1
|
Vánská T, Kouřil R, Opatíková M, Ilíková I, Arshad R, Roudnický P, Ilík P. Photosystem II supercomplexes lacking light-harvesting antenna protein LHCB5 and their organization in the thylakoid membrane. PHYSIOLOGIA PLANTARUM 2025; 177:e70167. [PMID: 40128143 PMCID: PMC11932966 DOI: 10.1111/ppl.70167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/31/2025] [Accepted: 02/11/2025] [Indexed: 03/26/2025]
Abstract
Light-harvesting protein LHCB5 is one of the three minor antenna proteins (LHCB4-6) that connect the core (C) of photosystem II (PSII) with strongly (S) and moderately (M) bound peripheral trimeric antennae (LHCIIs), forming a dimeric PSII supercomplex known as C2S2M2. Plants lacking LHCB4 and LHCB6 do not form C2S2M2, indicating that these minor antenna proteins are crucial for C2S2M2 assembly. However, studies on antisense asLhcb5 plants suggest this may not apply to LHCB5. Using mild clear-native PAGE (CN-PAGE) and electron microscopy (EM), we separated and structurally characterized the C2S2M2 supercomplex from the Arabidopsis lhcb5 mutant. When compared with wild type (WT), the C2S2M2 supercomplexes in the lhcb5 mutant have slightly different positions of S and M trimers and are generally smaller and present in the thylakoid membrane at higher density. Using CN-PAGE, we did not observe any PSII megacomplexes in the lhcb5 mutant, although they are routinely detected by this method in WT. However, we identified the megacomplexes directly in thylakoid membranes via EM, indicating that the megacomplexes are formed but are too labile to be separated. While in WT, both parallel- and non-parallel-associated PSII supercomplexes can be detected in the thylakoid membrane (Nosek et al., 2017, Plant Journal 89, pp. 104-111), only the parallel-associated PSII supercomplexes were found in the lhcb5 mutant. This finding suggests that the formation of non-parallel-associated PSII supercomplexes depends on the presence of LHCB5. The presence of large PSII supercomplexes and megacomplexes, even though less stable, could explain the WT-like photosynthetic characteristics of the lhcb5 mutant.
Collapse
Affiliation(s)
- Tereza Vánská
- Department of BiophysicsFaculty of Science, Palacký UniversityOlomoucCzech Republic
| | - Roman Kouřil
- Department of BiophysicsFaculty of Science, Palacký UniversityOlomoucCzech Republic
| | - Monika Opatíková
- Department of BiophysicsFaculty of Science, Palacký UniversityOlomoucCzech Republic
| | - Iva Ilíková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional GenomicsOlomoucCzech Republic
| | - Rameez Arshad
- Department of BiophysicsFaculty of Science, Palacký UniversityOlomoucCzech Republic
| | - Pavel Roudnický
- Central European Institute of Technology, Masaryk UniversityBrnoCzech Republic
| | - Petr Ilík
- Department of BiophysicsFaculty of Science, Palacký UniversityOlomoucCzech Republic
| |
Collapse
|
2
|
Chloroplast Engineering: Fundamental Insights and Its Application in Amelioration of Environmental Stress. Appl Biochem Biotechnol 2022; 195:2463-2482. [PMID: 35484466 DOI: 10.1007/s12010-022-03930-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2022] [Indexed: 12/21/2022]
Abstract
Chloroplasts are specialized organelle that are responsible for converting light energy to chemical energy, thereby driving the carbon dioxide fixation. Apart from photosynthesis, chloroplast is the site for essential cellular processes that determine the plant adaptation to changing environment. Owing to the presence of their own expression system, it provides an optimum platform for engineering valued traits as well as site for synthesis of bio-compounds. Advancements in technology have further enhanced the scope of using chloroplast as a multifaceted tool for the biotechnologist to develop stress-tolerant plants and ameliorate environmental stress. Focusing on chloroplast biotechnology, this review discusses the advances in chloroplast engineering and its application in enhancing plant adaptation and resistance to environmental stress and the development of new bioproducts and processes. This is accomplished through analysis of its biogenesis and physiological processes, highlighting the chloroplast engineering and recent developments in chloroplast biotechnology. In the first part of the review, the evolution and principles of structural organization and physiology of chloroplast are discussed. In the second part, the chief methods and mechanisms involved in chloroplast transformation are analyzed. The last part represents an updated analysis of the application of chloroplast engineering in crop improvement and bioproduction of industrial and health compounds.
