1
|
Gare S, Chel S, Abhinav TK, Dhyani V, Jana S, Giri L. Mapping of structural arrangement of cells and collective calcium transients: an integrated framework combining live cell imaging using confocal microscopy and UMAP-assisted HDBSCAN-based approach. Integr Biol (Camb) 2022; 14:184-203. [PMID: 36670549 DOI: 10.1093/intbio/zyac017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 01/22/2023]
Abstract
Live cell calcium (Ca2+) imaging is one of the important tools to record cellular activity during in vitro and in vivo preclinical studies. Specially, high-resolution microscopy can provide valuable dynamic information at the single cell level. One of the major challenges in the implementation of such imaging schemes is to extract quantitative information in the presence of significant heterogeneity in Ca2+ responses attained due to variation in structural arrangement and drug distribution. To fill this gap, we propose time-lapse imaging using spinning disk confocal microscopy and machine learning-enabled framework for automated grouping of Ca2+ spiking patterns. Time series analysis is performed to correlate the drug induced cellular responses to self-assembly pattern present in multicellular systems. The framework is designed to reduce the large-scale dynamic responses using uniform manifold approximation and projection (UMAP). In particular, we propose the suitability of hierarchical DBSCAN (HDBSCAN) in view of reduced number of hyperparameters. We find UMAP-assisted HDBSCAN outperforms existing approaches in terms of clustering accuracy in segregation of Ca2+ spiking patterns. One of the novelties includes the application of non-linear dimension reduction in segregation of the Ca2+ transients with statistical similarity. The proposed pipeline for automation was also proved to be a reproducible and fast method with minimal user input. The algorithm was used to quantify the effect of cellular arrangement and stimulus level on collective Ca2+ responses induced by GPCR targeting drug. The analysis revealed a significant increase in subpopulation containing sustained oscillation corresponding to higher packing density. In contrast to traditional measurement of rise time and decay ratio from Ca2+ transients, the proposed pipeline was used to classify the complex patterns with longer duration and cluster-wise model fitting. The two-step process has a potential implication in deciphering biophysical mechanisms underlying the Ca2+ oscillations in context of structural arrangement between cells.
Collapse
Affiliation(s)
- Suman Gare
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad, India
| | - Soumita Chel
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad, India
| | - T K Abhinav
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad, India
| | - Vaibhav Dhyani
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad, India
| | - Soumya Jana
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, India
| | - Lopamudra Giri
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad, India
| |
Collapse
|
2
|
Hanson RL, Batchelor E. Coordination of MAPK and p53 dynamics in the cellular responses to DNA damage and oxidative stress. Mol Syst Biol 2022; 18:e11401. [PMID: 36472304 PMCID: PMC9724178 DOI: 10.15252/msb.202211401] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
In response to different cellular stresses, the transcription factor p53 undergoes different dynamics. p53 dynamics, in turn, control cell fate. However, distinct stresses can generate the same p53 dynamics but different cell fate outcomes, suggesting integration of dynamic information from other pathways is important for cell fate regulation. To determine how MAPK activities affect p53-mediated responses to DNA breaks and oxidative stress, we simultaneously tracked p53 and either ERK, JNK, or p38 activities in single cells. While p53 dynamics were comparable between the stresses, cell fate outcomes were distinct. Combining MAPK dynamics with p53 dynamics was important for distinguishing between the stresses and for generating temporal ordering of cell fate pathways. Furthermore, cross-talk between MAPKs and p53 controlled the balance between proliferation and cell death. These findings provide insight into how cells integrate signaling pathways with distinct temporal patterns of activity to encode stress specificity and drive different cell fate decisions.
