1
|
Hanashima S, Yamanaka A, Ibata Y, Yasuda T, Umegawa Y, Murata M. Lipid Compositions of Liquid-Ordered and Liquid-Disordered Phases in Ternary Membranes of Sphingomyelin, Cholesterol, and Dioleoylphosphatidylcholine Determined by 2H NMR: Stearoyl-Sphingomyelin Compared with Its Palmitoyl Counterpart. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22973-22981. [PMID: 39429033 DOI: 10.1021/acs.langmuir.4c03104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Sphingomyelin (SM) and cholesterol are the major lipids in the signaling platforms of cell membranes, known as lipid rafts. In particular, SM with a stearoyl chain (C18-SM) is abundant in specific tissues such as the brain, the most cholesterol-rich organ, whereas the distribution of palmitoyl (C16)-SM is ubiquitous. Here, we reveal the differences between palmitoyl- and stearoyl-SM in lipid-lipid interactions based on the tie lines obtained from the 2H solid-state NMR spectra of bilayer systems composed of SM/dioleoylphosphatidylcholine/cholesterol 33:33:33 and 40:40:20. Lipid probes carrying position-selective deuterations, 10',10'-d2-SM, 24-d1-cholesterol, and 6″,6″-d2-dioleoyl-phosphatidylcholine, were incorporated into the membranes. 2H NMR peaks from these probes in the membranes directly provide the lipid compositions of the liquid-ordered (Lo) and liquid-disordered (Ld) regions. Without using bulky fluorescent groups, these probes allow us to obtain the end points of the tie lines in a ternary phase diagram based on the lever rule. Consequently, the tie lines of the stearoyl-SM membranes were steeper than those of the palmitoyl-SM membranes, indicating that cholesterol content was higher in the Lo domains of stearoyl-SM, regardless of the total concentration of unsaturated phospholipids. When comparing the content of unsaturated lipids in the Lo domain, the stearoyl-SM membranes had a higher content than palmitoyl-SM membranes. These results revealed that stearoyl-SM is suitable for stabilizing biologically functional microdomains in cholesterol-rich organs, whereas palmitoyl-SM may be better suited for stabilizing domains in tissue membranes with normal cholesterol content. The small but significant differences in the lipid interactions between stearoyl-SM and palmitoyl-SM may be related to the spatiotemporal formation of functional domains in biological environments.
Collapse
Affiliation(s)
- Shinya Hanashima
- Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Koyamacho-minami 4-101, Tottori 680-8550, Japan
- Center for Research on Green Sustainable Chemistry, Tottori University, Koyamacho-minami 4-101, Tottori 680-8550, Japan
| | - Ayana Yamanaka
- Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
| | - Yuki Ibata
- Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
| | - Tomokazu Yasuda
- Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
| | - Yuichi Umegawa
- Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
| | - Michio Murata
- Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
- Forefront Research Centre for Fundamental Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
2
|
Duché G, Sanderson JM. The Chemical Reactivity of Membrane Lipids. Chem Rev 2024; 124:3284-3330. [PMID: 38498932 PMCID: PMC10979411 DOI: 10.1021/acs.chemrev.3c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
It is well-known that aqueous dispersions of phospholipids spontaneously assemble into bilayer structures. These structures have numerous applications across chemistry and materials science and form the fundamental structural unit of the biological membrane. The particular environment of the lipid bilayer, with a water-poor low dielectric core surrounded by a more polar and better hydrated interfacial region, gives the membrane particular biophysical and physicochemical properties and presents a unique environment for chemical reactions to occur. Many different types of molecule spanning a range of sizes, from dissolved gases through small organics to proteins, are able to interact with membranes and promote chemical changes to lipids that subsequently affect the physicochemical properties of the bilayer. This Review describes the chemical reactivity exhibited by lipids in their membrane form, with an emphasis on conditions where the lipids are well hydrated in the form of bilayers. Key topics include the following: lytic reactions of glyceryl esters, including hydrolysis, aminolysis, and transesterification; oxidation reactions of alkenes in unsaturated fatty acids and sterols, including autoxidation and oxidation by singlet oxygen; reactivity of headgroups, particularly with reactive carbonyl species; and E/Z isomerization of alkenes. The consequences of reactivity for biological activity and biophysical properties are also discussed.
Collapse
Affiliation(s)
- Genevieve Duché
- Génie
Enzimatique et Cellulaire, Université
Technologique de Compiègne, Compiègne 60200, France
| | - John M Sanderson
- Chemistry
Department, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
3
|
Potter TD, Haywood N, Teixeira A, Hodges G, Barrett EL, Miller MA. Partitioning into phosphatidylcholine-cholesterol membranes: liposome measurements, coarse-grained simulations, and implications for bioaccumulation. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023. [PMID: 37158124 DOI: 10.1039/d3em00081h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Membrane-water partitioning is an important physical property for the assessment of bioaccumulation and environmental impact. Here, we advance simulation methodology for predicting the partitioning of small molecules into lipid membranes and compare the computational predictions to experimental measurements in liposomes. As a step towards high-throughput screening, we present an automated mapping and parametrization procedure to produce coarse-grained models compatible with the Martini 3 force field. The methodology is general and can also be used for other applications where coarse-grained simulations are appropriate. This article addresses the effect on membrane-water partitioning of adding cholesterol to POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) membranes. Nine contrasting neutral, zwitterionic and charged solutes are tested. Agreement between experiment and simulation is generally good, with the most challenging cases being permanently charged solutes. For all solutes, partitioning is found to be insensitive to membrane cholesterol concentration up to 25% mole fraction. Hence, for assessment of bioaccumulation into a range of membranes (such as those found in fish), partitioning data measured in pure lipid membranes are still informative.
Collapse
Affiliation(s)
- Thomas D Potter
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom.
| | - Nicola Haywood
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, United Kingdom
| | - Alexandre Teixeira
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, United Kingdom
| | - Geoff Hodges
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, United Kingdom
| | - Elin L Barrett
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, United Kingdom
| | - Mark A Miller
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom.
