1
|
Ogawa H, Nishio T, Yoshikawa Y, Sadakane K, Kenmotsu T, Koga T, Yoshikawa K. Characteristic effect of hydroxyurea on the higher-order structure of DNA and gene expression. Sci Rep 2024; 14:13826. [PMID: 38879539 PMCID: PMC11180115 DOI: 10.1038/s41598-024-64538-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/10/2024] [Indexed: 06/19/2024] Open
Abstract
Hydroxyurea (HU; hydroxycarbamide) is a chemotherapy medication used to treat various types of cancer and other diseases such as sickle cell anemia. HU inhibits DNA synthesis by targeting ribonucleotide reductase (RNR). Recent studies have suggested that HU also causes oxidative stress in living systems. In the present study, we investigated if HU could directly affect the activity and/or conformation of DNA. We measured in vitro gene expression in the presence of HU by adapting a cell-free luciferase assay. HU exhibited a bimodal effect on gene expression, where promotion or inhibition were observed at lower or higher concentrations (mM range), respectively. Using atomic force microscopy (AFM), the higher-order structure of DNA was revealed to be partially-thick with kinked-branching structures after HU was added. An elongated coil conformation was observed by AFM in the absence of HU. Single DNA molecules in bulk aqueous solution under fluctuating Brownian motion were imaged by fluorescence microscopy (FM). Both spring and damping constants, mechanical properties of DNA, increased when HU was added. These experimental investigations indicate that HU directly interacts with DNA and provide new insights into how HU acts as a chemotherapeutic agent and targets other diseases.
Collapse
Affiliation(s)
- Haruto Ogawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Takashi Nishio
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
- Cluster of Excellence Physics of Life, TUD Dresden University of Technology, 01307, Dresden, Germany
| | - Yuko Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Koichiro Sadakane
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Takahiro Kenmotsu
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Tomoyuki Koga
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyoto, 610-0321, Japan
| | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan.
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
2
|
Mishra G, Bhattacharjee SM. Sheetlike structure in the proximity of compact DNA. Phys Rev E 2024; 109:024409. [PMID: 38491671 DOI: 10.1103/physreve.109.024409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/22/2024] [Indexed: 03/18/2024]
Abstract
We determine the phase diagram of DNA with inter- and intrastrand native-pair interactions that mimic the compaction of DNA. We show that DNA takes an overall sheetlike structure in the region where an incipient transition to a compact phase would have occurred. The stability of this phase is due to the extra entropy from the folding of the sheet, which is absent in the remaining polymerlike states of the phase diagram.
Collapse
Affiliation(s)
- Garima Mishra
- Department of Physics, Ashoka University, Sonepat 131029, India
| | | |
Collapse
|
3
|
Arias-Gonzalez JR. Optical Tweezers to Study Viruses. Subcell Biochem 2024; 105:359-399. [PMID: 39738952 DOI: 10.1007/978-3-031-65187-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
A virus is a complex molecular machine that propagates by channeling its genetic information from cell to cell. Unlike macroscopic engines, it operates in a nanoscopic world under continuous thermal agitation. Viruses have developed efficient passive and active strategies to pack and release nucleic acids. Some aspects of the dynamic behavior of viruses and their substrates can be studied using structural and biochemical techniques. By the turn of the millennium, physical techniques have been applied to dynamic studies of viruses in which their intrinsic mechanical activity can be measured directly. Optical tweezers are a technology that can be used to measure the force, torque, and strain produced by molecular motors, as a function of time and at the single-molecule level. Thanks to this technique, some bacteriophages are now known to be powerful nanomachines; they exert force in the piconewton range and their motors work in a highly coordinated fashion for packaging the viral nucleic acid genome. Nucleic acids, whose elasticity and condensation behavior are inherently coupled to the viral packaging mechanisms, virion assembly, and virion-cell interactions are also amenable to examination with optical tweezers. In this chapter, we provide a comprehensive analysis of this laser-based tool, its combination with imaging methods, and its application to the study of viruses and viral molecules.
Collapse
|
4
|
Sardana D, Alam P, Yadav K, Clovis NS, Kumar P, Sen S. Unusual similarity of DNA solvation dynamics in high-salinity crowding with divalent cations of varying concentrations. Phys Chem Chem Phys 2023; 25:27744-27755. [PMID: 37814577 DOI: 10.1039/d3cp02606j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Double-stranded DNA bears the highest linear negative charge density (2e- per base-pair) among all biopolymers, leading to strong interactions with cations and dipolar water, resulting in the formation of a dense 'condensation layer' around DNA. Interactions involving proteins and ligands binding to DNA are primarily governed by strong electrostatic forces. Increased salt concentrations impede such electrostatic interactions - a situation that prevails in oceanic species due to their cytoplasm being enriched with salts. Nevertheless, how these interactions' dynamics are affected in crowded hypersaline environments remains largely unexplored. Here, we employ steady-state and time-resolved fluorescence Stokes shifts (TRFSS) of a DNA-bound ligand (DAPI) to investigate the static and dynamic solvation properties of DNA in the presence of two divalent cations, magnesium (Mg2+), and calcium (Ca2+) at varying high to very-high concentrations of 0.15 M, 1 M and 2 M. We compare the results to those obtained in physiological concentrations (0.15 M) of monovalent Na+ ions. Combining data from fluorescence femtosecond optical gating (FOG) and time-correlated single photon counting (TCSPC) techniques, dynamic fluorescence Stokes shifts in DNA are analysed over a broad range of time-scales, from 100 fs to 10 ns. We find that while divalent cation crowding strongly influences the DNA stability and ligand binding affinity to DNA, the dynamics of DNA solvation remain remarkably similar across a broad range of five decades in time, even in a high-salinity crowded environment with divalent cations, as compared to the physiological concentration of the Na+ ion. Steady-state and time-resolved data of the DNA-groove-bound ligand are seemingly unaffected by ion-crowding in hypersaline solution, possibly due to ions being mostly displaced by the DNA-bound ligand. Furthermore, the dynamic coupling of cations with nearby water may possibly contribute to a net-neutral effect on the overall collective solvation dynamics in DNA, owing to the strong anti-correlation of their electrostatic interaction energy fluctuations. Such dynamic scenarios may persist within the cellular environment of marine life and other biological cells that experience hypersaline conditions.