Collapse
Affiliation(s)
- Ryan L Hanson
- Department of Integrative Biology and PhysiologyUniversity of MinnesotaMinneapolisMNUSA
| | - Eric Batchelor
- Department of Integrative Biology and PhysiologyUniversity of MinnesotaMinneapolisMNUSA
- Masonic Cancer CenterUniversity of MinnesotaMinneapolisMNUSA
| |
Collapse
|
3
|
Jones-Tabah J, Martin RD, Tanny JC, Clarke PBS, Hébert TE. High-Content Single-Cell Förster Resonance Energy Transfer Imaging of Cultured Striatal Neurons Reveals Novel Cross-Talk in the Regulation of Nuclear Signaling by Protein Kinase A and Extracellular Signal-Regulated Kinase 1/2. Mol Pharmacol 2021; 100:526-539. [PMID: 34503973 DOI: 10.1124/molpharm.121.000290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 09/07/2021] [Indexed: 11/22/2022] Open
Abstract
Genetically encoded biosensors can be used to track signaling events in living cells by measuring changes in fluorescence emitted by one or more fluorescent proteins. Here, we describe the use of genetically encoded biosensors based on Förster resonance energy transfer (FRET), combined with high-content microscopy, to image dynamic signaling events simultaneously in thousands of neurons in response to drug treatments. We first applied this approach to examine intercellular variation in signaling responses among cultured striatal neurons stimulated with multiple drugs. Using high-content FRET imaging and immunofluorescence, we identified neuronal subpopulations with unique responses to pharmacological manipulation and used nuclear morphology to identify medium spiny neurons within these heterogeneous striatal cultures. Focusing on protein kinase A (PKA) and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling in the cytoplasm and nucleus, we noted pronounced intercellular differences among putative medium spiny neurons, in both the magnitude and kinetics of signaling responses to drug application. Importantly, a conventional "bulk" analysis that pooled all cells in culture yielded a different rank order of drug potency than that revealed by single-cell analysis. Using a single-cell analytical approach, we dissected the relative contributions of PKA and ERK1/2 signaling in striatal neurons and unexpectedly identified a novel role for ERK1/2 in promoting nuclear activation of PKA in striatal neurons. This finding adds a new dimension of signaling crosstalk between PKA and ERK1/2 with relevance to dopamine D1 receptor signaling in striatal neurons. In conclusion, high-content single-cell imaging can complement and extend traditional population-level analyses and provides a novel vantage point from which to study cellular signaling. SIGNIFICANCE STATEMENT: High-content imaging revealed substantial intercellular variation in the magnitude and pattern of intracellular signaling events driven by receptor stimulation. Since individual neurons within the same population can respond differently to a given agonist, interpreting measures of intracellular signaling derived from the averaged response of entire neuronal populations may not always reflect what happened at the single-cell level. This study uses this approach to identify a new form of cross-talk between PKA and ERK1/2 signaling in the nucleus of striatal neurons.
Collapse
Affiliation(s)
- Jace Jones-Tabah
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Ryan D Martin
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Jason C Tanny
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Paul B S Clarke
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| |
Collapse
|
4
|
Information Theory: New Look at Oncogenic Signaling Pathways. Trends Cell Biol 2019; 29:862-875. [DOI: 10.1016/j.tcb.2019.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/09/2019] [Accepted: 08/13/2019] [Indexed: 12/23/2022]
|
5
|
Sinha N, Subedi N, Tel J. Integrating Immunology and Microfluidics for Single Immune Cell Analysis. Front Immunol 2018; 9:2373. [PMID: 30459757 PMCID: PMC6232771 DOI: 10.3389/fimmu.2018.02373] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/24/2018] [Indexed: 12/16/2022] Open
Abstract
The field of immunoengineering aims to develop novel therapies and modern vaccines to manipulate and modulate the immune system and applies innovative technologies toward improved understanding of the immune system in health and disease. Microfluidics has proven to be an excellent technology for analytics in biology and chemistry. From simple microsystem chips to complex microfluidic designs, these platforms have witnessed an immense growth over the last decades with frequent emergence of new designs. Microfluidics provides a highly robust and precise tool which led to its widespread application in single-cell analysis of immune cells. Single-cell analysis allows scientists to account for the heterogeneous behavior of immune cells which often gets overshadowed when conventional bulk study methods are used. Application of single-cell analysis using microfluidics has facilitated the identification of several novel functional immune cell subsets, quantification of signaling molecules, and understanding of cellular communication and signaling pathways. Single-cell analysis research in combination with microfluidics has paved the way for the development of novel therapies, point-of-care diagnostics, and even more complex microfluidic platforms that aid in creating in vitro cellular microenvironments for applications in drug and toxicity screening. In this review, we provide a comprehensive overview on the integration of microsystems and microfluidics with immunology and focus on different designs developed to decode single immune cell behavior and cellular communication. We have categorized the microfluidic designs in three specific categories: microfluidic chips with cell traps, valve-based microfluidics, and droplet microfluidics that have facilitated the ongoing research in the field of immunology at single-cell level.