| |
Collapse
|
4
|
Ward AE, Sokovikova D, Waxham MN, Heberle FA, Levental I, Levental KR, Kiessling V, White JM, Tamm LK. Serinc5 Restricts HIV Membrane Fusion by Altering Lipid Order and Heterogeneity in the Viral Membrane. ACS Infect Dis 2023; 9:773-784. [PMID: 36946615 PMCID: PMC10366416 DOI: 10.1021/acsinfecdis.2c00478] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The host restriction factor, Serinc5, incorporates into budding HIV particles and inhibits their infection by an incompletely understood mechanism. We have previously reported that Serinc5 but not its paralogue, Serinc2, blocks HIV cell entry by membrane fusion, specifically by inhibiting fusion pore formation and dilation. A body of work suggests that Serinc5 may alter the conformation and clustering of the HIV fusion protein, Env. To contribute an additional perspective to the developing model of Serinc5 restriction, we assessed Serinc2 and Serinc5's effects on HIV pseudoviral membranes. By measuring pseudoviral membrane thickness via cryo-electron microscopy and order via the fluorescent dye, FLIPPER-TR, Serinc5 was found to increase membrane heterogeneity, skewing the distribution toward a larger fraction of the viral membrane in an ordered phase. We also directly observed for the first time the coexistence of membrane domains within individual viral membrane envelopes. Using a total internal reflection fluorescence-based single particle fusion assay, we found that treatment of HIV pseudoviral particles with phosphatidylethanolamine (PE) rescued HIV pseudovirus fusion from restriction by Serinc5, which was accompanied by decreased membrane heterogeneity and order. This effect was specific for PE and did not depend on acyl chain length or saturation. Together, these data suggest that Serinc5 alters multiple interrelated properties of the viral membrane─lipid chain order, rigidity, line tension, and lateral pressure─which decrease the accessibility of fusion intermediates and disfavor completion of fusion. These biophysical insights into Serinc5 restriction of HIV infectivity could contribute to the development of novel antivirals that exploit the same weaknesses.
Collapse
Affiliation(s)
- Amanda E. Ward
- Department of Molecular Physiology and Biological Physics, University of Virginia Health System, Charlottesville, VA 22908
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908
| | - Daria Sokovikova
- Department of Molecular Physiology and Biological Physics, University of Virginia Health System, Charlottesville, VA 22908
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908
| | - Melvin Neal Waxham
- Department of Neurobiology and Anatomy, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030
| | | | - Ilya Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia Health System, Charlottesville, VA 22908
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908
| | - Kandice R. Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia Health System, Charlottesville, VA 22908
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908
| | - Volker Kiessling
- Department of Molecular Physiology and Biological Physics, University of Virginia Health System, Charlottesville, VA 22908
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908
| | - Judith M. White
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA 22908
| | - Lukas K. Tamm
- Department of Molecular Physiology and Biological Physics, University of Virginia Health System, Charlottesville, VA 22908
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908
| |
Collapse
|
5
|
Reinhard J, Leveille CL, Cornell CE, Merz AJ, Klose C, Ernst R, Keller SL. Remodeling of yeast vacuole membrane lipidomes from the log (one phase) to stationary stage (two phases). Biophys J 2023; 122:1043-1057. [PMID: 36635960 PMCID: PMC10111276 DOI: 10.1016/j.bpj.2023.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Upon nutrient limitation, budding yeast of Saccharomyces cerevisiae shift from fast growth (the log stage) to quiescence (the stationary stage). This shift is accompanied by liquid-liquid phase separation in the membrane of the vacuole, an endosomal organelle. Recent work indicates that the resulting micrometer-scale domains in vacuole membranes enable yeast to survive periods of stress. An outstanding question is which molecular changes might cause this membrane phase separation. Here, we conduct lipidomics of vacuole membranes in both the log and stationary stages. Isolation of pure vacuole membranes is challenging in the stationary stage, when lipid droplets are in close contact with vacuoles. Immuno-isolation has previously been shown to successfully purify log-stage vacuole membranes with high organelle specificity, but it was not previously possible to immuno-isolate stationary-stage vacuole membranes. Here, we develop Mam3 as a bait protein for vacuole immuno-isolation, and demonstrate low contamination by non-vacuolar membranes. We find that stationary-stage vacuole membranes contain surprisingly high fractions of phosphatidylcholine lipids (∼40%), roughly twice as much as log-stage membranes. Moreover, in the stationary stage, these lipids have higher melting temperatures, due to longer and more saturated acyl chains. Another surprise is that no significant change in sterol content is observed. These lipidomic changes, which are largely reflected on the whole-cell level, fit within the predominant view that phase separation in membranes requires at least three types of molecules to be present: lipids with high melting temperatures, lipids with low melting temperatures, and sterols.
Collapse
Affiliation(s)
- John Reinhard
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Homburg, Germany; PZMS, Center for Molecular Signaling, Medical Faculty, Saarland University, Homburg, Germany
| | | | | | - Alexey J Merz
- Department of Biochemistry, University of Washington, Seattle, WA
| | | | - Robert Ernst
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Homburg, Germany; PZMS, Center for Molecular Signaling, Medical Faculty, Saarland University, Homburg, Germany.
| | - Sarah L Keller
- Department of Chemistry, University of Washington, Seattle, WA.
| |
Collapse
|
6
|
Boban Z, Mardešić I, Jozić SP, Šumanovac J, Subczynski WK, Raguz M. Electroformation of Giant Unilamellar Vesicles from Damp Lipid Films Formed by Vesicle Fusion. MEMBRANES 2023; 13:352. [PMID: 36984739 PMCID: PMC10059949 DOI: 10.3390/membranes13030352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Giant unilamellar vesicles (GUVs) are artificial membrane models which are of special interest to researchers because of their similarity in size to eukaryotic cells. The most commonly used method for GUVs production is electroformation. However, the traditional electroformation protocol involves a step in which the organic solvent is completely evaporated, leaving behind a dry lipid film. This leads to artifactual demixing of cholesterol (Chol) in the form of anhydrous crystals. These crystals do not participate in the formation of the lipid bilayer, resulting in a decrease of Chol concentration in the bilayer compared to the initial lipid solution. We propose a novel electroformation protocol which addresses this issue by combining the rapid solvent exchange, plasma cleaning and spin-coating techniques to produce GUVs from damp lipid films in a fast and reproducible manner. We have tested the protocol efficiency using 1/1 phosphatidylcholine/Chol and 1/1/1 phosphatidylcholine/sphingomyelin/Chol lipid mixtures and managed to produce a GUV population of an average diameter around 40 µm, with many GUVs being larger than 100 µm. Additionally, compared to protocols that include the dry film step, the sizes and quality of vesicles determined from fluorescence microscopy images were similar or better, confirming the benefits of our protocol in that regard as well.
Collapse
Affiliation(s)
- Zvonimir Boban
- Department of Medical Physics and Biophysics, University of Split School of Medicine, 21000 Split, Croatia; (Z.B.); (I.M.)
- Faculty of Science, University of Split, Doctoral Study of Biophysics, 21000 Split, Croatia
| | - Ivan Mardešić
- Department of Medical Physics and Biophysics, University of Split School of Medicine, 21000 Split, Croatia; (Z.B.); (I.M.)
