligomerization has not yet been demonstrated on lipid bilayers or studied in quantitative biophysical terms. Here we utilize single-molecule imaging methods to monitor the assembly and disassembly of oligomeric clusters of Syt-1 on lipid bilayers in real-time. Syt-1 assembled into two distinct classes of oligomers, small (5 ± 2 subunits) and large (15 ± 2 subunits). Each class assembled at a constant kon that was always proportional to its ultimate size, but both classes disassembled at the same unit rate (koff) independent of its size. Both large and small oligomers explosively disassembled when Ca2+ was added. The F349A mutation in the Syt-1 nearly eliminates the large class of oligomers but does not reduce the small class. Altogether, the physical-chemical properties of Syt-1 oligomers meet or exceed the physiologic requirements to function as such a clamp.
Collapse
Affiliation(s)
- Feng Li
- Department of Cell Biology, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
- Nanobiology Institute, Yale West Campus Yale University, West Haven, CT, 06516, USA
| | - Jeff Coleman
- Department of Cell Biology, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
- Nanobiology Institute, Yale West Campus Yale University, West Haven, CT, 06516, USA
| | - Lorena Redondo-Morata
- Aix-Marseille University, INSERM, DyNaMo, Turing centre for living systems, Marseille, France
| | - R Venkat Kalyana Sundaram
- Department of Cell Biology, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
- Nanobiology Institute, Yale West Campus Yale University, West Haven, CT, 06516, USA
| | - Ekaterina Stroeva
- Department of Cell Biology, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
- Nanobiology Institute, Yale West Campus Yale University, West Haven, CT, 06516, USA
| | - James E Rothman
- Department of Cell Biology, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA.
- Nanobiology Institute, Yale West Campus Yale University, West Haven, CT, 06516, USA.
| | - Frédéric Pincet
- Department of Cell Biology, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA.
- Nanobiology Institute, Yale West Campus Yale University, West Haven, CT, 06516, USA.
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005, Paris, France.
| |
Collapse
|
2
|
Li F, Grushin K, Coleman J, Pincet F, Rothman JE. Diacylglycerol-dependent hexamers of the SNARE-assembling chaperone Munc13-1 cooperatively bind vesicles. Proc Natl Acad Sci U S A 2023; 120:e2306086120. [PMID: 37883433 PMCID: PMC10623011 DOI: 10.1073/pnas.2306086120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
Munc13-1 is essential for vesicle docking and fusion at the active zone of synapses. Here, we report that Munc13-1 self-assembles into molecular clusters within diacylglycerol-rich microdomains present in phospholipid bilayers. Although the copy number of Munc13-1 molecules in these clusters has a broad distribution, a systematic Poisson analysis shows that this is most likely the result of two molecular species: monomers and mainly hexameric oligomers. Each oligomer is able to capture one vesicle independently. Hexamers have also been observed in crystals of Munc13-1 that form between opposed phospholipid bilayers [K. Grushin, R. V. Kalyana Sundaram, C. V. Sindelar, J. E. Rothman, Proc. Natl. Acad. Sci. U.S.A. 119, e2121259119 (2022)]. Mutations targeting the contacts stabilizing the crystallographic hexagons also disrupt the isolated hexamers, suggesting they are identical. Additionally, these mutations also convert vesicle binding from a cooperative to progressive mode. Our study provides an independent approach showing that Munc13-1 can form mainly hexamers on lipid bilayers each capable of vesicle capture.
Collapse
Affiliation(s)
- Feng Li
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT06520
- Nanobiology Institute, School of Medicine, Yale University, West Haven, CT06516
| | - Kirill Grushin
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT06520
- Nanobiology Institute, School of Medicine, Yale University, West Haven, CT06516
| | - Jeff Coleman
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT06520
- Nanobiology Institute, School of Medicine, Yale University, West Haven, CT06516
| | - Frederic Pincet
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT06520
- Nanobiology Institute, School of Medicine, Yale University, West Haven, CT06516
- Laboratoire de Physique de l’Ecole normale supérieure, Département de Physique, Ecole Normale Supérieure, Université Paris Sciences & Lettres CNRS, Sorbonne Université, Université de Paris, ParisF-75005, France
| | - James E. Rothman
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT06520
- Nanobiology Institute, School of Medicine, Yale University, West Haven, CT06516
| |
Collapse
|
3
|
Vlieghe A, Niort K, Fumat H, Guigner JM, Cohen MM, Tareste D. Role of Lipids and Divalent Cations in Membrane Fusion Mediated by the Heptad Repeat Domain 1 of Mitofusin. Biomolecules 2023; 13:1341. [PMID: 37759741 PMCID: PMC10527301 DOI: 10.3390/biom13091341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Mitochondria are highly dynamic organelles that constantly undergo fusion and fission events to maintain their shape, distribution and cellular function. Mitofusin 1 and 2 proteins are two dynamin-like GTPases involved in the fusion of outer mitochondrial membranes (OMM). Mitofusins are anchored to the OMM through their transmembrane domain and possess two heptad repeat domains (HR1 and HR2) in addition to their N-terminal GTPase domain. The HR1 domain was found to induce fusion via its amphipathic helix, which interacts with the lipid bilayer structure. The lipid composition of mitochondrial membranes can also impact fusion. However, the precise mode of action of lipids in mitochondrial fusion is not fully understood. In this study, we examined the role of the mitochondrial lipids phosphatidylethanolamine (PE), cardiolipin (CL) and phosphatidic acid (PA) in membrane fusion induced by the HR1 domain, both in the presence and absence of divalent cations (Ca2+ or Mg2+). Our results showed that PE, as well as PA in the presence of Ca2+, effectively stimulated HR1-mediated fusion, while CL had a slight inhibitory effect. By considering the biophysical properties of these lipids in the absence or presence of divalent cations, we inferred that the interplay between divalent cations and specific cone-shaped lipids creates regions with packing defects in the membrane, which provides a favorable environment for the amphipathic helix of HR1 to bind to the membrane and initiate fusion.
Collapse
Affiliation(s)
- Anaïs Vlieghe
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), Inserm UMR-S 1266, Team Membrane Traffic in Healthy & Diseased Brain, 75014 Paris, France
| | - Kristina Niort
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), Inserm UMR-S 1266, Team Membrane Traffic in Healthy & Diseased Brain, 75014 Paris, France
| | - Hugo Fumat
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), Inserm UMR-S 1266, Team Membrane Traffic in Healthy & Diseased Brain, 75014 Paris, France
| | - Jean-Michel Guigner
- Sorbonne Université, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), CNRS UMR 7590, MNHN, IRD UR 206, 75005 Paris, France
| | - Mickaël M. Cohen
- Sorbonne Université, Institut de Biologie Physico-Chimique (IBPC), CNRS UMR 8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, 75005 Paris, France
| | - David Tareste
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), Inserm UMR-S 1266, Team Membrane Traffic in Healthy & Diseased Brain, 75014 Paris, France
| |
Collapse
|
4
|
Heo P, Culver JA, Miao J, Pincet F, Mariappan M. The Get1/2 insertase forms a channel to mediate the insertion of tail-anchored proteins into the ER. Cell Rep 2023; 42:111921. [PMID: 36640319 PMCID: PMC9932932 DOI: 10.1016/j.celrep.2022.111921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/07/2022] [Accepted: 12/13/2022] [Indexed: 12/29/2022] Open
Abstract
Tail-anchored (TA) proteins contain a single C-terminal transmembrane domain (TMD) that is captured by the cytosolic Get3 in yeast (TRC40 in humans). Get3 delivers TA proteins to the Get1/2 complex for insertion into the endoplasmic reticulum (ER) membrane. How Get1/2 mediates insertion of TMDs of TA proteins into the membrane is poorly understood. Using bulk fluorescence and microfluidics assays, we show that Get1/2 forms an aqueous channel in reconstituted bilayers. We estimate the channel diameter to be ∼2.5 nm wide, corresponding to the circumference of two Get1/2 complexes. We find that the Get3 binding can seal the Get1/2 channel, which dynamically opens and closes. Our mutation analysis further shows that the Get1/2 channel activity is required to release TA proteins from Get3 for insertion into the membrane. Hence, we propose that the Get1/2 channel functions as an insertase for insertion of TMDs and as a translocase for translocation of C-terminal hydrophilic segments.
Collapse
Affiliation(s)
- Paul Heo
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France; Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France.
| | - Jacob A. Culver
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA,Nanobiology Institute, Yale University West Campus, West Haven, CT 06516, USA
| | - Jennifer Miao
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA,Nanobiology Institute, Yale University West Campus, West Haven, CT 06516, USA
| | - Frederic Pincet
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France.
| | - Malaiyalam Mariappan
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Nanobiology Institute, Yale University West Campus, West Haven, CT 06516, USA.
| |
Collapse
|
5
|
Davis LA, Fogarty MJ, Brown A, Sieck GC. Structure and Function of the Mammalian Neuromuscular Junction. Compr Physiol 2022; 12:3731-3766. [PMID: 35950651 PMCID: PMC10461538 DOI: 10.1002/cphy.c210022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The mammalian neuromuscular junction (NMJ) comprises a presynaptic terminal, a postsynaptic receptor region on the muscle fiber (endplate), and the perisynaptic (terminal) Schwann cell. As with any synapse, the purpose of the NMJ is to transmit signals from the nervous system to muscle fibers. This neural control of muscle fibers is organized as motor units, which display distinct structural and functional phenotypes including differences in pre- and postsynaptic elements of NMJs. Motor units vary considerably in the frequency of their activation (both motor neuron discharge rate and duration/duty cycle), force generation, and susceptibility to fatigue. For earlier and more frequently recruited motor units, the structure and function of the activated NMJs must have high fidelity to ensure consistent activation and continued contractile response to sustain vital motor behaviors (e.g., breathing and postural balance). Similarly, for higher force less frequent behaviors (e.g., coughing and jumping), the structure and function of recruited NMJs must ensure short-term reliable activation but not activation sustained for a prolonged period in which fatigue may occur. The NMJ is highly plastic, changing structurally and functionally throughout the life span from embryonic development to old age. The NMJ also changes under pathological conditions including acute and chronic disease. Such neuroplasticity often varies across motor unit types. © 2022 American Physiological Society. Compr Physiol 12:1-36, 2022.