Collapse
Affiliation(s)
- Nidhi Sinha
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Nikita Subedi
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Jurjen Tel
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
6
|
Abstract
G protein-coupled receptors (GPCRs) constitute a large family of receptors that activate intracellular signaling pathways upon detecting specific extracellular ligands. While many aspects of GPCR signaling have been uncovered through decades of studies, some fundamental properties, like its channel capacity—a measure of how much information a given transmission system can reliably transduce—are still debated. Previous studies concluded that GPCRs in individual cells could transmit around one bit of information about the concentration of the ligands, allowing only for a reliable on or off response. Using muscarinic receptor-induced calcium response measured in individual cells upon repeated stimulation, we show that GPCR signaling systems possess a significantly higher capacity. We estimate the channel capacity of this system to be above two, implying that at least four concentration levels of the agonist can be distinguished reliably. These findings shed light on the basic principles of GPCR signaling. G protein-coupled receptors (GPCRs) activate intracellular signalling pathways upon extracellular stimulation. Here authors record single cell responses of GPCR signalling which allows the direct estimation of its channel capacity for each cell along with the reproducibility of its response.
Collapse
|
7
|
Fundamental trade-offs between information flow in single cells and cellular populations. Proc Natl Acad Sci U S A 2017; 114:5755-5760. [PMID: 28500273 DOI: 10.1073/pnas.1615660114] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Signal transduction networks allow eukaryotic cells to make decisions based on information about intracellular state and the environment. Biochemical noise significantly diminishes the fidelity of signaling: networks examined to date seem to transmit less than 1 bit of information. It is unclear how networks that control critical cell-fate decisions (e.g., cell division and apoptosis) can function with such low levels of information transfer. Here, we use theory, experiments, and numerical analysis to demonstrate an inherent trade-off between the information transferred in individual cells and the information available to control population-level responses. Noise in receptor-mediated apoptosis reduces information transfer to approximately 1 bit at the single-cell level but allows 3-4 bits of information to be transmitted at the population level. For processes such as eukaryotic chemotaxis, in which single cells are the functional unit, we find high levels of information transmission at a single-cell level. Thus, low levels of information transfer are unlikely to represent a physical limit. Instead, we propose that signaling networks exploit noise at the single-cell level to increase population-level information transfer, allowing extracellular ligands, whose levels are also subject to noise, to incrementally regulate phenotypic changes. This is particularly critical for discrete changes in fate (e.g., life vs. death) for which the key variable is the fraction of cells engaged. Our findings provide a framework for rationalizing the high levels of noise in metazoan signaling networks and have implications for the development of drugs that target these networks in the treatment of cancer and other diseases.
Collapse
|
8
|
Abstract
The heterogeneity in mammalian cells signaling response is largely a result of pre‐existing cell‐to‐cell variability. It is unknown whether cell‐to‐cell variability rises from biochemical stochastic fluctuations or distinct cellular states. Here, we utilize calcium response to adenosine trisphosphate as a model for investigating the structure of heterogeneity within a population of cells and analyze whether distinct cellular response states coexist. We use a functional definition of cellular state that is based on a mechanistic dynamical systems model of calcium signaling. Using Bayesian parameter inference, we obtain high confidence parameter value distributions for several hundred cells, each fitted individually. Clustering the inferred parameter distributions revealed three major distinct cellular states within the population. The existence of distinct cellular states raises the possibility that the observed variability in response is a result of structured heterogeneity between cells. The inferred parameter distribution predicts, and experiments confirm that variability in IP3R response explains the majority of calcium heterogeneity. Our work shows how mechanistic models and single‐cell parameter fitting can uncover hidden population structure and demonstrate the need for parameter inference at the single‐cell level.