- Faculty of Science, University of Split, Doctoral Study of Biophysics, 21000 Split, Croatia
| | - Sanja Perinović Jozić
- Department of Organic Technology, Faculty of Chemistry and Technology, University of Split, 21000 Split, Croatia
| | - Josipa Šumanovac
- Department of Physics, Faculty of Science, University of Split, 21000 Split, Croatia
| | | | - Marija Raguz
- Department of Medical Physics and Biophysics, University of Split School of Medicine, 21000 Split, Croatia; (Z.B.); (I.M.)
| |
Collapse
|
7
|
Grusky DS, Moss FR, Boxer SG. Recombination between 13C and 2H to Form Acetylide ( 13C 22H -) Probes Nanoscale Interactions in Lipid Bilayers via Dynamic Secondary Ion Mass Spectrometry: Cholesterol and GM 1 Clustering. Anal Chem 2022; 94:9750-9757. [PMID: 35759338 PMCID: PMC10075087 DOI: 10.1021/acs.analchem.2c01336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although it is thought that there is lateral heterogeneity of lipid and protein components within biological membranes, probing this heterogeneity has proven challenging. The difficulty in such experiments is due to both the small length scale over which such heterogeneity can occur, and the significant perturbation resulting from fluorescent or spin labeling on the delicate interactions within bilayers. Atomic recombination during dynamic nanoscale secondary ion imaging mass spectrometry (NanoSIMS) is a non-perturbative method for examining nanoscale bilayer interactions. Atomic recombination is a variation on conventional NanoSIMS imaging, whereby an isotope on one molecule combines with a different isotope on another molecule during the ionization process, forming an isotopically enriched polyatomic ion in a distance-dependent manner. We show that the recombinant ion, 13C22H-, is formed in high yield from 13C- and 2H-labeled lipids. The low natural abundance of triply labeled acetylide also makes it an ideal ion to probe GM1 clusters in model membranes and the effects of cholesterol on lipid-lipid interactions. We find evidence supporting the cholesterol condensation effect as well as the presence of nanoscale GM1 clusters in model membranes.
Collapse
Affiliation(s)
- Dashiel S Grusky
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Frank R Moss
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Steven G Boxer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
8
|
Csoboz B, Gombos I, Kóta Z, Dukic B, Klement É, Varga-Zsíros V, Lipinszki Z, Páli T, Vígh L, Török Z. The Small Heat Shock Protein, HSPB1, Interacts with and Modulates the Physical Structure of Membranes. Int J Mol Sci 2022; 23:ijms23137317. [PMID: 35806322 PMCID: PMC9266964 DOI: 10.3390/ijms23137317] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
Small heat shock proteins (sHSPs) have been demonstrated to interact with lipids and modulate the physical state of membranes across species. Through these interactions, sHSPs contribute to the maintenance of membrane integrity. HSPB1 is a major sHSP in mammals, but its lipid interaction profile has so far been unexplored. In this study, we characterized the interaction between HSPB1 and phospholipids. HSPB1 not only associated with membranes via membrane-forming lipids, but also showed a strong affinity towards highly fluid membranes. It participated in the modulation of the physical properties of the interacting membranes by altering rotational and lateral lipid mobility. In addition, the in vivo expression of HSPB1 greatly affected the phase behavior of the plasma membrane under membrane fluidizing stress conditions. In light of our current findings, we propose a new function for HSPB1 as a membrane chaperone.
Collapse
Affiliation(s)
- Balint Csoboz
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (B.C.); (I.G.); (B.D.); (É.K.); (V.V.-Z.); (Z.L.); (L.V.)
- Institute of Medical Biology, University of Tromsø, 9008 Tromsø, Norway
| | - Imre Gombos
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (B.C.); (I.G.); (B.D.); (É.K.); (V.V.-Z.); (Z.L.); (L.V.)
| | - Zoltán Kóta
- Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary; (Z.K.); (T.P.)
- Single Cell Omics Advanced Core Facility, Hungarian Centre of Excellence for Molecular Medicine, 6726 Szeged, Hungary
| | - Barbara Dukic
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (B.C.); (I.G.); (B.D.); (É.K.); (V.V.-Z.); (Z.L.); (L.V.)
| | - Éva Klement
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (B.C.); (I.G.); (B.D.); (É.K.); (V.V.-Z.); (Z.L.); (L.V.)
- Single Cell Omics Advanced Core Facility, Hungarian Centre of Excellence for Molecular Medicine, 6726 Szeged, Hungary
| | - Vanda Varga-Zsíros
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (B.C.); (I.G.); (B.D.); (É.K.); (V.V.-Z.); (Z.L.); (L.V.)
| | - Zoltán Lipinszki
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (B.C.); (I.G.); (B.D.); (É.K.); (V.V.-Z.); (Z.L.); (L.V.)
| | - Tibor Páli
- Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary; (Z.K.); (T.P.)
| | - László Vígh
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (B.C.); (I.G.); (B.D.); (É.K.); (V.V.-Z.); (Z.L.); (L.V.)
| | - Zsolt Török
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (B.C.); (I.G.); (B.D.); (É.K.); (V.V.-Z.); (Z.L.); (L.V.)
- Correspondence:
| |
Collapse
|
9
|
de Santis A, Scoppola E, Ottaviani MF, Koutsioubas A, Barnsley LC, Paduano L, D’Errico G, Russo Krauss I. Order vs. Disorder: Cholesterol and Omega-3 Phospholipids Determine Biomembrane Organization. Int J Mol Sci 2022; 23:5322. [PMID: 35628128 PMCID: PMC9140907 DOI: 10.3390/ijms23105322] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 02/06/2023] Open
Abstract
Lipid structural diversity strongly affects biomembrane chemico-physical and structural properties in addition to membrane-associated events. At high concentrations, cholesterol increases membrane order and rigidity, while polyunsaturated lipids are reported to increase disorder and flexibility. How these different tendencies balance in composite bilayers is still controversial. In this study, electron paramagnetic resonance spectroscopy, small angle neutron scattering, and neutron reflectivity were used to investigate the structural properties of cholesterol-containing lipid bilayers in the fluid state with increasing amounts of polyunsaturated omega-3 lipids. Either the hybrid 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine or the symmetric 1,2-docosahexaenoyl-sn-glycero-3-phosphocholine were added to the mixture of the naturally abundant 1-palmitoyl-2-oleyl-sn-glycero-3-phosphocholine and cholesterol. Our results indicate that the hybrid and the symmetric omega-3 phospholipids affect the microscopic organization of lipid bilayers differently. Cholesterol does not segregate from polyunsaturated phospholipids and, through interactions with them, is able to suppress the formation of non-lamellar structures induced by the symmetric polyunsaturated lipid. However, this order/disorder balance leads to a bilayer whose structural organization cannot be ascribed to either a liquid ordered or to a canonical liquid disordered phase, in that it displays a very loose packing of the intermediate segments of lipid chains.
Collapse
Affiliation(s)
- Augusta de Santis
- Department of Chemical Sciences, University of Naples Federico II, I-80126 Naples, Italy; (A.d.S.); (L.P.)
- CSGI (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase), I-50019 Florence, Italy
| | - Ernesto Scoppola
- Max Planck Institut für Kolloid und Grenzflächenforschung, 14476 Potsdam, Germany;
| | | | - Alexandros Koutsioubas
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), 85748 Garching, Germany; (A.K.); (L.C.B.)
| | - Lester C. Barnsley
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), 85748 Garching, Germany; (A.K.); (L.C.B.)