Collapse
Affiliation(s)
- Deepika Sardana
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Parvez Alam
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Kavita Yadav
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Ndege Simisi Clovis
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Pramod Kumar
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Sobhan Sen
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
5
|
Pokhrel P, Jonchhe S, Pan W, Mao H. Single-Molecular Dissection of Liquid-Liquid Phase Transitions. J Am Chem Soc 2023; 145:17143-17150. [PMID: 37494702 PMCID: PMC10528544 DOI: 10.1021/jacs.3c03812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Interaction between peptides and nucleic acids is a ubiquitous process that drives many cellular functions, such as replications, transcriptions, and translations. Recently, this interaction has been found in liquid-liquid phase separation (LLPS), a process responsible for the formation of newly discovered membraneless organelles with a variety of biological functions inside cells. In this work, we studied the molecular interaction between the poly-l-lysine (PLL) peptide and nucleic acids during the early stage of an LLPS process at the single-molecule level using optical tweezers. By monitoring the mechanical tension of individual nucleic acid templates upon PLL addition, we revealed a multistage LLPS process mediated by the long-range interactions between nucleic acids and polyelectrolytes. By varying different types (ssDNA, ssRNA, and dsDNA) and sequences (A-, T-, G-, or U-rich) of nucleic acids, we pieced together transition diagrams of the PLL-nucleic acid condensates from which we concluded that the propensity to form rigid nucleic acid-PLL complexes reduces the condensate formation during the LLPS process. We anticipate that these results are instrumental in understanding the transition mechanism of LLPS condensates, which allows new strategies to interfere with the biological functions of LLPS condensates inside cells.
Collapse
Affiliation(s)
- Pravin Pokhrel
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Sagun Jonchhe
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Wei Pan
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
6
|
Xiong Q, Lee OS, Mirkin CA, Schatz G. Ethanol-Induced Condensation and Decondensation in DNA-Linked Nanoparticles: A Nucleosome-like Model for the Condensed State. J Am Chem Soc 2023; 145:706-716. [PMID: 36573457 DOI: 10.1021/jacs.2c11834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Inspired by the conventional use of ethanol to induce DNA precipitation, ethanol condensation has been applied as a routine method to dynamically tune "bond" lengths (i.e., the surface-to-surface distances between adjacent nanoparticles that are linked by DNA) and thermal stabilities of colloidal crystals involving DNA-linked nanoparticles. However, the underlying mechanism of how the DNA bond that links gold nanoparticles changes in this class of colloidal crystals in response to ethanol remains unclear. Here, we conducted a series of all-atom molecular dynamic (MD) simulations to explore the free energy landscape for DNA condensation and decondensation. Our simulations confirm that DNA condensation is energetically much more favorable under 80% ethanol conditions than in pure water, as a result of ethanol's role in enhancing electrostatic interactions between oppositely charged species. Moreover, the condensed DNA adopts B-form in pure water and A-form in 80% ethanol, which indicates that the higher-order transition does not affect DNA's conformational preferences. We further propose a nucleosome-like supercoiled model for the DNA condensed state, and we show that the DNA end-to-end distance derived from this model matches the experimentally measured DNA bond length of about 3 nm in the fully condensed state for DNA where the measured length is 16 nm in water. Overall, this study provides an atomistic understanding of the mechanism underlying ethanol-induced condensation and water-induced decondensation, while our proposed nucleosome-like model allows the design of new strategies for interpreting experimental studies of DNA condensation.
Collapse
Affiliation(s)
- Qinsi Xiong
- Department of Chemistry, Northwestern University, Evanston, Illinois60208-3113, United States
| | - One-Sun Lee
- Department of Chemistry, Northwestern University, Evanston, Illinois60208-3113, United States
| | - Chad A Mirkin
- Department of Chemistry, Northwestern University, Evanston, Illinois60208-3113, United States.,Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois60208, United States.,International Institute for Nanotechnology, Northwestern University, Evanston, Illinois60208, United States
| | - George Schatz
- Department of Chemistry, Northwestern University, Evanston, Illinois60208-3113, United States
| |
Collapse
|
7
|
Transformation characteristics of A-DNA in salt solution revealed through molecular dynamics simulations. Biophys Chem 2022; 288:106845. [DOI: 10.1016/j.bpc.2022.106845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/25/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022]
|
8
|
Sefidkar N, Fathizadeh S, Nemati F, Simserides C. Energy Transport along α-Helix Protein Chains: External Drives and Multifractal Analysis. MATERIALS 2022; 15:ma15082779. [PMID: 35454472 PMCID: PMC9029186 DOI: 10.3390/ma15082779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/30/2022] [Accepted: 04/08/2022] [Indexed: 11/16/2022]
Abstract
Energy transport within biological systems is critical for biological functions in living cells and for technological applications in molecular motors. Biological systems have very complex dynamics supporting a large number of biochemical and biophysical processes. In the current work, we study the energy transport along protein chains. We examine the influence of different factors such as temperature, salt concentration, and external mechanical drive on the energy flux through protein chains. We obtain that energy fluctuations around the average value for short chains are greater than for longer chains. In addition, the external mechanical load is the most effective agent on bioenergy transport along the studied protein systems. Our results can help design a functional nano-scaled molecular motor based on energy transport along protein chains.