Collapse
Affiliation(s)
- Leah A. Davis
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew J. Fogarty
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Alyssa Brown
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Gary C. Sieck
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
6
|
Mion D, Bunel L, Heo P, Pincet F. The beginning and the end of SNARE-induced membrane fusion. FEBS Open Bio 2022; 12:1958-1979. [PMID: 35622519 PMCID: PMC9623537 DOI: 10.1002/2211-5463.13447] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/11/2022] [Accepted: 05/25/2022] [Indexed: 01/25/2023] Open
Abstract
Membrane fusion is not a spontaneous process. Physiologically, the formation of coiled-coil protein complexes, the SNAREpins, bridges the membrane of a vesicle and a target membrane, brings them in close contact, and provides the energy necessary for their fusion. In this review, we utilize results from in vitro experiments and simple physics and chemistry models to dissect the kinetics and energetics of the fusion process from the encounter of the two membranes to the full expansion of a fusion pore. We find three main energy barriers that oppose the fusion process: SNAREpin initiation, fusion pore opening, and expansion. SNAREpin initiation is inherent to the proteins and makes in vitro fusion kinetic experiments rather slow. The kinetics are physiologically accelerated by effectors. The energy barriers that precede pore opening and pore expansion can be overcome by several SNAREpins acting in concert.
Collapse
Affiliation(s)
- Delphine Mion
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSLCNRS, Sorbonne Université, Université Paris CitéFrance
| | - Louis Bunel
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSLCNRS, Sorbonne Université, Université Paris CitéFrance
| | - Paul Heo
- Institute of Psychiatry and Neuroscience of Paris (IPNP)INSERM U1266ParisFrance
| | - Frédéric Pincet
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSLCNRS, Sorbonne Université, Université Paris CitéFrance
| |
Collapse
|
7
|
Piffoux M, Silva AKA, Gazeau F, Tareste D. Generation of Hybrid Extracellular Vesicles by Fusion with Functionalized Liposomes. Methods Mol Biol 2022; 2473:385-396. [PMID: 35819777 DOI: 10.1007/978-1-0716-2209-4_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Extracellular vesicles (EVs) and liposomes are natural and synthetic drug delivery systems, respectively, with their own advantages and limitations. EV/liposome fusion allows the generation of hybrid EVs that benefit from both the versatility of liposomes (tunable lipid and protein composition, surface functionalization, lumen loading, etc.) and the functionality of EVs (natural targeting properties, low immunogenicity, anti-inflammatory properties, etc.). Here, we describe the methods to (1) produce EVs and liposomes, (2) induce and monitor their fusion, and (3) purify the obtained hybrid EVs.
Collapse
Affiliation(s)
- Max Piffoux
- Laboratoire Matières et Systèmes Complexes, CNRS UMR 7057, Université de Paris, Paris, France
- Interaction Cellules Souches-Niches: Physiologie, Tumeurs Et Réparation Tissulaire, Inserm UMR 1197, Université Paris-Saclay, Villejuif, France
- Département d'oncologie Médicale, Centre Léon Bérard, Lyon, France
- Oncology Department, CITOHL, Lyon-Sud Hospital, Cancer Institute of Hospices Civils de Lyon (IC-HCL), Hospices Civils de Lyon, Lyon, France
| | | | - Florence Gazeau
- Laboratoire Matières et Systèmes Complexes, CNRS UMR 7057, Université de Paris, Paris, France
| | - David Tareste
- Institut de Psychiatrie et Neurosciences de Paris, Inserm UMR 1266, Université de Paris, Paris, France.
| |
Collapse
|
8
|
Mima J. Self-assemblies of Rab- and Arf-family small GTPases on lipid bilayers in membrane tethering. Biophys Rev 2021; 13:531-539. [PMID: 34471437 DOI: 10.1007/s12551-021-00819-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
Small GTPases of the Ras superfamily, which include Ras-, Rho-, Rab-, Arf-, and Ran-family isoforms, are generally known to function as a nucleotide-dependent molecular switch in eukaryotic cells. In the GTP-loaded forms, they selectively recruit their cognate interacting proteins or protein complexes, termed "effectors," to the cytoplasmic face of subcellular membrane compartments, thereby switching on the downstream effector functions, which are vital for fundamental cellular events, such as cell proliferation, cytoskeletal organization, and intracellular membrane trafficking. Nevertheless, in addition to acting as the classic nucleotide-dependent switches for the effectors, recent studies have uncovered that small GTPases themselves can be self-assembled specifically into homo-dimers or higher-order oligomers on membranes, and these assembly processes are likely responsible for their physiological functions. This Review focuses particularly on the self-assembly processes of Rab- and Arf-family isoforms during membrane tethering, the most critical step to ensure the fidelity of membrane trafficking. A summary of the current experimental evidence for self-assemblies of Rab and Arf small GTPases on lipid bilayers in chemically defined reconstitution system is provided.
Collapse
Affiliation(s)
- Joji Mima
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871 Japan
| |
Collapse
|
9
|
Li F, Kalyana Sundaram RV, Gatta AT, Coleman J, Ramakrishnan S, Krishnakumar SS, Pincet F, Rothman JE. Vesicle capture by membrane-bound Munc13-1 requires self-assembly into discrete clusters. FEBS Lett 2021; 595:2185-2196. [PMID: 34227103 DOI: 10.1002/1873-3468.14157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/15/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022]
Abstract
Munc13-1 is a large banana-shaped soluble protein that is involved in the regulation of synaptic vesicle docking and fusion. Recent studies suggest that multiple copies of Munc13-1 form nano-assemblies in active zones of neurons. However, it is not known whether such clustering of Munc13-1 is correlated with multivalent binding to synaptic vesicles or specific plasma membrane domains at docking sites in the active zone. The functional significance of putative Munc13-1 clustering is also unknown. Here, we report that nano-clustering is an inherent property of Munc13-1 and is indeed required for vesicle binding to bilayers containing Munc13-1. Purified Munc13-1 protein reconstituted onto supported lipid bilayers assembled into clusters containing from 2 to ˜ 20 copies as revealed by a combination of quantitative TIRF microscopy and step-wise photobleaching. Surprisingly, only clusters containing a minimum of 6 copies of Munc13-1 were capable of efficiently capturing and retaining small unilamellar vesicles. The C-terminal C2 C domain of Munc13-1 is not required for Munc13-1 clustering, but is required for efficient vesicle capture. This capture is largely due to a combination of electrostatic and hydrophobic interactions between the C2 C domain and the vesicle membrane.
Collapse
Affiliation(s)
- Feng Li
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale School of Medicine, West Haven, CT, USA
| | - Ramalingam Venkat Kalyana Sundaram
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale School of Medicine, West Haven, CT, USA
| | - Alberto T Gatta
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale School of Medicine, West Haven, CT, USA
| | - Jeff Coleman
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale School of Medicine, West Haven, CT, USA
| | - Sathish Ramakrishnan
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale School of Medicine, West Haven, CT, USA
| | - Shyam S Krishnakumar
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale School of Medicine, West Haven, CT, USA
| | - Frederic Pincet
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale School of Medicine, West Haven, CT, USA
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France
| | - James E Rothman
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale School of Medicine, West Haven, CT, USA
| |
Collapse
|
10
|
Sorting sub-150-nm liposomes of distinct sizes by DNA-brick-assisted centrifugation. Nat Chem 2021; 13:335-342. [PMID: 33785892 PMCID: PMC8049973 DOI: 10.1038/s41557-021-00667-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/23/2021] [Indexed: 02/01/2023]
Abstract
In cells, myriad membrane-interacting proteins generate and maintain curved membrane domains with radii of curvature around or below 50 nm. To understand how such highly curved membranes modulate specific protein functions, and vice versa, it is imperative to use small liposomes with precisely defined attributes as model membranes. Here, we report a versatile and scalable sorting technique that uses cholesterol-modified DNA 'nanobricks' to differentiate hetero-sized liposomes by their buoyant densities. This method separates milligrams of liposomes, regardless of their origins and chemical compositions, into six to eight homogeneous populations with mean diameters of 30-130 nm. We show that these uniform, leak-resistant liposomes serve as ideal substrates to study, with an unprecedented resolution, how membrane curvature influences peripheral (ATG3) and integral (SNARE) membrane protein activities. Compared with conventional methods, our sorting technique represents a streamlined process to achieve superior liposome size uniformity, which benefits research in membrane biology and the development of liposomal drug-delivery systems.