- Australian Synchrotron, ANSTO, Clayton 3168, Australia
| | - Luigi Paduano
- Department of Chemical Sciences, University of Naples Federico II, I-80126 Naples, Italy; (A.d.S.); (L.P.)
- CSGI (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase), I-50019 Florence, Italy
| | - Gerardino D’Errico
- Department of Chemical Sciences, University of Naples Federico II, I-80126 Naples, Italy; (A.d.S.); (L.P.)
- CSGI (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase), I-50019 Florence, Italy
| | - Irene Russo Krauss
- Department of Chemical Sciences, University of Naples Federico II, I-80126 Naples, Italy; (A.d.S.); (L.P.)
- CSGI (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase), I-50019 Florence, Italy
| |
Collapse
|
10
|
Shulpekova Y, Shirokova E, Zharkova M, Tkachenko P, Tikhonov I, Stepanov A, Sinitsyna A, Izotov A, Butkova T, Shulpekova N, Nechaev V, Damulin I, Okhlobystin A, Ivashkin V. A Recent Ten-Year Perspective: Bile Acid Metabolism and Signaling. Molecules 2022; 27:molecules27061983. [PMID: 35335345 PMCID: PMC8953976 DOI: 10.3390/molecules27061983] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 11/22/2022] Open
Abstract
Bile acids are important physiological agents required for the absorption, distribution, metabolism, and excretion of nutrients. In addition, bile acids act as sensors of intestinal contents, which are determined by the change in the spectrum of bile acids during microbial transformation, as well as by gradual intestinal absorption. Entering the liver through the portal vein, bile acids regulate the activity of nuclear receptors, modify metabolic processes and the rate of formation of new bile acids from cholesterol, and also, in all likelihood, can significantly affect the detoxification of xenobiotics. Bile acids not absorbed by the liver can interact with a variety of cellular recipes in extrahepatic tissues. This provides review information on the synthesis of bile acids in various parts of the digestive tract, its regulation, and the physiological role of bile acids. Moreover, the present study describes the involvement of bile acids in micelle formation, the mechanism of intestinal absorption, and the influence of the intestinal microbiota on this process.
Collapse
Affiliation(s)
- Yulia Shulpekova
- Chair of Internal Diseases Propedeutics, Gastroenterology and Hepatology, Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (Y.S.); (E.S.); (P.T.); (I.T.); (V.N.); (A.O.); (V.I.)
| | - Elena Shirokova
- Chair of Internal Diseases Propedeutics, Gastroenterology and Hepatology, Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (Y.S.); (E.S.); (P.T.); (I.T.); (V.N.); (A.O.); (V.I.)
| | - Maria Zharkova
- Department of Hepatology University Clinical Hospital No.2, Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia;
| | - Pyotr Tkachenko
- Chair of Internal Diseases Propedeutics, Gastroenterology and Hepatology, Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (Y.S.); (E.S.); (P.T.); (I.T.); (V.N.); (A.O.); (V.I.)
| | - Igor Tikhonov
- Chair of Internal Diseases Propedeutics, Gastroenterology and Hepatology, Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (Y.S.); (E.S.); (P.T.); (I.T.); (V.N.); (A.O.); (V.I.)
| | - Alexander Stepanov
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia; (A.S.); (A.S.); (A.I.); (T.B.)
| | - Alexandra Sinitsyna
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia; (A.S.); (A.S.); (A.I.); (T.B.)
- Correspondence: ; Tel.: +7-499-764-98-78
| | - Alexander Izotov
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia; (A.S.); (A.S.); (A.I.); (T.B.)
| | - Tatyana Butkova
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia; (A.S.); (A.S.); (A.I.); (T.B.)
| | | | - Vladimir Nechaev
- Chair of Internal Diseases Propedeutics, Gastroenterology and Hepatology, Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (Y.S.); (E.S.); (P.T.); (I.T.); (V.N.); (A.O.); (V.I.)
| | - Igor Damulin
- Branch of the V. Serbsky National Medical Research Centre for Psychiatry and Narcology, 127994 Moscow, Russia;
| | - Alexey Okhlobystin
- Chair of Internal Diseases Propedeutics, Gastroenterology and Hepatology, Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (Y.S.); (E.S.); (P.T.); (I.T.); (V.N.); (A.O.); (V.I.)
| | - Vladimir Ivashkin
- Chair of Internal Diseases Propedeutics, Gastroenterology and Hepatology, Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia; (Y.S.); (E.S.); (P.T.); (I.T.); (V.N.); (A.O.); (V.I.)
| |
Collapse
|
11
|
Abstract
Lateral organization in the plane of the plasma membrane is an important driver of biological processes. The past dozen years have seen increasing experimental support for the notion that lipid organization plays an important role in modulating this heterogeneity. Various biophysical mechanisms rooted in the concept of liquid-liquid phase separation have been proposed to explain diverse experimental observations of heterogeneity in model and cell membranes with distinct but overlapping applicability. In this review, we focus on the evidence for and the consequences of the hypothesis that the plasma membrane is poised near an equilibrium miscibility critical point. Critical phenomena explain certain features of the heterogeneity observed in cells and model systems but also go beyond heterogeneity to predict other interesting phenomena, including responses to perturbations in membrane composition.
Collapse
Affiliation(s)
- Thomas R Shaw
- Program in Applied Physics, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Subhadip Ghosh
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Sarah L Veatch
- Program in Applied Physics, University of Michigan, Ann Arbor, Michigan 48109, USA; .,Program in Biophysics, University of Michigan, Ann Arbor, Michigan 48109, USA.,Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
12
|
Adichtchev SV, Okotrub KA, Pugachev AM, Zaytseva IV, Surovtsev NV. Raman Spectroscopic Study of Phase Coexistence in Binary Phospholipid Bilayers. APPLIED SPECTROSCOPY 2021; 75:87-93. [PMID: 32662288 DOI: 10.1177/0003702820945764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Binary phospholipid bilayers composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine and 1,2-palmitoyl-sn-glycero-3-phosphocholine (DPPC) were studied by Raman spectroscopy and differential scanning calorimetry (DSC). We examined features in Raman scattering spectra that are sensitive to the lipid phase and, therefore, could indicate the phase coexistence. It was found that the low-frequency half-width of half-maximum (LHWHM) of the 2850 cm-1 Raman line, corresponding to the symmetric CH2 stretching vibrations, unequivocally reveals the coexisting phospholipids in ordered and disordered conformational states, which correspond to ordered and disordered phases coexistence, in the DPPC mole concentration range from 0.4 to 0.9. The phase coexistence in this concentration range was supported by the particular concentration behavior of the ratio between the intensities of the 2880 cm-1 antisymmetric CH2 vibration line and the 2850 cm-1 symmetric one. It was also shown that the spectral shape of the 1300 cm-1 Raman line, corresponding to the CH2 twisting vibrations, is a good indicator for the phase state and phase coexistence in the phospholipid bilayers. Comparison with the DSC curves confirmed that in the DPPC mole concentration range from 0.4 to 0.9, the two phase transition peaks are observed in DSC curve, those positions are independent of the DPPC concentration. The outcome of the study is the robust label-free contactless approach for the detection of the lipid phase separation, which can be realized with the micrometer resolution.