Collapse
Affiliation(s)
- Narmin Sefidkar
- Department of Physics, Urmia University of Technology, Urmia 5716693187, Iran; (N.S.); (F.N.)
| | - Samira Fathizadeh
- Department of Physics, Urmia University of Technology, Urmia 5716693187, Iran; (N.S.); (F.N.)
- Correspondence:
| | - Fatemeh Nemati
- Department of Physics, Urmia University of Technology, Urmia 5716693187, Iran; (N.S.); (F.N.)
| | - Constantinos Simserides
- Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, GR-15784 Athens, Greece;
| |
Collapse
|
9
|
Mo Y, Keller N, delToro D, Ananthaswamy N, Harvey S, Rao VB, Smith DE. Function of a viral genome packaging motor from bacteriophage T4 is insensitive to DNA sequence. Nucleic Acids Res 2020; 48:11602-11614. [PMID: 33119757 PMCID: PMC7672480 DOI: 10.1093/nar/gkaa875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/12/2020] [Accepted: 09/29/2020] [Indexed: 01/20/2023] Open
Abstract
Many viruses employ ATP-powered motors during assembly to translocate DNA into procapsid shells. Previous reports raise the question if motor function is modulated by substrate DNA sequence: (i) the phage T4 motor exhibits large translocation rate fluctuations and pauses and slips; (ii) evidence suggests that the phage phi29 motor contacts DNA bases during translocation; and (iii) one theoretical model, the 'B-A scrunchworm', predicts that 'A-philic' sequences that transition more easily to A-form would alter motor function. Here, we use single-molecule optical tweezers measurements to compare translocation of phage, plasmid, and synthetic A-philic, GC rich sequences by the T4 motor. We observed no significant differences in motor velocities, even with A-philic sequences predicted to show higher translocation rate at high applied force. We also observed no significant changes in motor pausing and only modest changes in slipping. To more generally test for sequence dependence, we conducted correlation analyses across pairs of packaging events. No significant correlations in packaging rate, pausing or slipping versus sequence position were detected across repeated measurements with several different DNA sequences. These studies suggest that viral genome packaging is insensitive to DNA sequence and fluctuations in packaging motor velocity, pausing and slipping are primarily stochastic temporal events.
Collapse
Affiliation(s)
- Youbin Mo
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicholas Keller
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Damian delToro
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Neeti Ananthaswamy
- Department of Biology, The Catholic University of America, District of Columbia, 20064, USA
| | - Stephen C Harvey
- Department of Biochemistry and Biophysics, Univ. of Pennsylvania, Philadelphia, PA 19104, USA
| | - Venigalla B Rao
- Department of Biology, The Catholic University of America, District of Columbia, 20064, USA
| | - Douglas E Smith
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
10
|
Obuobi S, Tay HKL, Tram NDT, Selvarajan V, Khara JS, Wang Y, Ee PLR. Facile and efficient encapsulation of antimicrobial peptides via crosslinked DNA nanostructures and their application in wound therapy. J Control Release 2019; 313:120-130. [DOI: 10.1016/j.jconrel.2019.10.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/01/2019] [Accepted: 10/07/2019] [Indexed: 01/02/2023]
|
11
|
Lai CT, Schatz GC. Free-Energy Profiles for A-/B-DNA Conformational Transitions in Isolated and Aggregated States from All-Atom Molecular Dynamics Simulation. J Phys Chem B 2018; 122:7990-7996. [PMID: 30067905 DOI: 10.1021/acs.jpcb.8b04573] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In ordinary aqueous solution, B-DNA is the major structural form of DNA. After the addition of ethanol, DNA is thought to be aggregated/condensed in the A-form structure. However, there is uncertainty as to whether the B-to-A conformational change is connected to the aggregation/condensation steps. In this study, we performed all-atom molecular dynamics simulations and calculated the free-energy surface involved in the A/B conformational transition for isolated and aggregated Dickerson-Drew dodecamers (DDDs) in water and 85% ethanol environments. We found in the case of an isolated DDD, the overall free-energy profile is entirely downhill to give the B-DNA conformation in both water and 85% ethanol. However, in the aggregated state and 85% ethanol environment, there is a free-energy minimum associated with the A-DNA region in addition to the global B-DNA minimum, and there is a ∼3 kcal/mol free-energy barrier to the A-to-B conformational change. The molecular dynamics results suggest that aggregation of DNA is essential for forming A-DNA.