Collapse
|
3
|
Chen P, Liu P, Zhang Q, Bu C, Lu C, Srivastava S, Zhang D, Song Y. Gene Coexpression Network Analysis Indicates that Hub Genes Related to Photosynthesis and Starch Synthesis Modulate Salt Stress Tolerance in Ulmus pumila. Int J Mol Sci 2021; 22:4410. [PMID: 33922506 PMCID: PMC8122946 DOI: 10.3390/ijms22094410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 01/20/2023] Open
Abstract
Ulmus pumila L. is an excellent afforestation and biofuel tree that produces high-quality wood, rich in starch. In addition, U. pumila is highly adaptable to adverse environmental conditions, which is conducive to its utilization for vegetating saline soils. However, little is known about the physiological responses and transcriptional regulatory network of U. pumila under salt stress. In this study, we exposed five main cultivars in saline-alkali land (Upu2, 5, 8, 11, and 12) to NaCl stress. Of the five cultivars assessed, Upu11 exhibited the highest salt resistance. Growth and biomass accumulation in Upu11 were promoted under low salt concentrations (<150 mM). However, after 3 months of continuous treatment with 150 mM NaCl, growth was inhibited, and photosynthesis declined. A transcriptome analysis conducted after 3 months of treatment detected 7009 differentially expressed unigenes (DEGs). The gene annotation indicated that these DEGs were mainly related to photosynthesis and carbon metabolism. Furthermore, PHOTOSYNTHETIC ELECTRON TRANSFERH (UpPETH), an important electron transporter in the photosynthetic electron transport chain, and UpWAXY, a key gene controlling amylose synthesis in the starch synthesis pathway, were identified as hub genes in the gene coexpression network. We identified 25 and 62 unigenes that may interact with PETH and WAXY, respectively. Overexpression of UpPETH and UpWAXY significantly increased the survival rates, net photosynthetic rates, biomass, and starch content of transgenic Arabidopsis plants under salt stress. Our findings clarify the physiological and transcriptional regulators that promote or inhibit growth under environmental stress. The identification of salt-responsive hub genes directly responsible for photosynthesis and starch synthesis or metabolism will provide targets for future genetic improvements.
Collapse
Affiliation(s)
- Panfei Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (P.C.); (P.L.); (C.B.); (C.L.); (S.S.); (D.Z.)
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Peng Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (P.C.); (P.L.); (C.B.); (C.L.); (S.S.); (D.Z.)
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Quanfeng Zhang
- Hebei Academy of Forestry and Grassland Sicences, No. 75, Xuefu Road, Shijiazhuang 050061, China;
| | - Chenhao Bu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (P.C.); (P.L.); (C.B.); (C.L.); (S.S.); (D.Z.)
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Chunhao Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (P.C.); (P.L.); (C.B.); (C.L.); (S.S.); (D.Z.)
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Sudhakar Srivastava
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (P.C.); (P.L.); (C.B.); (C.L.); (S.S.); (D.Z.)
| | - Deqiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (P.C.); (P.L.); (C.B.); (C.L.); (S.S.); (D.Z.)
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Yuepeng Song
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (P.C.); (P.L.); (C.B.); (C.L.); (S.S.); (D.Z.)
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| |
Collapse
|
4
|
Leaf Age Matters in Remote Sensing: Taking Ground Truth for Spectroscopic Studies in Hemiboreal Deciduous Trees with Continuous Leaf Formation. REMOTE SENSING 2021. [DOI: 10.3390/rs13071353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We examined the seasonal changes in biophysical, anatomical, and optical traits of young leaves, formed throughout the vegetative season due to sylleptic growth, and mature leaves formed by proleptic growth in spring. Leaf developmental categories contribute to the top-of-canopy reflectance and should be considered when taking ground truth for remote sensing studies (RS). Deciduous tree species, Betula pendula, Populus tremula, and Alnus incana, were sampled from May to October 2018 in an Estonian hemiboreal forest. Chlorophyll and carotenoid content were detected biochemically; leaf anatomical traits (leaf, palisade, and spongy mesophyll thickness) were measured on leaf cross-sections; leaf reflectance was measured by a spectroradiometer with an integrating sphere (350–2500 nm). Biophysical and anatomical leaf traits were related to 64 vegetation indices (VIs). Linear models based on VIs for all tested leaf traits were more robust if both juvenile and mature leaves were included. This study provides information on which VIs are interchangeable or independent. Pigment and leaf thickness sensitive indices formed PC1; water and structural trait related VIs formed an independent group associated with PC3. Type of growth and leaf age could affect the validation of biophysical and anatomical leaf trait retrieval from the optical signal. It is, therefore, necessary to sample both leaf developmental categories—young and mature—in RS, especially if sampling is only once within the vegetation season.