Collapse
|
11
|
Ramakrishnan S, Bera M, Coleman J, Rothman JE, Krishnakumar SS. Synergistic roles of Synaptotagmin-1 and complexin in calcium-regulated neuronal exocytosis. eLife 2020; 9:54506. [PMID: 32401194 PMCID: PMC7220375 DOI: 10.7554/elife.54506] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/22/2020] [Indexed: 01/06/2023] Open
Abstract
Calcium (Ca2+)-evoked release of neurotransmitters from synaptic vesicles requires mechanisms both to prevent un-initiated fusion of vesicles (clamping) and to trigger fusion following Ca2+-influx. The principal components involved in these processes are the vesicular fusion machinery (SNARE proteins) and the regulatory proteins, Synaptotagmin-1 and Complexin. Here, we use a reconstituted single-vesicle fusion assay under physiologically-relevant conditions to delineate a novel mechanism by which Synaptotagmin-1 and Complexin act synergistically to establish Ca2+-regulated fusion. We find that under each vesicle, Synaptotagmin-1 oligomers bind and clamp a limited number of 'central' SNARE complexes via the primary interface and introduce a kinetic delay in vesicle fusion mediated by the excess of free SNAREpins. This in turn enables Complexin to arrest the remaining free 'peripheral' SNAREpins to produce a stably clamped vesicle. Activation of the central SNAREpins associated with Synaptotagmin-1 by Ca2+ is sufficient to trigger rapid (<100 msec) and synchronous fusion of the docked vesicles.
Collapse
Affiliation(s)
- Sathish Ramakrishnan
- Department of Cell Biology, Yale University School of Medicine, New Haven, United States
| | - Manindra Bera
- Department of Cell Biology, Yale University School of Medicine, New Haven, United States
| | - Jeff Coleman
- Department of Cell Biology, Yale University School of Medicine, New Haven, United States
| | - James E Rothman
- Department of Cell Biology, Yale University School of Medicine, New Haven, United States
| | - Shyam S Krishnakumar
- Department of Cell Biology, Yale University School of Medicine, New Haven, United States.,Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
12
|
Taniguchi S, Toyoshima M, Takamatsu T, Mima J. Curvature-sensitive trans-assembly of human Atg8-family proteins in autophagy-related membrane tethering. Protein Sci 2020; 29:1387-1400. [PMID: 31960529 DOI: 10.1002/pro.3828] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 12/18/2022]
Abstract
In macroautophagy, de novo formation of the double membrane-bound organelles, termed autophagosomes, is essential for engulfing and sequestering the cytoplasmic contents to be degraded in the lytic compartments such as vacuoles and lysosomes. Atg8-family proteins have been known to be responsible for autophagosome formation via membrane tethering and fusion events of precursor membrane structures. Nevertheless, how Atg8 proteins act directly upon autophagosome formation still remains enigmatic. Here, to further gain molecular insights into Atg8-mediated autophagic membrane dynamics, we study the two representative human Atg8 orthologs, LC3B and GATE-16, by quantitatively evaluating their intrinsic potency to physically tether lipid membranes in a chemically defined reconstitution system using purified Atg8 proteins and synthetic liposomes. Both LC3B and GATE-16 retained the capacities to trigger efficient membrane tethering at the protein-to-lipid molar ratios ranging from 1:100 to 1:5,000. These human Atg8-mediated membrane-tethering reactions require trans-assembly between the membrane-anchored forms of LC3B and GATE-16 and can be reversibly and strictly controlled by the membrane attachment and detachment cycles. Strikingly, we further uncovered distinct membrane curvature dependences of LC3B- and GATE-16-mediated membrane tethering reactions: LC3B can drive tethering more efficiently than GATE-16 for highly curved small vesicles (e.g., 50 nm in diameter), although GATE-16 turns out to be a more potent tether than LC3B for flatter large vesicles (e.g., 200 and 400 nm in diameter). Our findings establish curvature-sensitive trans-assembly of human Atg8-family proteins in reconstituted membrane tethering, which recapitulates an essential subreaction of the biogenesis of autophagosomes in vivo.
Collapse
Affiliation(s)
- Saki Taniguchi
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | | | - Tomoyo Takamatsu
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Joji Mima
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
13
|
Coleman J, Jouannot O, Ramakrishnan SK, Zanetti MN, Wang J, Salpietro V, Houlden H, Rothman JE, Krishnakumar SS. PRRT2 Regulates Synaptic Fusion by Directly Modulating SNARE Complex Assembly. Cell Rep 2019; 22:820-831. [PMID: 29346777 PMCID: PMC5792450 DOI: 10.1016/j.celrep.2017.12.056] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 11/12/2017] [Accepted: 12/17/2017] [Indexed: 11/25/2022] Open
Abstract
Mutations in proline-rich transmembrane protein 2 (PRRT2) are associated with a range of paroxysmal neurological disorders. PRRT2 predominantly localizes to the pre-synaptic terminals and is believed to regulate neurotransmitter release. However, the mechanism of action is unclear. Here, we use reconstituted single vesicle and bulk fusion assays, combined with live cell imaging of single exocytotic events in PC12 cells and biophysical analysis, to delineate the physiological role of PRRT2. We report that PRRT2 selectively blocks the trans SNARE complex assembly and thus negatively regulates synaptic vesicle priming. This inhibition is actualized via weak interactions of the N-terminal proline-rich domain with the synaptic SNARE proteins. Furthermore, we demonstrate that paroxysmal dyskinesia-associated mutations in PRRT2 disrupt this SNARE-modulatory function and with efficiencies corresponding to the severity of the disease phenotype. Our findings provide insights into the molecular mechanisms through which loss-of-function mutations in PRRT2 result in paroxysmal neurological disorders.
Collapse
Affiliation(s)
- Jeff Coleman
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ouardane Jouannot
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sathish K Ramakrishnan
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Maria N Zanetti
- Department of Clinical and Experimental Epilepsy, University College London, London WC1N 3BG, UK
| | - Jing Wang
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Vincenzo Salpietro
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Henry Houlden
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London WC1N 3BG, UK
| | - James E Rothman
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Clinical and Experimental Epilepsy, University College London, London WC1N 3BG, UK.
| | - Shyam S Krishnakumar
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Clinical and Experimental Epilepsy, University College London, London WC1N 3BG, UK.
| |
Collapse
|
14
|
Segawa K, Tamura N, Mima J. Homotypic and heterotypic trans-assembly of human Rab-family small GTPases in reconstituted membrane tethering. J Biol Chem 2019; 294:7722-7739. [PMID: 30910814 DOI: 10.1074/jbc.ra119.007947] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/07/2019] [Indexed: 11/06/2022] Open
Abstract
Membrane tethering is a highly regulated event occurring during the initial physical contact between membrane-bounded transport carriers and their target subcellular membrane compartments, thereby ensuring the spatiotemporal specificity of intracellular membrane trafficking. Although Rab-family small GTPases and specific Rab-interacting effectors, such as coiled-coil tethering proteins and multisubunit tethering complexes, are known to be involved in membrane tethering, how these protein components directly act upon the tethering event remains enigmatic. Here, using a chemically defined reconstitution system, we investigated the molecular basis of membrane tethering by comprehensively and quantitatively evaluating the intrinsic capacities of 10 representative human Rab-family proteins (Rab1a, -3a, -4a, -5a, -6a, -7a, -9a, -11a, -27a, and -33b) to physically tether two distinct membranes via homotypic and heterotypic Rab-Rab assembly. All of the Rabs tested, except Rab27a, specifically caused homotypic membrane tethering at physiologically relevant Rab densities on membrane surfaces (e.g. Rab/lipid molar ratios of 1:100-1:3,000). Notably, endosomal Rab5a retained its intrinsic potency to drive efficient homotypic tethering even at concentrations below the Rab/lipid ratio of 1:3,000. Comprehensive reconstitution experiments further uncovered that heterotypic combinations of human Rab-family isoforms, including Rab1a/6a, Rab1a/9a, and Rab1a/33b, can directly and selectively mediate membrane tethering. Rab1a and Rab9a in particular synergistically triggered very rapid and efficient membrane tethering reactions through their heterotypic trans-assembly on two opposing membranes. In conclusion, our findings establish that, in the physiological context, homotypic and heterotypic trans-assemblies of Rab-family small GTPases can provide the essential molecular machinery necessary to drive membrane tethering in eukaryotic endomembrane systems.
Collapse
Affiliation(s)
- Kazuya Segawa
- From the Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Naoki Tamura
- From the Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Joji Mima
- From the Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
15
|
Ramakrishnan S, Bera M, Coleman J, Krishnakumar SS, Pincet F, Rothman JE. Synaptotagmin oligomers are necessary and can be sufficient to form a Ca 2+ -sensitive fusion clamp. FEBS Lett 2019; 593:154-162. [PMID: 30570144 PMCID: PMC6349546 DOI: 10.1002/1873-3468.13317] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/16/2018] [Accepted: 12/17/2018] [Indexed: 12/11/2022]
Abstract
The buttressed‐ring hypothesis, supported by recent cryo‐electron tomography analysis of docked synaptic‐like vesicles in neuroendocrine cells, postulates that prefusion SNAREpins are stabilized and organized by Synaptotagmin (Syt) ring‐like oligomers. Here, we use a reconstituted single‐vesicle fusion analysis to test the prediction that destabilizing the Syt1 oligomers destabilizes the clamp and results in spontaneous fusion in the absence of Ca2+. Vesicles in which Syt oligomerization is compromised by a ring‐destabilizing mutation dock and diffuse freely on the bilayer until they fuse spontaneously, similar to vesicles containing only v‐SNAREs. In contrast, vesicles containing wild‐type Syt are immobile as soon as they attach to the bilayer and remain frozen in place, up to at least 1 h until fusion is triggered by Ca2+.