Collapse
Affiliation(s)
- Cheng-Tsung Lai
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208-3113 , United States
| | - George C Schatz
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208-3113 , United States
| |
Collapse
|
12
|
Oh YS, Jung MJ, Kim SK, Lee YA. Comparison of the Binding Geometry of Free-Base and Hexacoordinated Cationic Porphyrins to A- and B-Form DNA. ACS OMEGA 2018; 3:1315-1321. [PMID: 31457967 PMCID: PMC6641412 DOI: 10.1021/acsomega.7b01629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/22/2018] [Indexed: 06/10/2023]
Abstract
Although the transition from B-DNA to the A-form is essential for many biological concerns, the properties of this transition have not been resolved. The B to A equilibrium can be analyzed conveniently because of the significant changes in circular dichroism (CD) and absorption spectrum. CD and linear dichroism (LD) methods were used to examine the binding of water-soluble meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (TMPyP) and its derivatives, Co-TMPyP, with B- and A-calf thymus DNA. B- to A-transitions occurred when the physiological buffer was replaced with a water-ethanol mixture (∼80 v/v %), and the fluorescence emission spectra of TMPyP bound to DNA showed a different pattern under ethanol-water conditions and water alone. The featureless broad emission bands of TMPyP were split into two peaks near at 658 and 715 nm in the presence of DNA under an aqueous solution. In the case of an ethanol-water system, however, the emission bands are split in two peaks near at 648 and 708 nm and 656 and 715 nm with and without DNA, respectively. This may be due to a change in the solution polarity. On the basis of the CD and LD data, TMPyP interacts with B-DNA via intercalation at a low ratio under a low ionic strength, 1 mM sodium phosphate. On the other hand, the interaction with A-DNA (80 v/v % ethanol-water system) occurs in a nonintercalating manner. This difference might be because the structural conformations, such as the groove of A-DNA, are not as deep as in B-DNA and the bases are much more tilted. In the case of Co-TMPyP, porphyrin binds preferably via an outside self-stacking mode with B- and A-DNA.
Collapse
Affiliation(s)
| | | | | | - Young-Ae Lee
- E-mail: . Phone: +82-53-810-3547. Fax: +82-53-815-5412 (Y.-A.L.)
| |
Collapse
|
13
|
Szymborska-Małek K, Komorowska M, Gąsior-Głogowska M. Effects of Near Infrared Radiation on DNA. DLS and ATR-FTIR Study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 188:258-267. [PMID: 28723592 DOI: 10.1016/j.saa.2017.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/13/2017] [Accepted: 07/07/2017] [Indexed: 06/07/2023]
Abstract
We presume that the primary effect of Near Infrared (NIR) radiation on aqueous solutions of biological molecules concerns modification of hydrogen bonded structures mainly the global and the hydration shell water molecules. Since water has a significant influence on the DNA structure, we expect that the thermal stability of DNA could be modified by NIR radiation. The herring sperm DNA was exposed to NIR radiation (700-1100nm) for 5, 10, and 20min periods. The temperature dependent infrared measurements were done for the thin films formed on the diamond ATR crystal from evaporated DNA solutions exposed and unexposed to NIR radiation. For the NIR-treated samples (at room temperature) the B form was better conserved than in the control sample independently of the irradiation period. Above 50°C a considerable increase in the A form was only observed for 10min NIR exposed samples. The hydrodynamic radius, (Rh), studied by the dynamic light scattering, showed drastic decrease with the increasing irradiation time. Principal components analysis (PCA) allowed to detect the spectral features correlated with the NIR effect and thermal stability of the DNA films. Obtained results strongly support the idea that the photoionization of water by NIR radiation in presence of DNA molecules is the main factor influencing on its physicochemical properties.
Collapse
Affiliation(s)
- Katarzyna Szymborska-Małek
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Box 1410, 50-950 Wroclaw 2, Poland
| | - Małgorzata Komorowska
- Wrocław University of Science and Technology, Faculty of Fundamental Problems of Technology, Department of Biomedical Engineering, 27 Stanisława Wyspiańskiego St., 50-370 Wrocław, Poland.
| | - Marlena Gąsior-Głogowska
- Wrocław University of Science and Technology, Faculty of Fundamental Problems of Technology, Department of Biomedical Engineering, 27 Stanisława Wyspiańskiego St., 50-370 Wrocław, Poland
| |
Collapse
|
14
|
|
15
|
A DNA-centered explanation of the DNA polymerase translocation mechanism. Sci Rep 2017; 7:7566. [PMID: 28790383 PMCID: PMC5548866 DOI: 10.1038/s41598-017-08038-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/05/2017] [Indexed: 11/08/2022] Open
Abstract
DNA polymerase couples chemical energy to translocation along a DNA template with a specific directionality while it replicates genetic information. According to single-molecule manipulation experiments, the polymerase-DNA complex can work against loads greater than 50 pN. It is not known, on the one hand, how chemical energy is transduced into mechanical motion, accounting for such large forces on sub-nanometer steps, and, on the other hand, how energy consumption in fidelity maintenance integrates in this non-equilibrium cycle. Here, we propose a translocation mechanism that points to the flexibility of the DNA, including its overstretching transition, as the principal responsible for the DNA polymerase ratcheting motion. By using thermodynamic analyses, we then find that an external load hardly affects the fidelity of the copying process and, consequently, that translocation and fidelity maintenance are loosely coupled processes. The proposed translocation mechanism is compatible with single-molecule experiments, structural data and stereochemical details of the DNA-protein complex that is formed during replication, and may be extended to RNA transcription.
