1
|
Fruet C, Martinez-Goikoetxea M, Merino F, Lupas AN. A computational model for lipid-anchored polysaccharide export by the outer membrane protein GfcD. Biophys J 2024; 123:3491-3499. [PMID: 39164969 PMCID: PMC11494523 DOI: 10.1016/j.bpj.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 07/01/2024] [Accepted: 08/15/2024] [Indexed: 08/22/2024] Open
Abstract
Many bacteria are protected by different types of polysaccharide capsules, structures formed of long repetitive glycan chains that are sometimes free and sometimes anchored to the outer membrane via lipid tails. One type, called group 4 capsule, results from the expression of the gfcABCDE-etp-etk operon in Escherichia coli. Of the proteins encoded in this operon, GfcE is thought to provide the export pore for free polysaccharide chains, but none of the proteins has been implicated in the export of chains carrying a lipid anchor. For this function, GfcD has been a focus of attention as the only outer membrane β-barrel encoded in the operon. AlphaFold predicts two β-barrel domains in GfcD, a canonical N-terminal one of 12 strands and an unusual C-terminal one of 13 strands, which features a large lateral aperture between strands β1 and β13. This immediately suggests a lateral exit gate for hydrophobic molecules into the membrane, analogous to the one proposed for the lipopolysaccharide export pore LptD. Here, we report an unsteered molecular dynamics study of GfcD embedded in the bacterial outer membrane, with the common polysaccharide anchor, lipid A, inserted in the pore of the C-terminal barrel. Our results show that the lateral aperture does not collapse during simulations and membrane lipids nevertheless do not penetrate the barrel but the lipid chains of the lipid A molecule readily exit into the membrane.
Collapse
Affiliation(s)
- Cecilia Fruet
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | | | - Felipe Merino
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Andrei N Lupas
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany.
| |
Collapse
|
2
|
Vásquez E, Oresti GM, Paez MD, Callegari EA, Masone D, Muñoz EM. Impact of aging on the GABA B receptor-mediated connectome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.606013. [PMID: 39131332 PMCID: PMC11312617 DOI: 10.1101/2024.07.31.606013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
GABA B receptors (GABABRs) are heterodimeric seven-transmembrane receptors that interact with a range of proteins and form large protein complexes on cholesterol-rich membrane microdomains. As the brain ages, membrane cholesterol levels exhibit alterations, although it remains unclear how these changes impact protein-protein interactions and downstream signaling. Herein, we studied the structural bases for the interaction between GABABR and the KCC2 transporter, including their protein expression and distribution, and we compared data between young and aged rat cerebella. Also, we analyzed lipid profiles for both groups, and we used molecular dynamics simulations on three plasma membrane systems with different cholesterol concentrations, to further explore the GABABR-transporter interaction. Based on our results, we report that a significant decrease in GABAB2 subunit expression occurs in the aged rat cerebella. After performing a comparative co-immunoprecipitation analysis, we confirm that GABABR and KCC2 form a protein complex in adult and aged rat cerebella, although their interaction levels are reduced substantially as the cerebellum ages. On the other hand, our lipid analyses reveal a significant increase in cholesterol and sphingomyelin levels of the aged cerebella. Finally, we used the Martini coarse-grained model to conduct molecular dynamics simulations, from which we observed that membrane cholesterol concentrations can dictate whether the GABABR tail domains physically establish G protein-independent contacts with a transporter, and the timing when those associations eventually occur. Taken together, our findings illustrate how age-related alterations in membrane cholesterol levels affect protein-protein interactions, and how they could play a crucial role in regulating GABABR's interactome-mediated signaling. Significance Statement This study elucidates age-related changes in cerebellar GABAB receptors (GABABRs), KCC2, and plasma membrane lipids, shedding light on mechanisms underlying neurological decline. Molecular dynamics simulations reveal how membrane lipids influence protein-protein interactions, offering insights into age-related neurodegeneration. The findings underscore the broader impact of cerebellar aging on motor functions, cognition, and emotional processing in the elderly. By elucidating plasma membrane regulation and GABAergic dynamics, this research lays the groundwork for understanding aging-related neurological disorders and inspires further investigation into therapeutic interventions.
Collapse
Affiliation(s)
- Elena Vásquez
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Gerardo M. Oresti
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - María D. Paez
- Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD, USA
| | - Eduardo A. Callegari
- Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD, USA
| | - Diego Masone
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Estela M. Muñoz
- Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| |
Collapse
|
3
|
Di Bartolo AL, Caparotta M, Masone D. Intrinsic Disorder in α-Synuclein Regulates the Exocytotic Fusion Pore Transition. ACS Chem Neurosci 2023. [PMID: 37192400 DOI: 10.1021/acschemneuro.3c00040] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023] Open
Abstract
Today, it is widely accepted that intrinsic disorder is strongly related to the cell cycle, during mitosis, differentiation, and apoptosis. Of particular interest are hybrid proteins possessing both structured and unstructured domains that are critical in human health and disease, such as α-synuclein. In this work, we describe how α-synuclein interacts with the nascent fusion pore as it evolves toward expansion. We unveil the key role played by its intrinsically disordered region as a thermodynamic regulator of the nucleation-expansion energy barrier. By analyzing a truncated variant of α-synuclein that lacks the disordered region, we find that the landscape of protein interactions with PIP2 and POPS lipids is highly altered, ultimately increasing the energy cost for the fusion pore to transit from nucleation to expansion. We conclude that the intrinsically disordered region in full-length α-synuclein recognizes and allocates pivotal protein:lipid interactions during membrane remodeling in the first stages of the fusion pore.
Collapse
Affiliation(s)
- Ary Lautaro Di Bartolo
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo), 5500 Mendoza, Argentina
| | - Marcelo Caparotta
- Quantum Theory Project, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Diego Masone
- Instituto de Histología y Embriología de Mendoza (IHEM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), 5500 Mendoza, Argentina
- Facultad de Ingeniería, Universidad Nacional de Cuyo (UNCuyo), 5500 Mendoza, Argentina
| |
Collapse
|
4
|
Rister AB, Gudermann T, Schredelseker J. E as in Enigma: The Mysterious Role of the Voltage-Dependent Anion Channel Glutamate E73. Int J Mol Sci 2022; 24:ijms24010269. [PMID: 36613710 PMCID: PMC9820230 DOI: 10.3390/ijms24010269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/28/2022] Open
Abstract
The voltage-dependent anion channel (VDAC) is the main passageway for ions and metabolites over the outer mitochondrial membrane. It was associated with many physiological processes, including apoptosis and modulation of intracellular Ca2+ signaling. The protein is formed by a barrel of 19 beta-sheets with an N-terminal helix lining the inner pore. Despite its large diameter, the channel can change its selectivity for ions and metabolites based on its open state to regulate transport into and out of mitochondria. VDAC was shown to be regulated by a variety of cellular factors and molecular partners including proteins, lipids and ions. Although the physiological importance of many of these modulatory effects are well described, the binding sites for molecular partners are still largely unknown. The highly symmetrical and sleek structure of the channel makes predictions of functional moieties difficult. However, one residue repeatedly sticks out when reviewing VDAC literature. A glutamate at position 73 (E73) located on the outside of the channel facing the hydrophobic membrane environment was repeatedly proposed to be involved in channel regulation on multiple levels. Here, we review the distinct hypothesized roles of E73 and summarize the open questions around this mysterious residue.
Collapse
Affiliation(s)
- Alexander Bernhard Rister
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, 80336 Munich, Germany
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, 80336 Munich, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung, Partner Site Munich Heart Alliance, Munich, Germany
| | - Johann Schredelseker
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, 80336 Munich, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung, Partner Site Munich Heart Alliance, Munich, Germany
- Correspondence: ; Tel.: +49-(0)89-2180-73831
| |
Collapse
|
5
|
Ngo VA, Queralt-Martín M, Khan F, Bergdoll L, Abramson J, Bezrukov SM, Rostovtseva TK, Hoogerheide DP, Noskov SY. The Single Residue K12 Governs the Exceptional Voltage Sensitivity of Mitochondrial Voltage-Dependent Anion Channel Gating. J Am Chem Soc 2022; 144:14564-14577. [PMID: 35925797 DOI: 10.1021/jacs.2c03316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The voltage-dependent anion channel (VDAC) is a β-barrel channel of the mitochondrial outer membrane (MOM) that passively transports ions, metabolites, polypeptides, and single-stranded DNA. VDAC responds to a transmembrane potential by "gating," i.e. transitioning to one of a variety of low-conducting states of unknown structure. The gated state results in nearly complete suppression of multivalent mitochondrial metabolite (such as ATP and ADP) transport, while enhancing calcium transport. Voltage gating is a universal property of β-barrel channels, but VDAC gating is anomalously sensitive to transmembrane potential. Here, we show that a single residue in the pore interior, K12, is responsible for most of VDAC's voltage sensitivity. Using the analysis of over 40 μs of atomistic molecular dynamics (MD) simulations, we explore correlations between motions of charged residues inside the VDAC pore and geometric deformations of the β-barrel. Residue K12 is bistable; its motions between two widely separated positions along the pore axis enhance the fluctuations of the β-barrel and augment the likelihood of gating. Single channel electrophysiology of various K12 mutants reveals a dramatic reduction of the voltage-induced gating transitions. The crystal structure of the K12E mutant at a resolution of 2.6 Å indicates a similar architecture of the K12E mutant to the wild type; however, 60 μs of atomistic MD simulations using the K12E mutant show restricted motion of residue 12, due to enhanced connectivity with neighboring residues, and diminished amplitude of barrel motions. We conclude that β-barrel fluctuations, governed particularly by residue K12, drive VDAC gating transitions.
Collapse
Affiliation(s)
- Van A Ngo
- Center for Molecular Simulations, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada.,Advanced Computing for Life Sciences and Engineering, Computing and Computational Sciences, National Center for Computational Sciences, Oak Ridge National Lab, Oak Ridge, Tennessee 37830, United States
| | - María Queralt-Martín
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States.,Laboratory of Molecular Biophysics, Department of Physics, Universitat Jaume I, 12071 Castellón, Spain
| | - Farha Khan
- Department of Physiology, University of California, Los Angeles, California 90095, United States
| | - Lucie Bergdoll
- LISM UMR 7255, CNRS and Aix-Marseille University, Marseille cedex 20, 13402, France
| | - Jeff Abramson
- Department of Physiology, University of California, Los Angeles, California 90095, United States
| | - Sergey M Bezrukov
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Tatiana K Rostovtseva
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - David P Hoogerheide
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Sergei Yu Noskov
- Center for Molecular Simulations, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
6
|
Di Bartolo AL, Tomes CN, Mayorga LS, Masone D. Enhanced Expansion and Reduced Kiss-and-Run Events in Fusion Pores Steered by Synaptotagmin-1 C2B Domains. J Chem Theory Comput 2022; 18:4544-4554. [PMID: 35759758 DOI: 10.1021/acs.jctc.2c00424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The fusion pore controls the release of exocytotic vesicle contents through a precise orchestration of lipids from the fusing membranes and proteins. There is a major lipid reorganization during the different stages in life of the fusion pore (membrane fusion, nucleation, and expansion) that can be scrutinized thermodynamically. In this work, using umbrella sampling simulations we describe the expansion of the fusion pore. We have calculated free energy profiles to drive a nascent, just nucleated, fusion pore to its expanded configuration. We have quantified the effects on the free energy of one and two Synaptotagmin-1 C2B domains in the cytosolic space. We show that C2B domains cumulatively reduce the cost for expansion, favoring the system to evolve toward full fusion. Finally, by conducting thousands of unbiased molecular dynamics simulations, we show that C2B domains significantly decrease the probability of kiss-and-run events.