Collapse
Affiliation(s)
| | - Manindra Bera
- Department of Cell BiologyYale University School of MedicineNew HavenCTUSA
| | - Jeff Coleman
- Department of Cell BiologyYale University School of MedicineNew HavenCTUSA
| | - Shyam S. Krishnakumar
- Department of Cell BiologyYale University School of MedicineNew HavenCTUSA
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
| | - Frederic Pincet
- Department of Cell BiologyYale University School of MedicineNew HavenCTUSA
- Laboratoire de Physique StatistiqueEcole Normale SupérieureSorbonne Universités UPMC Univ Paris 06, CNRSPSL Research UniversityUniversité Paris Diderot Sorbonne Paris CitéFrance
| | - James E. Rothman
- Department of Cell BiologyYale University School of MedicineNew HavenCTUSA
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
| |
Collapse
|
16
|
Ramakrishnan S, Gohlke A, Li F, Coleman J, Xu W, Rothman JE, Pincet F. High-Throughput Monitoring of Single Vesicle Fusion Using Freestanding Membranes and Automated Analysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:5849-5859. [PMID: 29694054 DOI: 10.1021/acs.langmuir.8b00116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In vivo membrane fusion primarily occurs between highly curved vesicles and planar membranes. A better understanding of fusion entails an accurate in vitro reproduction of the process. To date, supported bilayers have been commonly used to mimic the planar membranes. Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins that induce membrane fusion usually have limited fluidity when embedded in supported bilayers. This alters the kinetics and prevents correct reconstitution of the overall fusion process. Also, observing content release across the membrane is hindered by the lack of a second aqueous compartment. Recently, a step toward resolving these issues was achieved by using membranes spread on holey substrates. The mobility of proteins was preserved but vesicles were prone to bind to the substrate when reaching the edge of the hole, preventing the observation of many fusion events over the suspended membrane. Building on this recent advance, we designed a method for the formation of pore-spanning lipid bilayers containing t-SNARE proteins on Si/SiO2 holey chips, allowing the observation of many individual vesicle fusion events by both lipid mixing and content release. With this setup, proteins embedded in the suspended membrane bounced back when they reached the edge of the hole which ensured vesicles did not bind to the substrate. We observed SNARE-dependent membrane fusion with the freestanding bilayer of about 500 vesicles. The time between vesicle docking and fusion is ∼1 s. We also present a new multimodal open-source software, Fusion Analyzer Software, which is required for fast data analysis.
Collapse
Affiliation(s)
- Sathish Ramakrishnan
- Laboratoire de Physique Statistique, Ecole Normale Supérieure , PSL Research University, Université Paris Diderot Sorbonne Paris Cité, Sorbonne Universités UPMC Univ Paris 06, CNRS , Paris 75005 , France
- Department of Cell Biology , Yale School of Medicine , New Haven , 333 Cedar Street , Connecticut 06510 , United States
- Nanobiology Institute , 850 West Campus Drive , West Haven , Connecticut 06516 , United States
| | - Andrea Gohlke
- Laboratoire de Physique Statistique, Ecole Normale Supérieure , PSL Research University, Université Paris Diderot Sorbonne Paris Cité, Sorbonne Universités UPMC Univ Paris 06, CNRS , Paris 75005 , France
- Department of Cell Biology , Yale School of Medicine , New Haven , 333 Cedar Street , Connecticut 06510 , United States
- Nanobiology Institute , 850 West Campus Drive , West Haven , Connecticut 06516 , United States
| | - Feng Li
- Department of Cell Biology , Yale School of Medicine , New Haven , 333 Cedar Street , Connecticut 06510 , United States
- Nanobiology Institute , 850 West Campus Drive , West Haven , Connecticut 06516 , United States
| | - Jeff Coleman
- Department of Cell Biology , Yale School of Medicine , New Haven , 333 Cedar Street , Connecticut 06510 , United States
- Nanobiology Institute , 850 West Campus Drive , West Haven , Connecticut 06516 , United States
| | - Weiming Xu
- Department of Cell Biology , Yale School of Medicine , New Haven , 333 Cedar Street , Connecticut 06510 , United States
- Nanobiology Institute , 850 West Campus Drive , West Haven , Connecticut 06516 , United States
| | - James E Rothman
- Department of Cell Biology , Yale School of Medicine , New Haven , 333 Cedar Street , Connecticut 06510 , United States
- Nanobiology Institute , 850 West Campus Drive , West Haven , Connecticut 06516 , United States
| | - Frederic Pincet
- Laboratoire de Physique Statistique, Ecole Normale Supérieure , PSL Research University, Université Paris Diderot Sorbonne Paris Cité, Sorbonne Universités UPMC Univ Paris 06, CNRS , Paris 75005 , France
- Department of Cell Biology , Yale School of Medicine , New Haven , 333 Cedar Street , Connecticut 06510 , United States
- Nanobiology Institute , 850 West Campus Drive , West Haven , Connecticut 06516 , United States
| |
Collapse
|
17
|
Daste F, Sauvanet C, Bavdek A, Baye J, Pierre F, Le Borgne R, David C, Rojo M, Fuchs P, Tareste D. The heptad repeat domain 1 of Mitofusin has membrane destabilization function in mitochondrial fusion. EMBO Rep 2018; 19:embr.201643637. [PMID: 29661855 DOI: 10.15252/embr.201643637] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/07/2018] [Accepted: 03/16/2018] [Indexed: 12/31/2022] Open
Abstract
Mitochondria are double-membrane-bound organelles that constantly change shape through membrane fusion and fission. Outer mitochondrial membrane fusion is controlled by Mitofusin, whose molecular architecture consists of an N-terminal GTPase domain, a first heptad repeat domain (HR1), two transmembrane domains, and a second heptad repeat domain (HR2). The mode of action of Mitofusin and the specific roles played by each of these functional domains in mitochondrial fusion are not fully understood. Here, using a combination of in situ and in vitro fusion assays, we show that HR1 induces membrane fusion and possesses a conserved amphipathic helix that folds upon interaction with the lipid bilayer surface. Our results strongly suggest that HR1 facilitates membrane fusion by destabilizing the lipid bilayer structure, notably in membrane regions presenting lipid packing defects. This mechanism for fusion is thus distinct from that described for the heptad repeat domains of SNARE and viral proteins, which assemble as membrane-bridging complexes, triggering close membrane apposition and fusion, and is more closely related to that of the C-terminal amphipathic tail of the Atlastin protein.
Collapse
Affiliation(s)
- Frédéric Daste
- Membrane Traffic in Health & Disease, INSERM ERL U950, Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Institut Jacques Monod, CNRS UMR 7592, Sorbonne Paris Cité, Université Paris Diderot, Paris, France
| | - Cécile Sauvanet
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université de Bordeaux, Bordeaux, France
| | - Andrej Bavdek
- Membrane Traffic in Health & Disease, INSERM ERL U950, Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Institut Jacques Monod, CNRS UMR 7592, Sorbonne Paris Cité, Université Paris Diderot, Paris, France
| | - James Baye
- Membrane Traffic in Health & Disease, INSERM ERL U950, Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Institut Jacques Monod, CNRS UMR 7592, Sorbonne Paris Cité, Université Paris Diderot, Paris, France
| | - Fabienne Pierre
- Membrane Traffic in Health & Disease, INSERM ERL U950, Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Institut Jacques Monod, CNRS UMR 7592, Sorbonne Paris Cité, Université Paris Diderot, Paris, France.,Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Rémi Le Borgne
- Institut Jacques Monod, CNRS UMR 7592, Sorbonne Paris Cité, Université Paris Diderot, Paris, France
| | - Claudine David
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université de Bordeaux, Bordeaux, France
| | - Manuel Rojo
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université de Bordeaux, Bordeaux, France
| | - Patrick Fuchs
- Institut Jacques Monod, CNRS UMR 7592, Sorbonne Paris Cité, Université Paris Diderot, Paris, France
| | - David Tareste
- Membrane Traffic in Health & Disease, INSERM ERL U950, Sorbonne Paris Cité, Université Paris Descartes, Paris, France .,Institut Jacques Monod, CNRS UMR 7592, Sorbonne Paris Cité, Université Paris Diderot, Paris, France.,Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| |
Collapse
|
18
|
Hastoy B, Scotti PA, Milochau A, Fezoua-Boubegtiten Z, Rodas J, Megret R, Desbat B, Laguerre M, Castano S, Perrais D, Rorsman P, Oda R, Lang J. A Central Small Amino Acid in the VAMP2 Transmembrane Domain Regulates the Fusion Pore in Exocytosis. Sci Rep 2017; 7:2835. [PMID: 28588281 PMCID: PMC5460238 DOI: 10.1038/s41598-017-03013-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 04/27/2017] [Indexed: 11/30/2022] Open
Abstract
Exocytosis depends on cytosolic domains of SNARE proteins but the function of the transmembrane domains (TMDs) in membrane fusion remains controversial. The TMD of the SNARE protein synaptobrevin2/VAMP2 contains two highly conserved small amino acids, G100 and C103, in its central portion. Substituting G100 and/or C103 with the β-branched amino acid valine impairs the structural flexibility of the TMD in terms of α-helix/β-sheet transitions in model membranes (measured by infrared reflection-absorption or evanescent wave spectroscopy) during increase in protein/lipid ratios, a parameter expected to be altered by recruitment of SNAREs at fusion sites. This structural change is accompanied by reduced membrane fluidity (measured by infrared ellipsometry). The G100V/C103V mutation nearly abolishes depolarization-evoked exocytosis (measured by membrane capacitance) and hormone secretion (measured biochemically). Single-vesicle optical (by TIRF microscopy) and biophysical measurements of ATP release indicate that G100V/C103V retards initial fusion-pore opening, hinders its expansion and leads to premature closure in most instances. We conclude that the TMD of VAMP2 plays a critical role in membrane fusion and that the structural mobility provided by the central small amino acids is crucial for exocytosis by influencing the molecular re-arrangements of the lipid membrane that are necessary for fusion pore opening and expansion.
