1
|
Rassier DE, Månsson A. Mechanisms of myosin II force generation: insights from novel experimental techniques and approaches. Physiol Rev 2025; 105:1-93. [PMID: 38451233 DOI: 10.1152/physrev.00014.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
Myosin II is a molecular motor that converts chemical energy derived from ATP hydrolysis into mechanical work. Myosin II isoforms are responsible for muscle contraction and a range of cell functions relying on the development of force and motion. When the motor attaches to actin, ATP is hydrolyzed and inorganic phosphate (Pi) and ADP are released from its active site. These reactions are coordinated with changes in the structure of myosin, promoting the so-called "power stroke" that causes the sliding of actin filaments. The general features of the myosin-actin interactions are well accepted, but there are critical issues that remain poorly understood, mostly due to technological limitations. In recent years, there has been a significant advance in structural, biochemical, and mechanical methods that have advanced the field considerably. New modeling approaches have also allowed researchers to understand actomyosin interactions at different levels of analysis. This paper reviews recent studies looking into the interaction between myosin II and actin filaments, which leads to power stroke and force generation. It reviews studies conducted with single myosin molecules, myosins working in filaments, muscle sarcomeres, myofibrils, and fibers. It also reviews the mathematical models that have been used to understand the mechanics of myosin II in approaches focusing on single molecules to ensembles. Finally, it includes brief sections on translational aspects, how changes in the myosin motor by mutations and/or posttranslational modifications may cause detrimental effects in diseases and aging, among other conditions, and how myosin II has become an emerging drug target.
Collapse
Affiliation(s)
- Dilson E Rassier
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Alf Månsson
- Physiology, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
2
|
Xi J, Feng HZ, Jin JP, Yuan J, Kawai M. Mechanical Evaluation of Frozen and Cryo-Sectioned Papillary Muscle Samples by Using Sinusoidal Analysis: Cross-bridge Kinetics and the Effect of Partial Ca 2+ activation. RESEARCH SQUARE 2023:rs.3.rs-3516486. [PMID: 37961283 PMCID: PMC10635403 DOI: 10.21203/rs.3.rs-3516486/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The use of frozen and cryo-sectioned cardiac muscle preparations, introduced recently by (Feng & Jin, 2020), offers promising advantages of easy transport and exchange of muscle samples among collaborating laboratories. In this report, we examined integrity of such preparation by studying tension transients in response to sinusoidal length changes and following concomitant amplitude and phase shift in tension time courses at varying frequencies. We used sections with 70 μm thickness, isolated fiber preparations, and studied cross-bridge (CB) kinetics: we activated the preparations with saturating Ca2+, and varying concentrations of ATP and phosphate (Pi). Our experiments have demonstrated that this preparation has the normal active tension and elementary steps of the CB cycle. Furthermore, we investigated the effect of Ca2+ on the rate constants and found that the rate constant r 4 of the force generation step is proportionate to [Ca2+] when it is <5 μM. This observation suggests that the activation mechanism can be described by a simple second order reaction. As expected, we found that magnitude parameters including tension and stiffness are related to [Ca2+] by the Hill equation with cooperativity of 4-5, consistent to the fact that Ca2+ activation mechanisms involve cooperative multimolecular interactions. Our results are consistent with a long-held hypothesis that process C (phase 2 of step analysis) represents the CB detachment step, and process B (phase 3) represents the force generation step. In this report, we further found that constant H may also represent work performance step. Our experiments have demonstrated excellent CB kinetics with reduced noise and well-defined two exponentials, which are better than skinned fibers, and easier to handle and study than single myofibrils.
Collapse
Affiliation(s)
- Jing Xi
- School of Nursing, and Medical Skill Experiment Teaching Center, Suzhou Medical College, Soochow University, Suzhou 215006, China
- Department of Anatomy and Cell Biology, College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Han-Zhong Feng
- Dept of Physiology and Biophysics, Univ of Illinois at Chicago, 835 S Wolcot Ave, Chicago, IL 60612, USA
| | - Jian-Ping Jin
- Dept of Physiology and Biophysics, Univ of Illinois at Chicago, 835 S Wolcot Ave, Chicago, IL 60612, USA
| | - Jinxiang Yuan
- The Collaborative Innovation Center, Jining Medical University, Jining, 272067, China
| | - Masataka Kawai
- Department of Anatomy and Cell Biology, College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
3
|
Wiseman RW, Brown CM, Beck TW, Brault JJ, Reinoso TR, Shi Y, Chase PB. Creatine Kinase Equilibration and ΔG ATP over an Extended Range of Physiological Conditions: Implications for Cellular Energetics, Signaling, and Muscle Performance. Int J Mol Sci 2023; 24:13244. [PMID: 37686064 PMCID: PMC10487889 DOI: 10.3390/ijms241713244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
In this report, we establish a straightforward method for estimating the equilibrium constant for the creatine kinase reaction (CK Keq″) over wide but physiologically and experimentally relevant ranges of pH, Mg2+ and temperature. Our empirical formula for CK Keq″ is based on experimental measurements. It can be used to estimate [ADP] when [ADP] is below the resolution of experimental measurements, a typical situation because [ADP] is on the order of micromolar concentrations in living cells and may be much lower in many in vitro experiments. Accurate prediction of [ADP] is essential for in vivo studies of cellular energetics and metabolism and for in vitro studies of ATP-dependent enzyme function under near-physiological conditions. With [ADP], we were able to obtain improved estimates of ΔGATP, necessitating the reinvestigation of previously reported ADP- and ΔGATP-dependent processes. Application to actomyosin force generation in muscle provides support for the hypothesis that, when [Pi] varies and pH is not altered, the maximum Ca2+-activated isometric force depends on ΔGATP in both living and permeabilized muscle preparations. Further analysis of the pH studies introduces a novel hypothesis around the role of submicromolar ADP in force generation.
Collapse
Affiliation(s)
- Robert Woodbury Wiseman
- Departments of Physiology and Radiology, Michigan State University, East Lansing, MI 48824, USA;
| | - Caleb Micah Brown
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Thomas Wesley Beck
- Department of Radiology, University of Washington, Seattle, WA 98195, USA
| | - Jeffrey John Brault
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA;
| | - Tyler Robert Reinoso
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Yun Shi
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Prescott Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
4
|
Halder SS, Rynkiewicz MJ, Creso JG, Sewanan LR, Howland L, Moore JR, Lehman W, Campbell SG. Mechanisms of pathogenicity in the hypertrophic cardiomyopathy-associated TPM1 variant S215L. PNAS NEXUS 2023; 2:pgad011. [PMID: 36896133 PMCID: PMC9991458 DOI: 10.1093/pnasnexus/pgad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/12/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is an inherited disorder often caused by mutations to sarcomeric genes. Many different HCM-associated TPM1 mutations have been identified but they vary in their degrees of severity, prevalence, and rate of disease progression. The pathogenicity of many TPM1 variants detected in the clinical population remains unknown. Our objective was to employ a computational modeling pipeline to assess pathogenicity of one such variant of unknown significance, TPM1 S215L, and validate predictions using experimental methods. Molecular dynamic simulations of tropomyosin on actin suggest that the S215L significantly destabilizes the blocked regulatory state while increasing flexibility of the tropomyosin chain. These changes were quantitatively represented in a Markov model of thin-filament activation to infer the impacts of S215L on myofilament function. Simulations of in vitro motility and isometric twitch force predicted that the mutation would increase Ca2+ sensitivity and twitch force while slowing twitch relaxation. In vitro motility experiments with thin filaments containing TPM1 S215L revealed higher Ca2+ sensitivity compared with wild type. Three-dimensional genetically engineered heart tissues expressing TPM1 S215L exhibited hypercontractility, upregulation of hypertrophic gene markers, and diastolic dysfunction. These data form a mechanistic description of TPM1 S215L pathogenicity that starts with disruption of the mechanical and regulatory properties of tropomyosin, leading thereafter to hypercontractility and finally induction of a hypertrophic phenotype. These simulations and experiments support the classification of S215L as a pathogenic mutation and support the hypothesis that an inability to adequately inhibit actomyosin interactions is the mechanism whereby thin-filament mutations cause HCM.
Collapse
Affiliation(s)
- Saiti S Halder
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511
| | | | - Jenette G Creso
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511
| | - Lorenzo R Sewanan
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511
- Department of Internal Medicine, Columbia University, New York, NY 10032
| | - Lindsey Howland
- Department of Biological Sciences, University of Massachusetts Lowell, MA 01854
| | - Jeffrey R Moore
- Department of Biological Sciences, University of Massachusetts Lowell, MA 01854
| | - William Lehman
- Department of Physiology/Biophysics, Boston University, Boston, MA 02215
| | - Stuart G Campbell
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511
| |
Collapse
|
5
|
The effect of gender and obesity in modulating cross-bridge function in cardiac muscle fibers. J Muscle Res Cell Motil 2022; 43:157-172. [PMID: 35994221 DOI: 10.1007/s10974-022-09627-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/11/2022] [Indexed: 12/31/2022]
Abstract
The effect of obesity on cross-bridge (CB) function was investigated in mice lacking functional Melanocortin-4 Receptor (MC4R-/-), the loss of which causes dilated cardiomyopathy (DCM) in humans and mice. Skinned cardiac muscle fibers from male and female mice were used, and activated in the presence of Ca2+. To characterize CB kinetics, we changed the length of fibers in sinewaves (15 frequencies: 1‒187 Hz) at a small amplitude (0.2%L0), studied concomitant tension transients, and deduced the kinetic constants of the CB cycle from the ATP and Pi effects. In males, active tension and stiffness during full activation and rigor were ~ 1.5X in WT compared to MC4R-/- mice. This effect was not observed in females. We also observed that ATP binding and subsequent CB detachment steps were not altered by the mutation/gender. The equilibrium constant of the force generation step (K4) and Pi release step (association constant: K5) were not affected by the mutation, but there was a gender difference in WT mice: K4 and K5 were ~ 2.2X in males than in females. Concomitantly, the forward rate constant (r4) and backward rate constant (r-4) of the force generation step were 1.5-2.5X in muscles from female MC4R-/- mice relative to male MC4R-/- mice. However, these effects did not cause a significant difference in CB distributions among six CB states. In both genders, Ca2+ sensitivity decreased slightly (0.12 pCa unit) in mutants. We conclude that the CB functions are differentially affected both by obesity induced in the absence of functional MC4R-/- and gender.