Collapse
Affiliation(s)
- Sergey V Adichtchev
- Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk, Russia
| | - Konstantin A Okotrub
- Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexey M Pugachev
- Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk, Russia
| | - Irina V Zaytseva
- Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk, Russia
| | - Nikolay V Surovtsev
- Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
13
|
Bochicchio A, Brandner AF, Engberg O, Huster D, Böckmann RA. Spontaneous Membrane Nanodomain Formation in the Absence or Presence of the Neurotransmitter Serotonin. Front Cell Dev Biol 2020; 8:601145. [PMID: 33330494 PMCID: PMC7734319 DOI: 10.3389/fcell.2020.601145] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/06/2020] [Indexed: 11/23/2022] Open
Abstract
Detailed knowledge on the formation of biomembrane domains, their structure, composition, and physical characteristics is scarce. Despite its frequently discussed importance in signaling, e.g., in obtaining localized non-homogeneous receptor compositions in the plasma membrane, the nanometer size as well as the dynamic and transient nature of domains impede their experimental characterization. In turn, atomistic molecular dynamics (MD) simulations combine both, high spatial and high temporal resolution. Here, using microsecond atomistic MD simulations, we characterize the spontaneous and unbiased formation of nano-domains in a plasma membrane model containing phosphatidylcholine (POPC), palmitoyl-sphingomyelin (PSM), and cholesterol (Chol) in the presence or absence of the neurotransmitter serotonin at different temperatures. In the ternary mixture, highly ordered and highly disordered domains of similar composition coexist at 303 K. The distinction of domains by lipid acyl chain order gets lost at lower temperatures of 298 and 294 K, suggesting a phase transition at ambient temperature. By comparison of domain ordering and composition, we demonstrate how the domain-specific binding of the neurotransmitter serotonin results in a modified domain lipid composition and a substantial downward shift of the phase transition temperature. Our simulations thus suggest a novel mode of action of neurotransmitters possibly of importance in neuronal signal transmission.
Collapse
Affiliation(s)
- Anna Bochicchio
- Computational Biology, Department Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Astrid F Brandner
- Computational Biology, Department Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Oskar Engberg
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany.,Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Rainer A Böckmann
- Computational Biology, Department Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
14
|
Direct label-free imaging of nanodomains in biomimetic and biological membranes by cryogenic electron microscopy. Proc Natl Acad Sci U S A 2020; 117:19943-19952. [PMID: 32759206 DOI: 10.1073/pnas.2002200117] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The nanoscale organization of biological membranes into structurally and compositionally distinct lateral domains is believed to be central to membrane function. The nature of this organization has remained elusive due to a lack of methods to directly probe nanoscopic membrane features. We show here that cryogenic electron microscopy (cryo-EM) can be used to directly image coexisting nanoscopic domains in synthetic and bioderived membranes without extrinsic probes. Analyzing a series of single-component liposomes composed of synthetic lipids of varying chain lengths, we demonstrate that cryo-EM can distinguish bilayer thickness differences as small as 0.5 Å, comparable to the resolution of small-angle scattering methods. Simulated images from computational models reveal that features in cryo-EM images result from a complex interplay between the atomic distribution normal to the plane of the bilayer and imaging parameters. Simulations of phase-separated bilayers were used to predict two sources of contrast between coexisting ordered and disordered phases within a single liposome, namely differences in membrane thickness and molecular density. We observe both sources of contrast in biomimetic membranes composed of saturated lipids, unsaturated lipids, and cholesterol. When extended to isolated mammalian plasma membranes, cryo-EM reveals similar nanoscale lateral heterogeneities. The methods reported here for direct, probe-free imaging of nanodomains in unperturbed membranes open new avenues for investigation of nanoscopic membrane organization.
Collapse
|
15
|
Direct imaging of liquid domains in membranes by cryo-electron tomography. Proc Natl Acad Sci U S A 2020; 117:19713-19719. [PMID: 32759217 DOI: 10.1073/pnas.2002245117] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Images of micrometer-scale domains in lipid bilayers have provided the gold standard of model-free evidence to understand the domains' shapes, sizes, and distributions. Corresponding techniques to directly and quantitatively assess smaller (nanoscale and submicron) liquid domains have been limited. Researchers commonly seek to correlate activities of membrane proteins with attributes of the domains in which they reside; doing so hinges on identification and characterization of membrane domains. Although some features of membrane domains can be probed by indirect methods, these methods are often constrained by the limitation that data must be analyzed in the context of models that require multiple assumptions or parameters. Here, we address this challenge by developing and testing two methods of identifying submicron domains in biomimetic membranes. Both methods leverage cryo-electron tomograms of ternary membranes under vitrified, hydrated conditions. The first method is optimized for probe-free applications: Domains are directly distinguished from the surrounding membrane by their thickness. This technique quantitatively and accurately measures area fractions of domains, in excellent agreement with known phase diagrams. The second method is optimized for applications in which a single label is deployed for imaging membranes by both high-resolution cryo-electron tomography and diffraction-limited optical microscopy. For this method, we test a panel of probes, find that a trimeric mCherry label performs best, and specify criteria for developing future high-performance, dual-use probes. These developments have led to direct and quantitative imaging of submicron membrane domains in vitrified, hydrated vesicles.
Collapse
|
16
|
Engberg O, Lin KL, Hautala V, Slotte JP, Nyholm TKM. Sphingomyelin Acyl Chains Influence the Formation of Sphingomyelin- and Cholesterol-Enriched Domains. Biophys J 2020; 119:913-923. [PMID: 32755561 DOI: 10.1016/j.bpj.2020.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022] Open
Abstract
The segregation of lipids into lateral membrane domains has been extensively studied. It is well established that the structural differences between phospholipids play an important role in lateral membrane organization. When a high enough cholesterol concentration is present in the bilayer, liquid-ordered (Lo) domains, which are enriched in cholesterol and saturated phospholipids such as sphingomyelin (SM), may form. We have recently shown that such a formation of domains can be facilitated by the affinity differences of cholesterol for the saturated and unsaturated phospholipids present in the bilayer. In mammalian membranes, the saturated phospholipids are usually SMs with different acyl chains, the abundance of which vary with cell type. In this study, we investigated how the acyl chain structure of SMs affects the formation of SM- and cholesterol-enriched domains. From the analysis of trans-parinaric acid fluorescence emission lifetimes, we could determine that cholesterol facilitated lateral segregation most with the SMs that had 16 carbon-long acyl chains. Using differential scanning calorimetry and Förster resonance energy transfer techniques, we observed that the SM- and cholesterol-enriched domains with 16 carbon-long SMs were most thermally stabilized by cholesterol. The Förster resonance energy transfer technique also suggested that the same SMs also form the largest Lo domains. In agreement with our previously published data, the extent of influence that cholesterol had on the propensity of lateral segregation and the properties of Lo domains correlated with the relative affinity of cholesterol for the phospholipids present in the bilayers. Therefore, the specific SM species present in the membranes, together with unsaturated phospholipids and cholesterol, can be used by the cell to fine-tune the lateral structure of the membranes.