Collapse
|
16
|
Muramatsu A, Shimizu Y, Yoshikawa Y, Fukuda W, Umezawa N, Horai Y, Higuchi T, Fujiwara S, Imanaka T, Yoshikawa K. Naturally occurring branched-chain polyamines induce a crosslinked meshwork structure in a giant DNA. J Chem Phys 2017; 145:235103. [PMID: 28010109 DOI: 10.1063/1.4972066] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We studied the effect of branched-chain polyamines on the folding transition of genome-sized DNA molecules in aqueous solution by the use of single-molecule observation with fluorescence microcopy. Detailed morphological features of polyamine/DNA complexes were characterized by atomic force microscopy (AFM). The AFM observations indicated that branched-chain polyamines tend to induce a characteristic change in the higher-order structure of DNA by forming bridges or crosslinks between the segments of a DNA molecule. In contrast, natural linear-chain polyamines cause a parallel alignment between DNA segments. Circular dichroism measurements revealed that branched-chain polyamines induce the A-form in the secondary structure of DNA, while linear-chain polyamines have only a minimum effect. This large difference in the effects of branched- and linear-chain polyamines is discussed in relation to the difference in the manner of binding of these polyamines to negatively charged double-stranded DNA.
Collapse
Affiliation(s)
- Akira Muramatsu
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe 610-0394, Japan
| | - Yuta Shimizu
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe 610-0394, Japan
| | - Yuko Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe 610-0394, Japan
| | - Wakao Fukuda
- College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Naoki Umezawa
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Yuhei Horai
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Tsunehiko Higuchi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Shinsuke Fujiwara
- School of Science and Technology, Kwansei-Gakuin University, Sanda 669-1337, Japan
| | - Tadayuki Imanaka
- College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe 610-0394, Japan
| |
Collapse
|
17
|
Maity A, Singh A, Singh N. Differential stability of DNA based on salt concentration. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 46:33-40. [DOI: 10.1007/s00249-016-1132-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 04/05/2016] [Accepted: 04/11/2016] [Indexed: 01/28/2023]
|
18
|
Perepelytsya SM, Glibitskiy GM, Volkov SN. Texture formation in DNA films with alkali metal chlorides. Biopolymers 2016; 99:508-16. [PMID: 23712487 DOI: 10.1002/bip.22209] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 11/21/2012] [Accepted: 01/11/2013] [Indexed: 12/16/2022]
Abstract
The formation of textures in DNA films with LiCl, NaCl, KCl, RbCl, and CsCl salts has been studied. The films are prepared by evaporation of water solution with highly polymerized calf thymus DNA and excess salt of specific type. For DNA solution with 10 mM concentration of NaCl, KCl, and RbCl the films with dendritic textures have been obtained, whereas in case of CsCl the textures in the films appear only at 30 mM concentration of excess salt in the initial solution. In the solution with LiCl, the textures in DNA films have not been observed within the whole range of concentration of excess salt under consideration. The analysis of parameters of DNA films with different salts has showed that evaporation of solution leads to crystallization of salt ions on DNA macromolecule and formation of DNA-salt complexes. Electrostatic energy of the system of crystalline ordered ions and charges of DNA chains has been estimated to study the stability of DNA-salt complexes. The results obtained for different salts have been showed that the presence of DNA macromolecule enhances crystallization as compared with solution without DNA. The property of excess salt to form the crystalline structures has been found to decrease in the following order: KCl > NaCl > RbCl > CsCl > LiCl. The results of estimation are in good agreement with the experimentally observed dependence of texture formation on excess salt type.
Collapse
Affiliation(s)
- Sergiy M Perepelytsya
- Bogolyubov Institute for Theoretical Physics, NAS of Ukraine, 14-b Metrolohichna Str., Kiev 03680, Ukraine.
| | | | | |
Collapse
|
19
|
de Lorenzo S, Ribezzi-Crivellari M, Arias-Gonzalez JR, Smith SB, Ritort F. A Temperature-Jump Optical Trap for Single-Molecule Manipulation. Biophys J 2016; 108:2854-64. [PMID: 26083925 DOI: 10.1016/j.bpj.2015.05.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 11/25/2022] Open
Abstract
To our knowledge, we have developed a novel temperature-jump optical tweezers setup that changes the temperature locally and rapidly. It uses a heating laser with a wavelength that is highly absorbed by water so it can cover a broad range of temperatures. This instrument can record several force-distance curves for one individual molecule at various temperatures with good thermal and mechanical stability. Our design has features to reduce convection and baseline shifts, which have troubled previous heating-laser instruments. As proof of accuracy, we used the instrument to carry out DNA unzipping experiments in which we derived the average basepair free energy, entropy, and enthalpy of formation of the DNA duplex in a range of temperatures between 5°C and 50°C. We also used the instrument to characterize the temperature-dependent elasticity of single-stranded DNA (ssDNA), where we find a significant condensation plateau at low force and low temperature. Oddly, the persistence length of ssDNA measured at high force seems to increase with temperature, contrary to simple entropic models.