Collapse
|
5
|
Peng X, Deng X, Tang X, Tan T, Zhang D, Liu B, Lin H. Involvement of Lhcb6 and Lhcb5 in Photosynthesis Regulation in Physcomitrella patens Response to Abiotic Stress. Int J Mol Sci 2019; 20:ijms20153665. [PMID: 31357454 PMCID: PMC6695650 DOI: 10.3390/ijms20153665] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 11/16/2022] Open
Abstract
There are a number of highly conserved photosystem II light-harvesting antenna proteins in moss whose functions are unclear. Here, we investigated the involvement of chlorophyll-binding proteins, Lhcb6 and Lhcb5, in light-harvesting and photosynthesis regulation in Physcomitrella patens. Lhcb6 or Lhcb5 knock-out resulted in a disordered thylakoid arrangement, a decrease in the number of grana membranes, and an increase in the number of starch granule. The absence of Lhcb6 or Lhcb5 did not noticeably alter the electron transport rates. However, the non-photochemical quenching activity in the lhcb5 mutant was dramatically reduced when compared to wild-type or lhcb6 plants under abiotic stress. Lhcb5 plants were more sensitive to photo-inhibition, while lhcb6 plants showed little difference compared to the wild-type plants under high-light stress. Moreover, both mutants showed a growth malformation phenotype with reduced chlorophyll content in the gametophyte. These results suggested that Lhcb6 or Lhcb5 played a unique role in plant development, thylakoid organization, and photoprotection of PSII in Physcomitrella, especially when exposed to high light or osmotic environments.
Collapse
Affiliation(s)
- Xingji Peng
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Xingguang Deng
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Xiaoya Tang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Tinghong Tan
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Dawei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Baohui Liu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Honghui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
6
|
Liguori N, Novoderezhkin V, Roy LM, van Grondelle R, Croce R. Excitation dynamics and structural implication of the stress-related complex LHCSR3 from the green alga Chlamydomonas reinhardtii. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1514-1523. [DOI: 10.1016/j.bbabio.2016.04.285] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 04/28/2016] [Accepted: 04/30/2016] [Indexed: 01/31/2023]
|
7
|
van Amerongen H, Croce R. Light harvesting in photosystem II. PHOTOSYNTHESIS RESEARCH 2013; 116:251-63. [PMID: 23595278 PMCID: PMC3824292 DOI: 10.1007/s11120-013-9824-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 04/08/2013] [Indexed: 05/18/2023]
Abstract
Water oxidation in photosynthesis takes place in photosystem II (PSII). This photosystem is built around a reaction center (RC) where sunlight-induced charge separation occurs. This RC consists of various polypeptides that bind only a few chromophores or pigments, next to several other cofactors. It can handle far more photons than the ones absorbed by its own pigments and therefore, additional excitations are provided by the surrounding light-harvesting complexes or antennae. The RC is located in the PSII core that also contains the inner light-harvesting complexes CP43 and CP47, harboring 13 and 16 chlorophyll pigments, respectively. The core is surrounded by outer light-harvesting complexes (Lhcs), together forming the so-called supercomplexes, at least in plants. These PSII supercomplexes are complemented by some "extra" Lhcs, but their exact location in the thylakoid membrane is unknown. The whole system consists of many subunits and appears to be modular, i.e., both its composition and organization depend on environmental conditions, especially on the quality and intensity of the light. In this review, we will provide a short overview of the relation between the structure and organization of pigment-protein complexes in PSII, ranging from individual complexes to entire membranes and experimental and theoretical results on excitation energy transfer and charge separation. It will become clear that time-resolved fluorescence data can provide invaluable information about the organization and functioning of thylakoid membranes. At the end, an overview will be given of unanswered questions that should be addressed in the near future.
Collapse
Affiliation(s)
- Herbert van Amerongen
- Laboratory of Biophysics, Wageningen University, P. O. Box 8128, 6700 ET, Wageningen, The Netherlands,
| | | |
Collapse
|
8
|
Domonkos I, Kis M, Gombos Z, Ughy B. Carotenoids, versatile components of oxygenic photosynthesis. Prog Lipid Res 2013; 52:539-61. [PMID: 23896007 DOI: 10.1016/j.plipres.2013.07.001] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 07/19/2013] [Accepted: 07/19/2013] [Indexed: 12/13/2022]
Abstract
Carotenoids (CARs) are a group of pigments that perform several important physiological functions in all kingdoms of living organisms. CARs serve as protective agents, which are essential structural components of photosynthetic complexes and membranes, and they play an important role in the light harvesting mechanism of photosynthesizing plants and cyanobacteria. The protection against reactive oxygen species, realized by quenching of singlet oxygen and the excited states of photosensitizing molecules, as well as by the scavenging of free radicals, is one of the main biological functions of CARs. X-ray crystallographic localization of CARs revealed that they are present at functionally and structurally important sites of both the PSI and PSII reaction centers. Characterization of a CAR-less cyanobacterial mutant revealed that while the absence of CARs prevents the formation of PSII complexes, it does not abolish the assembly and function of PSI. CAR molecules assist in the formation of protein subunits of the photosynthetic complexes by gluing together their protein components. In addition to their aforementioned indispensable functions, CARs have a substantial role in the formation and maintenance of proper cellular architecture, and potentially also in the protection of the translational machinery under stress conditions.