Collapse
Affiliation(s)
- Benoît Hastoy
- Laboratory of Membrane Chemistry and Biology (CBMN), UMR CNRS 5248, Université de Bordeaux, Allée de Geoffroy St Hilaire, 33600, Pessac, France.,Université de Bordeaux, 351 Cours de la Libération, 33400, Talence, France.,Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, OX3 7LJ, UK
| | - Pier A Scotti
- Laboratory of Membrane Chemistry and Biology (CBMN), UMR CNRS 5248, Université de Bordeaux, Allée de Geoffroy St Hilaire, 33600, Pessac, France.,Université de Bordeaux, 351 Cours de la Libération, 33400, Talence, France
| | - Alexandra Milochau
- Laboratory of Membrane Chemistry and Biology (CBMN), UMR CNRS 5248, Université de Bordeaux, Allée de Geoffroy St Hilaire, 33600, Pessac, France.,Université de Bordeaux, 351 Cours de la Libération, 33400, Talence, France
| | - Zahia Fezoua-Boubegtiten
- Laboratory of Membrane Chemistry and Biology (CBMN), UMR CNRS 5248, Université de Bordeaux, Allée de Geoffroy St Hilaire, 33600, Pessac, France.,Université de Bordeaux, 351 Cours de la Libération, 33400, Talence, France
| | - Jorge Rodas
- Université de Bordeaux, 351 Cours de la Libération, 33400, Talence, France.,Laboratoire de l'Intégration du Matériau au Système, UMR CNRS 5218, 351 Cours de la Libération, 33400 Talence, France.,Institut Polytechnique de Bordeaux, Avernue des Facultés, 33405, Talence, France
| | - Rémi Megret
- Université de Bordeaux, 351 Cours de la Libération, 33400, Talence, France.,Laboratoire de l'Intégration du Matériau au Système, UMR CNRS 5218, 351 Cours de la Libération, 33400 Talence, France.,Institut Polytechnique de Bordeaux, Avernue des Facultés, 33405, Talence, France
| | - Bernard Desbat
- Laboratory of Membrane Chemistry and Biology (CBMN), UMR CNRS 5248, Université de Bordeaux, Allée de Geoffroy St Hilaire, 33600, Pessac, France.,Université de Bordeaux, 351 Cours de la Libération, 33400, Talence, France
| | - Michel Laguerre
- Laboratory of Membrane Chemistry and Biology (CBMN), UMR CNRS 5248, Université de Bordeaux, Allée de Geoffroy St Hilaire, 33600, Pessac, France.,Université de Bordeaux, 351 Cours de la Libération, 33400, Talence, France
| | - Sabine Castano
- Laboratory of Membrane Chemistry and Biology (CBMN), UMR CNRS 5248, Université de Bordeaux, Allée de Geoffroy St Hilaire, 33600, Pessac, France.,Université de Bordeaux, 351 Cours de la Libération, 33400, Talence, France
| | - David Perrais
- Université de Bordeaux, 351 Cours de la Libération, 33400, Talence, France.,Interdisciplinary Institute for Neuroscience, UMR CNRS 5287, 146, rue Léo-Saignat, 33077, Bordeaux, France
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, OX3 7LJ, UK
| | - Reiko Oda
- Laboratory of Membrane Chemistry and Biology (CBMN), UMR CNRS 5248, Université de Bordeaux, Allée de Geoffroy St Hilaire, 33600, Pessac, France.,Université de Bordeaux, 351 Cours de la Libération, 33400, Talence, France
| | - Jochen Lang
- Laboratory of Membrane Chemistry and Biology (CBMN), UMR CNRS 5248, Université de Bordeaux, Allée de Geoffroy St Hilaire, 33600, Pessac, France. .,Université de Bordeaux, 351 Cours de la Libération, 33400, Talence, France.
| |
Collapse
|
19
|
Heo P, Park JB, Shin YK, Kweon DH. Visualization of SNARE-Mediated Hemifusion between Giant Unilamellar Vesicles Arrested by Myricetin. Front Mol Neurosci 2017; 10:93. [PMID: 28408867 PMCID: PMC5374201 DOI: 10.3389/fnmol.2017.00093] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/20/2017] [Indexed: 11/13/2022] Open
Abstract
Neurotransmitters are released within a millisecond after Ca2+ arrives at an active zone. However, the vesicle fusion pathway underlying this synchronous release is yet to be understood. At the center of controversy is whether hemifusion, in which outer leaflets are merged while inner leaflets are still separated, is an on-pathway or off-pathway product of Ca2+-triggered exocytosis. Using the single vesicle fusion assay, we recently demonstrated that hemifusion is an on-pathway intermediate that immediately proceeds to full fusion upon Ca2+ triggering. It has been shown that the flavonoid myricetin arrests soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor (SNARE)-mediated vesicle fusion at hemifusion, but that the hemifused vesicles spontaneously convert to full fusion when the myricetin clamp is removed by the enzyme laccase. In the present study, we visualized SNARE-mediated hemifusion between two SNARE-reconstituted giant unilamellar vesicles (GUVs) arrested by myricetin. The large size of the GUVs enabled us to directly image the hemifusion between them. When two merging GUVs were labeled with different fluorescent dyes, GUV pairs showed asymmetric fluorescence intensities depending on the position on the GUV pair consistent with what is expected for hemifusion. The flow of lipids from one vesicle to the other was revealed with fluorescence recovery after photobleaching (FRAP), indicating that the two membranes had hemifused. These results support the hypothesis that hemifusion may be the molecular status that primes Ca2+-triggered millisecond exocytosis. This study represents the first imaging of SNARE-driven hemifusion between GUVs.
Collapse
Affiliation(s)
- Paul Heo
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan UniversitySuwon, South Korea
| | - Joon-Bum Park
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan UniversitySuwon, South Korea
| | - Yeon-Kyun Shin
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State UniversityAmes, IA, USA
| | - Dae-Hyuk Kweon
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan UniversitySuwon, South Korea
| |
Collapse
|
20
|
François-Martin C, Pincet F. Actual fusion efficiency in the lipid mixing assay - Comparison between nanodiscs and liposomes. Sci Rep 2017; 7:43860. [PMID: 28266607 PMCID: PMC5339690 DOI: 10.1038/srep43860] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/31/2017] [Indexed: 01/19/2023] Open
Abstract
Lipid exchange occurs between membranes during fusion or active lipid transfer. These processes are necessary in vivo for the homeostasis of the cell at the level of the membranes, the organelles and the cell itself. They are also used by the cell to interact with the surrounding medium. Several assays have been developed to characterize in vitro these processes on model systems. The most common one, relying on fluorescence dequenching, measures lipid mixing between small membranes such as liposomes or nanodiscs in bulk. Usually, relative comparisons of the rate of lipid exchange are made between measurements performed in parallel. Here, we establish a quantitative standardization of this assay to avoid any bias resulting from the temperatures, the chosen fluorescent lipid fractions and from the various detergents used to normalize the measurements. We used this standardization to quantitatively compare the efficiency of SNARE-induced fusion in liposome-liposome and liposome-nanodisc configurations having similar collision frequency. We found that the initial yield of fusion is comparable in both cases, 1 per 2-3 million collisions in spite of a much larger dequenching signal with nanodiscs. Also, the long-term actual fusion rate is slightly lower with nanodiscs than in the liposome-liposome assay.
Collapse
Affiliation(s)
- Claire François-Martin
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, Paris Sciences et Lettres Research University, 75005, Paris, France.,Laboratoire de Physique Statistique, Université Paris Diderot Sorbonne Paris Cité, 75005, Paris, France.,Laboratoire de Physique Statistique, Sorbonne Universités, Université Pierre et Marie Curie, Univ Paris 06, CNRS, 75005, Paris, France.,Laboratoire de Physique Statistique, Ecole Normale Supérieure, Paris Sciences et Lettres Research University, 75005, Paris, France
| | - Frédéric Pincet
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, Paris Sciences et Lettres Research University, 75005, Paris, France.,Laboratoire de Physique Statistique, Université Paris Diderot Sorbonne Paris Cité, 75005, Paris, France.,Laboratoire de Physique Statistique, Sorbonne Universités, Université Pierre et Marie Curie, Univ Paris 06, CNRS, 75005, Paris, France.,Laboratoire de Physique Statistique, Ecole Normale Supérieure, Paris Sciences et Lettres Research University, 75005, Paris, France
| |
Collapse
|
21
|
SM protein Munc18-2 facilitates transition of Syntaxin 11-mediated lipid mixing to complete fusion for T-lymphocyte cytotoxicity. Proc Natl Acad Sci U S A 2017; 114:E2176-E2185. [PMID: 28265073 DOI: 10.1073/pnas.1617981114] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The atypical lipid-anchored Syntaxin 11 (STX11) and its binding partner, the Sec/Munc (SM) protein Munc18-2, facilitate cytolytic granule release by cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells. Patients carrying mutations in these genes develop familial hemophagocytic lymphohistiocytosis, a primary immunodeficiency characterized by impaired lytic granule exocytosis. However, whether a SNARE such as STX11, which lacks a transmembrane domain, can support membrane fusion in vivo is uncertain, as is the precise role of Munc18-2 during lytic granule exocytosis. Here, using a reconstituted "flipped" cell-cell fusion assay, we show that lipid-anchored STX11 and its cognate SNARE proteins mainly support exchange of lipids but not cytoplasmic content between cells, resembling hemifusion. Strikingly, complete fusion is stimulated by addition of wild-type Munc18-2 to the assay, but not of Munc18-2 mutants with abnormal STX11 binding. Our data reveal that Munc18-2 is not just a chaperone of STX11 but also directly contributes to complete membrane merging by promoting SNARE complex assembly. These results further support the concept that SM proteins in general are part of the core fusion machinery. This fusion mechanism likely contributes to other cell-type-specific exocytic processes such as platelet secretion.