Collapse
Affiliation(s)
- Oskar Engberg
- Biochemistry, Faculty of Science and Engineering, Abo Akademi University, Turku, Finland
| | - Kai-Lan Lin
- Biochemistry, Faculty of Science and Engineering, Abo Akademi University, Turku, Finland
| | - Victor Hautala
- Biochemistry, Faculty of Science and Engineering, Abo Akademi University, Turku, Finland
| | - J Peter Slotte
- Biochemistry, Faculty of Science and Engineering, Abo Akademi University, Turku, Finland
| | - Thomas K M Nyholm
- Biochemistry, Faculty of Science and Engineering, Abo Akademi University, Turku, Finland.
| |
Collapse
|
17
|
Dorrell MW, Heberle FA, Katsaras J, Maibaum L, Lyman E, Sodt AJ. Laterally Resolved Small-Angle Scattering Intensity from Lipid Bilayer Simulations: An Exact and a Limited-Range Treatment. J Chem Theory Comput 2020; 16:5287-5300. [PMID: 32579370 DOI: 10.1021/acs.jctc.0c00132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
When combined, molecular simulations and small-angle scattering experiments are able to provide molecular-scale resolution of structure. Separately, scattering experiments provide only intermingled pair correlations between atoms, while molecular simulations are limited by model quality and the relatively short time scales that they can access. Their combined strength relies on agreement between the experimental spectra and those computed by simulation. To date, computing the neutron spectra from a molecular simulation of a lipid bilayer is straightforward only if the structure is approximated by laterally averaging the in-plane bilayer structure. However, this neglects all information about lateral heterogeneity, e.g., clustering of components in a lipid mixture. This paper presents two methods for computing the scattering intensity of simulated bilayers with in-plane heterogeneity, enabling a full treatment of both the transverse and lateral bilayer structure for the first time. The first method, termed the Dirac Brush, computes the exact spectra including spurious artifacts resulting from using information from neighboring periodic cells to account for the long-range structure of the bilayer. The second method, termed PFFT, applies a mean-field treatment in the field far from a scattering element, resulting in a correlation range that can be tuned (eliminating correlations with neighboring periodic images), but with computational cost that prohibits obtaining the exact (Dirac Brush) spectra. Following their derivation, the two methods are applied to a coarse-grained molecular simulation of a bilayer inhomogeneity, demonstrating the contributions of lateral correlations to the resulting spectra.
Collapse
Affiliation(s)
- Mitchell W Dorrell
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland 20892, United States
| | | | - John Katsaras
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Lutz Maibaum
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | | | - Alexander J Sodt
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland 20892, United States
| |
Collapse
|
18
|
Huang J, Hiraki S, Feigenson GW. Calculation of Liquid-Disordered/Liquid-Ordered Line Tension from Pairwise Lipid Interactions. J Phys Chem B 2020; 124:4949-4959. [DOI: 10.1021/acs.jpcb.0c03329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- J. Huang
- Department of Physics and Astronomy, Texas Tech University, Box 41051, Lubbock, Texas 79409, United States
| | - S. Hiraki
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan
| | - G. W. Feigenson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
19
|
Abstract
Many critical biological events, including biochemical signaling, membrane traffic, and cell motility, originate at membrane surfaces. Each such event requires that members of a specific group of proteins and lipids rapidly assemble together at a specific site on the membrane surface. Understanding the biophysical mechanisms that stabilize these assemblies is critical to decoding and controlling cellular functions. In this article, we review progress toward a quantitative biophysical understanding of the mechanisms that drive membrane heterogeneity and organization. We begin from a physical perspective, reviewing the fundamental principles and key experimental evidence behind each proposed mechanism. We then shift to a biological perspective, presenting key examples of the role of heterogeneity in biology and asking which physical mechanisms may be responsible. We close with an applied perspective, noting that membrane heterogeneity provides a novel therapeutic target that is being exploited by a growing number of studies at the interface of biology, physics, and engineering.
Collapse
Affiliation(s)
- Wade F Zeno
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA;
| | - Kasey J Day
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA;
| | - Vernita D Gordon
- Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
- Center for Nonlinear Dynamics, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA;
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
20
|
Miscibility of hBest1 and sphingomyelin in surface films - A prerequisite for interaction with membrane domains. Colloids Surf B Biointerfaces 2020; 189:110893. [PMID: 32113084 DOI: 10.1016/j.colsurfb.2020.110893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/08/2020] [Accepted: 02/20/2020] [Indexed: 01/07/2023]
Abstract
Human bestrophin-1 (hBest1) is a transmembrane Ca2+- dependent anion channel, associated with the transport of Cl-, HCO3- ions, γ-aminobutiric acid (GABA), glutamate (Glu), and regulation of retinal homeostasis. Its mutant forms cause retinal degenerative diseases, defined as Bestrophinopathies. Using both physicochemical - surface pressure/mean molecular area (π/A) isotherms, hysteresis, compressibility moduli of hBest1/sphingomyelin (SM) monolayers, Brewster angle microscopy (BAM) studies, and biological approaches - detergent membrane fractionation, Laurdan (6-dodecanoyl-N,N-dimethyl-2-naphthylamine) and immunofluorescence staining of stably transfected MDCK-hBest1 and MDCK II cells, we report: 1) Ca2+, Glu and GABA interact with binary hBest1/SM monolayers at 35 °C, resulting in changes in hBest1 surface conformation, structure, self-organization and surface dynamics. The process of mixing in hBest1/SM monolayers is spontaneous and the effect of protein on binary films was defined as "fluidizing", hindering the phase-transition of monolayer from liquid-expanded to intermediate (LE-M) state; 2) in stably transfected MDCK-hBest1 cells, bestrophin-1 was distributed between detergent resistant (DRM) and detergent-soluble membranes (DSM) - up to 30 % and 70 %, respectively; in alive cells, hBest1 was visualized in both liquid-ordered (Lo) and liquid-disordered (Ld) fractions, quantifying protein association up to 35 % and 65 % with Lo and Ld. Our results indicate that the spontaneous miscibility of hBest1 and SM is a prerequisite to diverse protein interactions with membrane domains, different structural conformations and biological functions.