Collapse
|
6
|
Keyt LK, Duran JM, Bui QM, Chen C, Miyamoto MI, Silva Enciso J, Tardiff JC, Adler ED. Thin filament cardiomyopathies: A review of genetics, disease mechanisms, and emerging therapeutics. Front Cardiovasc Med 2022; 9:972301. [PMID: 36158814 PMCID: PMC9489950 DOI: 10.3389/fcvm.2022.972301] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
All muscle contraction occurs due to the cyclical interaction between sarcomeric thin and thick filament proteins within the myocyte. The thin filament consists of the proteins actin, tropomyosin, Troponin C, Troponin I, and Troponin T. Mutations in these proteins can result in various forms of cardiomyopathy, including hypertrophic, restrictive, and dilated phenotypes and account for as many as 30% of all cases of inherited cardiomyopathy. There is significant evidence that thin filament mutations contribute to dysregulation of Ca2+ within the sarcomere and may have a distinct pathomechanism of disease from cardiomyopathy associated with thick filament mutations. A number of distinct clinical findings appear to be correlated with thin-filament mutations: greater degrees of restrictive cardiomyopathy and relatively less left ventricular (LV) hypertrophy and LV outflow tract obstruction than that seen with thick filament mutations, increased morbidity associated with heart failure, increased arrhythmia burden and potentially higher mortality. Most therapies that improve outcomes in heart failure blunt the neurohormonal pathways involved in cardiac remodeling, while most therapies for hypertrophic cardiomyopathy involve use of negative inotropes to reduce LV hypertrophy or septal reduction therapies to reduce LV outflow tract obstruction. None of these therapies directly address the underlying sarcomeric dysfunction associated with thin-filament mutations. With mounting evidence that thin filament cardiomyopathies occur through a distinct mechanism, there is need for therapies targeting the unique, underlying mechanisms tailored for each patient depending on a given mutation.
Collapse
Affiliation(s)
- Lucas K. Keyt
- Department of Internal Medicine, University of California, San Diego, San Diego, CA, United States
| | - Jason M. Duran
- Department of Cardiology, University of California, San Diego, San Diego, CA, United States
| | - Quan M. Bui
- Department of Cardiology, University of California, San Diego, San Diego, CA, United States
| | - Chao Chen
- Department of Cardiology, University of California, San Diego, San Diego, CA, United States
| | | | - Jorge Silva Enciso
- Department of Cardiology, University of California, San Diego, San Diego, CA, United States
| | - Jil C. Tardiff
- Department of Medicine and Biomedical Engineering, University of Arizona, Tucson, AZ, United States
| | - Eric D. Adler
- Department of Cardiology, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
7
|
Ušaj M, Moretto L, Månsson A. Critical Evaluation of Current Hypotheses for the Pathogenesis of Hypertrophic Cardiomyopathy. Int J Mol Sci 2022; 23:2195. [PMID: 35216312 PMCID: PMC8880276 DOI: 10.3390/ijms23042195] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Hereditary hypertrophic cardiomyopathy (HCM), due to mutations in sarcomere proteins, occurs in more than 1/500 individuals and is the leading cause of sudden cardiac death in young people. The clinical course exhibits appreciable variability. However, typically, heart morphology and function are normal at birth, with pathological remodeling developing over years to decades, leading to a phenotype characterized by asymmetric ventricular hypertrophy, scattered fibrosis and myofibrillar/cellular disarray with ultimate mechanical heart failure and/or severe arrhythmias. The identity of the primary mutation-induced changes in sarcomere function and how they trigger debilitating remodeling are poorly understood. Support for the importance of mutation-induced hypercontractility, e.g., increased calcium sensitivity and/or increased power output, has been strengthened in recent years. However, other ideas that mutation-induced hypocontractility or non-uniformities with contractile instabilities, instead, constitute primary triggers cannot yet be discarded. Here, we review evidence for and criticism against the mentioned hypotheses. In this process, we find support for previous ideas that inefficient energy usage and a blunted Frank-Starling mechanism have central roles in pathogenesis, although presumably representing effects secondary to the primary mutation-induced changes. While first trying to reconcile apparently diverging evidence for the different hypotheses in one unified model, we also identify key remaining questions and suggest how experimental systems that are built around isolated primarily expressed proteins could be useful.
Collapse
Affiliation(s)
| | | | - Alf Månsson
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, SE-39182 Kalmar, Sweden; (M.U.); (L.M.)
| |
Collapse
|
8
|
Mason AB, Lynn ML, Baldo AP, Deranek AE, Tardiff JC, Schwartz SD. Computational and biophysical determination of pathogenicity of variants of unknown significance in cardiac thin filament. JCI Insight 2021; 6:154350. [PMID: 34699384 PMCID: PMC8675185 DOI: 10.1172/jci.insight.154350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022] Open
Abstract
Point mutations within sarcomeric proteins have been associated with altered function and cardiomyopathy development. Difficulties remain, however, in establishing the pathogenic potential of individual mutations, often limiting the use of genotype in management of affected families. To directly address this challenge, we utilized our all-atom computational model of the human full cardiac thin filament (CTF) to predict how sequence substitutions in CTF proteins might affect structure and dynamics on an atomistic level. Utilizing molecular dynamics calculations, we simulated 21 well-defined genetic pathogenic cardiac troponin T and tropomyosin variants to establish a baseline of pathogenic changes induced in computational observables. Computational results were verified via differential scanning calorimetry on a subset of variants to develop an experimental correlation. Calculations were performed on 9 independent variants of unknown significance (VUS), and results were compared with pathogenic variants to identify high-resolution pathogenic signatures. Results for VUS were compared with the baseline set to determine induced structural and dynamic changes, and potential variant reclassifications were proposed. This unbiased, high-resolution computational methodology can provide unique structural and dynamic information that can be incorporated into existing analyses to facilitate classification both for de novo variants and those where established approaches have provided conflicting information.
Collapse
Affiliation(s)
| | - Melissa L Lynn
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA
| | | | - Andrea E Deranek
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA
| | - Jil C Tardiff
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA
| | | |
Collapse
|
9
|
Parikh J, Rumbell T, Butova X, Myachina T, Acero JC, Khamzin S, Solovyova O, Kozloski J, Khokhlova A, Gurev V. Generative adversarial networks for construction of virtual populations of mechanistic models: simulations to study Omecamtiv Mecarbil action. J Pharmacokinet Pharmacodyn 2021; 49:51-64. [PMID: 34716531 PMCID: PMC8837558 DOI: 10.1007/s10928-021-09787-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/23/2021] [Indexed: 11/30/2022]
Abstract
Biophysical models are increasingly used to gain mechanistic insights by fitting and reproducing experimental and clinical data. The inherent variability in the recorded datasets, however, presents a key challenge. In this study, we present a novel approach, which integrates mechanistic modeling and machine learning to analyze in vitro cardiac mechanics data and solve the inverse problem of model parameter inference. We designed a novel generative adversarial network (GAN) and employed it to construct virtual populations of cardiac ventricular myocyte models in order to study the action of Omecamtiv Mecarbil (OM), a positive cardiac inotrope. Populations of models were calibrated from mechanically unloaded myocyte shortening recordings obtained in experiments on rat myocytes in the presence and absence of OM. The GAN was able to infer model parameters while incorporating prior information about which model parameters OM targets. The generated populations of models reproduced variations in myocyte contraction recorded during in vitro experiments and provided improved understanding of OM’s mechanism of action. Inverse mapping of the experimental data using our approach suggests a novel action of OM, whereby it modifies interactions between myosin and tropomyosin proteins. To validate our approach, the inferred model parameters were used to replicate other in vitro experimental protocols, such as skinned preparations demonstrating an increase in calcium sensitivity and a decrease in the Hill coefficient of the force–calcium (F–Ca) curve under OM action. Our approach thereby facilitated the identification of the mechanistic underpinnings of experimental observations and the exploration of different hypotheses regarding variability in this complex biological system.
Collapse
Affiliation(s)
| | | | - Xenia Butova
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences (UB RAS), Yekaterinburg, Russia
| | - Tatiana Myachina
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences (UB RAS), Yekaterinburg, Russia
| | - Jorge Corral Acero
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Svyatoslav Khamzin
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences (UB RAS), Yekaterinburg, Russia
| | - Olga Solovyova
- Ural Federal University, Yekaterinburg, Russia.,Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences (UB RAS), Yekaterinburg, Russia
| | | | - Anastasia Khokhlova
- Ural Federal University, Yekaterinburg, Russia.,Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences (UB RAS), Yekaterinburg, Russia
| | | |
Collapse
|
10
|
Hassoun R, Budde H, Mügge A, Hamdani N. Cardiomyocyte Dysfunction in Inherited Cardiomyopathies. Int J Mol Sci 2021; 22:11154. [PMID: 34681814 PMCID: PMC8541428 DOI: 10.3390/ijms222011154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 01/10/2023] Open
Abstract
Inherited cardiomyopathies form a heterogenous group of disorders that affect the structure and function of the heart. Defects in the genes encoding sarcomeric proteins are associated with various perturbations that induce contractile dysfunction and promote disease development. In this review we aimed to outline the functional consequences of the major inherited cardiomyopathies in terms of myocardial contraction and kinetics, and to highlight the structural and functional alterations in some sarcomeric variants that have been demonstrated to be involved in the pathogenesis of the inherited cardiomyopathies. A particular focus was made on mutation-induced alterations in cardiomyocyte mechanics. Since no disease-specific treatments for familial cardiomyopathies exist, several novel agents have been developed to modulate sarcomere contractility. Understanding the molecular basis of the disease opens new avenues for the development of new therapies. Furthermore, the earlier the awareness of the genetic defect, the better the clinical prognostication would be for patients and the better the prevention of development of the disease.
Collapse
Affiliation(s)
- Roua Hassoun
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44801 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital and Bergmannsheil, Ruhr University Bochum, 44801 Bochum, Germany
| | - Heidi Budde
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44801 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital and Bergmannsheil, Ruhr University Bochum, 44801 Bochum, Germany
| | - Andreas Mügge
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44801 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital and Bergmannsheil, Ruhr University Bochum, 44801 Bochum, Germany
| | - Nazha Hamdani
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44801 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital and Bergmannsheil, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
11
|
Smith QM, Inchingolo AV, Mihailescu MD, Dai H, Kad NM. Single-molecule imaging reveals the concerted release of myosin from regulated thin filaments. eLife 2021; 10:69184. [PMID: 34569933 PMCID: PMC8476120 DOI: 10.7554/elife.69184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/11/2021] [Indexed: 11/13/2022] Open
Abstract
Regulated thin filaments (RTFs) tightly control striated muscle contraction through calcium binding to troponin, which enables tropomyosin to expose myosin-binding sites on actin. Myosin binding holds tropomyosin in an open position, exposing more myosin-binding sites on actin, leading to cooperative activation. At lower calcium levels, troponin and tropomyosin turn off the thin filament; however, this is antagonised by the high local concentration of myosin, questioning how the thin filament relaxes. To provide molecular details of deactivation, we used single-molecule imaging of green fluorescent protein (GFP)-tagged myosin-S1 (S1-GFP) to follow the activation of RTF tightropes. In sub-maximal activation conditions, RTFs are not fully active, enabling direct observation of deactivation in real time. We observed that myosin binding occurs in a stochastic step-wise fashion; however, an unexpectedly large probability of multiple contemporaneous detachments is observed. This suggests that deactivation of the thin filament is a coordinated active process.