Collapse
Affiliation(s)
- Sara de Lorenzo
- Departament de Física Fonamental, Universitat de Barcelona, Barcelona, Spain; Ciber-BBN de Bioingenería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
| | | | - J Ricardo Arias-Gonzalez
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Cantoblanco, Madrid, Spain; CNB-CSIC-IMDEA Nanociencia Associated Unit "Unidad de Nanobiotecnología", Madrid, Spain
| | | | - Felix Ritort
- Departament de Física Fonamental, Universitat de Barcelona, Barcelona, Spain; Ciber-BBN de Bioingenería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
20
|
Porschke D. Boundary conditions for free A-DNA in solution and the relation of local to global DNA structures at reduced water activity. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 45:413-21. [PMID: 26872482 PMCID: PMC4901124 DOI: 10.1007/s00249-015-1110-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/30/2015] [Accepted: 12/17/2015] [Indexed: 11/05/2022]
Abstract
Because of repeated claims that A-DNA cannot exist without aggregation or condensation, the state of DNA restriction fragments with 84–859 bp has been analyzed in aqueous solutions upon reduction of the water activity. Rotational diffusion times τd measured by electric dichroism at different water activities with a wide variation of viscosities are normalized to values τc at the viscosity of water, which indicate DNA structures at a high sensitivity. For short helices (chain lengths \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ {\ell} $$\end{document}ℓ ≤ persistence length p), cooperative formation of A-DNA is reflected by the expected reduction of the hydrodynamic length; the transition to the A-form is without aggregation or condensation upon addition of ethanol at monovalent salt ≤1 mM. The aggregation boundary, indicated by a strong increase of τc, is shifted to higher monovalent salt (≥4 mM) when ethanol is replaced by trifluoroethanol. The BA transition is not indicated anymore by a cooperative change of τc for \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ {\ell} $$\end{document}ℓ » p; τc values for these long chains decrease upon reduction of the water activity continuously over the full range, including the BA transition interval. This suggests a non-cooperative BC transition, which induces DNA curvature. The resulting wide distribution of global structures hides changes of local length during the BA transition. Free A-DNA without aggregation/condensation is found at low-salt concentrations where aggregation is inhibited and/or very slow. In an intermediate range of solvent conditions, where the A-form starts to aggregate, a time window remains that can be used for analysis of free A-DNA in a quasi-equilibrium state.
Collapse
Affiliation(s)
- Dietmar Porschke
- Max Planck Institut für biophysikalische Chemie, 37077, Göttingen, Germany.
| |
Collapse
|
21
|
Arias-Gonzalez JR. Single-molecule portrait of DNA and RNA double helices. Integr Biol (Camb) 2015; 6:904-25. [PMID: 25174412 DOI: 10.1039/c4ib00163j] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The composition and geometry of the genetic information carriers were described as double-stranded right helices sixty years ago. The flexibility of their sugar-phosphate backbones and the chemistry of their nucleotide subunits, which give rise to the RNA and DNA polymers, were soon reported to generate two main structural duplex states with biological relevance: the so-called A and B forms. Double-stranded (ds) RNA adopts the former whereas dsDNA is stable in the latter. The presence of flexural and torsional stresses in combination with environmental conditions in the cell or in the event of specific sequences in the genome can, however, stabilize other conformations. Single-molecule manipulation, besides affording the investigation of the elastic response of these polymers, can test the stability of their structural states and transition models. This approach is uniquely suited to understanding the basic features of protein binding molecules, the dynamics of molecular motors and to shedding more light on the biological relevance of the information blocks of life. Here, we provide a comprehensive single-molecule analysis of DNA and RNA double helices in the context of their structural polymorphism to set a rigorous interpretation of their material response both inside and outside the cell. From early knowledge of static structures to current dynamic investigations, we review their phase transitions and mechanochemical behaviour and harness this fundamental knowledge not only through biological sciences, but also for Nanotechnology and Nanomedicine.
Collapse
Affiliation(s)
- J Ricardo Arias-Gonzalez
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Calle Faraday no. 9, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
22
|
Harvey SC. The scrunchworm hypothesis: transitions between A-DNA and B-DNA provide the driving force for genome packaging in double-stranded DNA bacteriophages. J Struct Biol 2014; 189:1-8. [PMID: 25486612 DOI: 10.1016/j.jsb.2014.11.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/14/2014] [Accepted: 11/30/2014] [Indexed: 11/17/2022]
Abstract
Double-stranded DNA bacteriophages have motors that drive the genome into preformed capsids, using the energy released by hydrolysis of ATP to overcome the forces opposing DNA packaging. Viral packaging motors are the strongest of all biological motors, but it is not known how they generate these forces. Several models for the process of mechanochemical force generation have been put forward, but there is no consensus on which, if any, of these is correct. All the existing models assume that protein-generated forces drive the DNA forward. The scrunchworm hypothesis proposes that the DNA molecule is the active force-generating core of the motor, not simply a substrate on which the motor operates. The protein components of the motor dehydrate a section of the DNA, converting it from the B form to the A form and shortening it by about 23%. The proteins then rehydrate the DNA, which converts back to the B form. Other regions of the motor grip and release the DNA to capture the shortening-lengthening motions of the B→A→B cycle ("scrunching"), so that DNA is pulled into the motor and pushed forward into the capsid. This DNA-centric mechanism provides a quantitative physical explanation for the magnitude of the forces generated by viral packaging motors. It also provides a simple explanation for the fact that each of the steps in the burst cycle advances the DNA by 2.5 base pairs. The scrunchworm hypothesis is consistent with a large body of published data, and it makes four experimentally testable predictions.
Collapse
Affiliation(s)
- Stephen C Harvey
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA.
| |
Collapse
|
23
|
Kulkarni M, Mukherjee A. Sequence dependent free energy profiles of localized B- to A-form transition of DNA in water. J Chem Phys 2014; 139:155102. [PMID: 24160545 DOI: 10.1063/1.4825175] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
DNA carries an inherent polymorphism, which surfaces under various external conditions. While B-form remains predominant under normal physiological conditions for most of the DNA sequences, low humidity and increased ion concentration cause B- to A-form transition. Certain proteins and molecules also sometimes cause local deformation of the DNA to the specific A-form. Previous experimental and computational studies focused on the overall B- to A-form transition. Here for the first time we investigated thermodynamics and mechanism of B- to A-form transition in water for various DNA sequences at a local dinucleotide base pair level. We introduced a new reaction coordinate Zp', based on the unique order parameter Zp, to drive B- to A-form transition locally and thereby calculate free energy profiles for the same for all the ten different dinucleotide steps embedded in a twelve base pair DNA. Results show that the trend of "A" and "B" philicity observed in experiment is preserved even at this local dinucleotide level, indicating its localized origin. Higher free energy cost obtained here is attributed to the cost of creating B∕A junctions along with formation of B->A transition at dimer level. We find that while water energetically stabilizes A-form for all the ten different dinucleotide steps to various extents, entropy acts against it. Therefore, we find that the stability of B-form DNA in water is entropic in origin. Mechanism of the conversion appears to be triggered by Slide; however, backbone parameters change concertedly.