Collapse
|
22
|
Han J, Pluhackova K, Böckmann RA. The Multifaceted Role of SNARE Proteins in Membrane Fusion. Front Physiol 2017; 8:5. [PMID: 28163686 PMCID: PMC5247469 DOI: 10.3389/fphys.2017.00005] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/04/2017] [Indexed: 12/28/2022] Open
Abstract
Membrane fusion is a key process in all living organisms that contributes to a variety of biological processes including viral infection, cell fertilization, as well as intracellular transport, and neurotransmitter release. In particular, the various membrane-enclosed compartments in eukaryotic cells need to exchange their contents and communicate across membranes. Efficient and controllable fusion of biological membranes is known to be driven by cooperative action of SNARE proteins, which constitute the central components of the eukaryotic fusion machinery responsible for fusion of synaptic vesicles with the plasma membrane. During exocytosis, vesicle-associated v-SNARE (synaptobrevin) and target cell-associated t-SNAREs (syntaxin and SNAP-25) assemble into a core trans-SNARE complex. This complex plays a versatile role at various stages of exocytosis ranging from the priming to fusion pore formation and expansion, finally resulting in the release or exchange of the vesicle content. This review summarizes current knowledge on the intricate molecular mechanisms underlying exocytosis triggered and catalyzed by SNARE proteins. Particular attention is given to the function of the peptidic SNARE membrane anchors and the role of SNARE-lipid interactions in fusion. Moreover, the regulatory mechanisms by synaptic auxiliary proteins in SNARE-driven membrane fusion are briefly outlined.
Collapse
Affiliation(s)
- Jing Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science CenterXi'an, China; Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-NürnbergErlangen, Germany
| | - Kristyna Pluhackova
- Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg Erlangen, Germany
| | - Rainer A Böckmann
- Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg Erlangen, Germany
| |
Collapse
|
23
|
FRAP to Characterize Molecular Diffusion and Interaction in Various Membrane Environments. PLoS One 2016; 11:e0158457. [PMID: 27387979 PMCID: PMC4936743 DOI: 10.1371/journal.pone.0158457] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 06/16/2016] [Indexed: 11/19/2022] Open
Abstract
Fluorescence recovery after photobleaching (FRAP) is a standard method used to study the dynamics of lipids and proteins in artificial and cellular membrane systems. The advent of confocal microscopy two decades ago has made quantitative FRAP easily available to most laboratories. Usually, a single bleaching pattern/area is used and the corresponding recovery time is assumed to directly provide a diffusion coefficient, although this is only true in the case of unrestricted Brownian motion. Here, we propose some general guidelines to perform FRAP experiments under a confocal microscope with different bleaching patterns and area, allowing the experimentalist to establish whether the molecules undergo Brownian motion (free diffusion) or whether they have restricted or directed movements. Using in silico simulations of FRAP measurements, we further indicate the data acquisition criteria that have to be verified in order to obtain accurate values for the diffusion coefficient and to be able to distinguish between different diffusive species. Using this approach, we compare the behavior of lipids in three different membrane platforms (supported lipid bilayers, giant liposomes and sponge phases), and we demonstrate that FRAP measurements are consistent with results obtained using other techniques such as Fluorescence Correlation Spectroscopy (FCS) or Single Particle Tracking (SPT). Finally, we apply this method to show that the presence of the synaptic protein Munc18-1 inhibits the interaction between the synaptic vesicle SNARE protein, VAMP2, and its partner from the plasma membrane, Syn1A.
Collapse
|
24
|
Bello OD, Auclair SM, Rothman JE, Krishnakumar SS. Using ApoE Nanolipoprotein Particles To Analyze SNARE-Induced Fusion Pores. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:3015-3023. [PMID: 26972604 PMCID: PMC4946868 DOI: 10.1021/acs.langmuir.6b00245] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Here we introduce ApoE-based nanolipoprotein particle (NLP)-a soluble, discoidal bilayer mimetic of ∼23 nm in diameter, as fusion partners to study the dynamics of fusion pores induced by SNARE proteins. Using in vitro lipid mixing and content release assays, we report that NLPs reconstituted with synaptic v-SNARE VAMP2 (vNLP) fuse with liposomes containing the cognate t-SNARE (Syntaxin1/SNAP25) partner, with the resulting fusion pore opening directly to the external buffer. Efflux of encapsulated fluorescent dextrans of different sizes show that unlike the smaller nanodiscs, these larger NLPs accommodate the expansion of the fusion pore to at least ∼9 nm, and dithionite quenching of fluorescent lipid introduced in vNLP confirms that the NLP fusion pores are short-lived and eventually reseal. The NLPs also have capacity to accommodate larger number of proteins and using vNLPs with defined number of VAMP2 protein, including physiologically relevant copy numbers, we find that 3-4 copies of VAMP2 (minimum 2 per face) are required to keep a nascent fusion pore open, and the SNARE proteins act cooperatively to dilate the nascent fusion pore.
Collapse
|
25
|
Schwenen LLG, Hubrich R, Milovanovic D, Geil B, Yang J, Kros A, Jahn R, Steinem C. Resolving single membrane fusion events on planar pore-spanning membranes. Sci Rep 2015; 5:12006. [PMID: 26165860 PMCID: PMC4499801 DOI: 10.1038/srep12006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/15/2015] [Indexed: 12/15/2022] Open
Abstract
Even though a number of different in vitro fusion assays have been developed to analyze protein mediated fusion, they still only partially capture the essential features of the in vivo situation. Here we established an in vitro fusion assay that mimics the fluidity and planar geometry of the cellular plasma membrane to be able to monitor fusion of single protein-containing vesicles. As a proof of concept, planar pore-spanning membranes harboring SNARE-proteins were generated on highly ordered functionalized 1.2 μm-sized pore arrays in Si3N4. Full mobility of the membrane components was demonstrated by fluorescence correlation spectroscopy. Fusion was analyzed by two color confocal laser scanning fluorescence microscopy in a time resolved manner allowing to readily distinguish between vesicle docking, intermediate states such as hemifusion and full fusion. The importance of the membrane geometry on the fusion process was highlighted by comparing SNARE-mediated fusion with that of a minimal SNARE fusion mimetic.
Collapse
Affiliation(s)
- Lando L G Schwenen
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| | - Raphael Hubrich
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| | - Dragomir Milovanovic
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Burkhard Geil
- Institute for Physical Chemistry, University of Göttingen, Tammannstr. 6, 37077 Göttingen, Germany
| | - Jian Yang
- Leiden Institute of Chemistry - Supramolecular and Biomaterials Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Alexander Kros
- Leiden Institute of Chemistry - Supramolecular and Biomaterials Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Reinhard Jahn
- Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Claudia Steinem
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| |
Collapse
|
26
|
Abstract
The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex drives the majority of intracellular and exocytic membrane fusion events. Whether and how SNAREs cooperate to mediate fusion has been a subject of intense study, with estimates ranging from a single SNARE complex to 15. Here we show that there is no universally conserved number of SNARE complexes involved as revealed by our observation that this varies greatly depending on membrane curvature. When docking rates of small (∼40 nm) and large (∼100 nm) liposomes reconstituted with different synaptobrevin (the SNARE present in synaptic vesicles) densities are taken into account, the lipid mixing efficiency was maximal with small liposomes with only one synaptobrevin, whereas 23-30 synaptobrevins were necessary for efficient lipid mixing in large liposomes. Our results can be rationalized in terms of strong and weak cooperative coupling of SNARE complex assembly where each mode implicates different intermediate states of fusion that have been recently identified by electron microscopy. We predict that even higher variability in cooperativity is present in different physiological scenarios of fusion, and we further hypothesize that plasticity of SNAREs to engage in different coupling modes is an important feature of the biologically ubiquitous SNARE-mediated fusion reactions.