Collapse
Affiliation(s)
- Quentin M Smith
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | | | | | - Hongsheng Dai
- Department of Mathematical Sciences, University of Essex, Colchester, United Kingdom
| | - Neil M Kad
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
12
|
Sewanan LR, Park J, Rynkiewicz MJ, Racca AW, Papoutsidakis N, Schwan J, Jacoby DL, Moore JR, Lehman W, Qyang Y, Campbell SG. Loss of crossbridge inhibition drives pathological cardiac hypertrophy in patients harboring the TPM1 E192K mutation. J Gen Physiol 2021; 153:212516. [PMID: 34319370 PMCID: PMC8321830 DOI: 10.1085/jgp.202012640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/14/2021] [Accepted: 07/09/2021] [Indexed: 01/10/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is an inherited disorder caused primarily by mutations to thick and thinfilament proteins. Although thin filament mutations are less prevalent than their oft-studied thick filament counterparts, they are frequently associated with severe patient phenotypes and can offer important insight into fundamental disease mechanisms. We have performed a detailed study of tropomyosin (TPM1) E192K, a variant of uncertain significance associated with HCM. Molecular dynamics revealed that E192K results in a more flexible TPM1 molecule, which could affect its ability to regulate crossbridges. In vitro motility assays of regulated actin filaments containing TPM1 E192K showed an overall loss of Ca2+ sensitivity. To understand these effects, we used multiscale computational models that suggested a subtle phenotype in which E192K leads to an inability to completely inhibit actin-myosin crossbridge activity at low Ca2+. To assess the physiological impact of the mutation, we generated patient-derived engineered heart tissues expressing E192K. These tissues showed disease features similar to those of the patients, including cellular hypertrophy, hypercontractility, and diastolic dysfunction. We hypothesized that excess residual crossbridge activity could be triggering cellular hypertrophy, even if the overall Ca2+ sensitivity was reduced by E192K. To test this hypothesis, the cardiac myosin-specific inhibitor mavacamten was applied to patient-derived engineered heart tissues for 4 d followed by 24 h of washout. Chronic mavacamten treatment abolished contractile differences between control and TPM1 E192K engineered heart tissues and reversed hypertrophy in cardiomyocytes. These results suggest that the TPM1 E192K mutation triggers cardiomyocyte hypertrophy by permitting excess residual crossbridge activity. These studies also provide direct evidence that myosin inhibition by mavacamten can counteract the hypertrophic effects of mutant tropomyosin.
Collapse
Affiliation(s)
- Lorenzo R Sewanan
- Department of Biomedical Engineering, Yale University, New Haven, CT
| | - Jinkyu Park
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT.,Yale Stem Cell Center, Yale School of Medicine, New Haven, CT
| | - Michael J Rynkiewicz
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA
| | - Alice W Racca
- Department of Biological Sciences, University of Massachusetts, Lowell, MA
| | - Nikolaos Papoutsidakis
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT
| | - Jonas Schwan
- Department of Biomedical Engineering, Yale University, New Haven, CT
| | - Daniel L Jacoby
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT
| | - Jeffrey R Moore
- Department of Biological Sciences, University of Massachusetts, Lowell, MA
| | - William Lehman
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA
| | - Yibing Qyang
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT.,Yale Stem Cell Center, Yale School of Medicine, New Haven, CT.,Vascular Biology and Therapeutics Program, Yale University, New Haven, CT.,Department of Pathology, Yale University, New Haven, CT
| | - Stuart G Campbell
- Department of Biomedical Engineering, Yale University, New Haven, CT.,Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT
| |
Collapse
|
13
|
Sewanan LR, Jacoby DL. Novel Myosin-Based Therapies in Hypertrophic Cardiomyopathy. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2021. [DOI: 10.1007/s11936-021-00921-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Ng H, Becirovic Agic M, Hultström M, Isackson H. Optimal cutting temperature medium embedding and cryostat sectioning are valid for cardiac myofilament function assessment. Am J Physiol Heart Circ Physiol 2020; 319:H235-H241. [PMID: 32469635 DOI: 10.1152/ajpheart.00194.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To maximize data obtainment from valuable cardiac tissue, we hypothesized that myocardium fixed in optimal cutting temperature (OCT) medium for histology could also be used to investigate the function of myofilament proteins in situ. We compared tissue prepared via conventional liquid nitrogen (LN) snap freezing with tissue fixed in OCT and then sectioned in fiber-parallel orientation. We found that actin-myosin Ca2+ sensitivity, activation rate by Ca2+, cooperativity along the thin filament, as well as cross-bridge cycling rate were unaffected by OCT storage and could reliably be interpreted after sectioning. Absolute values in maximum force generation per cross-sectional area, as well as passive strain, are difficult to investigate after sectioning, as myofibrillar continuity along the preparation cannot be guaranteed. We have shown that myocardial tissue stored in OCT and sectioned before analysis is available for functional analysis, a valuable means of maximizing usage of precious cardiac biopsies.NEW & NOTEWORTHY Myocardial tissue in optimal cutting temperature (OCT) fixation and cryostat sectioning was tested as a means of storing and preparing tissue for myofilament function analysis in relation to conventional liquid nitrogen freezing and dissection. Actomyosin interaction, Ca2+ force activation, and passive compliance were tested. The study concluded that OCT storage and cryostat sectioning do not interfere with the actomyosin cross-bridge dynamics or Ca2+ activation but that absolute tension values suffer and may not be investigated by this method.
Collapse
Affiliation(s)
- Henry Ng
- Department of Medical Cell Biology, Integrative Physiology, Uppsala University, Uppsala Sweden
| | - Mediha Becirovic Agic
- Department of Medical Cell Biology, Integrative Physiology, Uppsala University, Uppsala Sweden
| | - Michael Hultström
- Department of Medical Cell Biology, Integrative Physiology, Uppsala University, Uppsala Sweden.,Department of Surgical Sciences, Anaesthesia and Intensive Care Medicine, Uppsala University, Uppsala, Sweden
| | - Henrik Isackson
- Department of Medical Cell Biology, Integrative Physiology, Uppsala University, Uppsala Sweden.,Department of Medical Sciences, Cardiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
15
|
Aboelkassem Y, McCabe KJ, Huber GA, Regnier M, McCammon JA, McCulloch AD. A Stochastic Multiscale Model of Cardiac Thin Filament Activation Using Brownian-Langevin Dynamics. Biophys J 2019; 117:2255-2272. [PMID: 31547973 PMCID: PMC6990154 DOI: 10.1016/j.bpj.2019.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 11/16/2022] Open
Abstract
We use Brownian-Langevin dynamics principles to derive a coarse-graining multiscale myofilament model that can describe the thin-filament activation process during contraction. The model links atomistic molecular simulations of protein-protein interactions in the thin-filament regulatory unit to sarcomere-level activation dynamics. We first calculate the molecular interaction energy between tropomyosin and actin surface using Brownian dynamics simulations. This energy profile is then generalized to account for the observed tropomyosin transitions between its regulatory stable states. The generalized energy landscape then served as a basis for developing a filament-scale model using Langevin dynamics. This integrated analysis, spanning molecular to thin-filament scales, is capable of tracking the events of the tropomyosin conformational changes as it moves over the actin surface. The tropomyosin coil with flexible overlap regions between adjacent tropomyosins is represented in the model as a system of coupled stochastic ordinary differential equations. The proposed multiscale approach provides a more detailed molecular connection between tropomyosin dynamics, the trompomyosin-actin interaction-energy landscape, and the generated force by the sarcomere.
Collapse
Affiliation(s)
- Yasser Aboelkassem
- Department of Bioengineering, University of California San Diego, La Jolla, California.
| | - Kimberly J McCabe
- Department of Bioengineering, University of California San Diego, La Jolla, California
| | - Gary A Huber
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - J Andrew McCammon
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California
| | - Andrew D McCulloch
- Department of Bioengineering, University of California San Diego, La Jolla, California
| |
Collapse
|
16
|
Cardiomyopathy-associated mutations in tropomyosin differently affect actin–myosin interaction at single-molecule and ensemble levels. J Muscle Res Cell Motil 2019; 40:299-308. [DOI: 10.1007/s10974-019-09560-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 10/15/2019] [Indexed: 01/31/2023]
|
17
|
Bell KM, Kronert WA, Huang A, Bernstein SI, Swank DM. The R249Q hypertrophic cardiomyopathy myosin mutation decreases contractility in Drosophila by impeding force production. J Physiol 2019; 597:2403-2420. [PMID: 30950055 DOI: 10.1113/jp277333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/06/2019] [Indexed: 12/18/2022] Open
Abstract
KEY POINTS Hypertrophic cardiomyopathy (HCM) is a genetic disease that causes thickening of the heart's ventricular walls and is a leading cause of sudden cardiac death. HCM is caused by missense mutations in muscle proteins including myosin, but how these mutations alter muscle mechanical performance in largely unknown. We investigated the disease mechanism for HCM myosin mutation R249Q by expressing it in the indirect flight muscle of Drosophila melanogaster and measuring alterations to muscle and flight performance. Muscle mechanical analysis revealed R249Q decreased muscle power production due to slower muscle kinetics and decreased force production; force production was reduced because fewer mutant myosin cross-bridges were bound simultaneously to actin. This work does not support the commonly proposed hypothesis that myosin HCM mutations increase muscle contractility, or causes a gain in function; instead, it suggests that for some myosin HCM mutations, hypertrophy is a compensation for decreased contractility. ABSTRACT Hypertrophic cardiomyopathy (HCM) is an inherited disease that causes thickening of the heart's ventricular walls. A generally accepted hypothesis for this phenotype is that myosin heavy chain HCM mutations increase muscle contractility. To test this hypothesis, we expressed an HCM myosin mutation, R249Q, in Drosophila indirect flight muscle (IFM) and assessed myofibril structure, skinned fibre mechanical properties, and flight ability. Mechanics experiments were performed on fibres dissected from 2-h-old adult flies, prior to degradation of IFM myofilament structure, which started at 2 days old and increased with age. Homozygous and heterozygous R249Q fibres showed decreased maximum power generation by 67% and 44%, respectively. Decreases in force and work and slower overall muscle kinetics caused homozygous fibres to produce less power. While heterozygous fibres showed no overall slowing of muscle kinetics, active force and work production dropped by 68% and 47%, respectively, which hindered power production. The muscle apparent rate constant 2πb decreased 33% for homozygous but increased for heterozygous fibres. The apparent rate constant 2πc was greater for homozygous fibres. This indicates that R249Q myosin is slowing attachment while speeding up detachment from actin, resulting in less time bound. Decreased IFM power output caused 43% and 33% decreases in Drosophila flight ability and 19% and 6% drops in wing beat frequency for homozygous and heterozygous flies, respectively. Overall, our results do not support the increased contractility hypothesis. Instead, our results suggest the ventricular hypertrophy for human R249Q mutation is a compensatory response to decreases in heart muscle power output.