Collapse
Affiliation(s)
- Jason Yao
- Departments of Chemistry and Biochemistry, Integrative Biology and Physiology, and Institute for Quantitative and Computational Biosciences (QCB), UCLA, Los Angeles, CA, USA
| | - Anna Pilko
- Departments of Chemistry and Biochemistry, Integrative Biology and Physiology, and Institute for Quantitative and Computational Biosciences (QCB), UCLA, Los Angeles, CA, USA
| | - Roy Wollman
- Departments of Chemistry and Biochemistry, Integrative Biology and Physiology, and Institute for Quantitative and Computational Biosciences (QCB), UCLA, Los Angeles, CA, USA
| |
Collapse
|
9
|
High-Content Quantification of Single-Cell Immune Dynamics. Cell Rep 2016; 15:411-22. [PMID: 27050527 PMCID: PMC4835544 DOI: 10.1016/j.celrep.2016.03.033] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/19/2016] [Accepted: 03/09/2016] [Indexed: 02/06/2023] Open
Abstract
Cells receive time-varying signals from the environment and generate functional responses by secreting their own signaling molecules. Characterizing dynamic input-output relationships in single cells is crucial for understanding and modeling cellular systems. We developed an automated microfluidic system that delivers precisely defined dynamical inputs to individual living cells and simultaneously measures key immune parameters dynamically. Our system combines nanoliter immunoassays, microfluidic input generation, and time-lapse microscopy, enabling study of previously untestable aspects of immunity by measuring time-dependent cytokine secretion and transcription factor activity from single cells stimulated with dynamic inflammatory inputs. Employing this system to analyze macrophage signal processing under pathogen inputs, we found that the dynamics of TNF secretion are highly heterogeneous and surprisingly uncorrelated with the dynamics of NF-κB, the transcription factor controlling TNF production. Computational modeling of the LPS/TLR4 pathway shows that post-transcriptional regulation by TRIF is a key determinant of noisy and uncorrelated TNF secretion dynamics in single macrophages. Dynamic stimulation of single immune cells with a versatile microfluidic device Coupled longitudinal measurements of NF-κB localization and TNF secretion on the same cell Single-cell harvesting, staining, and mRNA quantification on the same device High-content dataset, and modeling of TRIF-based noise in TNF secretion
Collapse
|
10
|
Konry T, Sarkar S, Sabhachandani P, Cohen N. Innovative Tools and Technology for Analysis of Single Cells and Cell-Cell Interaction. Annu Rev Biomed Eng 2016; 18:259-84. [PMID: 26928209 DOI: 10.1146/annurev-bioeng-090215-112735] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Heterogeneity in single-cell responses and intercellular interactions results from complex regulation of cell-intrinsic and environmental factors. Single-cell analysis allows not only detection of individual cellular characteristics but also correlation of genetic content with phenotypic traits in the same cell. Technological advances in micro- and nanofabrication have benefited single-cell analysis by allowing precise control of the localized microenvironment, cell manipulation, and sensitive detection capabilities. Additionally, microscale techniques permit rapid, high-throughput, multiparametric screening that has become essential for -omics research. This review highlights innovative applications of microscale platforms in genetic, proteomic, and metabolic detection in single cells; cell sorting strategies; and heterotypic cell-cell interaction. We discuss key design aspects of single-cell localization and isolation in microfluidic systems, dynamic and endpoint analyses, and approaches that integrate highly multiplexed detection of various intracellular species.
Collapse
Affiliation(s)
- Tania Konry
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115; , , ,
| | - Saheli Sarkar
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115; , , ,
| | - Pooja Sabhachandani
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115; , , ,
| | - Noa Cohen
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115; , , ,
| |
Collapse
|
11
|
Giri L, Patel AK, Karunarathne WKA, Kalyanaraman V, Venkatesh KV, Gautam N. A G-protein subunit translocation embedded network motif underlies GPCR regulation of calcium oscillations. Biophys J 2015; 107:242-54. [PMID: 24988358 DOI: 10.1016/j.bpj.2014.05.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 05/06/2014] [Accepted: 05/13/2014] [Indexed: 11/24/2022] Open
Abstract
G-protein βγ subunits translocate reversibly from the plasma membrane to internal membranes on receptor activation. Translocation rates differ depending on the γ subunit type. There is limited understanding of the role of the differential rates of Gβγ translocation in modulating signaling dynamics in a cell. Bifurcation analysis of the calcium oscillatory network structure predicts that the translocation rate of a signaling protein can regulate the damping of system oscillation. Here, we examined whether the Gβγ translocation rate regulates calcium oscillations induced by G-protein-coupled receptor activation. Oscillations in HeLa cells expressing γ subunit types with different translocation rates were imaged and quantitated. The results show that differential Gβγ translocation rates can underlie the diversity in damping characteristics of calcium oscillations among cells. Mathematical modeling shows that a translocation embedded motif regulates damping of G-protein-mediated calcium oscillations consistent with experimental data. The current study indicates that such a motif may act as a tuning mechanism to design oscillations with varying damping patterns by using intracellular translocation of a signaling component.