Collapse
|
27
|
Meriney SD, Umbach JA, Gundersen CB. Fast, Ca2+-dependent exocytosis at nerve terminals: shortcomings of SNARE-based models. Prog Neurobiol 2014; 121:55-90. [PMID: 25042638 DOI: 10.1016/j.pneurobio.2014.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 04/14/2014] [Accepted: 07/03/2014] [Indexed: 11/30/2022]
Abstract
Investigations over the last two decades have made major inroads in clarifying the cellular and molecular events that underlie the fast, synchronous release of neurotransmitter at nerve endings. Thus, appreciable progress has been made in establishing the structural features and biophysical properties of the calcium (Ca2+) channels that mediate the entry into nerve endings of the Ca2+ ions that trigger neurotransmitter release. It is now clear that presynaptic Ca2+ channels are regulated at many levels and the interplay of these regulatory mechanisms is just beginning to be understood. At the same time, many lines of research have converged on the conclusion that members of the synaptotagmin family serve as the primary Ca2+ sensors for the action potential-dependent release of neurotransmitter. This identification of synaptotagmins as the proteins which bind Ca2+ and initiate the exocytotic fusion of synaptic vesicles with the plasma membrane has spurred widespread efforts to reveal molecular details of synaptotagmin's action. Currently, most models propose that synaptotagmin interfaces directly or indirectly with SNARE (soluble, N-ethylmaleimide sensitive factor attachment receptors) proteins to trigger membrane fusion. However, in spite of intensive efforts, the field has not achieved consensus on the mechanism by which synaptotagmins act. Concurrently, the precise sequence of steps underlying SNARE-dependent membrane fusion remains controversial. This review considers the pros and cons of the different models of SNARE-mediated membrane fusion and concludes by discussing a novel proposal in which synaptotagmins might directly elicit membrane fusion without the intervention of SNARE proteins in this final fusion step.
Collapse
Affiliation(s)
- Stephen D Meriney
- Department of Neuroscience, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Joy A Umbach
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Cameron B Gundersen
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA.
| |
Collapse
|
28
|
In vitro assay using engineered yeast vacuoles for neuronal SNARE-mediated membrane fusion. Proc Natl Acad Sci U S A 2014; 111:7677-82. [PMID: 24821814 DOI: 10.1073/pnas.1400036111] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intracellular membrane fusion requires not only SNARE proteins but also other regulatory proteins such as the Rab and Sec1/Munc18 (SM) family proteins. Although neuronal SNARE proteins alone can drive the fusion between synthetic liposomes, it remains unclear whether they are also sufficient to induce the fusion of biological membranes. Here, through the use of engineered yeast vacuoles bearing neuronal SNARE proteins, we show that neuronal SNAREs can induce membrane fusion between yeast vacuoles and that this fusion does not require the function of the Rab protein Ypt7p or the SM family protein Vps33p, both of which are essential for normal yeast vacuole fusion. Although excess vacuolar SNARE proteins were also shown to mediate Rab-bypass fusion, this fusion required homotypic fusion and vacuole protein sorting complex, which bears Vps33p and was accompanied by extensive membrane lysis. We also show that this neuronal SNARE-driven vacuole fusion can be stimulated by the neuronal SM protein Munc18 and blocked by botulinum neurotoxin serotype E, a well-known inhibitor of synaptic vesicle fusion. Taken together, our results suggest that neuronal SNARE proteins are sufficient to induce biological membrane fusion, and that this new assay can be used as a simple and complementary method for investigating synaptic vesicle fusion mechanisms.
Collapse
|
29
|
Petkovic M, Jemaiel A, Daste F, Specht CG, Izeddin I, Vorkel D, Verbavatz JM, Darzacq X, Triller A, Pfenninger KH, Tareste D, Jackson CL, Galli T. The SNARE Sec22b has a non-fusogenic function in plasma membrane expansion. Nat Cell Biol 2014; 16:434-44. [PMID: 24705552 DOI: 10.1038/ncb2937] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 02/20/2014] [Indexed: 12/13/2022]
Abstract
Development of the nervous system requires extensive axonal and dendritic growth during which neurons massively increase their surface area. Here we report that the endoplasmic reticulum (ER)-resident SNARE Sec22b has a conserved non-fusogenic function in plasma membrane expansion. Sec22b is closely apposed to the plasma membrane SNARE syntaxin1. Sec22b forms a trans-SNARE complex with syntaxin1 that does not include SNAP23/25/29, and does not mediate fusion. Insertion of a long rigid linker between the SNARE and transmembrane domains of Sec22b extends the distance between the ER and plasma membrane, and impairs neurite growth but not the secretion of VSV-G. In yeast, Sec22 interacts with lipid transfer proteins, and inhibition of Sec22 leads to defects in lipid metabolism at contact sites between the ER and plasma membrane. These results suggest that close apposition of the ER and plasma membrane mediated by Sec22 and plasma membrane syntaxins generates a non-fusogenic SNARE bridge contributing to plasma membrane expansion, probably through non-vesicular lipid transfer.
Collapse
Affiliation(s)
- Maja Petkovic
- 1] INSERM, U950, F-75013 Paris, France [2] Université Paris Diderot, Sorbonne Paris Cité, ERL U950, F-75013 Paris, France [3] CNRS, UMR 7592, Institut Jacques Monod, F-75013 Paris, France [4] Ecole des Neurosciences de Paris (ENP), F-75006 Paris, France [5]
| | - Aymen Jemaiel
- 1] CNRS, UMR 7592, Institut Jacques Monod, F-75013 Paris, France [2] Membrane Dynamics and Intracellular Trafficking, Institute Jacques Monod, F-75013 Paris, France [3]
| | - Frédéric Daste
- 1] INSERM, U950, F-75013 Paris, France [2] Université Paris Diderot, Sorbonne Paris Cité, ERL U950, F-75013 Paris, France [3] CNRS, UMR 7592, Institut Jacques Monod, F-75013 Paris, France [4] Ecole Doctorale Frontières du Vivant (FdV) - Programme Bettencourt, Université Paris Descartes, Sorbonne Paris Cité, F-75004 Paris, France [5]
| | - Christian G Specht
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Biologie Cellulaire de la Synapse, INSERM U1024, CNRS UMR8197, F-75005 Paris, France
| | - Ignacio Izeddin
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Functional Imaging of Transcription, INSERM U1024, CNRS UMR8197, F-75005 Paris, France
| | - Daniela Vorkel
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Jean-Marc Verbavatz
- 1] CNRS, UMR 7592, Institut Jacques Monod, F-75013 Paris, France [2] Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Xavier Darzacq
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Functional Imaging of Transcription, INSERM U1024, CNRS UMR8197, F-75005 Paris, France
| | - Antoine Triller
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Biologie Cellulaire de la Synapse, INSERM U1024, CNRS UMR8197, F-75005 Paris, France
| | - Karl H Pfenninger
- Linda Crnic Institute for Down Syndrome and Department of Pediatrics, University Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - David Tareste
- 1] INSERM, U950, F-75013 Paris, France [2] Université Paris Diderot, Sorbonne Paris Cité, ERL U950, F-75013 Paris, France [3] CNRS, UMR 7592, Institut Jacques Monod, F-75013 Paris, France
| | - Catherine L Jackson
- 1] CNRS, UMR 7592, Institut Jacques Monod, F-75013 Paris, France [2] Membrane Dynamics and Intracellular Trafficking, Institute Jacques Monod, F-75013 Paris, France
| | - Thierry Galli
- 1] INSERM, U950, F-75013 Paris, France [2] Université Paris Diderot, Sorbonne Paris Cité, ERL U950, F-75013 Paris, France [3] CNRS, UMR 7592, Institut Jacques Monod, F-75013 Paris, France
| |
Collapse
|
30
|
Li F, Kümmel D, Coleman J, Reinisch KM, Rothman JE, Pincet F. A half-zippered SNARE complex represents a functional intermediate in membrane fusion. J Am Chem Soc 2014; 136:3456-64. [PMID: 24533674 PMCID: PMC3985920 DOI: 10.1021/ja410690m] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
SNARE
(soluble N-ethylmaleimide-sensitive factor
attachment protein receptor) proteins mediate fusion by pulling biological
membranes together via a zippering mechanism. Recent biophysical studies
have shown that t- and v-SNAREs can assemble in multiple stages from
the N-termini toward the C-termini. Here we show that functionally,
membrane fusion requires a sequential, two-step folding pathway and
assign specific and distinct functions for each step. First, the N-terminal
domain (NTD) of the v-SNARE docks to the t-SNARE, which leads to a
conformational rearrangement into an activated half-zippered SNARE
complex. This partially assembled SNARE complex locks the C-terminal
(CTD) portion of the t-SNARE into the same structure as in the postfusion
4-helix bundle, thereby creating the binding site for the CTD of the
v-SNARE and enabling fusion. Then zippering of the remaining CTD,
the membrane-proximal linker (LD), and transmembrane (TMD) domains
is required and sufficient to trigger fusion. This intrinsic property
of the SNAREs fits well with the action of physiologically vital regulators
such as complexin. We also report that NTD assembly is the rate-limiting
step. Our findings provide a refined framework for delineating the
molecular mechanism of SNARE-mediated membrane fusion and action of
regulatory proteins.
Collapse
Affiliation(s)
- Feng Li
- Department of Cell Biology, School of Medicine, Yale University , 333 Cedar Street, New Haven, Connecticut 06520, United States
| | | | | | | | | | | |
Collapse
|
31
|
Preparation and characterization of SNARE-containing nanodiscs and direct study of cargo release through fusion pores. Nat Protoc 2013; 8:935-48. [PMID: 23598444 DOI: 10.1038/nprot.2013.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This protocol describes an assay that uses suspended nanomembranes called nanodiscs to analyze fusion events. A nanodisc is a lipid bilayer wrapped by membrane scaffold proteins. Fluorescent lipids and a protein that is part of a fusion machinery, VAMP2 in the example detailed herein, are included in the nanodiscs. Upon fusion of a nanodisc with a nonfluorescent liposome containing cognate proteins (for instance, the VAMP2 cognate syntaxin1/SNAP-25 complex), the fluorescent lipids are dispersed in the liposome and the increase in fluorescence, initially quenched in the nanodisc, is monitored on a plate reader. Because the scaffold proteins restrain pore expansion, the fusion pore eventually reseals. A reducing agent, such as dithionite, which can quench the fluorescence of accessible lipids, can then be used to determine the number of fusion events. A fluorescence-based approach can also be used to monitor the release of encapsulated cargo. From data on the total cargo release and the number of the much faster lipid-mixing events, the researcher may determine the amount of cargo released per fusion event. This assay requires 3 d for preparation and 4 h for data acquisition and analysis.