Collapse
Affiliation(s)
- Kaylyn M Bell
- Department of Biological Sciences & Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - William A Kronert
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, CA, USA
| | - Alice Huang
- Department of Biological Sciences & Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Sanford I Bernstein
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, CA, USA
| | - Douglas M Swank
- Department of Biological Sciences & Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
18
|
Ishii S, Suzuki M, Ishiwata S, Kawai M. Functional significance of HCM mutants of tropomyosin, V95A and D175N, studied with in vitro motility assays. Biophys Physicobiol 2019; 16:28-40. [PMID: 30923661 PMCID: PMC6435021 DOI: 10.2142/biophysico.16.0_28] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/18/2018] [Indexed: 12/21/2022] Open
Abstract
The majority of hypertrophic cardiomyopathy (HCM) is caused by mutations in sarcomere proteins. We examined tropomyosin (Tpm)’s HCM mutants in humans, V95A and D175N, with in vitro motility assay using optical tweezers to evaluate the effects of the Tpm mutations on the actomyosin interaction at the single molecular level. Thin filaments were reconstituted using these Tpm mutants, and their sliding velocity and force were measured at varying Ca2+ concentrations. Our results indicate that the sliding velocity at pCa ≥8.0 was significantly increased in mutants, which is expected to cause a diastolic problem. The velocity that can be activated by Ca2+ decreased significantly in mutants causing a systolic problem. With sliding force, Ca2+ activatable force decreased in V95A and increased in D175N, which may cause a systolic problem. Our results further demonstrate that the duty ratio determined at the steady state of force generation in saturating [Ca2+] decreased in V95A and increased in D175N. The Ca2+ sensitivity and cooperativity were not significantly affected by the mutations. These results suggest that the two mutants modulate molecular processes of the actomyosin interaction differently, but to result in the same pathology known as HCM.
Collapse
Affiliation(s)
- Shuya Ishii
- Department of Physics, Faculty of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Madoka Suzuki
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.,PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Shin'ichi Ishiwata
- Department of Physics, Faculty of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Masataka Kawai
- Department of Anatomy and Cell Biology, College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
19
|
Śliwinska M, Robaszkiewicz K, Czajkowska M, Zheng W, Moraczewska J. Functional effects of substitutions I92T and V95A in actin-binding period 3 of tropomyosin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:558-568. [PMID: 29496559 DOI: 10.1016/j.bbapap.2018.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 02/12/2018] [Accepted: 02/23/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Małgorzata Śliwinska
- Department of Biochemistry and Cell Biology, Faculty of Natural Sciences, Kazimierz Wielki University in Bydgoszcz, Ks. J. Poniatowskiego 12 Str., 85-671 Bydgoszcz, Poland
| | - Katarzyna Robaszkiewicz
- Department of Biochemistry and Cell Biology, Faculty of Natural Sciences, Kazimierz Wielki University in Bydgoszcz, Ks. J. Poniatowskiego 12 Str., 85-671 Bydgoszcz, Poland
| | - Marta Czajkowska
- Department of Biochemistry and Cell Biology, Faculty of Natural Sciences, Kazimierz Wielki University in Bydgoszcz, Ks. J. Poniatowskiego 12 Str., 85-671 Bydgoszcz, Poland
| | - Wenjun Zheng
- Department of Physics, University at Buffalo, SUNY, Buffalo, NY 14260, United States
| | - Joanna Moraczewska
- Department of Biochemistry and Cell Biology, Faculty of Natural Sciences, Kazimierz Wielki University in Bydgoszcz, Ks. J. Poniatowskiego 12 Str., 85-671 Bydgoszcz, Poland.
| |
Collapse
|
20
|
Ferrantini C, Coppini R, Pioner JM, Gentile F, Tosi B, Mazzoni L, Scellini B, Piroddi N, Laurino A, Santini L, Spinelli V, Sacconi L, De Tombe P, Moore R, Tardiff J, Mugelli A, Olivotto I, Cerbai E, Tesi C, Poggesi C. Pathogenesis of Hypertrophic Cardiomyopathy is Mutation Rather Than Disease Specific: A Comparison of the Cardiac Troponin T E163R and R92Q Mouse Models. J Am Heart Assoc 2017; 6:JAHA.116.005407. [PMID: 28735292 PMCID: PMC5586279 DOI: 10.1161/jaha.116.005407] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background In cardiomyocytes from patients with hypertrophic cardiomyopathy, mechanical dysfunction and arrhythmogenicity are caused by mutation‐driven changes in myofilament function combined with excitation‐contraction (E‐C) coupling abnormalities related to adverse remodeling. Whether myofilament or E‐C coupling alterations are more relevant in disease development is unknown. Here, we aim to investigate whether the relative roles of myofilament dysfunction and E‐C coupling remodeling in determining the hypertrophic cardiomyopathy phenotype are mutation specific. Methods and Results Two hypertrophic cardiomyopathy mouse models carrying the R92Q and the E163R TNNT2 mutations were investigated. Echocardiography showed left ventricular hypertrophy, enhanced contractility, and diastolic dysfunction in both models; however, these phenotypes were more pronounced in the R92Q mice. Both E163R and R92Q trabeculae showed prolonged twitch relaxation and increased occurrence of premature beats. In E163R ventricular myofibrils or skinned trabeculae, relaxation following Ca2+ removal was prolonged; resting tension and resting ATPase were higher; and isometric ATPase at maximal Ca2+ activation, the energy cost of tension generation, and myofilament Ca2+ sensitivity were increased compared with that in wild‐type mice. No sarcomeric changes were observed in R92Q versus wild‐type mice, except for a large increase in myofilament Ca2+ sensitivity. In R92Q myocardium, we found a blunted response to inotropic interventions, slower decay of Ca2+ transients, reduced SERCA function, and increased Ca2+/calmodulin kinase II activity. Contrarily, secondary alterations of E‐C coupling and signaling were minimal in E163R myocardium. Conclusions In E163R models, mutation‐driven myofilament abnormalities directly cause myocardial dysfunction. In R92Q, diastolic dysfunction and arrhythmogenicity are mediated by profound cardiomyocyte signaling and E‐C coupling changes. Similar hypertrophic cardiomyopathy phenotypes can be generated through different pathways, implying different strategies for a precision medicine approach to treatment.
Collapse
MESH Headings
- Animals
- Calcium Signaling
- Calcium-Calmodulin-Dependent Protein Kinases/metabolism
- Cardiomyopathy, Hypertrophic/diagnostic imaging
- Cardiomyopathy, Hypertrophic/genetics
- Cardiomyopathy, Hypertrophic/metabolism
- Cardiomyopathy, Hypertrophic/physiopathology
- Disease Models, Animal
- Excitation Contraction Coupling
- Fibrosis
- Genetic Markers
- Genetic Predisposition to Disease
- Hypertrophy, Left Ventricular/diagnostic imaging
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/physiopathology
- Male
- Mice, Inbred C57BL
- Mice, Transgenic
- Mutation
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Myofibrils/metabolism
- Myofibrils/pathology
- Phenotype
- Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
- Troponin T/genetics
- Ventricular Dysfunction, Left/diagnostic imaging
- Ventricular Dysfunction, Left/genetics
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Function, Left
- Ventricular Remodeling
Collapse
Affiliation(s)
- Cecilia Ferrantini
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | | | - Josè Manuel Pioner
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Francesca Gentile
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Benedetta Tosi
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Luca Mazzoni
- Department of NeuroFarBa, University of Florence, Italy
| | - Beatrice Scellini
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Nicoletta Piroddi
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | | | | | | | - Leonardo Sacconi
- LENS, University of Florence & National Institute of Optics (INO-CNR), Florence, Italy
| | - Pieter De Tombe
- Loyola University Medical Center Department of Physiology, Chicago, IL
| | | | | | - Alessandro Mugelli
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | | | | | - Chiara Tesi
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Corrado Poggesi
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| |
Collapse
|
21
|
Kopylova GV, Shchepkin DV, Borovkov DI, Matyushenko AM. Effect of Cardiomyopathic Mutations in Tropomyosin on Calcium Regulation of the Actin-Myosin Interaction in Skeletal Muscle. Bull Exp Biol Med 2016; 162:42-44. [PMID: 27878731 DOI: 10.1007/s10517-016-3540-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Indexed: 10/20/2022]
Abstract
Tropomyosin plays an important role in the regulation of actin-myosin interaction in striated muscles. Mutations in the tropomyosin gene disrupt actin-myosin interaction and lead to myopathies and cardiomyopathies. Tropomyosin with mutations in the α-chain is expressed in both the myocardium and skeletal muscles. We studied the effect of mutations in the α-chain of tropomyosin related to hypertrophic (D175N and E180G) and dilated cardiomyopathies (E40K and E54K) on calcium regulation of the actin-myosin interaction in skeletal muscles. We analyzed the calcium-dependent sliding velocity of reconstructed thin filaments containing F-actin, troponin, and tropomyosin over myosin surface in an in vitro motility assay. Mutations D175N and E180G in tropomyosin increased the sliding velocity and its calcium sensitivity, while mutation E40K reduced both these parameters. E54K mutation increased the sliding velocity of thin filaments, but did not affect its calcium sensitivity.
Collapse
Affiliation(s)
- G V Kopylova
- Institute of Immunology and Physiology, Ural Division of the Russian Academy of Sciences, Moscow, Russia.
| | - D V Shchepkin
- Institute of Immunology and Physiology, Ural Division of the Russian Academy of Sciences, Moscow, Russia
| | - D I Borovkov
- Institute of Immunology and Physiology, Ural Division of the Russian Academy of Sciences, Moscow, Russia.,B. N. Yeltsin Ural Federal University, Ekaterinburg, Russia
| | - A M Matyushenko
- A. N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
22
|
Sewanan LR, Moore JR, Lehman W, Campbell SG. Predicting Effects of Tropomyosin Mutations on Cardiac Muscle Contraction through Myofilament Modeling. Front Physiol 2016; 7:473. [PMID: 27833562 PMCID: PMC5081029 DOI: 10.3389/fphys.2016.00473] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 10/03/2016] [Indexed: 12/23/2022] Open
Abstract
Point mutations to the human gene TPM1 have been implicated in the development of both hypertrophic and dilated cardiomyopathies. Such observations have led to studies investigating the link between single residue changes and the biophysical behavior of the tropomyosin molecule. However, the degree to which these molecular perturbations explain the performance of intact sarcomeres containing mutant tropomyosin remains uncertain. Here, we present a modeling approach that integrates various aspects of tropomyosin's molecular properties into a cohesive paradigm representing their impact on muscle function. In particular, we considered the effects of tropomyosin mutations on (1) persistence length, (2) equilibrium between thin filament blocked and closed regulatory states, and (3) the crossbridge duty cycle. After demonstrating the ability of the new model to capture Ca-dependent myofilament responses during both dynamic and steady-state activation, we used it to capture the effects of hypertrophic cardiomyopathy (HCM) related E180G and D175N mutations on skinned myofiber mechanics. Our analysis indicates that the fiber-level effects of the two mutations can be accurately described by a combination of changes to the three tropomyosin properties represented in the model. Subsequently, we used the model to predict mutation effects on muscle twitch. Both mutations led to increased twitch contractility as a consequence of diminished cooperative inhibition between thin filament regulatory units. Overall, simulations suggest that a common twitch phenotype for HCM-linked tropomyosin mutations includes both increased contractility and elevated diastolic tension.