Collapse
|
21
|
Robinson T, Dittrich PS. Observations of Membrane Domain Reorganization in Mechanically Compressed Artificial Cells. Chembiochem 2019; 20:2666-2673. [PMID: 31087814 PMCID: PMC7612542 DOI: 10.1002/cbic.201900167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Indexed: 01/01/2023]
Abstract
Giant unilamellar vesicles (GUVs) are considered to be the gold standard for assembling artificial cells from the bottom up. In this study, we investigated the behavior of such biomimetic vesicles as they were subjected to mechanical compression. A microfluidic device is presented that comprises a trap to capture GUVs and a microstamp that is deflected downwards to mechanically compress the trapped vesicle. After characterization of the device, we show that single-phase GUVs can be controllably compressed to a high degree of deformation (D=0.40) depending on the pressure applied to the microstamp. A permeation assay was implemented to show that vesicle bursting is prevented by water efflux. Next, we mechanically compressed GUVs with co-existing liquid-ordered and liquid-disordered membrane phases. Upon compression, we observed that the normally stable lipid domains reorganized themselves across the surface and fused into larger domains. This phenomenon, observed here in a model membrane system, not only gives us insights into how the multicomponent membranes of artificial cells behave, but might also have interesting consequences for the role of lipid rafts in biological cells that are subjected to compressive forces in a natural environment.
Collapse
Affiliation(s)
- Tom Robinson
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058, Basel, Switzerland
- Present address: Department of Theory, Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424, Potsdam, Germany
| | - Petra S Dittrich
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058, Basel, Switzerland
| |
Collapse
|
22
|
Engberg O, Scheidt HA, Nyholm TKM, Slotte JP, Huster D. Membrane Localization and Lipid Interactions of Common Lipid-Conjugated Fluorescence Probes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11902-11911. [PMID: 31424941 DOI: 10.1021/acs.langmuir.9b01202] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lateral segregation of lipids in model and biological membranes has been studied intensively in the last decades using a comprehensive set of experimental techniques. Most methods require a probe to report on the biophysical properties of a specific molecule in the lipid bilayer. Because such probes can adversely affect the results of the measurement and perturb the local membrane structure and dynamics, a detailed understanding of probe behavior and its influence on the properties of its direct environment is important. Membrane phase-selective and lipid-mimicking molecules represent common types of probes. Here, we have studied how the fluorescent probes trans-parinaric acid (tPA), diphenylhexatriene (DPH), and 1-oleoyl-2-propionyl[DPH]-sn-glycero-3-phosphocholine (O-DPH-PC) affect the membrane properties of 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) bilayers using 2H and 31P NMR spectroscopy in the solid state. In addition, using 2D 1H magic-angle spinning (MAS) nuclear Overhauser enhancement spectroscopy (NOESY) NMR, we have determined the distribution of the probe moieties in the POPC membrane parallel to the membrane normal. We found that the different probes exhibit distinct membrane localizations and distributions, e.g. tPA is located parallel to the membrane normal while DPH predominantly exist in two orientations. Further, tPA was conjugated to sphingomyelin (tPA-SM) as a substitute for the acyl chain in the SM. 1H NOESY NMR was used to probe the interaction of the tPA-SM with cholesterol as dominant in liquid ordered membrane domains in comparison to POPC-cholesterol interaction in membranes composed of ternary lipid mixtures. We could show that tPA-SM exhibited a strong favorable and very temperature-dependent interaction with cholesterol in comparison to POPC. In conclusion, the NMR techniques can explain probe behavior but also be used to measure lipid-specific affinities between different lipid segments and individual molecules in complex bilayers, relevant to understanding nanodomain formation in biological membranes.
Collapse
Affiliation(s)
- Oskar Engberg
- Institute for Medical Physics and Biophysics, Medical Department , Leipzig University , Leipzig , Germany
- Biochemistry, Faculty of Science and Engineering , Åbo Akademi University , Turku , Finland
| | - Holger A Scheidt
- Institute for Medical Physics and Biophysics, Medical Department , Leipzig University , Leipzig , Germany
| | - Thomas K M Nyholm
- Biochemistry, Faculty of Science and Engineering , Åbo Akademi University , Turku , Finland
| | - J Peter Slotte
- Biochemistry, Faculty of Science and Engineering , Åbo Akademi University , Turku , Finland
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, Medical Department , Leipzig University , Leipzig , Germany
| |
Collapse
|
23
|
Amaral VSG, Fernandes CM, Felício MR, Valle AS, Quintana PG, Almeida CC, Barreto-Bergter E, Gonçalves S, Santos NC, Kurtenbach E. Psd2 pea defensin shows a preference for mimetic membrane rafts enriched with glucosylceramide and ergosterol. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2019; 1861:713-728. [PMID: 30639288 DOI: 10.1016/j.bbamem.2018.12.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 12/20/2018] [Accepted: 12/29/2018] [Indexed: 12/26/2022]
Abstract
Psd2 is a pea defensin with 47 amino acid residues that inhibits the growth of fungal species by an uncharacterized mechanism. In this work, Psd2 interactions with model membranes mimicking the lipid compositions of different organisms were evaluated. Protein-lipid overlay assays indicated that Psd2 recognizes Fusarium solani glucosylceramide (GlcCerF.solani) and ergosterol (Erg) in addition to phosphatidylcholine (POPC) and some phosphatidylinositol species, such as PtdIns (3)P, (5)P and (3,5)P2, suggesting that these lipids may play important roles as Psd2 targets. Assays using lipid vesicles were also performed to study the behaviour and dynamics that occur after peptide-membrane interactions. Surface plasmon resonance analysis showed that Psd2 has a higher affinity for pure POPC and POPC-based vesicles containing GlcCer and Erg at a 70:30 proportion than for vesicles containing cholesterol (Chol). Partition experiments by fluorescence spectroscopy showed a decrease in Trp42 quantum yield of Psd2 in the presence of GlcCerF.solani and Erg, individually or in simultaneously enriched membranes. The partition coefficient (Kp) obtained indicated a Psd2 partition preference for this vesicles, confirmed by quenching assays using acrylamide and 5/16-doxyl-stearic acid. Furthermore, we showed that the presence of C8C9 double bonds and a methyl group at position C9 of the sphingoid base backbone of GlcCer was relevant to Psd2 activity against Aspergillus nidulans. These results are consistent with the selectivity of Psd2 against fungi and its lack of toxicity in human erythrocytes. Psd2 represents a promising natural compound for the treatment of fungal infections.