Collapse
Affiliation(s)
- Mandar Kulkarni
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Maharashtra 411021, India
| | | |
Collapse
|
24
|
Ojala H, Ziedaite G, Wallin AE, Bamford DH, Hæggström E. Optical tweezers reveal force plateau and internal friction in PEG-induced DNA condensation. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2014; 43:71-9. [DOI: 10.1007/s00249-013-0941-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 12/14/2013] [Accepted: 12/20/2013] [Indexed: 10/25/2022]
|
25
|
Camunas-Soler J, Frutos S, Bizarro CV, de Lorenzo S, Fuentes-Perez ME, Ramsch R, Vilchez S, Solans C, Moreno-Herrero F, Albericio F, Eritja R, Giralt E, Dev SB, Ritort F. Electrostatic binding and hydrophobic collapse of peptide-nucleic acid aggregates quantified using force spectroscopy. ACS NANO 2013; 7:5102-5113. [PMID: 23706043 DOI: 10.1021/nn4007237] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Knowledge of the mechanisms of interaction between self-aggregating peptides and nucleic acids or other polyanions is key to the understanding of many aggregation processes underlying several human diseases (e.g., Alzheimer's and Parkinson's diseases). Determining the affinity and kinetic steps of such interactions is challenging due to the competition between hydrophobic self-aggregating forces and electrostatic binding forces. Kahalalide F (KF) is an anticancer hydrophobic peptide that contains a single positive charge that confers strong aggregative properties with polyanions. This makes KF an ideal model to elucidate the mechanisms by which self-aggregation competes with binding to a strongly charged polyelectrolyte such as DNA. We use optical tweezers to apply mechanical forces to single DNA molecules and show that KF and DNA interact in a two-step kinetic process promoted by the electrostatic binding of DNA to the aggregate surface followed by the stabilization of the complex due to hydrophobic interactions. From the measured pulling curves we determine the spectrum of binding affinities, kinetic barriers, and lengths of DNA segments sequestered within the KF-DNA complex. We find there is a capture distance beyond which the complex collapses into compact aggregates stabilized by strong hydrophobic forces and discuss how the bending rigidity of the nucleic acid affects this process. We hypothesize that within an in vivo context, the enhanced electrostatic interaction of KF due to its aggregation might mediate the binding to other polyanions. The proposed methodology should be useful to quantitatively characterize other compounds or proteins in which the formation of aggregates is relevant.
Collapse
Affiliation(s)
- Joan Camunas-Soler
- Small Biosystems Lab, Departament de Física Fonamental, Universitat de Barcelona, Avinguda Diagonal 647, 08028 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Yu Z, Mao H. Non-B DNA structures show diverse conformations and complex transition kinetics comparable to RNA or proteins--a perspective from mechanical unfolding and refolding experiments. CHEM REC 2013; 13:102-16. [PMID: 23389854 DOI: 10.1002/tcr.201200021] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Indexed: 01/03/2023]
Abstract
With the firm demonstration of the in vivo presence and biological functions of many non-B DNA structures, it is of great significance to understand their physiological roles from the perspective of structural conformation, stability, and transition kinetics. Although relatively simple in primary sequences compared to proteins, non-B DNA species show rather versatile conformations and dynamic transitions. As the most-studied non-B DNA species, the G-quadruplex displays a myriad of conformations that can interconvert between each other in different solutions. These features impose challenges for ensemble-average techniques, such as X-ray crystallography, NMR spectroscopy, and circular dichroism (CD), but leave room for single-molecular approaches to illustrate the structure, stability, and transition kinetics of individual non-B DNA species in a solution mixture. Deconvolution of the mixture can be further facilitated by statistical data treatment, such as iPoDNano (integrated population deconvolution with nanometer resolution), which resolves populations with subnanometer size differences. This Personal Account summarizes current mechanical unfolding and refolding methods to interrogate single non-B DNA species, with an emphasis on DNA G-quadruplexes and i-motifs. These single-molecule studies start to demonstrate that structures and transitions in non-B DNA species can approach the complexity of those in RNA or proteins, which provides solid justification for the biological functions carried out by non-B DNA species.
Collapse
Affiliation(s)
- Zhongbo Yu
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, USA
| | | |
Collapse
|
27
|
Abstract
A virus is a complex molecular machine that propagates by channeling its genetic information from cell to cell. Unlike macroscopic engines, it operates in a nanoscopic world under continuous thermal agitation. Viruses have developed efficient passive and active strategies to pack and release nucleic acids. Some aspects of the dynamic behavior of viruses and their substrates can be studied using structural and biochemical techniques. Recently, physical techniques have been applied to dynamic studies of viruses in which their intrinsic mechanical activity can be measured directly. Optical tweezers are a technology that can be used to measure the force, torque and strain produced by molecular motors, as a function of time and at the single-molecule level. Thanks to this technique, some bacteriophages are now known to be powerful nanomachines; they exert force in the piconewton range and their motors work in a highly coordinated fashion for packaging the viral nucleic acid genome. Nucleic acids, whose elasticity and condensation behavior are inherently coupled to the viral packaging mechanisms, are also amenable to examination with optical tweezers. In this chapter, we provide a comprehensive analysis of this laser-based tool, its combination with imaging methods and its application to the study of viruses and viral molecules.