Collapse
Affiliation(s)
- Lorenzo R Sewanan
- Department of Biomedical Engineering, Yale UniversityNew Haven, CT, USA; Yale School of Medicine, Yale UniversityNew Haven, CT, USA
| | - Jeffrey R Moore
- Department of Biological Sciences, University of Massachusetts Lowell Lowell, MA, USA
| | - William Lehman
- Department of Physiology and Biophysics, Boston University School of Medicine Boston, MA, USA
| | - Stuart G Campbell
- Department of Biomedical Engineering, Yale UniversityNew Haven, CT, USA; Department of Cellular and Molecular Physiology, Yale School of MedicineNew Haven, CT, USA
| |
Collapse
|
23
|
Badr MA, Pinto JR, Davidson MW, Chase PB. Fluorescent Protein-Based Ca2+ Sensor Reveals Global, Divalent Cation-Dependent Conformational Changes in Cardiac Troponin C. PLoS One 2016; 11:e0164222. [PMID: 27736894 PMCID: PMC5063504 DOI: 10.1371/journal.pone.0164222] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 09/21/2016] [Indexed: 12/12/2022] Open
Abstract
Cardiac troponin C (cTnC) is a key effector in cardiac muscle excitation-contraction coupling as the Ca2+ sensing subunit responsible for controlling contraction. In this study, we generated several FRET sensors for divalent cations based on cTnC flanked by a donor fluorescent protein (CFP) and an acceptor fluorescent protein (YFP). The sensors report Ca2+ and Mg2+ binding, and relay global structural information about the structural relationship between cTnC’s N- and C-domains. The sensors were first characterized using end point titrations to decipher the response to Ca2+ binding in the presence or absence of Mg2+. The sensor that exhibited the largest responses in end point titrations, CTV-TnC, (Cerulean, TnC, and Venus) was characterized more extensively. Most of the divalent cation-dependent FRET signal originates from the high affinity C-terminal EF hands. CTV-TnC reconstitutes into skinned fiber preparations indicating proper assembly of troponin complex, with only ~0.2 pCa unit rightward shift of Ca2+-sensitive force development compared to WT-cTnC. Affinity of CTV-TnC for divalent cations is in agreement with known values for WT-cTnC. Analytical ultracentrifugation indicates that CTV-TnC undergoes compaction as divalent cations bind. C-terminal sites induce ion-specific (Ca2+ versus Mg2+) conformational changes in cTnC. Our data also provide support for the presence of additional, non-EF-hand sites on cTnC for Mg2+ binding. In conclusion, we successfully generated a novel FRET-Ca2+ sensor based on full length cTnC with a variety of cellular applications. Our sensor reveals global structural information about cTnC upon divalent cation binding.
Collapse
Affiliation(s)
- Myriam A. Badr
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
- * E-mail:
| | - Jose R. Pinto
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
| | - Michael W. Davidson
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, United States of America
| | - P. Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
| |
Collapse
|
24
|
Gilda JE, Xu Q, Martinez ME, Nguyen ST, Chase PB, Gomes AV. The functional significance of the last 5 residues of the C-terminus of cardiac troponin I. Arch Biochem Biophys 2016; 601:88-96. [PMID: 26919894 PMCID: PMC4899223 DOI: 10.1016/j.abb.2016.02.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/06/2016] [Accepted: 02/22/2016] [Indexed: 11/15/2022]
Abstract
The C-terminal region of cardiac troponin I (cTnI) is known to be important in cardiac function, as removal of the last 17 C-terminal residues of human cTnI has been associated with myocardial stunning. To investigate the C-terminal region of cTnI, three C-terminal deletion mutations in human cTnI were generated: Δ1 (deletion of residue 210), Δ3 (deletion of residues 208-210), and Δ5 (deletion of residues 206-210). Mammalian two-hybrid studies showed that the interactions between cTnI mutants and cardiac troponin C (cTnC) or cardiac troponin T (cTnT) were impaired in Δ3 and Δ5 mutants when compared to wild-type cTnI. Troponin complexes containing 2-[4'-(iodoacetamido) anilino] naphthalene-6-sulfonic acid (IAANS) labeled cTnC showed that the troponin complex containing cTnI Δ5 had a small increase in Ca(2+) affinity (P < 0.05); while the cTnI Δ1- and Δ3 troponin complexes showed no difference in Ca(2+) affinity when compared to wild-type troponin. In vitro motility assays showed that all truncation mutants had increased Ca(2+) dependent motility relative to wild-type cTnI. These results suggest that the last 5 C-terminal residues of cTnI influence the binding of cTnI with cTnC and cTnT and affect the Ca(2+) dependence of filament sliding, and demonstrate the importance of this region of cTnI.
Collapse
Affiliation(s)
- Jennifer E Gilda
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, 95616, USA
| | - Qian Xu
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, 95616, USA
| | - Margaret E Martinez
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Susan T Nguyen
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, 95616, USA
| | - P Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Aldrin V Gomes
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, 95616, USA.
| |
Collapse
|
25
|
Gunther LK, Feng HZ, Wei H, Raupp J, Jin JP, Sakamoto T. Effect of N-Terminal Extension of Cardiac Troponin I on the Ca(2+) Regulation of ATP Binding and ADP Dissociation of Myosin II in Native Cardiac Myofibrils. Biochemistry 2016; 55:1887-97. [PMID: 26862665 DOI: 10.1021/acs.biochem.5b01059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cardiac troponin I (cTnI) has a unique N-terminal extension that plays a role in modifying the calcium regulation of cardiac muscle contraction. Restrictive cleavage of the N-terminal extension of cTnI occurs under stress conditions as a physiological adaptation. Recent studies have shown that in comparison with controls, transgenic mouse cardiac myofibrils containing cTnI lacking the N-terminal extension (cTnI-ND) had a lower sensitivity to calcium activation of ATPase, resulting in enhanced ventricular relaxation and cardiac function. To investigate which step(s) of the ATPase cycle is regulated by the N-terminal extension of cTnI, here we studied the calcium dependence of cardiac myosin II ATPase kinetics in isolated cardiac myofibrils. ATP binding and ADP dissociation rates were measured by using stopped-flow spectrofluorimetry with mant-dATP and mant-dADP, respectively. We found that the second-order mant-dATP binding rate of cTnI-ND mouse cardiac myofibrils was 3-fold faster than that of wild-type myofibrils at low Ca(2+) concentrations. The ADP dissociation rate of cTnI-ND myofibrils was positively dependent on calcium concentration, while the wild-type controls were not significantly affected. These data from experiments using native cardiac myofibrils under physiological conditions indicate that modification of the N-terminal extension of cTnI plays a role in the calcium regulation of the kinetics of actomyosin ATPase.
Collapse
Affiliation(s)
- Laura K Gunther
- Department of Physics and Astronomy, Wayne State University , Detroit, Michigan 48201, United States
| | - Han-Zhong Feng
- Department of Physiology, Wayne State University School of Medicine , Detroit, Michigan 48201, United States
| | - Hongguang Wei
- Department of Physiology, Wayne State University School of Medicine , Detroit, Michigan 48201, United States
| | - Justin Raupp
- Department of Physics and Astronomy, Wayne State University , Detroit, Michigan 48201, United States
| | - Jian-Ping Jin
- Department of Physiology, Wayne State University School of Medicine , Detroit, Michigan 48201, United States
| | - Takeshi Sakamoto
- Department of Physics and Astronomy, Wayne State University , Detroit, Michigan 48201, United States.,Department of Physiology, Wayne State University School of Medicine , Detroit, Michigan 48201, United States
| |
Collapse
|
26
|
Cardim N, Galderisi M, Edvardsen T, Plein S, Popescu BA, D'Andrea A, Bruder O, Cosyns B, Davin L, Donal E, Freitas A, Habib G, Kitsiou A, Petersen SE, Schroeder S, Lancellotti P, Camici P, Dulgheru R, Hagendorff A, Lombardi M, Muraru D, Sicari R. Role of multimodality cardiac imaging in the management of patients with hypertrophic cardiomyopathy: an expert consensus of the European Association of Cardiovascular Imaging Endorsed by the Saudi Heart Association. Eur Heart J Cardiovasc Imaging 2015; 16:280. [PMID: 25650407 DOI: 10.1093/ehjci/jeu291] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Taking into account the complexity and limitations of clinical assessment in hypertrophic cardiomyopathy (HCM), imaging techniques play an essential role in the evaluation of patients with this disease. Thus, in HCM patients, imaging provides solutions for most clinical needs, from diagnosis to prognosis and risk stratification, from anatomical and functional assessment to ischaemia detection, from metabolic evaluation to monitoring of treatment modalities, from staging and clinical profiles to follow-up, and from family screening and preclinical diagnosis to differential diagnosis. Accordingly, a multimodality imaging (MMI) approach (including echocardiography, cardiac magnetic resonance, cardiac computed tomography, and cardiac nuclear imaging) is encouraged in the assessment of these patients. The choice of which technique to use should be based on a broad perspective and expert knowledge of what each technique has to offer, including its specific advantages and disadvantages. Experts in different imaging techniques should collaborate and the different methods should be seen as complementary, not as competitors. Each test must be selected in an integrated and rational way in order to provide clear answers to specific clinical questions and problems, trying to avoid redundant and duplicated information, taking into account its availability, benefits, risks, and cost.
Collapse
MESH Headings
- Cardiac Imaging Techniques/methods
- Cardiac Imaging Techniques/standards
- Cardiomyopathy, Hypertrophic/diagnosis
- Cardiomyopathy, Hypertrophic/therapy
- Consensus
- Echocardiography, Doppler/methods
- Echocardiography, Doppler/standards
- Europe
- Female
- Humans
- Image Interpretation, Computer-Assisted
- Magnetic Resonance Imaging, Cine/methods
- Magnetic Resonance Imaging, Cine/standards
- Male
- Multimodal Imaging/methods
- Multimodal Imaging/standards
- Positron-Emission Tomography/methods
- Positron-Emission Tomography/standards
- Practice Guidelines as Topic/standards
- Role
- Saudi Arabia
- Societies, Medical/standards
- Tomography, X-Ray Computed/methods
- Tomography, X-Ray Computed/standards
Collapse
|
27
|
Gupte TM, Haque F, Gangadharan B, Sunitha MS, Mukherjee S, Anandhan S, Rani DS, Mukundan N, Jambekar A, Thangaraj K, Sowdhamini R, Sommese RF, Nag S, Spudich JA, Mercer JA. Mechanistic heterogeneity in contractile properties of α-tropomyosin (TPM1) mutants associated with inherited cardiomyopathies. J Biol Chem 2014; 290:7003-15. [PMID: 25548289 DOI: 10.1074/jbc.m114.596676] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The most frequent known causes of primary cardiomyopathies are mutations in the genes encoding sarcomeric proteins. Among those are 30 single-residue mutations in TPM1, the gene encoding α-tropomyosin. We examined seven mutant tropomyosins, E62Q, D84N, I172T, L185R, S215L, D230N, and M281T, that were chosen based on their clinical severity and locations along the molecule. The goal of our study was to determine how the biochemical characteristics of each of these mutant proteins are altered, which in turn could provide a structural rationale for treatment of the cardiomyopathies they produce. Measurements of Ca(2+) sensitivity of human β-cardiac myosin ATPase activity are consistent with the hypothesis that hypertrophic cardiomyopathies are hypersensitive to Ca(2+) activation, and dilated cardiomyopathies are hyposensitive. We also report correlations between ATPase activity at maximum Ca(2+) concentrations and conformational changes in TnC measured using a fluorescent probe, which provide evidence that different substitutions perturb the structure of the regulatory complex in different ways. Moreover, we observed changes in protein stability and protein-protein interactions in these mutants. Our results suggest multiple mechanistic pathways to hypertrophic and dilated cardiomyopathies. Finally, we examined a computationally designed mutant, E181K, that is hypersensitive, confirming predictions derived from in silico structural analysis.