Collapse
Affiliation(s)
- Ildikó Domonkos
- Institute of Plant Biology, Biological Research Centre of Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged, Hungary
| | | | | | | |
Collapse
|
9
|
Ballottari M, Mozzo M, Girardon J, Hienerwadel R, Bassi R. Chlorophyll triplet quenching and photoprotection in the higher plant monomeric antenna protein Lhcb5. J Phys Chem B 2013; 117:11337-48. [PMID: 23786371 DOI: 10.1021/jp402977y] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In oxygenic photosynthetic organisms, chlorophyll triplets are harmful excited states readily reacting with molecular oxygen to yield the reactive oxygen species (ROS) singlet oxygen. Carotenoids have a photoprotective role in photosynthetic membranes by preventing photoxidative damage through quenching of chlorophyll singlets and triplets. In this work we used mutation analysis to investigate the architecture of chlorophyll triplet quenching sites within Lhcb5, a monomeric antenna protein of Photosystem II. The carotenoid and chlorophyll triplet formation as well as the production of ROS molecules were studied in a family of recombinant Lhcb5 proteins either with WT sequence, mutated into individual chlorophyll binding residues or refolded in vitro to bind different xanthophyll complements. We observed a site-specific effect in the efficiency of chlorophyll-carotenoid triplet-triplet energy transfer. Thus chlorophyll (Chl) 602 and 603 appear to be particularly important for triplet-triplet energy transfer to the xanthophyll bound into site L2. Surprisingly, mutation on Chl 612, the chlorophyll with the lower energy associated and in close contact with lutein in site L1, had no effect on quenching chlorophyll triplet excited states. Finally, we present evidence for an indirect role of neoxanthin in chlorophyll triplet quenching and show that quenching of both singlet and triplet states is necessary for minimizing singlet oxygen formation.
Collapse
Affiliation(s)
- Matteo Ballottari
- Dipartimento di Biotecnologie, Università di Verona , Ca' Vignal 1, strada le Grazie 15, I-37134 Verona, Italy
| | | | | | | | | |
Collapse
|
10
|
Marin A, Doust AB, Scholes GD, Wilk KE, Curmi PMG, van Stokkum IHM, van Grondelle R. Flow of excitation energy in the cryptophyte light-harvesting antenna phycocyanin 645. Biophys J 2011; 101:1004-13. [PMID: 21843493 DOI: 10.1016/j.bpj.2011.07.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/12/2011] [Accepted: 07/14/2011] [Indexed: 10/17/2022] Open
Abstract
We report a detailed description of the energy migration dynamics in the phycocyanin 645 (PC645) antenna complex from the photosynthetic alga Chroomonas CCMP270. Many of the cryptophyceae are known to populate greater depths than most other algal families, having developed a 99.5% efficient light-harvesting system. In this study, we used femtosecond time-resolved spectroscopy and global analysis to characterize the excited-state dynamics of PC645. Several different pump colors were selected to excite different fractions of the four phycobiliprotein pairs present in the complex. Measurements were also performed at cryogenic temperature to enhance spectral resolution and selectively promote downhill energy transfers. Upon excitation of the highest-energy bilins (dihydrobiliverdins), energy is transferred from the core of the complex to the periphery within 0.82 ps. Four bilins (mesobiliverdin (MBV) A/B and phycocyanobilins (PCB) 158C/D), which are responsible for the central band of the absorption spectrum, show concerted spectral dynamics. These chromophores show a biphasic decay with lifetimes of 0.6 ps (MBV) and 5-7 ps (PCB 158) to the lowest bilin pair (PCB 82C/D) absorbing around 650-657 nm. Within this lifetime of several picoseconds, the excitations reach the PCB 82 bilins on the two poles at the smaller sides of PC645. A slow 44-46 ps energy transfer step to the lowest-energy PCB 82 bilin concludes the dynamics.
Collapse
Affiliation(s)
- Alessandro Marin
- Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|