Collapse
Affiliation(s)
- J Ricardo Arias-Gonzalez
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), c/Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain,
| |
Collapse
|
28
|
Herrero-Galán E, Fuentes-Perez ME, Carrasco C, Valpuesta JM, Carrascosa JL, Moreno-Herrero F, Arias-Gonzalez JR. Mechanical identities of RNA and DNA double helices unveiled at the single-molecule level. J Am Chem Soc 2012; 135:122-31. [PMID: 23214411 DOI: 10.1021/ja3054755] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Double-stranded (ds) RNA is the genetic material of a variety of viruses and has been recently recognized as a relevant molecule in cells for its regulatory role. Despite that the elastic response of dsDNA has been thoroughly characterized in recent years in single-molecule stretching experiments, an equivalent study with dsRNA is still lacking. Here, we have engineered long dsRNA molecules for their individual characterization contrasting information with dsDNA molecules of the same sequence. It is known that dsRNA is an A-form molecule unlike dsDNA, which exhibits B-form in physiological conditions. These structural types are distinguished at the single-molecule level with atomic force microscopy (AFM) and are the basis to understand their different elastic response. Force-extension curves of dsRNA with optical and magnetic tweezers manifest two main regimes of elasticity, an entropic regime whose end is marked by the A-form contour-length and an intrinsic regime that ends in a low-cooperative overstretching transition in which the molecule extends to 1.7 times its A-form contour-length. DsRNA does not switch between the A and B conformations in the presence of force. Finally, dsRNA presents both a lower stretch modulus and overstretching transition force than dsDNA, whereas the electrostatic and intrinsic contributions to the persistence length are larger.
Collapse
Affiliation(s)
- Elías Herrero-Galán
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
29
|
Chakraborty S, Uematsu T, Svanberg C, Jacobsson P, Swenson J, Zäch M, Trehan R, Armstrong G, Sengupta B. Mechanistic insight into the structure and dynamics of entangled and hydrated λ-phage DNA. J Phys Chem A 2012; 116:4274-84. [PMID: 22515820 DOI: 10.1021/jp2108363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Intrinsic dynamics of DNA plays a crucial role in DNA-protein interactions and has been emphasized as a possible key component for in vivo chromatin organization. We have prepared an entangled DNA microtube above the overlap concentration by exploiting the complementary cohesive ends of λ-phage DNA, which is confirmed by atomic force microscopy and agarose gel electrophoresis. Photon correlation spectroscopy further confirmed that the entangled solutions are found to exhibit the classical hydrodynamics of a single chain segment on length scales smaller than the hydrodynamic length scale of single λ-phage DNA molecule. We also observed that in 41.6% (gm water/gm DNA) hydrated state, λ-phage DNA exhibits a dynamic transition temperature (T(dt)) at 187 K and a crossover temperature (T(c)) at 246 K. Computational insight reveals that the observed structure and dynamics of entangled λ-phage DNA are distinctively different from the behavior of the corresponding unentangled DNA with open cohesive ends, which is reminiscent with our experimental observation.
Collapse
|
30
|
Hormeño S, Ibarra B, Valpuesta JM, Carrascosa JL, Ricardo Arias-Gonzalez J. Mechanical stability of low-humidity single DNA molecules. Biopolymers 2011; 97:199-208. [DOI: 10.1002/bip.21728] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 10/14/2011] [Indexed: 12/12/2022]
|
31
|
Hormeño S, Ibarra B, Carrascosa JL, Valpuesta JM, Moreno-Herrero F, Arias-Gonzalez JR. Mechanical properties of high-G.C content DNA with a-type base-stacking. Biophys J 2011; 100:1996-2005. [PMID: 21504736 DOI: 10.1016/j.bpj.2011.02.051] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 01/21/2011] [Accepted: 02/28/2011] [Indexed: 11/30/2022] Open
Abstract
The sequence of a DNA molecule is known to influence its secondary structure and flexibility. Using a combination of bulk and single-molecule techniques, we measure the structural and mechanical properties of two DNAs which differ in both sequence and base-stacking arrangement in aqueous buffer, as revealed by circular dichroism: one with 50% G·C content and B-form and the other with 70% G·C content and A-form. Atomic force microscopy measurements reveal that the local A-form structure of the high-G·C DNA does not lead to a global contour-length decrease with respect to that of the molecule in B-form although it affects its persistence length. In the presence of force, however, the stiffness of high-G·C content DNA is similar to that of balanced-G·C DNA as magnetic and optical tweezers measured typical values for the persistence length of both DNA substrates. This indicates that sequence-induced local distortions from the B-form are compromised under tension. Finally, high-G·C DNA is significantly harder to stretch than 50%-G·C DNA as manifested by a larger stretch modulus. Our results show that a local, basepair configuration of DNA induced by high-G·C content influences the stretching elasticity of the polymer but that it does not affect the global, double-helix arrangement.
Collapse
Affiliation(s)
- Silvia Hormeño
- Instituto Madrileño de Estudios Avanzados en Nanociencia, Madrid, Spain
| | | | | | | | | | | |
Collapse
|