Collapse
Affiliation(s)
- Ary Lautaro Di Bartolo
- Instituto de Histología y Embriología de Mendoza (IHEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), 5500 Mendoza, Argentina.,Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo), 5500 Mendoza, Argentina
| | - Claudia N Tomes
- Instituto de Histología y Embriología de Mendoza (IHEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), 5500 Mendoza, Argentina.,Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo), 5500 Mendoza, Argentina
| | - Luis S Mayorga
- Instituto de Histología y Embriología de Mendoza (IHEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), 5500 Mendoza, Argentina.,Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo), 5500 Mendoza, Argentina
| | - Diego Masone
- Instituto de Histología y Embriología de Mendoza (IHEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), 5500 Mendoza, Argentina.,Facultad de Ingeniería, Universidad Nacional de Cuyo (UNCuyo), 5500 Mendoza, Argentina
| |
Collapse
|
7
|
Umegawa Y, Yamamoto T, Dixit M, Funahashi K, Seo S, Nakagawa Y, Suzuki T, Matsuoka S, Tsuchikawa H, Hanashima S, Oishi T, Matsumori N, Shinoda W, Murata M. Amphotericin B assembles into seven-molecule ion channels: An NMR and molecular dynamics study. SCIENCE ADVANCES 2022; 8:eabo2658. [PMID: 35714188 PMCID: PMC9205587 DOI: 10.1126/sciadv.abo2658] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/04/2022] [Indexed: 05/30/2023]
Abstract
Amphotericin B, an antifungal drug with a long history of use, forms fungicidal ion-permeable channels across cell membranes. Using solid-state nuclear magnetic resonance spectroscopy and molecular dynamics simulations, we experimentally elucidated the three-dimensional structure of the molecular assemblies formed by this drug in membranes in the presence of the fungal sterol ergosterol. A stable assembly consisting of seven drug molecules was observed to form an ion conductive channel. The structure is somewhat similar to the upper half of the barrel-stave model proposed in the 1970s but substantially different in the number of molecules and in their arrangement. The present structure explains many previous findings, including structure-activity relationships of the drug, which will be useful for improving drug efficacy and reducing adverse effects.
Collapse
Affiliation(s)
- Yuichi Umegawa
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
- Project Research Center for Fundamental Sciences, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Tomoya Yamamoto
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Mayank Dixit
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Kosuke Funahashi
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Sangjae Seo
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Yasuo Nakagawa
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Taiga Suzuki
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Shigeru Matsuoka
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
- Japan Science and Technology Agency, ERATO, Lipid Active Structure Project, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Hiroshi Tsuchikawa
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Shinya Hanashima
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Tohru Oishi
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
- Department of Chemistry, Graduate School of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
- Department of Chemistry, Graduate School of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Wataru Shinoda
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
- Department of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan
| | - Michio Murata
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
- Project Research Center for Fundamental Sciences, Osaka University, Toyonaka, Osaka 560-0043, Japan
- Japan Science and Technology Agency, ERATO, Lipid Active Structure Project, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
8
|
Kanwar P, Sanyal SK, Mahiwal S, Ravi B, Kaur K, Fernandes JL, Yadav AK, Tokas I, Srivastava AK, Suprasanna P, Pandey GK. CIPK9 targets VDAC3 and modulates oxidative stress responses in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:241-260. [PMID: 34748255 DOI: 10.1111/tpj.15572] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 10/22/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Calcium (Ca2+ ) is widely recognized as a key second messenger in mediating various plant adaptive responses. Here we show that calcineurin B-like interacting protein kinase CIPK9 along with its interacting partner VDAC3 identified in the present study are involved in mediating plant responses to methyl viologen (MV). CIPK9 physically interacts with and phosphorylates VDAC3. Co-localization, co-immunoprecipitation, and fluorescence resonance energy transfer experiments proved their physical interaction in planta. Both cipk9 and vdac3 mutants exhibited a tolerant phenotype against MV-induced oxidative stress, which coincided with the lower-level accumulation of reactive oxygen species in their roots. In addition, the analysis of cipk9vdac3 double mutant and VDAC3 overexpressing plants revealed that CIPK9 and VDAC3 were involved in the same pathway for inducing MV-dependent oxidative stress. The response to MV was suppressed by the addition of lanthanum chloride, a non-specific Ca2+ channel blocker indicating the role of Ca2+ in this pathway. Our study suggest that CIPK9-VDAC3 module may act as a key component in mediating oxidative stress responses in Arabidopsis.
Collapse
Affiliation(s)
- Poonam Kanwar
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Sibaji K Sanyal
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Swati Mahiwal
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Barkha Ravi
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Kanwaljeet Kaur
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Joel L Fernandes
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Akhilesh K Yadav
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Indu Tokas
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Ashish K Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| |
Collapse
|
9
|
Di Bartolo AL, Masone D. Synaptotagmin-1 C2B domains cooperatively stabilize the fusion stalk via a master-servant mechanism. Chem Sci 2022; 13:3437-3446. [PMID: 35432859 PMCID: PMC8943895 DOI: 10.1039/d1sc06711g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/22/2022] [Indexed: 11/21/2022] Open
Abstract
Synaptotagmin-1 is a low-affinity Ca2+ sensor that triggers synchronous vesicle fusion. It contains two similar C2 domains (C2A and C2B) that cooperate in membrane binding, being the C2B domain the...
Collapse
Affiliation(s)
- Ary Lautaro Di Bartolo
- Instituto de Histología y Embriología de Mendoza (IHEM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo) 5500 Mendoza Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo) 5500 Mendoza Argentina
| | - Diego Masone
- Instituto de Histología y Embriología de Mendoza (IHEM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo) 5500 Mendoza Argentina
- Facultad de Ingeniería, Universidad Nacional de Cuyo (UNCuyo) 5500 Mendoza Argentina
| |
Collapse
|
10
|
Caparotta M, Puiatti M, Masone D. Artificial stabilization of the fusion pore by intra-organelle styrene-maleic acid copolymers. SOFT MATTER 2021; 17:8314-8321. [PMID: 34550159 DOI: 10.1039/d1sm00978h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Styrene-maleic acid copolymers have become an advantageous detergent-free alternative for membrane protein isolation. Since their discovery, experimental membrane protein extraction and purification by keeping intact their lipid environment has become significantly easier. With the aim of identifying new applications of these interesting copolymers, their molecular binding and functioning mechanisms have recently become intense objects of study. In this work, we describe the use of styrene-maleic acid copolymers as an artificial tool to stabilize the fusion pore. We show that when these copolymers circumscribe the water channel that defines the fusion pore, they keep it from shrinking and closing. We describe how only intra-organelle copolymers have stabilizing capabilities while extra-organelle ones have negligible or even contrary effects on the fusion pore life-time.
Collapse
Affiliation(s)
- Marcelo Caparotta
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo), 5500, Mendoza, Argentina
| | - Marcelo Puiatti
- Instituto de Investigaciones en Físico-Química de Córdoba (INFIQC) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba (UNC), 5016, Córdoba, Argentina
| | - Diego Masone
- Facultad de Ingeniería, Universidad Nacional de Cuyo (UNCuyo), 5500, Mendoza, Argentina
- Instituto de Histología y Embriología de Mendoza (IHEM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), 5500, Mendoza, Argentina.
| |
Collapse
|
11
|
Molecular mechanism of thiamine pyrophosphate import into mitochondria: a molecular simulation study. J Comput Aided Mol Des 2021; 35:987-1007. [PMID: 34406552 DOI: 10.1007/s10822-021-00414-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
The import of thiamine pyrophosphate (TPP) through both mitochondrial membranes was studied using a total of 3-µs molecular dynamics simulations. Regarding the translocation through the mitochondrial outer membrane, our simulations support the conjecture that TPP uses the voltage-dependent anion channel, the major pore of this membrane, for its passage to the intermembrane space, as its transport presents significant analogies with that used by other metabolites previously studied, in particular with ATP. As far as passing through the mitochondrial inner membrane is concerned, our simulations show that the specific carrier of TPP has a single binding site that becomes accessible, through an alternating access mechanism. The preference of this transporter for TPP can be rationalized mainly by three residues located in the binding site that differ from those identified in the ATP/ADP carrier, the most studied member of the mitochondrial carrier family. The simulated transport mechanism of TPP highlights the essential role, at the energetic level, of the contributions coming from the formation and breakage of two networks of salt bridges, one on the side of the matrix and the other on the side of the intermembrane space, as well as the interactions, mainly of an ionic nature, formed by TPP upon its binding. The energy contribution provided by the cytosolic network establishes a lower barrier than that of the matrix network, which can be explained by the lower interaction energy of TPP on the matrix side or possibly a uniport activity.
Collapse
|
12
|
Cholesterol plays a decisive role in tetraspanin assemblies during bilayer deformations. Biosystems 2021; 209:104505. [PMID: 34403719 DOI: 10.1016/j.biosystems.2021.104505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/30/2021] [Accepted: 08/07/2021] [Indexed: 11/22/2022]
Abstract
The tetraspanin family plays key roles in many physiological processes, such as, tumour invasion, cell motility, virus infection, cell attachment and entry. Tetraspanins function as molecular scaffolds organized in microdomains with interesting downstream cellular consequences. However, despite their relevance in human physiology, the precise mechanisms of their various functions remain elusive. In particular, the full-length CD81 tetraspanin has interesting cholesterol-related properties that modulate its activity in cells. In this work, we study the opening transition of CD81 under different conditions. We propose that such conformational change is a collaborative process enhanced by simultaneous interactions between multiple identical CD81 tetraspanins. With molecular dynamics simulations we describe the crucial role of a ternary lipid bilayer with cholesterol in CD81 conformational dynamics, observing two emergent properties: first, clusters of CD81 collectively segregate one tetraspanin while favouring one opening transition, second, cumulative cholesterol sequestering by CD81 tetraspanins inhibits large membrane deformations due to local density variations.
Collapse
|
13
|
Saidani H, Léonetti M, Kmita H, Homblé F. The Open State Selectivity of the Bean Seed VDAC Depends on Stigmasterol and Ion Concentration. Int J Mol Sci 2021; 22:ijms22063034. [PMID: 33809742 PMCID: PMC8002290 DOI: 10.3390/ijms22063034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/12/2021] [Indexed: 11/16/2022] Open
Abstract
The voltage-dependent anion channel (VDAC) is the major pathway for metabolites and ions transport through the mitochondrial outer membrane. It can regulate the flow of solutes by switching to a low conductance state correlated with a selectivity reversal, or by a selectivity inversion of its open state. The later one was observed in non-plant VDACs and is poorly characterized. We aim at investigating the selectivity inversion of the open state using plant VDAC purified from Phaseolus coccineus (PcVDAC) to evaluate its physiological role. Our main findings are: (1) The VDAC selectivity inversion of the open state occurs in PcVDAC, (2) Ion concentration and stigmasterol affect the occurrence of the open state selectivity inversion and stigmasterol appears to interact directly with PcVDAC. Interestingly, electrophysiological data concerning the selectivity inversion of the PcVDAC open state suggests that the phenomenon probably does not have a significant physiological effect in vivo.