Collapse
|
32
|
Rizo J, Südhof TC. The Membrane Fusion Enigma: SNAREs, Sec1/Munc18 Proteins, and Their Accomplices—Guilty as Charged? Annu Rev Cell Dev Biol 2012; 28:279-308. [DOI: 10.1146/annurev-cellbio-101011-155818] [Citation(s) in RCA: 318] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Josep Rizo
- Departments of Biophysics, Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390;
| | - Thomas C. Südhof
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University Medical School, Stanford, California 94305;
| |
Collapse
|
33
|
Krishnakumar SS, Radoff DT, Kümmel D, Giraudo CG, Li F, Khandan L, Baguley SW, Coleman J, Reinisch KM, Pincet F, Rothman JE. A conformational switch in complexin is required for synaptotagmin to trigger synaptic fusion. Nat Struct Mol Biol 2011; 18:934-40. [PMID: 21785412 DOI: 10.1038/nsmb.2103] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 05/19/2011] [Indexed: 11/09/2022]
Abstract
The crystal structure of complexin bound to a prefusion SNAREpin mimetic shows that the accessory helix extends away from the SNAREpin in an 'open' conformation, binding another SNAREpin and inhibiting its assembly, to clamp fusion. In contrast, the accessory helix in the postfusion complex parallels the SNARE complex in a 'closed' conformation. Here we use targeted mutations, FRET spectroscopy and a functional assay that reconstitutes Ca(2+)-triggered exocytosis to show that the conformational switch from open to closed in complexin is needed for synaptotagmin-Ca(2+) to trigger fusion. Triggering fusion requires the zippering of three crucial aspartate residues in the switch region (residues 64-68) of v-SNARE. Conformational switching in complexin is integral to clamp release and is probably triggered when its accessory helix is released from its trans-binding to the neighboring SNAREpin, allowing the v-SNARE to complete zippering and open a fusion pore.
Collapse
Affiliation(s)
- Shyam S Krishnakumar
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Xu Y, Seven AB, Su L, Jiang QX, Rizo J. Membrane bridging and hemifusion by denaturated Munc18. PLoS One 2011; 6:e22012. [PMID: 21765933 PMCID: PMC3130787 DOI: 10.1371/journal.pone.0022012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 06/10/2011] [Indexed: 11/19/2022] Open
Abstract
Neuronal Munc18-1 and members of the Sec1/Munc18 (SM) protein family play a critical function(s) in intracellular membrane fusion together with SNARE proteins, but the mechanism of action of SM proteins remains highly enigmatic. During experiments designed to address this question employing a 7-nitrobenz-2-oxa-1,3-diazole (NBD) fluorescence de-quenching assay that is widely used to study lipid mixing between reconstituted proteoliposomes, we observed that Munc18-1 from squid (sMunc18-1) was able to increase the apparent NBD fluorescence emission intensity even in the absence of SNARE proteins. Fluorescence emission scans and dynamic light scattering experiments show that this phenomenon arises at least in part from increased light scattering due to sMunc18-1-induced liposome clustering. Nuclear magnetic resonance and circular dichroism data suggest that, although native sMunc18-1 does not bind significantly to lipids, sMunc18-1 denaturation at 37°C leads to insertion into membranes. The liposome clustering activity of sMunc18-1 can thus be attributed to its ability to bridge two membranes upon (perhaps partial) denaturation; correspondingly, this activity is hindered by addition of glycerol. Cryo-electron microscopy shows that liposome clusters induced by sMunc18-1 include extended interfaces where the bilayers of two liposomes come into very close proximity, and clear hemifusion diaphragms. Although the physiological relevance of our results is uncertain, they emphasize the necessity of complementing fluorescence de-quenching assays with alternative experiments in studies of membrane fusion, as well as the importance of considering the potential effects of protein denaturation. In addition, our data suggest a novel mechanism of membrane hemifusion induced by amphipathic macromolecules that does not involve formation of a stalk intermediate.
Collapse
Affiliation(s)
- Yi Xu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Alpay B. Seven
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Lijing Su
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Qiu-Xing Jiang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Josep Rizo
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
35
|
Rathore SS, Ghosh N, Ouyang Y, Shen J. Topological arrangement of the intracellular membrane fusion machinery. Mol Biol Cell 2011; 22:2612-9. [PMID: 21633111 PMCID: PMC3135485 DOI: 10.1091/mbc.e11-03-0190] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The topology of the SNARE complex is strictly restricted: of all the possible topological combinations, only one is fusogenic—the topology compatible with both the basal fusion and the SM activation. A fusogenic SNARE complex must contain a complete set of the QabcR SNARE helices. Soluble N-ethylmaleimide–sensitive factor attachment protein receptors (SNAREs) form a four-helix coiled-coil bundle that juxtaposes two bilayers and drives a basal level of membrane fusion. The Sec1/Munc18 (SM) protein binds to its cognate SNARE bundle and accelerates the basal fusion reaction. The question of how the topological arrangement of the SNARE helices affects the reactivity of the fusion proteins remains unanswered. Here we address the problem for the first time in a reconstituted system containing both SNAREs and SM proteins. We find that to be fusogenic a SNARE topology must support both basal fusion and SM stimulation. Certain topological combinations of exocytic SNAREs result in basal fusion but cannot support SM stimulation, whereas other topologies support SM stimulation without inducing basal fusion. It is striking that of all the possible topological combinations of exocytic SNARE helices, only one induces efficient fusion. Our results suggest that the intracellular membrane fusion complex is designed to fuse bilayers according to one genetically programmed topology.
Collapse
Affiliation(s)
- Shailendra S Rathore
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA
| | | | | | | |
Collapse
|
36
|
Domanska MK, Kiessling V, Tamm LK. Docking and fast fusion of synaptobrevin vesicles depends on the lipid compositions of the vesicle and the acceptor SNARE complex-containing target membrane. Biophys J 2011; 99:2936-46. [PMID: 21044591 DOI: 10.1016/j.bpj.2010.09.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 08/30/2010] [Accepted: 09/01/2010] [Indexed: 10/18/2022] Open
Abstract
The influence of the lipid environment on docking and fusion of synaptobrevin 2 (Syb2) vesicles with target SNARE complex membranes was examined in a planar supported membrane fusion assay with high time-resolution. Previously, we showed that approximately eight SNARE complexes are required to fuse phosphatidylcholine (PC) and cholesterol model membranes in ∼20 ms. Here we present experiments, in which phosphatidylserine (PS) and phosphatidylethanolamine (PE) were added to mixtures of PC/cholesterol in different proportions in the Syb2 vesicle membranes only or in both the supported bilayers and the Syb2 vesicles. We found that PS and PE both reduce the probability of fusion and that this reduction is fully accounted for by the lipid composition in the vesicle membrane. However, the docking efficiency increases when the PE content in the vesicle (and target membrane) is increased from 0 to 30%. The fraction of fast-activating SNARE complexes decreases with increasing PE content. As few as three SNARE complexes are sufficient to support membrane fusion when at least 5% PS and 10% PE are present in both membranes or 5% and 30% PE are present in the vesicle membrane only. Despite the smaller number of required SNAREs, the SNARE activation and fusion rates are almost as fast as previously reported in reconstituted PC/cholesterol bilayers, i.e., ~10 and ~20 ms, respectively [corrected].
Collapse
Affiliation(s)
- Marta K Domanska
- Center for Membrane Biology and Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | | | | |
Collapse
|
37
|
Syntaxin N-terminal peptide motif is an initiation factor for the assembly of the SNARE-Sec1/Munc18 membrane fusion complex. Proc Natl Acad Sci U S A 2010; 107:22399-406. [PMID: 21139055 DOI: 10.1073/pnas.1012997108] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intracellular membrane fusion is mediated by the concerted action of N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and Sec1/Munc18 (SM) proteins. During fusion, SM proteins bind the N-terminal peptide (N-peptide) motif of the SNARE subunit syntaxin, but the function of this interaction is unknown. Here, using FRET-based biochemical reconstitution and Caenorhabditis elegans genetics, we show that the N-peptide of syntaxin-1 recruits the SM protein Munc18-1/nSec1 to the SNARE bundle, facilitating their assembly into a fusion-competent complex. The recruitment is achieved through physical tethering rather than allosteric activation of Munc18-1. Consistent with the recruitment role, the N-peptide is not spatially constrained along syntaxin-1, and it is functional when translocated to another SNARE subunit SNAP-25 or even when simply anchored in the target membrane. The N-peptide function is restricted to an early initiation stage of the fusion reaction. After association, Munc18-1 and the SNARE bundle together drive membrane merging without further involving the N-peptide. Thus, the syntaxin N-peptide is an initiation factor for the assembly of the SNARE-SM membrane fusion complex.
Collapse
|