Collapse
Affiliation(s)
- Tejas M Gupte
- From the Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India
| | - Farah Haque
- From the Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India, the National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Binnu Gangadharan
- From the Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India, the Manipal University, Madhav Nagar, Manipal 576104, India
| | - Margaret S Sunitha
- From the Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India, the National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Souhrid Mukherjee
- From the Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India
| | - Swetha Anandhan
- From the Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India
| | - Deepa Selvi Rani
- the Council for Scientific and Industrial Research-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Namita Mukundan
- the National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Amruta Jambekar
- From the Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India
| | - Kumarasamy Thangaraj
- the Council for Scientific and Industrial Research-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Ramanathan Sowdhamini
- the National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Ruth F Sommese
- the Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, and
| | - Suman Nag
- the Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, and
| | - James A Spudich
- From the Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India, the Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, and
| | - John A Mercer
- From the Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India, the McLaughlin Research Institute, Great Falls, Montana 59405
| |
Collapse
|
28
|
Bai F, Caster HM, Dawson JF, Kawai M. The immediate effect of HCM causing actin mutants E99K and A230V on actin-Tm-myosin interaction in thin-filament reconstituted myocardium. J Mol Cell Cardiol 2014; 79:123-32. [PMID: 25451174 DOI: 10.1016/j.yjmcc.2014.10.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 10/23/2014] [Accepted: 10/26/2014] [Indexed: 10/24/2022]
Abstract
Human cardiac actin mutants E99K and A230V were expressed with baculovirus/insect cells and used to reconstitute the thin-filament of bovine cardiac (BVC) muscle fibers, together with tropomyosin (Tm) and troponin (Tn) purified from bovine ventricles. Effects of [Ca(2+)], [ATP], and [phosphate] on tension and its transients were studied at 25°C. In the absence of Tm/Tn, both mutants significantly decreased the tension of actin filament reconstituted fibers (WT: 0.75±0.06 T0, E99K: 0.58±0.04 T0, A230V: 0.58±0.03 T0), where T0 is active tension of native fibers (T0=26.9±1.1kPa, N=41), indicating diminished actin-myosin interactions. However, in the presence of Tm and Tn, WT, E99K, and A230V recovered tension (0.85±0.06 T0, 0.89±0.06 T0, and 0.85±0.05 T0, respectively), demonstrating the compensatory effect of Tm/Tn. Ca(2+) sensitivity (pCa50) increased (5.59±0.02, 5.80±0.03, 5.77±0.03, respectively) and cooperativity (nH) decreased (2.6±0.3, 1.87±0.21, 1.60±0.11, respectively). The kinetic constants of the cross-bridge cycle were deduced using sinusoidal analysis. E99K did not show any significant changes in any of the kinetic constants compared to those of WT. A230V caused a decrease in K1 (ATP association constant), k2 and k-2 (rate constants of the cross-bridge detachment step). The cross-bridge distribution was similar among WT, E99K, and A230V. In conclusion, our experiments demonstrate that the first step of HCM pathogenesis with E99K is increased pCa50 and decreased nH, which result in larger tension during partial activation to cause a diastolic problem. The effect on nH is more severe with A230V. In addition, A230V has a problem of decreased cross-bridge kinetics, which affects the normal functions of the cross-bridge cycle and may contribute to the first step of the HCM pathogenesis.
Collapse
Affiliation(s)
- Fan Bai
- Department of Anatomy and Cell Biology, and Internal Medicine, The University of Iowa, Iowa City, IA 52242-1109, USA.
| | - Hannah M Caster
- Department of Anatomy and Cell Biology, and Internal Medicine, The University of Iowa, Iowa City, IA 52242-1109, USA.
| | - John F Dawson
- Department of Molecular and Cellular Biology, University of Guelph, College of Biological Science, Guelph, Ontario N1G 2W1, Canada.
| | - Masataka Kawai
- Department of Anatomy and Cell Biology, and Internal Medicine, The University of Iowa, Iowa City, IA 52242-1109, USA.
| |
Collapse
|
29
|
Wang L, Ji X, Barefield D, Sadayappan S, Kawai M. Phosphorylation of cMyBP-C affects contractile mechanisms in a site-specific manner. Biophys J 2014; 106:1112-22. [PMID: 24606935 DOI: 10.1016/j.bpj.2014.01.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 01/18/2014] [Accepted: 01/23/2014] [Indexed: 01/05/2023] Open
Abstract
Cardiac myosin binding protein-C (cMyBP-C) is a cardiac-specific, thick-filament regulatory protein that is differentially phosphorylated at Ser(273), Ser(282), and Ser(302) by various kinases and modulates contraction. In this study, phosphorylation-site-specific effects of cMyBP-C on myocardial contractility and cross-bridge kinetics were studied by sinusoidal analysis in papillary and trabecular muscle fibers isolated from t/t (cMyBP-C-null) mice and in their counterparts in which cMyBP-C contains the ADA (Ala(273)-Asp(282)-Ala(302)), DAD (Asp(273)-Ala(282)-Asp(302)), and SAS (Ser(273)-Ala(282)-Ser(302)) mutations; the results were compared to those from mice expressing the wild-type (WT) transgene on the t/t background. Under standard activating conditions, DAD fibers showed significant decreases in tension (~50%), stiffness, the fast apparent rate constant 2πc, and its magnitude C, as well as its magnitude H, but an increase in the medium rate constant 2πb, with respect to WT. The t/t fibers showed a smaller drop in stiffness and a significant decrease in 2πc that can be explained by isoform shift of myosin heavy chain. In the pCa-tension study using the 8 mM phosphate (Pi) solution, there was hardly any difference in Ca(2+) sensitivity (pCa50) and cooperativity (nH) between the mutant and WT samples. However, in the solutions without Pi, DAD showed increased nH and slightly decreased pCa50. We infer from these observations that the nonphosphorylatable residue 282 combined with phosphomimetic residues Asp(273) and/or Asp(302) (in DAD) is detrimental to cardiomyocytes by lowering isometric tension and altering cross-bridge kinetics with decreased 2πc and increased 2πb. In contrast, a single change of residue 282 to nonphosphorylatable Ala (SAS), or to phosphomimetic Asps together with the changes of residues 273 and 302 to nonphosphorylatable Ala (ADA) causes minute changes in fiber mechanics.
Collapse
Affiliation(s)
- Li Wang
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa; School of Nursing, Soochow University, Suzhou, Jiangsu, China
| | - Xiang Ji
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois
| | - David Barefield
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois
| | - Sakthivel Sadayappan
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois
| | - Masakata Kawai
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
30
|
Bai F, Caster HM, Rubenstein PA, Dawson JF, Kawai M. Using baculovirus/insect cell expressed recombinant actin to study the molecular pathogenesis of HCM caused by actin mutation A331P. J Mol Cell Cardiol 2014; 74:64-75. [PMID: 24793351 DOI: 10.1016/j.yjmcc.2014.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/21/2014] [Accepted: 04/22/2014] [Indexed: 01/07/2023]
Abstract
Recombinant WT human cardiac actin (WT actin) was expressed using the baculovirus/insect cell expression system, purified, and used to reconstitute the thin-filament of bovine cardiac muscle fibers, together with bovine cardiac tropomyosin (Tm) and troponin (Tn). Effects of [Ca(2+)], [ATP], [phosphate] and [ADP] on tension and tension transients were studied at 25°C by using sinusoidal analysis, and the results were compared with those of native fibers and fibers reconstituted with purified bovine cardiac actin (BVC actin). In actin filament reconstituted fibers (without Tm/Tn), those reconstituted with WT actin showed exactly the same active tension as those reconstituted with purified BVC actin (WT: 0.75±0.06 T0, N=11; BVC: 0.73±0.07 T0, N=12, where T0 is the tension of original fibers before extraction). After Tm/Tn reconstitution, fibers reconstituted with WT actin generated 0.85±0.06 T0 (N=11) compared to 0.98±0.04 T0 (N=12) recovered by those reconstituted with BVC actin. In the presence of Tm/Tn, WT actin reconstituted fibers showed exactly the same Ca(2+) sensitivity as those of the native fibers and BVC actin reconstituted fibers (pCa50: native fibers: 5.69±0.01, N=10; WT: 5.69±0.02, N=11; BVC: 5.68±0.02, N=12). Sinusoidal analysis showed that the cross-bridge kinetics were the same among native fibers, BVC actin reconstituted fibers and WT actin reconstituted fibers, followed by reconstitution of Tm/Tn. These results demonstrate that baculovirus/insect cell expressed actin has no significant differences from tissue purified actin and can be used for thin-filament reconstitution assays. One hypertrophic cardiomyopathy (HCM) causing actin mutant A331P actin was also expressed and studied similarly, and the results were compared to those of the WT actin. In the reconstituted fibers, A331P significantly decreased the tension both in the absence of Tm/Tn (0.55±0.03 T0, N=13) and in their presence (0.65±0.02 T0, N=13) compared to those of the WT (0.75±0.06 T0 and 0.85±0.06 T0, respectively, N=11). A331P also showed decreased pCa50 (5.57±0.03, N=13) compared to that of WT (5.69±0.02, N=11). The cross-bridge kinetics and its distribution were similar between WT and A331P actin reconstituted fibers, indicating that force/cross-bridge was decreased by A331P. In conclusion, A331P causes a weakened cross-bridge force, which leads to a decreased active tension, reduces left-ventricular ejection fraction, and eventually results in the HCM phenotype.