Collapse
Affiliation(s)
- Hayet Saidani
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles (ULB), Boulevard du Triomphe CP 206/2, B-1050 Bruxelles, Belgium;
- Laboratory of Functional Neurophysiology and Pathology, Research Unit, UR/11ES09, Department of Biological Sciences, Faculty of Science of Tunis, University Tunis El Manar, 1068 Tunis, Tunisia
| | - Marc Léonetti
- Université de. Grenoble Alpes, CNRS, LRP, 38000 Grenoble, France;
| | - Hanna Kmita
- Department of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland;
| | - Fabrice Homblé
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles (ULB), Boulevard du Triomphe CP 206/2, B-1050 Bruxelles, Belgium;
- Correspondence: ; Tel.: +32-2-650-5383
| |
Collapse
|
14
|
Preto J, Krimm I. The intrinsically disordered N-terminus of the voltage-dependent anion channel. PLoS Comput Biol 2021; 17:e1008750. [PMID: 33577583 PMCID: PMC7906469 DOI: 10.1371/journal.pcbi.1008750] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/25/2021] [Accepted: 01/27/2021] [Indexed: 01/08/2023] Open
Abstract
The voltage-dependent anion channel (VDAC) is a critical β-barrel membrane protein of the mitochondrial outer membrane, which regulates the transport of ions and ATP between mitochondria and the cytoplasm. In addition, VDAC plays a central role in the control of apoptosis and is therefore of great interest in both cancer and neurodegenerative diseases. Although not fully understood, it is presumed that the gating mechanism of VDAC is governed by its N-terminal region which, in the open state of the channel, exhibits an α-helical structure positioned midway inside the pore and strongly interacting with the β-barrel wall. In the present work, we performed molecular simulations with a recently developed force field for disordered systems to shed new light on known experimental results, showing that the N-terminus of VDAC is an intrinsically disordered region (IDR). First, simulation of the N-terminal segment as a free peptide highlighted its disordered nature and the importance of using an IDR-specific force field to properly sample its conformational landscape. Secondly, accelerated dynamics simulation of a double cysteine VDAC mutant under applied voltage revealed metastable low conducting states of the channel representative of closed states observed experimentally. Related structures were characterized by partial unfolding and rearrangement of the N-terminal tail, that led to steric hindrance of the pore. Our results indicate that the disordered properties of the N-terminus are crucial to properly account for the gating mechanism of VDAC. The voltage-dependent anion channel (VDAC) is a membrane protein playing a pivotal role in the transport of ions or ATP across the mitochondrial outer membrane as well as in the induction of apoptosis. At high enough membrane potential, VDAC is known to transition from an open state to multiple closed states, reducing the flow of ions through the channel and blocking the passage of large metabolites. While the structure of the open state was resolved more than a decade ago, a molecular description of the gating mechanism of the channel is still missing. Here we show that the N-terminus of VDAC is an intrinsically disordered region and that such a property has a profound impact on its dynamics either as a free peptide or as part of the channel. By taking disordered properties of the N-terminus into account, we managed to generate long-lived closed conformations of the channel at experimental values of the membrane potential. Our results provide new insights into the molecular mechanism driving the gating of VDAC.
Collapse
Affiliation(s)
- Jordane Preto
- Université Claude Bernard Lyon 1, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, INSERM 1052, CNRS 5286, Lyon, France
- * E-mail:
| | - Isabelle Krimm
- Université Claude Bernard Lyon 1, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, INSERM 1052, CNRS 5286, Lyon, France
- CRMN, UMR CNRS 5082, ENS de Lyon, Université Lyon 1, Villeurbanne, France
| |
Collapse
|
15
|
Caparotta M, Tomes CN, Mayorga LS, Masone D. The Synaptotagmin-1 C2B Domain Is a Key Regulator in the Stabilization of the Fusion Pore. J Chem Theory Comput 2020; 16:7840-7851. [DOI: 10.1021/acs.jctc.0c00734] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Marcelo Caparotta
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo), Mendoza 5500, Argentina
| | - Claudia N. Tomes
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo), Mendoza 5500, Argentina
- Instituto de Histología y Embriología de Mendoza (IHEM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), Mendoza 5500, Argentina
| | - Luis S. Mayorga
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo), Mendoza 5500, Argentina
- Instituto de Histología y Embriología de Mendoza (IHEM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), Mendoza 5500, Argentina
| | - Diego Masone
- Instituto de Histología y Embriología de Mendoza (IHEM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), Mendoza 5500, Argentina
- Facultad de Ingeniería, Universidad Nacional de Cuyo (UNCuyo), Mendoza 5500, Argentina
| |
Collapse
|
16
|
Malik C, Ghosh S. Quinidine partially blocks mitochondrial voltage-dependent anion channel (VDAC). EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:193-205. [DOI: 10.1007/s00249-020-01426-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 02/12/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023]
|
17
|
Caparotta M, Bustos DM, Masone D. Order–disorder skewness in alpha-synuclein: a key mechanism to recognize membrane curvature. Phys Chem Chem Phys 2020; 22:5255-5263. [DOI: 10.1039/c9cp04951g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Currently, membrane curvature is understood as an active mechanism to control cells spatial organization and activity.
Collapse
Affiliation(s)
- Marcelo Caparotta
- Facultad de Ciencias Exactas y Naturales
- Universidad Nacional de Cuyo (UNCuyo)
- Mendoza
- Argentina
| | - Diego M. Bustos
- Facultad de Ciencias Exactas y Naturales
- Universidad Nacional de Cuyo (UNCuyo)
- Mendoza
- Argentina
- Instituto de Histología y Embriología de Mendoza (IHEM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
| | - Diego Masone
- Instituto de Histología y Embriología de Mendoza (IHEM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
- Universidad Nacional de Cuyo (UNCuyo)
- Mendoza
- Argentina
- Facultad de Ingeniería
| |
Collapse
|
18
|
Abstract
This Review illustrates the evaluation of permeability of lipid membranes from molecular dynamics (MD) simulation primarily using water and oxygen as examples. Membrane entrance, translocation, and exit of these simple permeants (one hydrophilic and one hydrophobic) can be simulated by conventional MD, and permeabilities can be evaluated directly by Fick's First Law, transition rates, and a global Bayesian analysis of the inhomogeneous solubility-diffusion model. The assorted results, many of which are applicable to simulations of nonbiological membranes, highlight the limitations of the homogeneous solubility diffusion model; support the utility of inhomogeneous solubility diffusion and compartmental models; underscore the need for comparison with experiment for both simple solvent systems (such as water/hexadecane) and well-characterized membranes; and demonstrate the need for microsecond simulations for even simple permeants like water and oxygen. Undulations, subdiffusion, fractional viscosity dependence, periodic boundary conditions, and recent developments in the field are also discussed. Last, while enhanced sampling methods and increasingly sophisticated treatments of diffusion add substantially to the repertoire of simulation-based approaches, they do not address directly the critical need for force fields with polarizability and multipoles, and constant pH methods.
Collapse
Affiliation(s)
- Richard M Venable
- Laboratory of Computational Biology, National Lung, Heart, and Blood Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Andreas Krämer
- Laboratory of Computational Biology, National Lung, Heart, and Blood Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Richard W Pastor
- Laboratory of Computational Biology, National Lung, Heart, and Blood Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| |
Collapse
|
19
|
Masone D, Bustos DM. Transmembrane domain dimerization induces cholesterol rafts in curved lipid bilayers. Phys Chem Chem Phys 2019; 21:268-274. [DOI: 10.1039/c8cp06783j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Are the dimerization of transmembrane (TM) domains and the reorganization of the lipid bilayer two independent events?
Collapse
Affiliation(s)
- Diego Masone
- Instituto de Histología y Embriología de Mendoza (IHEM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
- Universidad Nacional de Cuyo (UNCuyo)
- Mendoza
- Argentina
- Facultad de Ingeniería
| | - Diego M. Bustos
- Instituto de Histología y Embriología de Mendoza (IHEM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
- Universidad Nacional de Cuyo (UNCuyo)
- Mendoza
- Argentina
- Facultad de Ciencias Exactas y Naturales
| |
Collapse
|
20
|
Van Liefferinge F, Krammer EM, Sengupta D, Prévost M. Lipid composition and salt concentration as regulatory factors of the anion selectivity of VDAC studied by coarse-grained molecular dynamics simulations. Chem Phys Lipids 2018; 220:66-76. [PMID: 30448398 DOI: 10.1016/j.chemphyslip.2018.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 12/27/2022]
Abstract
The voltage-dependent anion channel (VDAC) is a mitochondrial outer membrane protein whose fundamental function is to facilitate and regulate the flow of metabolites between the cytosol and the mitochondrial intermembrane space. Using coarse-grained molecular dynamics simulations, we investigated the dependence of VDAC selectivity towards small inorganic anions on two factors: the ionic strength and the lipid composition. In agreement with experimental data we found that VDAC becomes less anion selective with increasing salt concentration due to the screening of a few basic residues that point into the pore lumen. The molecular dynamics simulations provide insight into the regulation mechanism of VDAC selectivity by the composition in the lipid membrane and suggest that the ion distribution is differently modulated by POPE compared to the POPC bilayer. This occurs through the more persistent interactions of acidic residues located at both rims of the β-barrel with head groups of POPE which in turn impact the electrostatic potential and thereby the selectivity of the pore. This mechanism occurs not only in POPE single component membranes but also in a mixed POPE/POPC bilayer by an enrichment of POPE over POPC lipids on the surface of VDAC. Thus we show here that computationally-inexpensive coarse-grained simulations are able to capture, in a semi-quantitative way, essential features of VDAC anion selectivity and could pave the way toward a molecular level understanding of metabolite transport in natural membranes.
Collapse
Affiliation(s)
- F Van Liefferinge
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - E-M Krammer
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - D Sengupta
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411 008, India
| | - M Prévost
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
21
|
Manzo G, Serra I, Magrí A, Casu M, De Pinto V, Ceccarelli M, Scorciapino MA. Folded Structure and Membrane Affinity of the N-Terminal Domain of the Three Human Isoforms of the Mitochondrial Voltage-Dependent Anion-Selective Channel. ACS OMEGA 2018; 3:11415-11425. [PMID: 30320261 PMCID: PMC6173511 DOI: 10.1021/acsomega.8b01536] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
Voltage-dependent anion-selective channels (VDACs) are primarily located in the mitochondrial outer membrane (MOM). They are essential for the regulation of ion and metabolite exchanges. In particular, their role in energy-related nucleotide exchange has many implications in apoptosis, cancer, and neurodegenerative diseases. It has been proposed that VDACs' functions are regulated by mobility of the N-terminal helical domain, which is bound to the inner wall of the main β-barrel domain but exists in equilibrium between the bound-folded and the unbound-unfolded state. When the N-terminal domain detaches from the channel's wall and eventually leaves the lumen, it can either stay exposed to the cytosolic environment or interact with the outer leaflet of the MOM; then, it may also interact with other protein partners. In humans, three different VDAC isoforms are expressed at different tissue-specific levels with evidence of distinct roles. Although the N-terminal domains share high sequence similarity, important differences do exist, with the functionality of the entire protein mostly attributed to them. In this work, the three-dimensional structure and membrane affinity of the three isolated hVDAC N-terminal peptides have been compared through Fourier-transform infrared and NMR spectroscopy in combination with molecular dynamics simulations, and measurement of the surface pressure of lipid monolayers. Although peptides were studied as isolated from the β-barrel domain, the observed differences are relevant for those whole protein's functions in which a protein-protein interaction is mediated by the N-terminal domain.