Collapse
Affiliation(s)
- Lopamudra Giri
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri
| | - Anilkumar K Patel
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - W K Ajith Karunarathne
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri
| | - Vani Kalyanaraman
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri
| | - K V Venkatesh
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India.
| | - N Gautam
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri; Department of Genetics, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
12
|
Efficient entry of cell-penetrating peptide nona-arginine into adherent cells involves a transient increase in intracellular calcium. Biochem J 2015; 471:221-30. [PMID: 26272944 PMCID: PMC4613506 DOI: 10.1042/bj20150272] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 08/13/2015] [Indexed: 01/20/2023]
Abstract
Mechanisms by which drug-delivery vehicles based on cationic peptides cross cell membranes remain unknown. We report that an increase in intracellular calcium triggered by temperature drop or high peptide concentrations transiently permeabilizes the plasma membrane for nona-arginine (R9) and delivers it to the cytosol. Understanding the mechanism of entry of cationic peptides such as nona-arginine (R9) into cells remains an important challenge to their use as efficient drug-delivery vehicles. At nanomolar to low micromolar R9 concentrations and at physiological temperature, peptide entry involves endocytosis. In contrast, at a concentration ≥10 μM, R9 induces a very effective non-endocytic entry pathway specific for cationic peptides. We found that a similar entry pathway is induced at 1–2 μM concentrations of R9 if peptide application is accompanied by a rapid temperature drop to 15°C. Both at physiological and at sub-physiological temperatures, this entry mechanism was inhibited by depletion of the intracellular ATP pool. Intriguingly, we found that R9 at 10–20 μM and 37°C induces repetitive spikes in intracellular Ca2+ concentration. This Ca2+ signalling correlated with the efficiency of the peptide entry. Pre-loading cells with the Ca2+ chelator BAPTA (1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid) inhibited both Ca2+ spikes and peptide entry, suggesting that an increase in intracellular Ca2+ precedes and is required for peptide entry. One of the hallmarks of Ca2+ signalling is a transient cell-surface exposure of phosphatidylserine (PS), a lipid normally residing only in the inner leaflet of the plasma membrane. Blocking the accessible PS with the PS-binding domain of lactadherin strongly inhibited non-endocytic R9 entry, suggesting the importance of PS externalization in this process. To conclude, we uncovered a novel mechanistic link between calcium signalling and entry of cationic peptides. This finding will enhance our understanding of the properties of plasma membrane and guide development of future drug-delivery vehicles.
Collapse
|
13
|
O'Neill PR, Giri L, Karunarathne WKA, Patel AK, Venkatesh KV, Gautam N. The structure of dynamic GPCR signaling networks. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2014; 6:115-23. [PMID: 24741711 DOI: 10.1002/wsbm.1249] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
G-protein-coupled receptors (GPCRs) stimulate signaling networks that control a variety of critical physiological processes. Static information on the map of interacting signaling molecules at the basis of many cellular processes exists, but little is known about the dynamic operation of these networks. Here we focus on two questions. First, Is the network architecture underlying GPCR-activated cellular processes unique in comparison with others such as transcriptional networks? We discuss how spatially localized GPCR signaling requires uniquely organized networks to execute polarized cell responses. Second, What approaches overcome challenges in deciphering spatiotemporally dynamic networks that govern cell behavior? We focus on recently developed microfluidic and optical approaches that allow GPCR signaling pathways to be triggered and perturbed with spatially and temporally variant input while simultaneously visualizing molecular and cellular responses. When integrated with mathematical modeling, these approaches can help identify design principles that govern cell responses to extracellular signals. We outline why optical approaches that allow the behavior of a selected cell to be orchestrated continually are particularly well suited for probing network organization in single cells.
Collapse
|
14
|
Fernandes JTS, Tenreiro S, Gameiro A, Chu V, Outeiro TF, Conde JP. Modulation of alpha-synuclein toxicity in yeast using a novel microfluidic-based gradient generator. LAB ON A CHIP 2014; 14:3949-3957. [PMID: 25167219 DOI: 10.1039/c4lc00756e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Parkinson's disease (PD) is a common age-associated neurodegenerative disorder. The protein α-synuclein (aSyn) is a key factor in PD both due to its association with familial and sporadic cases and because it is the main component of the pathological protein aggregates known as Lewy bodies. However, the precise cellular effects of aSyn aggregation are still elusive. Here, we developed an elastomeric microfluidic device equipped with a chemical gradient generator and 9 chambers containing cell traps to study aSyn production and aggregation in Saccharomyces cerevisiae. This study involved capturing single cells, exposing them to specific chemical environments and imaging the expression of aSyn by means of a GFP fusion (aSyn-GFP). Using a galactose (GAL) gradient we modulated aSyn expression and, surprisingly, by tracking the behavior of single cells, we found that the response of individual cells in a population to a given stimulus can differ widely. To study the combined effect of environmental factors and aSyn expression levels, we exposed cells to a gradient of FeCl3. We found a dramatic increase in the percentage of cells displaying aSyn inclusions from 27% to 96%. Finally, we studied the effects of ascorbic acid, an antioxidant, on aSyn aggregation and found a significant reduction in the percentage of cells bearing aSyn inclusions from 87% to 37%. In summary, the device developed here offers a powerful way of studying aSyn biology with single-cell resolution and high throughput using genetically modified yeast cells.