Collapse
Affiliation(s)
- Fan Bai
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA 52242-1109, USA.
| | - Hannah M Caster
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA 52242-1109, USA.
| | - Peter A Rubenstein
- Department of Biochemistry, The University of Iowa, Iowa City, IA 52242-1109, USA.
| | - John F Dawson
- Department of Molecular & Cellular Biology, University of Guelph, College of Biological Science, Guelph, Ontario N1G 2 W1, Canada.
| | - Masataka Kawai
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA 52242-1109, USA; Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242-1109, USA.
| |
Collapse
|
31
|
Lehrer SS, Geeves MA. The myosin-activated thin filament regulatory state, M − -open: a link to hypertrophic cardiomyopathy (HCM). J Muscle Res Cell Motil 2014; 35:153-60. [DOI: 10.1007/s10974-014-9383-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 04/03/2014] [Indexed: 01/31/2023]
|
32
|
Kirwan JP, Hodges RS. Transmission of stability information through the N-domain of tropomyosin is interrupted by a stabilizing mutation (A109L) in the hydrophobic core of the stability control region (residues 97-118). J Biol Chem 2013; 289:4356-66. [PMID: 24362038 PMCID: PMC3924298 DOI: 10.1074/jbc.m113.507236] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Tropomyosin (Tm) is an actin-binding, thin filament, two-stranded α-helical coiled-coil critical for muscle contraction and cytoskeletal function. We made the first identification of a stability control region (SCR), residues 97-118, in the Tm sequence that controls overall protein stability but is not required for folding. We also showed that the individual α-helical strands of the coiled-coil are stabilized by Leu-110, whereas the hydrophobic core is destabilized in the SCR by Ala residues at three consecutive d positions. Our hypothesis is that the stabilization of the individual α-helices provides an optimum stability and allows functionally beneficial dynamic motion between the α-helices that is critical for the transmission of stabilizing information along the coiled-coil from the SCR. We prepared three recombinant (rat) Tm(1-131) proteins, including the wild type sequence, a destabilizing mutation L110A, and a stabilizing mutation A109L. These proteins were evaluated by circular dichroism (CD) and differential scanning calorimetry. The single mutation L110A destabilizes the entire Tm(1-131) molecule, showing that the effect of this mutation is transmitted 165 Å along the coiled-coil in the N-terminal direction. The single mutation A109L prevents the SCR from transmitting stabilizing information and separates the coiled-coil into two domains, one that is ∼9 °C more stable than wild type and one that is ∼16 °C less stable. We know of no other example of the substitution of a stabilizing Leu residue in a coiled-coil hydrophobic core position d that causes this dramatic effect. We demonstrate the importance of the SCR in controlling and transmitting the stability signal along this rodlike molecule.
Collapse
Affiliation(s)
- J Paul Kirwan
- From the Program in Structural Biology and Biophysics, Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Aurora, Colorado 80045
| | | |
Collapse
|
33
|
Bai F, Caster HM, Pinto JR, Kawai M. Analysis of the molecular pathogenesis of cardiomyopathy-causing cTnT mutants I79N, ΔE96, and ΔK210. Biophys J 2013; 104:1979-88. [PMID: 23663841 DOI: 10.1016/j.bpj.2013.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 03/27/2013] [Accepted: 04/02/2013] [Indexed: 11/19/2022] Open
Abstract
Three troponin T (TnT) mutants that cause hypertrophic, restrictive, and dilated cardiomyopathy (I79N, ΔE96, and ΔK210, respectively), were examined using the thin-filament extraction/reconstitution technique. Effects of Ca(2+), ATP, phosphate, and ADP concentrations on force and its transients were studied at 25°C. Maximal Ca(2+) tension (THC) and Ca(2+)-activatable tension (Tact), respectively, were similar among I79N, ΔE96, and WT, whereas ΔK210 led to a significantly lower THC (∼20% less) and Tact (∼25% less) than did WT. In pCa solution containing 8 mM Pi and ionic strength adjusted to 200 mM, the Ca(2+) sensitivity (pCa50) of I79N (5.63 ± 0.02) and ΔE96 (5.60 ± 0.03) was significantly greater than that of WT (5.45 ± 0.04), but the pCa50 of ΔK210 (5.54 ± 0.04) remained similar to that of WT. Five equilibrium constants were deduced using sinusoidal analysis. All three mutants showed significantly lower K0 (ADP association constant) and larger K4 (equilibrium constant of force generation step) relative to the corresponding values for WT. I79N and ΔK210 were associated with a K2 (equilibrium constant of cross-bridge detachment step) significantly lower than that of ΔE96 and WT. These results demonstrated that at pCa 4.66, the force/cross-bridge is ∼18% less in I79N and ∼41% less in ΔK210 than that in WT. These results indicate that the molecular pathogenesis of the cardiac TnT mutation-related cardiomyopathies is different for each mutation.
Collapse
Affiliation(s)
- Fan Bai
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa, USA
| | | | | | | |
Collapse
|
34
|
Viswanathan MC, Kaushik G, Engler AJ, Lehman W, Cammarato A. A Drosophila melanogaster model of diastolic dysfunction and cardiomyopathy based on impaired troponin-T function. Circ Res 2013; 114:e6-17. [PMID: 24221941 DOI: 10.1161/circresaha.114.302028] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
RATIONALE Regulation of striated muscle contraction is achieved by Ca2+ -dependent steric modulation of myosin cross-bridge cycling on actin by the thin filament troponin-tropomyosin complex. Alterations in the complex can induce contractile dysregulation and disease. For example, mutations between or near residues 112 to 136 of cardiac troponin-T, the crucial TnT1 (N-terminal domain of troponin-T)-tropomyosin-binding region, cause cardiomyopathy. The Drosophila upheld(101) Glu/Lys amino acid substitution lies C-terminally adjacent to this phylogenetically conserved sequence. OBJECTIVE Using a highly integrative approach, we sought to determine the molecular trigger of upheld(101) myofibrillar degeneration, to evaluate contractile performance in the mutant cardiomyocytes, and to examine the effects of the mutation on the entire Drosophila heart to elucidate regulatory roles for conserved TnT1 regions and provide possible mechanistic insight into cardiac dysfunction. METHODS AND RESULTS Live video imaging of Drosophila cardiac tubes revealed that the troponin-T mutation prolongs systole and restricts diastolic dimensions of the heart, because of increased numbers of actively cycling myosin cross-bridges. Elevated resting myocardial stiffness, consistent with upheld(101) diastolic dysfunction, was confirmed by an atomic force microscopy-based nanoindentation approach. Direct visualization of mutant thin filaments via electron microscopy and 3-dimensional reconstruction resolved destabilized tropomyosin positioning and aberrantly exposed myosin-binding sites under low Ca2+ conditions. CONCLUSIONS As a result of troponin-tropomyosin dysinhibition, upheld(101) hearts exhibited cardiac dysfunction and remodeling comparable to that observed during human restrictive cardiomyopathy. Thus, reversal of charged residues about the conserved tropomyosin-binding region of TnT1 may perturb critical intermolecular associations required for proper steric regulation, which likely elicits myopathy in our Drosophila model.
Collapse
Affiliation(s)
- Meera Cozhimuttam Viswanathan
- From the Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (M.C.V., A.C.); Department of Bioengineering, University of California, San Diego, La Jolla, CA (G.K., A.J.E.); and Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA (W.L.)
| | | | | | | | | |
Collapse
|
35
|
Redwood C, Robinson P. Alpha-tropomyosin mutations in inherited cardiomyopathies. J Muscle Res Cell Motil 2013; 34:285-94. [DOI: 10.1007/s10974-013-9358-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 08/23/2013] [Indexed: 10/26/2022]
|
36
|
Wang L, Muthu P, Szczesna-Cordary D, Kawai M. Diversity and similarity of motor function and cross-bridge kinetics in papillary muscles of transgenic mice carrying myosin regulatory light chain mutations D166V and R58Q. J Mol Cell Cardiol 2013; 62:153-63. [PMID: 23727233 PMCID: PMC3809071 DOI: 10.1016/j.yjmcc.2013.05.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/16/2013] [Accepted: 05/19/2013] [Indexed: 10/26/2022]
Abstract
Mechanical properties of skinned papillary muscle fibers from transgenic mice expressing familial hypertrophic cardiomyopathy associated mutations D166V and R58Q in myosin regulatory light chain were investigated. Elementary steps and the apparent rate constants of the cross-bridge cycle were characterized from the tension transients induced by sinusoidal length changes during maximal Ca(2+) activation, together with ATP, ADP, and Pi studies. The tension-pCa relation was also tested in two sets of solutions with differing Pi and ionic strength. Our results showed that in both mutants the fast apparent rate constant 2πc and the rate constants of the cross-bridge detachment step (k2) were smaller than those of wild type (WT), demonstrating the slower cross-bridge kinetics. D166V showed significantly smaller ATP (K1) and ADP (K0) association constants than WT, displaying weaker ATP binding and easier ADP release, whereas those of R58Q were not significantly different from WT. In tension-pCa study, both D166V and R58Q mutations exhibited increased Ca(2+) sensitivity and less cooperativity. We conclude that, while the two FHC mutations have similar clinical manifestations and prognosis, some of the mechanical parameters of cross-bridges (K0, K1) are differently modified, whereas some others (Ca(2+)-sensitivity, cooperativity, k2) are similarly modified by these two FHC associated mutations.
Collapse
Affiliation(s)
- Li Wang
- Departments of Anatomy and Cell Biology, and Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Priya Muthu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Masataka Kawai
- Departments of Anatomy and Cell Biology, and Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
37
|
Nuclear tropomyosin and troponin in striated muscle: new roles in a new locale? J Muscle Res Cell Motil 2013; 34:275-84. [DOI: 10.1007/s10974-013-9356-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 07/23/2013] [Indexed: 01/03/2023]
|
38
|
A study of tropomyosin's role in cardiac function and disease using thin-filament reconstituted myocardium. J Muscle Res Cell Motil 2013; 34:295-310. [PMID: 23700264 DOI: 10.1007/s10974-013-9343-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 05/07/2013] [Indexed: 10/26/2022]
Abstract
Tropomyosin (Tm) is the key regulatory component of the thin-filament and plays a central role in the cardiac muscle's cooperative activation mechanism. Many mutations of cardiac Tm are related to hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), and left ventricular noncompaction (LVNC). Using the thin-filament extraction/reconstitution technique, we are able to incorporate various Tm mutants and protein isoforms into a muscle fiber environment to study their roles in Ca(2+) regulation, cross-bridge kinetics, and force generation. The thin-filament reconstitution technique poses several advantages compared to other in vitro and in vivo methods: (1) Tm mutants and isoforms are placed into the real muscle fiber environment to exhibit their effect on a level much higher than simple protein complexes; (2) only the primary and immediate effects of Tm mutants are studied in the thin-filament reconstituted myocardium; (3) lethal mutants of Tm can be studied without causing a problem; and (4) inexpensive. In transgenic models, various secondary effects (myocyte disarray, ECM fibrosis, altered protein phosphorylation levels, etc.) also affect the performance of the myocardium, making it very difficult to isolate the primary effect of the mutation. Our studies on Tm have demonstrated that: (1) Tm positively enhances the hydrophobic interaction between actin and myosin in the "closed state", which in turn enhances the isometric tension; (2) Tm's seven periodical repeats carry distinct functions, with the 3rd period being essential for the tension enhancement; (3) Tm mutants lead to HCM by impairing the relaxation on one hand, and lead to DCM by over inhibition of the AM interaction on the other hand. Ca(2+) sensitivity is affected by inorganic phosphate, ionic strength, and phosphorylation of constituent proteins; hence it may not be the primary cause of the pathogenesis. Here, we review our current knowledge regarding Tm's effect on the actomyosin interaction and the early molecular pathogenesis of Tm mutation related to HCM, DCM, and LVNC.