Collapse
Affiliation(s)
- Giorgia Manzo
- Department
of Chemical and Geological Sciences, Cittadella Universitaria di Monserrato, Department of Physics,
Cittadella Universitaria di Monserrato, and Department
of Biomedical Sciences, Biochemistry Unit, Cittadella Universitaria
di Monserrato, University of Cagliari, S.P. 8 km 0.700, 09042 Monserrato, Cagliari, Italy
| | - Ilaria Serra
- Department
of Chemical and Geological Sciences, Cittadella Universitaria di Monserrato, Department of Physics,
Cittadella Universitaria di Monserrato, and Department
of Biomedical Sciences, Biochemistry Unit, Cittadella Universitaria
di Monserrato, University of Cagliari, S.P. 8 km 0.700, 09042 Monserrato, Cagliari, Italy
| | - Andrea Magrí
- Department of Biomedicine
and Biotechnology, Section of Biology and Genetics, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Mariano Casu
- Department
of Chemical and Geological Sciences, Cittadella Universitaria di Monserrato, Department of Physics,
Cittadella Universitaria di Monserrato, and Department
of Biomedical Sciences, Biochemistry Unit, Cittadella Universitaria
di Monserrato, University of Cagliari, S.P. 8 km 0.700, 09042 Monserrato, Cagliari, Italy
| | - Vito De Pinto
- Department of Biomedicine
and Biotechnology, Section of Biology and Genetics, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Matteo Ceccarelli
- Department
of Chemical and Geological Sciences, Cittadella Universitaria di Monserrato, Department of Physics,
Cittadella Universitaria di Monserrato, and Department
of Biomedical Sciences, Biochemistry Unit, Cittadella Universitaria
di Monserrato, University of Cagliari, S.P. 8 km 0.700, 09042 Monserrato, Cagliari, Italy
| | - Mariano Andrea Scorciapino
- Department
of Chemical and Geological Sciences, Cittadella Universitaria di Monserrato, Department of Physics,
Cittadella Universitaria di Monserrato, and Department
of Biomedical Sciences, Biochemistry Unit, Cittadella Universitaria
di Monserrato, University of Cagliari, S.P. 8 km 0.700, 09042 Monserrato, Cagliari, Italy
| |
Collapse
|
22
|
Caterino M, Ruoppolo M, Mandola A, Costanzo M, Orrù S, Imperlini E. Protein-protein interaction networks as a new perspective to evaluate distinct functional roles of voltage-dependent anion channel isoforms. MOLECULAR BIOSYSTEMS 2018; 13:2466-2476. [PMID: 29028058 DOI: 10.1039/c7mb00434f] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Voltage-dependent anion channels (VDACs) are a family of three mitochondrial porins and the most abundant integral membrane proteins of the mitochondrial outer membrane (MOM). VDACs are known to be involved in metabolite/ion transport across the MOM and in many cellular processes ranging from mitochondria-mediated apoptosis to the control of energy metabolism, by interacting with cytosolic, mitochondrial and cytoskeletal proteins and other membrane channels. Despite redundancy and compensatory mechanisms among VDAC isoforms, they display not only different channel properties and protein expression levels, but also distinct protein partners. Here, we review the known protein interactions for each VDAC isoform in order to shed light on their peculiar roles in physiological and pathological conditions. As proteins associated with the MOM, VDAC opening/closure as a metabolic checkpoint is regulated by protein-protein interactions, and is of pharmacological interest in pathological conditions such as cancer. The interactions involving VDAC1 have been characterized more in depth than those involving VDAC2 and VDAC3. Nevertheless, the so far explored VDAC-protein interactions for each isoform show that VDAC1 is mainly involved in the maintenance of cellular homeostasis and in pro-apoptotic processes, whereas VDAC2 displays an anti-apoptotic role. Despite there being limited information on VDAC3, this isoform could contribute to mitochondrial protein quality control and act as a marker of oxidative status. In pathological conditions, namely neurodegenerative and cardiovascular diseases, both VDAC1 and VDAC2 establish abnormal interactions aimed to counteract the mitochondrial dysfunction which contributes to end-organ damage.
Collapse
Affiliation(s)
- Marianna Caterino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | | | | | | | | | | |
Collapse
|
23
|
De Vos O, Venable RM, Van Hecke T, Hummer G, Pastor RW, Ghysels A. Membrane Permeability: Characteristic Times and Lengths for Oxygen and a Simulation-Based Test of the Inhomogeneous Solubility-Diffusion Model. J Chem Theory Comput 2018; 14:3811-3824. [PMID: 29894626 DOI: 10.1021/acs.jctc.8b00115] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The balance of normal and radial (lateral) diffusion of oxygen in phospholipid membranes is critical for biological function. Based on the Smoluchowski equation for the inhomogeneous solubility-diffusion model, Bayesian analysis (BA) can be applied to molecular dynamics trajectories of oxygen to extract the free energy and the normal and radial diffusion profiles. This paper derives a theoretical formalism to convert these profiles into characteristic times and lengths associated with entering, escaping, or completely crossing the membrane. The formalism computes mean first passage times and holds for any process described by rate equations between discrete states. BA of simulations of eight model membranes with varying lipid composition and temperature indicate that oxygen travels 3 to 5 times further in the radial than in the normal direction when crossing the membrane in a time of 15 to 32 ns, thereby confirming the anisotropy of passive oxygen transport in membranes. Moreover, the preceding times and distances estimated from the BA are compared to the aggregate of 280 membrane exits explicitly observed in the trajectories. BA predictions for the distances of oxygen radial diffusion within the membrane are statistically indistinguishable from the corresponding simulation values, yet BA oxygen exit times from the membrane interior are approximately 20% shorter than the simulation values, averaged over seven systems. The comparison supports the BA approach and, therefore, the applicability of the Smoluchowski equation to membrane diffusion. Given the shorter trajectories required for the BA, these results validate the BA as a computationally attractive alternative to direct observation of exits when estimating characteristic times and radial distances. The effect of collective membrane undulations on the BA is also discussed.
Collapse
Affiliation(s)
- Oriana De Vos
- Center for Molecular Modeling , Ghent University , Technologiepark 903 , 9052 Gent , Belgium
| | - Richard M Venable
- Laboratory of Computational Biology , National Heart Lung Blood Institute, National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Tanja Van Hecke
- Department of Information Technology , Ghent University , 9000 Gent , Belgium
| | - Gerhard Hummer
- Department of Theoretical Biophysics , Max Planck Institute of Biophysics , 60438 Frankfurt am Main , Germany.,Institute for Biophysics , Goethe University Frankfurt , 60438 Frankfurt am Main , Germany
| | - Richard W Pastor
- Laboratory of Computational Biology , National Heart Lung Blood Institute, National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - An Ghysels
- Center for Molecular Modeling , Ghent University , Technologiepark 903 , 9052 Gent , Belgium
| |
Collapse
|
24
|
Masone D, Uhart M, Bustos DM. Bending Lipid Bilayers: A Closed-Form Collective Variable for Effective Free-Energy Landscapes in Quantitative Biology. J Chem Theory Comput 2018; 14:2240-2245. [PMID: 29506389 DOI: 10.1021/acs.jctc.8b00012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Curvature-related processes are of major importance during protein-membrane interactions. The illusive simplicity of membrane reshaping masks a complex molecular process crucial for a wide range of biological functions like fusion, endo- and exocytosis, cell division, cytokinesis, and autophagy. To date, no functional expression of a reaction coordinate capable of biasing molecular dynamics simulations to produce membrane curvature has been reported. This represents a major drawback given that the adequate identification of proper collective variables to enhance sampling is fundamental for restrained dynamics techniques. In this work, we present a closed-form equation of a collective variable that induces bending in lipid bilayers in a controlled manner, allowing for straightforward calculation of free energy landscapes of important curvature-related events, using standard methods such as umbrella sampling and metadynamics. As a direct application of the collective variable, we calculate the bending free energies of a ternary lipid bilayer in the presence and the absence of a Bin/Amphiphysin/Rvs domain with an N-terminal amphipathic helix (N-BAR), a well-known peripheral membrane protein that induces curvature.
Collapse
|
25
|
Zeth K, Zachariae U. Ten Years of High Resolution Structural Research on the Voltage Dependent Anion Channel (VDAC)-Recent Developments and Future Directions. Front Physiol 2018; 9:108. [PMID: 29563878 PMCID: PMC5845903 DOI: 10.3389/fphys.2018.00108] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/02/2018] [Indexed: 12/20/2022] Open
Abstract
Mitochondria are evolutionarily related to Gram-negative bacteria and both comprise two membrane systems with strongly differing protein composition. The major protein in the outer membrane of mitochondria is the voltage-dependent anion channel (VDAC), which mediates signal transmission across the outer membrane but also the exchange of metabolites, most importantly ADP and ATP. More than 30 years after its discovery three identical high-resolution structures were determined in 2008. These structures show a 19-stranded anti-parallel beta-barrel with an N-terminal helix located inside. An odd number of beta-strands is also shared by Tom40, another member of the VDAC superfamily. This indicates that this superfamily is evolutionarily relatively young and that it has emerged in the context of mitochondrial evolution. New structural information obtained during the last decade on Tom40 can be used to cross-validate the structure of VDAC and vice versa. Interpretation of biochemical and biophysical studies on both protein channels now rests on a solid basis of structural data. Over the past 10 years, complementary structural and functional information on proteins of the VDAC superfamily has been collected from in-organello, in-vitro, and in silico studies. Most of these findings have confirmed the validity of the original structures. This short article briefly reviews the most important advances on the structure and function of VDAC superfamily members collected during the last decade and summarizes how they enhanced our understanding of the channel.
Collapse
Affiliation(s)
- Kornelius Zeth
- Department for Science and Environment, Roskilde University, Roskilde, Denmark
| | - Ulrich Zachariae
- School of Science and Engineering, University of Dundee, Dundee, United Kingdom.,School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
26
|
Gupta R. Phosphorylation of rat brain purified mitochondrial Voltage-Dependent Anion Channel by c-Jun N-terminal kinase-3 modifies open-channel noise. Biochem Biophys Res Commun 2017; 490:1221-1225. [PMID: 28676395 DOI: 10.1016/j.bbrc.2017.06.194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 06/30/2017] [Indexed: 10/19/2022]
Abstract
The drift kinetic energy of ionic flow through single ion channels cause vibrations of the pore walls which are observed as open-state current fluctuations (open-channel noise) during single-channel recordings. Vibration of the pore wall leads to transitions among different conformational sub-states of the channel protein in the open-state. Open-channel noise analysis can provide important information about the different conformational sub-state transitions and how biochemical modifications of ion channels would affect their transport properties. It has been shown that c-Jun N-terminal kinase-3 (JNK3) becomes activated by phosphorylation in various neurodegenerative diseases and phosphorylates outer mitochondrion associated proteins leading to neuronal apoptosis. In our earlier work, JNK3 has been reported to phosphorylate purified rat brain mitochondrial voltage-dependent anion channel (VDAC) in vitro and modify its conductance and opening probability. In this article we have compared the open-state noise profile of the native and the JNK3 phosphorylated VDAC using Power Spectral Density vs frequency plots. Power spectral density analysis of open-state noise indicated power law with average slope value α ≈1 for native VDAC at both positive and negative voltage whereas average α value < 0.5 for JNK3 phosphorylated VDAC at both positive and negative voltage. It is proposed that 1/f1 power law in native VDAC open-state noise arises due to coupling of ionic transport and conformational sub-states transitions in open-state and this coupling is perturbed as a result of channel phosphorylation.