Collapse
Affiliation(s)
- João Tiago S Fernandes
- INESC Microsistemas e Nanotecnologias and IN - Institute of Nanoscience and Nanotechnology, R. Alves Redol, 9, 1000-029, Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|
15
|
Adutler-Lieber S, Zaretsky I, Platzman I, Deeg J, Friedman N, Spatz JP, Geiger B. Engineering of synthetic cellular microenvironments: implications for immunity. J Autoimmun 2014; 54:100-11. [PMID: 24951031 DOI: 10.1016/j.jaut.2014.05.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 05/19/2014] [Indexed: 01/01/2023]
Abstract
In this article, we discuss novel synthetic approaches for studying the interactions of cells with their microenvironment. Notably, critical cellular processes such as growth, differentiation, migration, and fate determination, are tightly regulated by interactions with neighboring cells, and the surrounding extracellular matrix. Given the huge complexity of natural cellular environments, and their rich molecular and physical diversity, the mission of understanding "environmental signaling" at a molecular-mechanistic level appears to be extremely challenging. To meet these challenges, attempts have been made in recent years to design synthetic matrices with defined chemical and physical properties, which, artificial though they may be, could reveal basic "design principles" underlying the physiological processes. Here, we summarize recent developments in the characterization of the chemical and physical properties of cell sensing and adhesion, as well as the design and use of engineered, micro- to nanoscale patterned and confined environments, for systematic, comprehensive modulation of the cells' environment. The power of these biomimetic surfaces to highlight environmental signaling events in cells, and in immune cells in particular, will be discussed.
Collapse
Affiliation(s)
- Shimrit Adutler-Lieber
- Department of Molecular Cell Biology, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001, Israel.
| | - Irina Zaretsky
- Department of Immunology, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001, Israel.
| | - Ilia Platzman
- Max Planck Institute for Intelligent Systems & University of Heidelberg, Heisenbergstr. 3, 70569 Stuttgart, Germany.
| | - Janosch Deeg
- Max Planck Institute for Intelligent Systems & University of Heidelberg, Heisenbergstr. 3, 70569 Stuttgart, Germany.
| | - Nir Friedman
- Department of Immunology, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001, Israel.
| | - Joachim P Spatz
- Max Planck Institute for Intelligent Systems & University of Heidelberg, Heisenbergstr. 3, 70569 Stuttgart, Germany.
| | - Benjamin Geiger
- Department of Molecular Cell Biology, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001, Israel.
| |
Collapse
|
16
|
Junkin M, Tay S. Microfluidic single-cell analysis for systems immunology. LAB ON A CHIP 2014; 14:1246-60. [PMID: 24503696 DOI: 10.1039/c3lc51182k] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The immune system constantly battles infection and tissue damage, but exaggerated immune responses lead to allergies, autoimmunity and cancer. Discrimination of self from foreign and the fine-tuning of immunity are achieved by information processing pathways, whose regulatory mechanisms are little understood. Cell-to-cell variability and stochastic molecular interactions result in diverse cellular responses to identical signaling inputs, casting doubt on the reliability of traditional population-averaged analyses. Furthermore, dynamic molecular and cellular interactions create emergent properties that change over multiple time scales. Understanding immunity in the face of complexity and noisy dynamics requires time-dependent analysis of single-cells in a proper context. Microfluidic systems create precisely defined microenvironments by controlling fluidic and surface chemistries, feature sizes, geometries and signal input timing, and thus enable quantitative multi-parameter analysis of single cells. Such qualities allow observable dynamic environments approaching in vivo levels of biological complexity. Seamless parallelization of functional units in microfluidic devices allows high-throughput measurements, an essential feature for statistically meaningful analysis of naturally variable biological systems. These abilities recapitulate diverse scenarios such as cell-cell signaling, migration, differentiation, antibody and cytokine production, clonal selection, and cell lysis, thereby enabling accurate and meaningful study of immune behaviors in vitro.