Collapse
|
39
|
Loong CKP, Takeda AK, Badr MA, Rogers JS, Chase PB. Slowed Dynamics of Thin Filament Regulatory Units Reduces Ca 2+-Sensitivity of Cardiac Biomechanical Function. Cell Mol Bioeng 2013; 6:183-198. [PMID: 23833690 DOI: 10.1007/s12195-013-0269-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Actomyosin kinetics in both skinned skeletal muscle fibers at maximum Ca2+-activation and unregulated in vitro motility assays are modulated by solvent microviscosity in a manner consistent with a diffusion limited process. Viscosity might also influence cardiac thin filament Ca2+-regulatory protein dynamics. In vitro motility assays were conducted using thin filaments reconstituted with recombinant human cardiac troponin and tropomyosin; solvent microviscosity was varied by addition of sucrose or glucose. At saturating Ca2+, filament sliding speed (s) was inversely proportional to viscosity. Ca2+-sensitivity (pCa50 ) of s decreased markedly with elevated viscosity (η/η0 ≥ ~1.3). For comparison with unloaded motility assays, steady-state isometric force (F) and kinetics of isometric tension redevelopment (kTR ) were measured in single, permeabilized porcine cardiomyocytes when viscosity surrounding the myofilaments was altered. Maximum Ca2+-activated F changed little for sucrose ≤ 0.3 M (η/η0 ~1.4) or glucose ≤ 0.875 M (η/η0 ~1.66), but decreased at higher concentrations. Sucrose (0.3 M) or glucose (0.875 M) decreased pCa50 for F. kTR at saturating Ca2+ decreased steeply and monotonically with increased viscosity but there was little effect on kTR at sub-maximum Ca2+. Modeling indicates that increased solutes affect dynamics of cardiac muscle Ca2+-regulatory proteins to a much greater extent than actomyosin cross-bridge cycling.
Collapse
Affiliation(s)
- Campion K P Loong
- Department of Biological Science, The Florida State University, Tallahassee, FL, 32306, USA ; Department of Physics, The Florida State University, Tallahassee, FL, 32306, USA
| | | | | | | | | |
Collapse
|
40
|
Janco M, Kalyva A, Scellini B, Piroddi N, Tesi C, Poggesi C, Geeves MA. α-Tropomyosin with a D175N or E180G mutation in only one chain differs from tropomyosin with mutations in both chains. Biochemistry 2012; 51:9880-90. [PMID: 23170982 PMCID: PMC3711130 DOI: 10.1021/bi301323n] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
α-Tropomyosin (Tm) carrying hypertrophic cardiomyopathy mutation D175N or E180G was expressed in Escherichia coli. We have assembled dimers of two polypeptide chains in vitro that carry one (αα*) or two (α*α*) copies of the mutation. We found that the presence of the mutation has little effect on dimer assembly, thereby predicting that individuals heterozygous for the Tm mutations are likely to express both αα* and α*α* Tm. Depending on the expression level, the heterodimer may be the predominant form in individuals carrying the mutation. Thus, it is important to define differences in the properties of Tm molecules carrying one or two copies of the mutation. We examined the Tm homo- and heterodimer properties: actin affinity, thermal stability, calcium regulation of myosin subfragment 1 binding, and calcium regulation of myofibril force. We report that the properties of the heterodimer may be similar to those of the wild-type homodimer (actin affinity, thermal stability, D175N αα*), similar to those of the mutant homodimer (calcium sensitivity, D175N αα*), intermediate between the two (actin affinity, E180G αα*), or different from both (thermal stability, E180G αα*). Thus, the properties of the homodimer are not a completely reliable guide to the properties of the heterodimer.
Collapse
Affiliation(s)
- Miro Janco
- School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
41
|
Ochala J, Gokhin DS, Penisson-Besnier I, Quijano-Roy S, Monnier N, Lunardi J, Romero NB, Fowler VM. Congenital myopathy-causing tropomyosin mutations induce thin filament dysfunction via distinct physiological mechanisms. Hum Mol Genet 2012. [DOI: 10.1093/hmg/dds289 order by 8029-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
|
42
|
DCM-related tropomyosin mutants E40K/E54K over-inhibit the actomyosin interaction and lead to a decrease in the number of cycling cross-bridges. PLoS One 2012; 7:e47471. [PMID: 23077624 PMCID: PMC3471818 DOI: 10.1371/journal.pone.0047471] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 09/11/2012] [Indexed: 11/19/2022] Open
Abstract
Two DCM mutants (E40K and E54K) of tropomyosin (Tm) were examined using the thin-filament extraction/reconstitution technique. The effects of the Ca2+, ATP, phosphate (Pi), and ADP concentrations on isometric tension and its transients were studied at 25°C, and the results were compared to those for the WT protein. Our results indicate that both E40K and E54K have a significantly lower THC (high Ca2+ tension at pCa 4.66) (E40K: 1.21±0.06 Ta, ±SEM, N = 34; E54K: 1.24±0.07 Ta, N = 28), a significantly lower TLC (low- Ca2+ tension at pCa 7.0) (E40K: 0.07±0.02 Ta, N = 34; E54K: 0.06±0.02 Ta, N = 28), and a significantly lower Tact (Ca2+ activatable tension) (Tact = THC–TLC, E40K: 1.15±0.08 Ta, N = 34; E54K: 1.18±0.06 Ta, N = 28) than WT (THC = 1.53±0.07 Ta, TLC = 0.12±0.01 Ta, Tact = 1.40±0.07 Ta, N = 25). All tensions were normalized to Ta ( = 13.9±0.8 kPa, N = 57), the tension of actin-filament reconstituted cardiac fibers (myocardium) under the standard activating conditions. The Ca2+ sensitivity (pCa50) of E40K (5.23±0.02, N = 34) and E54K (5.24±0.03, N = 28) was similar to that of the WT protein (5.26±0.03, N = 25). The cooperativity increased significantly in E54K (3.73±0.25, N = 28) compared to WT (2.80±0.17, N = 25). Seven kinetic constants were deduced using sinusoidal analysis at pCa 4.66. These results enabled us to calculate the cross-bridge distribution in the strongly attached states, and thereby deduce the force/cross-bridge. The results indicate that the force/cross-bridge is ∼15% less in E54K than WT, but remains similar to that of the WT protein in the case of E40K. We conclude that over-inhibition of the actomyosin interaction by E40K and E54K Tm mutants leads to a decreased force-generating ability at systole, which is the main mechanism underlying the early pathogenesis of DCM.
Collapse
|
43
|
Ochala J, Gokhin DS, Penisson-Besnier I, Quijano-Roy S, Monnier N, Lunardi J, Romero NB, Fowler VM. Congenital myopathy-causing tropomyosin mutations induce thin filament dysfunction via distinct physiological mechanisms. Hum Mol Genet 2012. [DOI: 10.1093/hmg/dds289 order by 1-- gadu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
|
44
|
Ochala J, Gokhin DS, Penisson-Besnier I, Quijano-Roy S, Monnier N, Lunardi J, Romero NB, Fowler VM. Congenital myopathy-causing tropomyosin mutations induce thin filament dysfunction via distinct physiological mechanisms. Hum Mol Genet 2012. [DOI: 10.1093/hmg/dds289 order by 8029-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
|
45
|
Ochala J, Gokhin DS, Penisson-Besnier I, Quijano-Roy S, Monnier N, Lunardi J, Romero NB, Fowler VM. Congenital myopathy-causing tropomyosin mutations induce thin filament dysfunction via distinct physiological mechanisms. Hum Mol Genet 2012. [DOI: 10.1093/hmg/dds289 order by 1-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
|
46
|
Ochala J, Gokhin DS, Penisson-Besnier I, Quijano-Roy S, Monnier N, Lunardi J, Romero NB, Fowler VM. Congenital myopathy-causing tropomyosin mutations induce thin filament dysfunction via distinct physiological mechanisms. Hum Mol Genet 2012. [DOI: 10.1093/hmg/dds289 order by 8029-- awyx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
|
47
|
Ochala J, Gokhin DS, Penisson-Besnier I, Quijano-Roy S, Monnier N, Lunardi J, Romero NB, Fowler VM. Congenital myopathy-causing tropomyosin mutations induce thin filament dysfunction via distinct physiological mechanisms. Hum Mol Genet 2012. [DOI: 10.1093/hmg/dds289 and 1880=1880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
|
48
|
Ochala J, Gokhin DS, Penisson-Besnier I, Quijano-Roy S, Monnier N, Lunardi J, Romero NB, Fowler VM. Congenital myopathy-causing tropomyosin mutations induce thin filament dysfunction via distinct physiological mechanisms. Hum Mol Genet 2012. [DOI: 10.1093/hmg/dds289 order by 1-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
|
49
|
Niederer SA, Land S, Omholt SW, Smith NP. Interpreting genetic effects through models of cardiac electromechanics. Am J Physiol Heart Circ Physiol 2012; 303:H1294-303. [PMID: 23042948 DOI: 10.1152/ajpheart.00121.2012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Multiscale models of cardiac electromechanics are being increasingly focused on understanding how genetic variation and environment underpin multiple disease states. In this paper we review the current state of the art in both the development of specific models and the physiological insights they have produced. This growing research body includes the development of models for capturing the effects of changes in function in both single and multiple proteins in both specific expression systems and in vivo contexts. Finally, the potential for using this approach for ultimately predicting phenotypes from genetic sequence information is discussed.
Collapse
Affiliation(s)
- S A Niederer
- Department of Biomedical Engineering, King's College London, King's Health Partners, Saint Thomas' Hospital, London, UK
| | | | | | | |
Collapse
|
50
|
Ly S, Lehrer SS. Long-range effects of familial hypertrophic cardiomyopathy mutations E180G and D175N on the properties of tropomyosin. Biochemistry 2012; 51:6413-20. [PMID: 22794249 PMCID: PMC3447992 DOI: 10.1021/bi3006835] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cardiac α-tropomyosin (Tm) single-site mutations D175N and E180G cause familial hypertrophic cardiomyopathy (FHC). Previous studies have shown that these mutations increase both Ca(2+) sensitivity and residual contractile activity at low Ca(2+) concentrations, which causes incomplete relaxation during diastole resulting in hypertrophy and sarcomeric disarray. However, the molecular basis for the cause and the difference in the severity of the manifested phenotypes of disease are not known. In this work we have (1) used ATPase studies using reconstituted thin filaments in solution to show that these FHC mutants result in an increase in Ca(2+) sensitivity and an increased residual level of ATPase, (2) shown that both FHC mutants increase the rate of cleavage at R133, ~45 residues N-terminal to the mutations, when free and bound to actin, (3) shown that for Tm-E180G, the increase in the rate of cleavage is greater than that for D175N, and (4) shown that for E180G, cleavage also occurs at a new site 53 residues C-terminal to E180G, in parallel with cleavage at R133. The long-range decreases in dynamic stability due to these two single-site mutations suggest increases in flexibility that may weaken the ability of Tm to inhibit activity at low Ca(2+) concentrations for D175N and to a greater degree for E180G, which may contribute to differences in the severity of FHC.
Collapse
Affiliation(s)
- Socheata Ly
- Cardiovascular Program, Boston Biomedical Research Institute, 64 Grove Street, Watertown, MA 02472
| | | |
Collapse
|