Collapse
Affiliation(s)
- Rajeev Gupta
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
27
|
Lee J, Patel DS, Kucharska I, Tamm LK, Im W. Refinement of OprH-LPS Interactions by Molecular Simulations. Biophys J 2017; 112:346-355. [PMID: 28122220 DOI: 10.1016/j.bpj.2016.12.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/27/2016] [Accepted: 12/05/2016] [Indexed: 12/16/2022] Open
Abstract
The outer membrane (OM) of Gram-negative bacteria is composed of lipopolysaccharide (LPS) in the outer leaflet and phospholipids in the inner leaflet. The outer membrane protein H (OprH) of Pseudomonas aeruginosa provides an increased stability to the OMs by directly interacting with LPS. Here we report the influence of various P. aeruginosa and, for comparison, Escherichia coli LPS environments on the physical properties of the OMs and OprH using all-atom molecular dynamics simulations. The simulations reveal that although the P. aeruginosa OMs are thinner hydrophobic bilayers than the E. coli OMs, which is expected from the difference in the acyl chain length of their lipid A, this effect is almost imperceptible around OprH due to a dynamically adjusted hydrophobic match between OprH and the OM. The structure and dynamics of the extracellular loops of OprH show distinct behaviors in different LPS environments. Including the O-antigen greatly reduces the flexibility of the OprH loops and increases the interactions between these loops and LPS. Furthermore, our study shows that the interactions between OprH and LPS mainly depend on the secondary structure of OprH and the chemical structure of LPS, resulting in distinctive patterns in different LPS environments.
Collapse
Affiliation(s)
- Joonseong Lee
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania; Bioengineering Program, Lehigh University, Bethlehem, Pennsylvania
| | - Dhilon S Patel
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania; Bioengineering Program, Lehigh University, Bethlehem, Pennsylvania
| | - Iga Kucharska
- Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, Virginia; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Lukas K Tamm
- Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, Virginia; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Wonpil Im
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania; Bioengineering Program, Lehigh University, Bethlehem, Pennsylvania.
| |
Collapse
|
28
|
Boags A, Hsu PC, Samsudin F, Bond PJ, Khalid S. Progress in Molecular Dynamics Simulations of Gram-Negative Bacterial Cell Envelopes. J Phys Chem Lett 2017; 8:2513-2518. [PMID: 28467715 DOI: 10.1021/acs.jpclett.7b00473] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Bacteria are protected by complex molecular architectures known as the cell envelope. The cell envelope is composed of regions with distinct chemical compositions and physical properties, namely, membranes and a cell wall. To develop novel antibiotics to combat pathogenic bacteria, molecular level knowledge of the structure, dynamics, and interplay between the chemical components of the cell envelope that surrounds bacterial cells is imperative. In addition, conserved molecular patterns associated with the bacterial envelope are recognized by receptors as part of the mammalian defensive response to infection, and an improved understanding of bacteria-host interactions would facilitate the search for novel immunotherapeutics. This Perspective introduces an emerging area of computational biology: multiscale molecular dynamics simulations of chemically complex models of bacterial lipids and membranes. We discuss progress to date, and identify areas for future development that will enable the study of aspects of the membrane components that are as yet unexplored by computational methods.
Collapse
Affiliation(s)
- Alister Boags
- School of Chemistry, University of Southampton , Southampton, United Kingdom , SO17 1BJ
| | - Pin-Chia Hsu
- School of Chemistry, University of Southampton , Southampton, United Kingdom , SO17 1BJ
| | - Firdaus Samsudin
- School of Chemistry, University of Southampton , Southampton, United Kingdom , SO17 1BJ
| | - Peter J Bond
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR) , Matrix 07-01, 30 Biopolis Street, 138671 Singapore
- Department of Biological Sciences, National University of Singapore , 14 Science Drive 4, 117543 Singapore
| | - Syma Khalid
- School of Chemistry, University of Southampton , Southampton, United Kingdom , SO17 1BJ
| |
Collapse
|
29
|
Ghysels A, Venable RM, Pastor RW, Hummer G. Position-Dependent Diffusion Tensors in Anisotropic Media from Simulation: Oxygen Transport in and through Membranes. J Chem Theory Comput 2017; 13:2962-2976. [PMID: 28482659 DOI: 10.1021/acs.jctc.7b00039] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A Bayesian-based methodology is developed to estimate diffusion tensors from molecular dynamics simulations of permeants in anisotropic media, and is applied to oxygen in lipid bilayers. By a separation of variables in the Smoluchowski diffusion equation, the multidimensional diffusion is reduced to coupled one-dimensional diffusion problems that are treated by discretization. The resulting diffusivity profiles characterize the membrane transport dynamics as a function of the position across the membrane, discriminating between diffusion normal and parallel to the membrane. The methodology is first validated with neat water, neat hexadecane, and a hexadecane slab surrounded by water, the latter being a simple model for a lipid membrane. Next, a bilayer consisting of pure 1-palmitoyl 2-oleoylphosphatidylcholine (POPC), and a bilayer mimicking the lipid composition of the inner mitochondrial membrane, including cardiolipin, are investigated. We analyze the detailed time evolution of oxygen molecules, in terms of both normal diffusion through and radial diffusion inside the membrane. Diffusion is fast in the more loosely packed interleaflet region, and anisotropic, with oxygen spreading more rapidly in the membrane plane than normal to it. Visualization of the propagator shows that oxygen enters the membrane rapidly, reaching its thermodynamically favored center in about 1 ns, despite the free energy barrier at the headgroup region. Oxygen transport is quantified by computing the oxygen permeability of the membranes and the average radial diffusivity, which confirm the anisotropy of the diffusion. The position-dependent diffusion constants and free energies are used to construct compartmental models and test assumptions used in estimating permeability, including Overton's rule. In particular, a hexadecane slab surrounded by water is found to be a poor model of oxygen transport in membranes because the relevant energy barriers differ substantially.
Collapse
Affiliation(s)
- An Ghysels
- Center for Molecular Modeling, Ghent University , Technologiepark 903, Zwijnaarde 9052, Belgium
| | - Richard M Venable
- Laboratory of Computational Biology, National Heart Lung Blood Institute, National Institutes of Health , Bethesda, Maryland 20824, United States
| | - Richard W Pastor
- Laboratory of Computational Biology, National Heart Lung Blood Institute, National Institutes of Health , Bethesda, Maryland 20824, United States
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics and Institute for Biophysics, Goethe University Frankfurt , Frankfurt am Main 60438, Germany
| |
Collapse
|
30
|
Bargiello TA, Oh S, Tang Q, Bargiello NK, Dowd TL, Kwon T. Gating of Connexin Channels by transjunctional-voltage: Conformations and models of open and closed states. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:22-39. [PMID: 28476631 DOI: 10.1016/j.bbamem.2017.04.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/26/2017] [Accepted: 04/28/2017] [Indexed: 11/18/2022]
Abstract
Voltage is an important physiologic regulator of channels formed by the connexin gene family. Connexins are unique among ion channels in that both plasma membrane inserted hemichannels (undocked hemichannels) and intercellular channels (aggregates of which form gap junctions) have important physiological roles. The hemichannel is the fundamental unit of gap junction voltage-gating. Each hemichannel displays two distinct voltage-gating mechanisms that are primarily sensitive to a voltage gradient formed along the length of the channel pore (the transjunctional voltage) rather than sensitivity to the absolute membrane potential (Vm or Vi-o). These transjunctional voltage dependent processes have been termed Vj- or fast-gating and loop- or slow-gating. Understanding the mechanism of voltage-gating, defined as the sequence of voltage-driven transitions that connect open and closed states, first and foremost requires atomic resolution models of the end states. Although ion channels formed by connexins were among the first to be characterized structurally by electron microscopy and x-ray diffraction in the early 1980's, subsequent progress has been slow. Much of the current understanding of the structure-function relations of connexin channels is based on two crystal structures of Cx26 gap junction channels. Refinement of crystal structure by all-atom molecular dynamics and incorporation of charge changing protein modifications has resulted in an atomic model of the open state that arguably corresponds to the physiologic open state. Obtaining validated atomic models of voltage-dependent closed states is more challenging, as there are currently no methods to solve protein structure while a stable voltage gradient is applied across the length of an oriented channel. It is widely believed that the best approach to solve the atomic structure of a voltage-gated closed ion channel is to apply different but complementary experimental and computational methods and to use the resulting information to derive a consensus atomic structure that is then subjected to rigorous validation. In this paper, we summarize our efforts to obtain and validate atomic models of the open and voltage-driven closed states of undocked connexin hemichannels. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Thaddeus A Bargiello
- Dominic P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, United States.
| | - Seunghoon Oh
- Department of Physiology, College of Medicine, Dankook University, Cheonan, Republic of Korea
| | - Qingxiu Tang
- Dominic P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Nicholas K Bargiello
- Dominic P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Terry L Dowd
- Department of Chemistry, Brooklyn College, Brooklyn, NY 11210, United States
| | - Taekyung Kwon
- Dominic P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| |
Collapse
|
31
|
Masone D, Uhart M, Bustos DM. On the role of residue phosphorylation in 14-3-3 partners: AANAT as a case study. Sci Rep 2017; 7:46114. [PMID: 28387381 PMCID: PMC5384239 DOI: 10.1038/srep46114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/08/2017] [Indexed: 01/14/2023] Open
Abstract
Twenty years ago, a novel concept in protein structural biology was discovered: the intrinsically disordered regions (IDRs). These regions remain largely unstructured under native conditions and the more are studied, more properties are attributed to them. Possibly, one of the most important is their ability to conform a new type of protein-protein interaction. Besides the classical domain-to-domain interactions, IDRs follow a 'fly-casting' model including 'induced folding'. Unfortunately, it is only possible to experimentally explore initial and final states. However, the complete movie of conformational changes of protein regions and their characterization can be addressed by in silico experiments. Here, we simulate the binding of two proteins to describe how the phosphorylation of a single residue modulates the entire process. 14-3-3 protein family is considered a master regulator of phosphorylated proteins and from a modern point-of-view, protein phosphorylation is a three component system, with writers (kinases), erasers (phosphatases) and readers. This later biological role is attributed to the 14-3-3 protein family. Our molecular dynamics results show that phosphorylation of the key residue Thr31 in a partner of 14-3-3, the aralkylamine N-acetyltransferase, releases the fly-casting mechanism during binding. On the other hand, the non-phosphorylation of the same residue traps the proteins, systematically and repeatedly driving the simulations into wrong protein-protein conformations.