Collapse
Affiliation(s)
- Michael Junkin
- Department of Biosystems Science and Engineering, ETH Zürich, Switzerland.
| | | |
Collapse
|
17
|
|
18
|
Abstract
The integration of nanohole array based plasmonic sensors into microfluidic systems has enabled the emergence of platforms with unique capabilities and a diversified palette of applications. Recent advances in fabrication techniques together with novel implementation schemes have influenced the progress of these optofluidic platforms. Here, we review the advances that nanohole array based sensors have experienced since they were first merged with microfluidics. We examine established and new fabrication methodologies that have enabled both the fabrication of nanohole arrays with improved optical attributes and a reduction in manufacturing costs. The achievements of several platforms developed to date and the significant benefits obtained from operating the nanoholes as nanochannels are also reviewed herein. Finally, we discuss future opportunities for on-chip nanohole array sensors by outlining potential applications and the use of the abilities of the nanostructures beyond the optical context.
Collapse
Affiliation(s)
- Carlos Escobedo
- Chemical Engineering Department, Queen's University, Kingston, K7L 3N6, Canada.
| |
Collapse
|
19
|
Jovic A, Wade SM, Neubig RR, Linderman JJ, Takayama S. Microfluidic interrogation and mathematical modeling of multi-regime calcium signaling dynamics. Integr Biol (Camb) 2013; 5:932-9. [PMID: 23732791 DOI: 10.1039/c3ib40032h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Through microfluidic interrogation we analyzed real-time calcium responses of HEK293 cells stimulated with short pulses of the M3 muscarinic receptor ligand carbachol in two different concentration regimes. Lower ligand concentrations elicit oscillatory calcium signals while higher concentrations trigger a rapid rise that eventually settles down at a steady-state slightly above pre-stimulus levels, referred to as an acute signal. Cells were periodically pulsed with carbachol at these two concentration regimes using a custom-made microfluidic platform, and the resulting calcium signals were measured with a single fluorescent readout. Pulsed stimulations at these two concentration regimes resulted in multiple types of response patterns that each delivered complementary information about the M3 muscarinic receptor signaling pathway. These multiple types of calcium response patterns enabled development of a comprehensive mathematical model of multi-regime calcium signaling. The resulting model suggests that dephosphorylation of deactivated receptors is rate limiting for recovery of calcium signals in the acute regime (high ligand concentration), while calcium replenishment and IP3 production determine signal recovery in the oscillatory regime (low ligand concentration). This study not only provides mechanistic insight into multi-regime signaling of the M3 muscarinic receptor pathway, but also provides a general strategy for analyzing multi-regime pathways using only one fluorescent readout.
Collapse
Affiliation(s)
- Andreja Jovic
- Biomedical Engineering Department, University of Michigan, Gerstacker Building, 2200 Bonisteel Blvd, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
20
|
Martins SAM, Trabuco JRC, Monteiro GA, Chu V, Conde JP, Prazeres DMF. Towards the miniaturization of GPCR-based live-cell screening assays. Trends Biotechnol 2012; 30:566-74. [PMID: 22921755 DOI: 10.1016/j.tibtech.2012.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/23/2012] [Accepted: 07/24/2012] [Indexed: 01/13/2023]
Abstract
G protein-coupled receptors (GPCRs) play a key role in many physiological or disease-related processes and for this reason are favorite targets of the pharmaceutical industry. Although ~30% of marketed drugs target GPCRs, their potential remains largely untapped. The discovery of new leads calls for the screening of thousands of compounds with high-throughput cell-based assays. Although microtiter plate-based high-throughput screening platforms are well established, microarray and microfluidic technologies hold potential for miniaturization, automation, and biosensor integration that may well redefine the format of GPCR screening assays. This paper reviews the latest research efforts directed to bringing microarray and microfluidic technologies into the realm of GPCR-based, live-cell screening assays.
Collapse
Affiliation(s)
- Sofia A M Martins
- IBB-Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Technical University of Lisbon, 1049-001 Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|
21
|
Selimkhanov J, Hasty J, Tsimring LS. Recent advances in single-cell studies of gene regulation. Curr Opin Biotechnol 2012; 23:34-40. [PMID: 22154220 PMCID: PMC3273644 DOI: 10.1016/j.copbio.2011.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Revised: 11/03/2011] [Accepted: 11/05/2011] [Indexed: 10/14/2022]
Abstract
A mechanistic understanding of gene regulatory network dynamics requires quantitative single-cell data of multiple network components in response to well-defined perturbations. Recent advances in the development of fluorescent biomarkers for proteins, detection of RNA and interactions, microfluidic technology, and high-resolution imaging have set the stage for a host of new studies that elucidate the important roles of stochasticity and cell-cell variability in response to external perturbations. In this review, we briefly describe methods for high-resolution visualization and the control of gene expression, along with application of these novel methods to recent studies involving gene networks.