Collapse
Affiliation(s)
- Diego Masone
- Instituto de Histología y Embriología (IHEM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CC56, Universidad Nacional de Cuyo (UNCuyo), 5500, Mendoza, Argentina
- Facultad de Ingeniería, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| | - Marina Uhart
- Instituto de Histología y Embriología (IHEM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CC56, Universidad Nacional de Cuyo (UNCuyo), 5500, Mendoza, Argentina
| | - Diego M. Bustos
- Instituto de Histología y Embriología (IHEM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CC56, Universidad Nacional de Cuyo (UNCuyo), 5500, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| |
Collapse
|
32
|
Fluctuation-Driven Transport in Biological Nanopores. A 3D Poisson–Nernst–Planck Study. ENTROPY 2017. [DOI: 10.3390/e19030116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
33
|
Briones R, Weichbrodt C, Paltrinieri L, Mey I, Villinger S, Giller K, Lange A, Zweckstetter M, Griesinger C, Becker S, Steinem C, de Groot BL. Voltage Dependence of Conformational Dynamics and Subconducting States of VDAC-1. Biophys J 2016; 111:1223-1234. [PMID: 27653481 PMCID: PMC5034351 DOI: 10.1016/j.bpj.2016.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/17/2016] [Accepted: 08/02/2016] [Indexed: 12/21/2022] Open
Abstract
The voltage-dependent anion channel 1 (VDAC-1) is an important protein of the outer mitochondrial membrane that transports energy metabolites and is involved in apoptosis. The available structures of VDAC proteins show a wide β-stranded barrel pore, with its N-terminal α-helix (N-α) bound to its interior. Electrophysiology experiments revealed that voltage, its polarity, and membrane composition modulate VDAC currents. Experiments with VDAC-1 mutants identified amino acids that regulate the gating process. However, the mechanisms for how these factors regulate VDAC-1, and which changes they trigger in the channel, are still unknown. In this study, molecular dynamics simulations and single-channel experiments of VDAC-1 show agreement for the current-voltage relationships of an "open" channel and they also show several subconducting transient states that are more cation selective in the simulations. We observed voltage-dependent asymmetric distortions of the VDAC-1 barrel and the displacement of particular charged amino acids. We constructed conformational models of the protein voltage response and the pore changes that consistently explain the protein conformations observed at opposite voltage polarities, either in phosphatidylethanolamine or phosphatidylcholine membranes. The submicrosecond VDAC-1 voltage response shows intrinsic structural changes that explain the role of key gating amino acids and support some of the current gating hypotheses. These voltage-dependent protein changes include asymmetric barrel distortion, its interaction with the membrane, and significant displacement of N-α amino acids.
Collapse
Affiliation(s)
- Rodolfo Briones
- Computational Biomolecular Dynamics Group, Max-Planck Institute for Biophysical Chemistry, Goettingen, Germany.
| | - Conrad Weichbrodt
- Institute of Organic and Biomolecular Chemistry, University of Goettingen, Goettingen, Germany
| | - Licia Paltrinieri
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Ingo Mey
- Institute of Organic and Biomolecular Chemistry, University of Goettingen, Goettingen, Germany
| | - Saskia Villinger
- NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Karin Giller
- NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Adam Lange
- NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Markus Zweckstetter
- NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Goettingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany; Department of Neurology, University Medical Center, University of Goettingen, Goettingen, Germany
| | - Christian Griesinger
- NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Stefan Becker
- NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Claudia Steinem
- Institute of Organic and Biomolecular Chemistry, University of Goettingen, Goettingen, Germany.
| | - Bert L de Groot
- Computational Biomolecular Dynamics Group, Max-Planck Institute for Biophysical Chemistry, Goettingen, Germany.
| |
Collapse
|
34
|
Adelman JL, Grabe M. Simulating Current-Voltage Relationships for a Narrow Ion Channel Using the Weighted Ensemble Method. J Chem Theory Comput 2016; 11:1907-18. [PMID: 26392816 DOI: 10.1021/ct501134s] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ion channels are responsible for a myriad of fundamental biological processes via their role in controlling the flow of ions through water-filled membrane-spanning pores in response to environmental cues. Molecular simulation has played an important role in elucidating the mechanism of ion conduction, but connecting atomistically detailed structural models of the protein to electrophysiological measurements remains a broad challenge due to the computational cost of reaching the necessary time scales. Here, we introduce an enhanced sampling method for simulating the conduction properties of narrow ion channels using the Weighted ensemble (WE) sampling approach. We demonstrate the application of this method to calculate the current–voltage relationship as well as the nonequilibrium ion distribution at steady-state of a simple model ion channel. By direct comparisons with long brute force simulations, we show that the WE simulations rigorously reproduce the correct long-time scale kinetics of the system and are capable of determining these quantities using significantly less aggregate simulation time under conditions where permeation events are rare.
Collapse
|
35
|
Noskov SY, Rostovtseva TK, Chamberlin AC, Teijido O, Jiang W, Bezrukov SM. Current state of theoretical and experimental studies of the voltage-dependent anion channel (VDAC). BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1858:1778-90. [PMID: 26940625 PMCID: PMC4877207 DOI: 10.1016/j.bbamem.2016.02.026] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 01/04/2023]
Abstract
Voltage-dependent anion channel (VDAC), the major channel of the mitochondrial outer membrane provides a controlled pathway for respiratory metabolites in and out of the mitochondria. In spite of the wealth of experimental data from structural, biochemical, and biophysical investigations, the exact mechanisms governing selective ion and metabolite transport, especially the role of titratable charged residues and interactions with soluble cytosolic proteins, remain hotly debated in the field. The computational advances hold a promise to provide a much sought-after solution to many of the scientific disputes around solute and ion transport through VDAC and hence, across the mitochondrial outer membrane. In this review, we examine how Molecular Dynamics, Free Energy, and Brownian Dynamics simulations of the large β-barrel channel, VDAC, advanced our understanding. We will provide a short overview of non-conventional techniques and also discuss examples of how the modeling excursions into VDAC biophysics prospectively aid experimental efforts. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.
Collapse
Affiliation(s)
- Sergei Yu Noskov
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N1N4, Canada.
| | - Tatiana K Rostovtseva
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | - Oscar Teijido
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; Department of Medical Epigenetics, Institute of Medical Sciences and Genomic Medicine, EuroEspes Sta. Marta de Babío S/N, 15165 Bergondo, A Coruña, Spain
| | - Wei Jiang
- Leadership Computing Facility, Argonne National Laboratory, 9700S Cass Avenue, Lemont, IL 60439, USA
| | - Sergey M Bezrukov
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
36
|
Solano CJF, Pothula KR, Prajapati JD, De Biase PM, Noskov SY, Kleinekathöfer U. BROMOCEA Code: An Improved Grand Canonical Monte Carlo/Brownian Dynamics Algorithm Including Explicit Atoms. J Chem Theory Comput 2016; 12:2401-17. [DOI: 10.1021/acs.jctc.5b01196] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Carlos J. F. Solano
- Department
of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Karunakar R. Pothula
- Department
of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Jigneshkumar D. Prajapati
- Department
of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Pablo M. De Biase
- Centre
for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Sergei Yu. Noskov
- Centre
for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Ulrich Kleinekathöfer
- Department
of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
37
|
Ge L, Villinger S, Mari SA, Giller K, Griesinger C, Becker S, Müller DJ, Zweckstetter M. Molecular Plasticity of the Human Voltage-Dependent Anion Channel Embedded Into a Membrane. Structure 2016; 24:585-594. [PMID: 27021164 PMCID: PMC5654509 DOI: 10.1016/j.str.2016.02.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/12/2016] [Accepted: 02/22/2016] [Indexed: 12/28/2022]
Abstract
The voltage-dependent anion channel (VDAC) regulates the flux of metabolites and ions across the outer mitochondrial membrane. Regulation of ion flow involves conformational transitions in VDAC, but the nature of these changes has not been resolved to date. By combining single-molecule force spectroscopy with nuclear magnetic resonance spectroscopy we show that the β barrel of human VDAC embedded into a membrane is highly flexible. Its mechanical flexibility exceeds by up to one order of magnitude that determined for β strands of other membrane proteins and is largest in the N-terminal part of the β barrel. Interaction with Ca(2+), a key regulator of metabolism and apoptosis, considerably decreases the barrel's conformational variability and kinetic free energy in the membrane. The combined data suggest that physiological VDAC function depends on the molecular plasticity of its channel.
Collapse
Affiliation(s)
- Lin Ge
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Saskia Villinger
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Stefania A Mari
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Karin Giller
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Christian Griesinger
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Stefan Becker
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Mattenstrasse 26, 4058 Basel, Switzerland.
| | - Markus Zweckstetter
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany; Structural Biology in Dementia, German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Strasse 3a, 37075 Göttingen, Germany; Department of Neurology, University Medical Center Göttingen, University of Göttingen, Am Waldweg 33, 37073 Göttingen, Germany.
| |
Collapse
|
38
|
Guardiani C, Leggio L, Scorciapino MA, de Pinto V, Ceccarelli M. A computational study of ion current modulation in hVDAC3 induced by disulfide bonds. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:813-23. [PMID: 26806159 DOI: 10.1016/j.bbamem.2016.01.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/05/2015] [Accepted: 01/19/2016] [Indexed: 11/29/2022]
Abstract
The human VDAC channel exists in three isoforms characterized by high sequence homology and structural similarity. Yet the function and mode of action of hVDAC3 are still elusive. The presence of six surface cysteines exposed to the oxidizing environment of the mitochondrial inter-membrane space suggests the possible establishment of intramolecular disulfide bonds. Two natural candidates for disulfide bridge formation are Cys2 and Cys8 that, located on the flexible N-terminal domain, can easily come in contact. A third potentially important residue is Cys122 that is close to Cys2 in the homology model of VDAC3. Here we analyzed the impact of SS bonds through molecular dynamics simulations of derivatives of hVDAC3 (dubbed SS-2-8, SS-2-122, SS-8-122) including a single disulfide bond. Simulations showed that in SS-8-122, the fragment 1-7 crosses the top part of the barrel partially occluding the pore and causing a 20% drop of conductance. In order to identify other potential channel-occluding disulfide bonds, we used a set of neural networks and structural bioinformatics algorithms, after filtering with the steric constraints imposed by the 3D-structure. We identified other three species, namely SS-8-65, SS-2-36 and SS-8-36. While the conductance of SS-8-65 and SS-2-36 is about 30% lower than that of the species without disulfide bonds, the conductance of SS-8-36 was 40-50% lower. The results show how VDAC3 is able to modulate its pore size and current by exploiting the mobility of the N-terminal and forming, upon external stimuli, disulfide bridges with cysteine residues located on the barrel and exposed to the inter-membrane space.
Collapse
Affiliation(s)
- Carlo Guardiani
- Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche (CNR-IOM), UOS, Cagliari, Italy
| | - Loredana Leggio
- Department of Biomedical and Biotechnological Sciences, BIOMETEC, University of Catania, Italy; National Institute for Biomembranes and Biosystems, Section of Catania, viale A. Doria 6, 95125 Catania, Italy
| | - Mariano Andrea Scorciapino
- Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche (CNR-IOM), UOS, Cagliari, Italy; Department of Biomedical Sciences, Biochemistry Unit, University of Cagliari, Italy
| | - Vito de Pinto
- Department of Biomedical and Biotechnological Sciences, BIOMETEC, University of Catania, Italy; National Institute for Biomembranes and Biosystems, Section of Catania, viale A. Doria 6, 95125 Catania, Italy
| | - Matteo Ceccarelli
- Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche (CNR-IOM), UOS, Cagliari, Italy; Department of Physics, University of Cagliari, Cagliari, Italy.
| |
Collapse
|
39
|
Pothula KR, Solano CJF, Kleinekathöfer U. Simulations of outer membrane channels and their permeability. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:1760-71. [PMID: 26721326 DOI: 10.1016/j.bbamem.2015.12.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/15/2015] [Accepted: 12/17/2015] [Indexed: 12/25/2022]
Abstract
Channels in the outer membrane of Gram-negative bacteria provide essential pathways for the controlled and unidirectional transport of ions, nutrients and metabolites into the cell. At the same time the outer membrane serves as a physical barrier for the penetration of noxious substances such as antibiotics into the bacteria. Most antibiotics have to pass through these membrane channels to either reach cytoplasmic bound targets or to further cross the hydrophobic inner membrane. Considering the pharmaceutical significance of antibiotics, understanding the functional role and mechanism of these channels is of fundamental importance in developing strategies to design new drugs with enhanced permeation abilities. Due to the biological complexity of membrane channels and experimental limitations, computer simulations have proven to be a powerful tool to investigate the structure, dynamics and interactions of membrane channels. Considerable progress has been made in computer simulations of membrane channels during the last decade. The goal of this review is to provide an overview of the computational techniques and their roles in modeling the transport across outer membrane channels. A special emphasis is put on all-atom molecular dynamics simulations employed to better understand the transport of molecules. Moreover, recent molecular simulations of ion, substrate and antibiotics translocation through membrane pores are briefly summarized. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.
Collapse
Affiliation(s)
- Karunakar R Pothula
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Carlos J F Solano
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Ulrich Kleinekathöfer
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
40
|
Guardiani C, Scorciapino MA, Amodeo GF, Grdadolnik J, Pappalardo G, De Pinto V, Ceccarelli M, Casu M. The N-Terminal Peptides of the Three Human Isoforms of the Mitochondrial Voltage-Dependent Anion Channel Have Different Helical Propensities. Biochemistry 2015; 54:5646-56. [DOI: 10.1021/acs.biochem.5b00469] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Carlo Guardiani
- Department
of Physics, University of Cagliari, 09042 Monserrato, Italy
| | - Mariano Andrea Scorciapino
- Department
of Biomedical Sciences, Biochemistry Unit, University of Cagliari, 09042 Monserrato, Italy
- Istituto
Officina dei Materiali del Consiglio Nazionale delle Ricerche (IOM-CNR), UOS, Cagliari, Italy
| | | | | | | | - Vito De Pinto
- Department
of Biological, Geological and Environmental Sciences, Section of Molecular
Biology, University of Catania, and National Institute for Biostructures and Biosystems, Section of Catania, Catania, Italy
| | - Matteo Ceccarelli
- Department
of Physics, University of Cagliari, 09042 Monserrato, Italy
- Istituto
Officina dei Materiali del Consiglio Nazionale delle Ricerche (IOM-CNR), UOS, Cagliari, Italy
| | - Mariano Casu
- Department
of Chemical and Geological Sciences, University of Cagliari, 09042 Monserrato, Italy
| |
Collapse
|
41
|
Marcoline FV, Bethel N, Guerriero CJ, Brodsky JL, Grabe M. Membrane Protein Properties Revealed through Data-Rich Electrostatics Calculations. Structure 2015; 23:1526-1537. [PMID: 26118532 DOI: 10.1016/j.str.2015.05.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/09/2015] [Accepted: 05/02/2015] [Indexed: 01/29/2023]
Abstract
The electrostatic properties of membrane proteins often reveal many of their key biophysical characteristics, such as ion channel selectivity and the stability of charged membrane-spanning segments. The Poisson-Boltzmann (PB) equation is the gold standard for calculating protein electrostatics, and the software APBSmem enables the solution of the PB equation in the presence of a membrane. Here, we describe significant advances to APBSmem, including full automation of system setup, per-residue energy decomposition, incorporation of PDB2PQR, calculation of membrane-induced pKa shifts, calculation of non-polar energies, and command-line scripting for large-scale calculations. We highlight these new features with calculations carried out on a number of membrane proteins, including the recently solved structure of the ion channel TRPV1 and a large survey of 1,614 membrane proteins of known structure. This survey provides a comprehensive list of residues with large electrostatic penalties for being embedded in the membrane, potentially revealing interesting functional information.
Collapse
Affiliation(s)
- Frank V Marcoline
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Neville Bethel
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA; Integrative Program in Quantitative Biology, University of California, San Francisco, CA 94158, USA
| | | | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Michael Grabe
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
42
|
Krammer EM, Vu GT, Homblé F, Prévost M. Dual mechanism of ion permeation through VDAC revealed with inorganic phosphate ions and phosphate metabolites. PLoS One 2015; 10:e0121746. [PMID: 25860993 PMCID: PMC4393092 DOI: 10.1371/journal.pone.0121746] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/03/2015] [Indexed: 11/19/2022] Open
Abstract
In the exchange of metabolites and ions between the mitochondrion and the cytosol, the voltage-dependent anion channel (VDAC) is a key element, as it forms the major transport pathway for these compounds through the mitochondrial outer membrane. Numerous experimental studies have promoted the idea that VDAC acts as a regulator of essential mitochondrial functions. In this study, using a combination of molecular dynamics simulations, free-energy calculations, and electrophysiological measurements, we investigated the transport of ions through VDAC, with a focus on phosphate ions and metabolites. We showed that selectivity of VDAC towards small anions including monovalent phosphates arises from short-lived interactions with positively charged residues scattered throughout the pore. In dramatic contrast, permeation of divalent phosphate ions and phosphate metabolites (AMP and ATP) involves binding sites along a specific translocation pathway. This permeation mechanism offers an explanation for the decrease in VDAC conductance measured in the presence of ATP or AMP at physiological salt concentration. The binding sites occur at similar locations for the divalent phosphate ions, AMP and ATP, and contain identical basic residues. ATP features a marked affinity for a central region of the pore lined by two lysines and one arginine of the N-terminal helix. This cluster of residues together with a few other basic amino acids forms a "charged brush" which facilitates the passage of the anionic metabolites through the pore. All of this reveals that VDAC controls the transport of the inorganic phosphates and phosphate metabolites studied here through two different mechanisms.
Collapse
Affiliation(s)
- Eva-Maria Krammer
- Structure et Fonction des Membranes Biologiques, Centre de Biologie Structurale et de Bioinformatique, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Giang Thi Vu
- Structure et Fonction des Membranes Biologiques, Centre de Biologie Structurale et de Bioinformatique, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Fabrice Homblé
- Structure et Fonction des Membranes Biologiques, Centre de Biologie Structurale et de Bioinformatique, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Martine Prévost
- Structure et Fonction des Membranes Biologiques, Centre de Biologie Structurale et de Bioinformatique, Université Libre de Bruxelles (ULB), Brussels, Belgium
- * E-mail: (MP)
| |
Collapse
|
43
|
Gattin Z, Schneider R, Laukat Y, Giller K, Maier E, Zweckstetter M, Griesinger C, Benz R, Becker S, Lange A. Solid-state NMR, electrophysiology and molecular dynamics characterization of human VDAC2. JOURNAL OF BIOMOLECULAR NMR 2015; 61:311-20. [PMID: 25399320 PMCID: PMC5653203 DOI: 10.1007/s10858-014-9876-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 11/11/2014] [Indexed: 05/22/2023]
Abstract
The voltage-dependent anion channel (VDAC) is the most abundant protein of the outer mitochondrial membrane and constitutes the major pathway for the transport of ADP, ATP, and other metabolites. In this multidisciplinary study we combined solid-state NMR, electrophysiology, and molecular dynamics simulations, to study the structure of the human VDAC isoform 2 in a lipid bilayer environment. We find that the structure of hVDAC2 is similar to the structure of hVDAC1, in line with recent investigations on zfVDAC2. However, hVDAC2 appears to exhibit an increased conformational heterogeneity compared to hVDAC1 which is reflected in broader solid-state NMR spectra and less defined electrophysiological profiles.
Collapse
Affiliation(s)
- Zrinka Gattin
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
- Max Planck Institute for Dynamics and Selforganisation, Am Fassberg 17, 37077 Göttingen, Germany
| | - Robert Schneider
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
- Unité de Glycobiologie Structurale et Fonctionnelle, Université des Sciences et Technologies de Lille, Bât. C9, 59655 Villeneuve d'Ascq, France
| | - Yvonne Laukat
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Karin Giller
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Elke Maier
- Lehrstuhl für Biotechnologie, Theodor-Boveri-Institut (Biozentrum) der Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Markus Zweckstetter
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
- Deutsches Zentrum für neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
- Center for the Molecular Physiology of the Brain, University Medical Center, 37073 Göttingen, Germany
| | - Christian Griesinger
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Roland Benz
- Lehrstuhl für Biotechnologie, Theodor-Boveri-Institut (Biozentrum) der Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Stefan Becker
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Adam Lange
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
- Institut für Biologie, Humboldt-Universität zu Berlin, Invalidenstr. 110, 10115 Berlin, Germany
| |
Collapse
|
44
|
Yao H, Rui H, Kumar R, Eshelman K, Lovell S, Battaile KP, Im W, Rivera M. Concerted motions networking pores and distant ferroxidase centers enable bacterioferritin function and iron traffic. Biochemistry 2015; 54:1611-27. [PMID: 25640193 DOI: 10.1021/bi501255r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
X-ray crystallography, molecular dynamics (MD) simulations, and biochemistry were utilized to investigate the effect of introducing hydrophobic interactions in the 4-fold (N148L and Q151L) and B-pores (D34F) of Pseudomonas aeruginosa bacterioferritin B (BfrB) on BfrB function. The structures show only local structural perturbations and confirm the anticipated hydrophobic interactions. Surprisingly, structures obtained after soaking crystals in Fe2+-containing crystallization solution revealed that although iron loads into the ferroxidase centers of the mutants, the side chains of ferroxidase ligands E51 and H130 do not reorganize to bind the iron ions, as is seen in the wt BfrB structures. Similar experiments with a double mutant (C89S/K96C) prepared to introduce changes outside the pores show competent ferroxidase centers that function akin to those in wt BfrB. MD simulations comparing wt BfrB with the D34F and N148L mutants show that the mutants exhibit significantly reduced flexibility and reveal a network of concerted motions linking ferroxidase centers and 4-fold and B-pores, which are important for imparting ferroxidase centers in BfrB with the required flexibility to function efficiently. In agreement, the efficiency of Fe2+ oxidation and uptake of the 4-fold and B-pore mutants in solution is significantly compromised relative to wt or C89S/K96C BfrB. Finally, our structures show a large number of previously unknown iron binding sites in the interior cavity and B-pores of BfrB, which reveal in unprecedented detail conduits followed by iron and phosphate ions across the BfrB shell, as well as paths in the interior cavity that may facilitate nucleation of the iron phosphate mineral.
Collapse
Affiliation(s)
- Huili Yao
- Department of Chemistry, ‡Del Shankel Structural Biology Center, and §Department of Molecular Biosciences and Center for Bioinformatics, University of Kansas , Multidisciplinary Research Building, 2030 Becker Drive, Lawrence, Kansas 66047, United States
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Tewari SG, Zhou Y, Otto BJ, Dash RK, Kwok WM, Beard DA. Markov chain Monte Carlo based analysis of post-translationally modified VDAC gating kinetics. Front Physiol 2015; 5:513. [PMID: 25628567 PMCID: PMC4292549 DOI: 10.3389/fphys.2014.00513] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/09/2014] [Indexed: 12/17/2022] Open
Abstract
The voltage-dependent anion channel (VDAC) is the main conduit for permeation of solutes (including nucleotides and metabolites) of up to 5 kDa across the mitochondrial outer membrane (MOM). Recent studies suggest that VDAC activity is regulated via post-translational modifications (PTMs). Yet the nature and effect of these modifications is not understood. Herein, single channel currents of wild-type, nitrosated, and phosphorylated VDAC are analyzed using a generalized continuous-time Markov chain Monte Carlo (MCMC) method. This developed method describes three distinct conducting states (open, half-open, and closed) of VDAC activity. Lipid bilayer experiments are also performed to record single VDAC activity under un-phosphorylated and phosphorylated conditions, and are analyzed using the developed stochastic search method. Experimental data show significant alteration in VDAC gating kinetics and conductance as a result of PTMs. The effect of PTMs on VDAC kinetics is captured in the parameters associated with the identified Markov model. Stationary distributions of the Markov model suggest that nitrosation of VDAC not only decreased its conductance but also significantly locked VDAC in a closed state. On the other hand, stationary distributions of the model associated with un-phosphorylated and phosphorylated VDAC suggest a reversal in channel conformation from relatively closed state to an open state. Model analyses of the nitrosated data suggest that faster reaction of nitric oxide with Cys-127 thiol group might be responsible for the biphasic effect of nitric oxide on basal VDAC conductance.