Collapse
Affiliation(s)
- Jangir Selimkhanov
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
22
|
Yin H, Marshall D. Microfluidics for single cell analysis. Curr Opin Biotechnol 2011; 23:110-9. [PMID: 22133547 DOI: 10.1016/j.copbio.2011.11.002] [Citation(s) in RCA: 234] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/30/2011] [Accepted: 11/02/2011] [Indexed: 01/23/2023]
Abstract
Substantial evidence shows that the heterogeneity of individual cells within a genetically identical population can be critical to their chance of survival. Methods that use average responses from a population often mask the difference from individual cells. To fully understand cell-to-cell variability, a complete analysis of an individual cell, from its live state to cell lysates, is essential. Highly sensitive detection of multiple components and high throughput analysis of a large number of individual cells remain the key challenges to realise this aim. In this context, microfluidics and lab-on-a-chip technology have emerged as the most promising avenue to address these challenges. In this review, we will focus on the recent development in microfluidics that are aimed at total single cell analysis on chip, that is, from an individual live cell to its gene and proteins. We also discuss the opportunities that microfluidic based single cell analysis can bring into the drug discovery process.
Collapse
Affiliation(s)
- Huabing Yin
- Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, UK.
| | | |
Collapse
|
23
|
Cheong R, Rhee A, Wang CJ, Nemenman I, Levchenko A. Information transduction capacity of noisy biochemical signaling networks. Science 2011; 334:354-8. [PMID: 21921160 PMCID: PMC3895446 DOI: 10.1126/science.1204553] [Citation(s) in RCA: 332] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Molecular noise restricts the ability of an individual cell to resolve input signals of different strengths and gather information about the external environment. Transmitting information through complex signaling networks with redundancies can overcome this limitation. We developed an integrative theoretical and experimental framework, based on the formalism of information theory, to quantitatively predict and measure the amount of information transduced by molecular and cellular networks. Analyzing tumor necrosis factor (TNF) signaling revealed that individual TNF signaling pathways transduce information sufficient for accurate binary decisions, and an upstream bottleneck limits the information gained via multiple integrated pathways. Negative feedback to this bottleneck could both alleviate and enhance its limiting effect, despite decreasing noise. Bottlenecks likewise constrain information attained by networks signaling through multiple genes or cells.
Collapse
Affiliation(s)
- Raymond Cheong
- Department of Biomedical Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore MD 21218, USA
| | - Alex Rhee
- Department of Biomedical Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore MD 21218, USA
| | - Chiaochun Joanne Wang
- Department of Biomedical Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore MD 21218, USA
| | - Ilya Nemenman
- Departments of Physics and Biology, Emory University, 400 Dowman Drive, Atlanta GA 30322, USA
| | - Andre Levchenko
- Department of Biomedical Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore MD 21218, USA
| |
Collapse
|
24
|
Werner M, Merenda F, Piguet J, Salathé RP, Vogel H. Microfluidic array cytometer based on refractive optical tweezers for parallel trapping, imaging and sorting of individual cells. LAB ON A CHIP 2011; 11:2432-9. [PMID: 21655617 DOI: 10.1039/c1lc20181f] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Analysis of genetic and functional variability in populations of living cells requires experimental techniques capable of monitoring cellular processes such as cell signaling of many single cells in parallel while offering the possibility to sort interesting cell phenotypes for further investigations. Although flow cytometry is able to sequentially probe and sort thousands of cells per second, dynamic processes cannot be experimentally accessed on single cells due to the sub-second sampling time. Cellular dynamics can be measured by image cytometry of surface-immobilized cells, however, cell sorting is complicated under these conditions due to cell attachment. We here developed a cytometric tool based on refractive multiple optical tweezers combined with microfluidics and optical microscopy. We demonstrate contact-free immobilization of more than 200 yeast cells into a high-density array of optical traps in a microfluidic chip. The cell array could be moved to specific locations of the chip enabling us to expose in a controlled manner the cells to reagents and to analyze the responses of individual cells in a highly parallel format using fluorescence microscopy. We further established a method to sort single cells within the microfluidic device using an additional steerable optical trap. Ratiometric fluorescence imaging of intracellular pH of trapped yeast cells allowed us on the one hand to measure the effect of the trapping laser on the cells' viability and on the other hand to probe the dynamic response of the cells upon glucose sensing.
Collapse
Affiliation(s)
- Michael Werner
- Laboratory of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | | | | | | |
Collapse
|