Collapse
Affiliation(s)
- Shivendra G Tewari
- Department of Molecular and Integrative Physiology, University of Michigan Ann Arbor, MI, USA
| | - Yifan Zhou
- HD Biosciences Corporation Shanghai, China
| | - Bradley J Otto
- Department of Anesthesiology, Medical College of Wisconsin Milwaukee, WI, USA
| | - Ranjan K Dash
- Department of Physiology, Medical College of Wisconsin Milwaukee, WI, USA ; Biotechnology and Bioengineering Center, Medical College of Wisconsin Milwaukee, WI, USA
| | - Wai-Meng Kwok
- Department of Anesthesiology, Medical College of Wisconsin Milwaukee, WI, USA ; Department of Pharmacology and Toxicology, Medical College of Wisconsin Milwaukee, WI, USA
| | - Daniel A Beard
- Department of Molecular and Integrative Physiology, University of Michigan Ann Arbor, MI, USA
| |
Collapse
|
46
|
|
47
|
Weiser BP, Salari R, Eckenhoff RG, Brannigan G. Computational investigation of cholesterol binding sites on mitochondrial VDAC. J Phys Chem B 2014; 118:9852-60. [PMID: 25080204 PMCID: PMC4141696 DOI: 10.1021/jp504516a] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
The
mitochondrial voltage-dependent anion channel (VDAC) allows
passage of ions and metabolites across the mitochondrial outer membrane.
Cholesterol binds mammalian VDAC, and we investigated the effects
of binding to human VDAC1 with atomistic molecular dynamics simulations
that totaled 1.4 μs. We docked cholesterol to specific sites
on VDAC that were previously identified with NMR, and we tested the
reliability of multiple docking results in each site with simulations.
The most favorable binding modes were used to build a VDAC model with
cholesterol occupying five unique sites, and during multiple 100 ns
simulations, cholesterol stably and reproducibly remained bound to
the protein. For comparison, VDAC was simulated in systems with identical
components but with cholesterol initially unbound. The dynamics of
loops that connect adjacent β-strands were most affected by
bound cholesterol, with the averaged root-mean-square fluctuation
(RMSF) of multiple residues altered by 20–30%. Cholesterol
binding also stabilized charged residues inside the channel and localized
the surrounding electrostatic potentials. Despite this, ion diffusion
through the channel was not significantly affected by bound cholesterol,
as evidenced by multi-ion potential of mean force measurements. Although
we observed modest effects of cholesterol on the open channel, our
model will be particularly useful in experiments that investigate
how cholesterol affects VDAC function under applied electrochemical
forces and also how other ligands and proteins interact with the channel.
Collapse
Affiliation(s)
- Brian P Weiser
- Department of Anesthesiology and Critical Care and ‡Department of Pharmacology, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania 19104, United States
| | | | | | | |
Collapse
|
48
|
Amodeo GF, Scorciapino MA, Messina A, De Pinto V, Ceccarelli M. Charged residues distribution modulates selectivity of the open state of human isoforms of the voltage dependent anion-selective channel. PLoS One 2014; 9:e103879. [PMID: 25084457 PMCID: PMC4146382 DOI: 10.1371/journal.pone.0103879] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 07/02/2014] [Indexed: 11/18/2022] Open
Abstract
Voltage Dependent Anion-selective Channels (VDACs) are pore-forming proteins located in the outer mitochondrial membrane. They are responsible for the access of ions and energetic metabolites into the inner membrane transport systems. Three VDAC isoforms exist in mammalian, but their specific role is unknown. In this work we have performed extensive (overall ∼5 µs) Molecular Dynamics (MD) simulations of the human VDAC isoforms to detect structural and conformational variations among them, possibly related to specific functional roles of these proteins. Secondary structure analysis of the N-terminal domain shows a high similarity among the three human isoforms of VDAC but with a different plasticity. In particular, the N-terminal domain of the hVDAC1 is characterized by a higher plasticity, with a ∼20% occurrence for the 'unstructured' conformation throughout the folded segment, while hVDAC2, containing a peculiar extension of 11 amino acids at the N-terminal end, presents an additional 310-helical folded portion comprising residues 10' to 3, adhering to the barrel wall. The N-terminal sequences of hVDAC isoforms are predicted to have a low flexibility, with possible consequences in the dynamics of the human VDACs. Clear differences were found between hVDAC1 and hVDAC3 against hVDAC2: a significantly modified dynamics with possible important consequence on the voltage-gating mechanism. Charge distribution inside and at the mouth of the pore is responsible for a different preferential localization of ions with opposite charge and provide a valuable rationale for hVDAC1 and hVDAC3 having a Cl-/K+ selectivity ratio of 1.8, whereas hVDAC2 of 1.4. Our conclusion is that hVDAC isoforms, despite sharing a similar scaffold, have modified working features and a biological work is now requested to give evidence to the described dissimilarities.
Collapse
Affiliation(s)
| | - Mariano Andrea Scorciapino
- Department of Physics, University of Cagliari, Cagliari, Italy
- Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, Cagliari, Italy
| | - Angela Messina
- Department of Biological, Geological and Environmental Sciences, Section of Molecular Biology, University of Catania, Catania, Italy
- National Institute for Biomembranes and Biosystems, Catania, Italy
| | - Vito De Pinto
- Department of Biological, Geological and Environmental Sciences, Section of Molecular Biology, University of Catania, Catania, Italy
- National Institute for Biomembranes and Biosystems, Catania, Italy
| | - Matteo Ceccarelli
- Department of Physics, University of Cagliari, Cagliari, Italy
- Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, Cagliari, Italy
| |
Collapse
|
49
|
Choudhary OP, Paz A, Adelman JL, Colletier JP, Abramson J, Grabe M. Structure-guided simulations illuminate the mechanism of ATP transport through VDAC1. Nat Struct Mol Biol 2014; 21:626-32. [PMID: 24908397 PMCID: PMC4157756 DOI: 10.1038/nsmb.2841] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 05/14/2014] [Indexed: 01/02/2023]
Abstract
The voltage-dependent anion channel (VDAC) mediates the flow of metabolites and ions across the outer mitochondrial membrane of all eukaryotic cells. The open channel passes millions of ATP molecules per second, whereas the closed state exhibits no detectable ATP flux. High-resolution structures of VDAC1 revealed a 19-stranded β-barrel with an α-helix partially occupying the central pore. To understand ATP permeation through VDAC, we solved the crystal structure of mouse VDAC1 (mVDAC1) in the presence of ATP, revealing a low-affinity binding site. Guided by these coordinates, we initiated hundreds of molecular dynamics simulations to construct a Markov state model of ATP permeation. These simulations indicate that ATP flows through VDAC through multiple pathways, in agreement with our structural data and experimentally determined physiological rates.
Collapse
Affiliation(s)
- Om P Choudhary
- 1] Joint Carnegie Mellon University-University of Pittsburgh PhD Program in Computational Biology, Pittsburgh, Pennsylvania, USA. [2]
| | - Aviv Paz
- 1] Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA. [2]
| | - Joshua L Adelman
- 1] Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA. [2]
| | - Jacques-Philippe Colletier
- 1] Université Grenoble Alpes, Institut de Biologie Structurale, Grenoble, France. [2] Centre National de la Recherche Scientifique, Institut de Biologie Structurale, Grenoble, France. [3] Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Direction des Sciences du Vivant, Institut de Biologie Structurale, Grenoble, France. [4]
| | - Jeff Abramson
- 1] Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA. [2] Institute for Stem Cell Biology and Regenerative Medicine, National Centre for Biological Sciences-Tata Institute of Fundamental Research, Bangalore, India
| | - Michael Grabe
- 1] Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA. [2] Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
50
|
Wu EL, Fleming PJ, Yeom MS, Widmalm G, Klauda JB, Fleming KG, Im W. E. coli outer membrane and interactions with OmpLA. Biophys J 2014; 106:2493-502. [PMID: 24896129 PMCID: PMC4052237 DOI: 10.1016/j.bpj.2014.04.024] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/17/2014] [Accepted: 04/21/2014] [Indexed: 10/25/2022] Open
Abstract
The outer membrane of Gram-negative bacteria is a unique asymmetric lipid bilayer composed of phospholipids (PLs) in the inner leaflet and lipopolysaccharides (LPSs) in the outer leaflet. Its function as a selective barrier is crucial for the survival of bacteria in many distinct environments, and it also renders Gram-negative bacteria more resistant to antibiotics than their Gram-positive counterparts. Here, we report the structural properties of a model of the Escherichia coli outer membrane and its interaction with outer membrane phospholipase A (OmpLA) utilizing molecular dynamics simulations. Our results reveal that given the lipid composition used here, the hydrophobic thickness of the outer membrane is ∼3 Å thinner than the corresponding PL bilayer, mainly because of the thinner LPS leaflet. Further thinning in the vicinity of OmpLA is observed due to hydrophobic matching. The particular shape of the OmpLA barrel induces various interactions between LPS and PL leaflets, resulting in asymmetric thinning around the protein. The interaction between OmpLA extracellular loops and LPS (headgroups and core oligosaccharides) stabilizes the loop conformation with reduced dynamics, which leads to secondary structure variation and loop displacement compared to that in a DLPC bilayer. In addition, we demonstrate that the LPS/PL ratios in asymmetric bilayers can be reliably estimated by the per-lipid surface area of each lipid type, and there is no statistical difference in the overall membrane structure for the outer membranes with one more or less LPS in the outer leaflet, although individual lipid properties vary slightly.
Collapse
Affiliation(s)
- Emilia L Wu
- Department of Molecular Biosciences and Center for Bioinformatics, The University of Kansas, Lawrence, Kansas
| | - Patrick J Fleming
- T. C. Jenkins Department of Biophysics, John Hopkins University, Baltimore, Maryland
| | - Min Sun Yeom
- Korean Institute of Science and Technology Information, Daejeon, Korea
| | - Göran Widmalm
- Department of Organic Chemistry and Stockholm Center for Biomembrane Research, Arrhenius Laboratory, Stockholm University, Stockholm, Sweden
| | - Jeffery B Klauda
- Department of Chemical and Biomolecular Engineering, The University of Maryland, College Park, Maryland
| | - Karen G Fleming
- T. C. Jenkins Department of Biophysics, John Hopkins University, Baltimore, Maryland.
| | - Wonpil Im
- Department of Molecular Biosciences and Center for Bioinformatics, The University of Kansas, Lawrence, Kansas.
| |
Collapse
|