Collapse
Affiliation(s)
- Virginia Sara Grancieri Amaral
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Mário R Felício
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Aline Sol Valle
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paula G Quintana
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caroline Correa Almeida
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eliana Barreto-Bergter
- Instituto de Microbiologia Paulo de Goés, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sónia Gonçalves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Eleonora Kurtenbach
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
24
|
Leonov DV, Adichtchev SV, Dzuba SA, Surovtsev NV. Vibrational layer eigenmodes of binary phospholipid-cholesterol bilayers at low temperatures. Phys Rev E 2019; 99:022417. [PMID: 30934267 DOI: 10.1103/physreve.99.022417] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Indexed: 06/09/2023]
Abstract
Raman spectra in the low-frequency spectral range-between 5 and 90cm^{-1}-were studied for multilamellar bilayers prepared with cholesterol (Chol) and phospholipids of three different types: doubly unsaturated lipids 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), monounsaturated lipids 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), and fully saturated lipids 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). The narrow peak seen below 250 K and positioned between 9 and 18cm^{-1}-depending on the system and temperature-was attributed to the vibrational eigenmode of a lipid monolayer. For the DOPC-Chol bilayer, the peak position and the peak width were found to monotonically increase and decrease, respectively, with the Chol concentration. For POPC-Chol and DMPC-Chol bilayers, these parameters revealed nonmonotonic concentration dependences, with an apparent minimum at the intermediate Chol content. The peak intensity was ascribed to interleaflet coupling. As in the literature, a coexistence of liquid-ordered and solid-ordered domains was suggested for the DMPC-Chol and POPC-Chol bilayers; the Chol concentration dependences of Raman peak parameters were discussed in line with this suggestion, under the assumption that the different composition of coexisting domains conserves upon cooling. We demonstrated that the obtained Raman data disagree with the suggested domain coexistence if the domain sizes are substantially larger than the lipid layer thickness.
Collapse
Affiliation(s)
- D V Leonov
- Department of Physics, Novosibirsk State University, Novosibirsk 630090, Russia
| | - S V Adichtchev
- Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - S A Dzuba
- Department of Physics, Novosibirsk State University, Novosibirsk 630090, Russia
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - N V Surovtsev
- Department of Physics, Novosibirsk State University, Novosibirsk 630090, Russia
- Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
25
|
Leonov DV, Dzuba SA, Surovtsev NV. Normal vibrations of ternary DOPC/DPPC/cholesterol lipid bilayers by low-frequency Raman spectroscopy. RSC Adv 2019; 9:34451-34456. [PMID: 35530012 PMCID: PMC9073921 DOI: 10.1039/c9ra06114b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/20/2019] [Indexed: 11/23/2022] Open
Abstract
A lipid bilayer containing a ternary mixture of low- and high-melting lipids and cholesterol (Chol) can give rise to domain formation, referred to as lipid rafts. Low-frequency Raman spectroscopy at reduced temperatures allows detection of normal membrane mechanical vibrations. In this work, Raman spectra were obtained in the spectral range between 5 and 90 cm−1 for bilayers prepared from dioleoyl-glycero-phosphocholine (DOPC), dipalmitoyl-glycero-phosphocholine (DPPC) and Chol. A narrow peak detected between 13 and 16 cm−1 was attributed to the vibrational eigenmode of a lipid monolayer (a leaflet). For the equimolar DOPC/DPPC ratio, the Chol concentration dependence for the peak position, width and amplitude may be divided into three distinct ranges: below 9 mol%, the intermediate range between 9 mol% and 38 mol%, and above 38 mol%. In the intermediate range the peak position attains its minimum, and the peak width drops approximately by a factor of two as compared with the Chol-free bilayers. Meanwhile, this range is known for raft formation in a fluid state. The obtained results may be interpreted as evidence that bilayer structures in the raft-containing fluid state may be frozen at low temperatures. The drop of peak width indicates that at the spatial scale of the experiment (∼2.5 nm) the intermolecular bilayer structure with raft formation becomes more homogeneous and more cohesive. Upon lipid raft formation, the Raman peak corresponding to monolayer normal mechanical vibrations drops remarkably in position and width.![]()
Collapse
Affiliation(s)
- Dmitry V. Leonov
- Department of Physics
- Novosibirsk State University
- Novosibirsk
- Russia
| | - Sergei A. Dzuba
- Department of Physics
- Novosibirsk State University
- Novosibirsk
- Russia
- Voevodsky Institute of Chemical Kinetics and Combustion
| | - Nikolay V. Surovtsev
- Department of Physics
- Novosibirsk State University
- Novosibirsk
- Russia
- Institute of Automation and Electrometry
| |
Collapse
|
26
|
Nyholm TKM, Jaikishan S, Engberg O, Hautala V, Slotte JP. The Affinity of Sterols for Different Phospholipid Classes and Its Impact on Lateral Segregation. Biophys J 2018; 116:296-307. [PMID: 30583790 DOI: 10.1016/j.bpj.2018.11.3135] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 10/27/2022] Open
Abstract
Cholesterol is an essential molecule in the membranes of mammalian cells. It is known to be distributed heterogeneously within the cells, between the bilayer leaflets, as well as between lateral domains within the bilayer. However, we do not know exactly how cholesterol is distributed and what forces drive this sorting process because it extremely difficult to study using currently available methods. To further elucidate this distribution, we measured how cholesterol partitions between different phospholipid (PL) environments using different methods based on cholesterol, TopFluor-cholesterol, and cholesta-5,7,9(11)-triene-3-β-ol. Based on the obtained relative partition coefficients, we made predictions regarding how cholesterol would be distributed between lateral domains and between the inner and outer leaflets of the plasma membrane. In addition, using a trans-parinaric acid fluorescence-based method, we tested how cholesterol could influence lateral segregation through its interaction with unsaturated PLs with different headgroups. The results showed that the lower the affinity of cholesterol was for the different unsaturated PLs, the more cholesterol stimulated lateral segregation in a ternary bilayer of unsaturated PL/N-palmitoyl-D-erythro-sphingomyelin and cholesterol. Overall, the results indicate that both the distribution of cholesterol between different lipid environments and the impact of cholesterol on lateral segregation can be predicted relatively accurately from determined relative partition coefficients.
Collapse
Affiliation(s)
- Thomas K M Nyholm
- Biochemistry, Faculty of Science and Engineering, Abo Akademi University, Turku, Finland.
| | - Shishir Jaikishan
- Biochemistry, Faculty of Science and Engineering, Abo Akademi University, Turku, Finland
| | - Oskar Engberg
- Biochemistry, Faculty of Science and Engineering, Abo Akademi University, Turku, Finland
| | - Victor Hautala
- Biochemistry, Faculty of Science and Engineering, Abo Akademi University, Turku, Finland
| | - J Peter Slotte
- Biochemistry, Faculty of Science and Engineering, Abo Akademi University, Turku, Finland
| |
Collapse
|
27
|
Clustering of spin-labeled cholesterol analog diluted in bilayers of saturated and unsaturated phospholipids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2527-2531. [DOI: 10.1016/j.bbamem.2018.09.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/31/2018] [Accepted: 09/26/2018] [Indexed: 11/21/2022]
|
28
|
Gronnier J, Gerbeau-Pissot P, Germain V, Mongrand S, Simon-Plas F. Divide and Rule: Plant Plasma Membrane Organization. TRENDS IN PLANT SCIENCE 2018; 23:899-917. [PMID: 30174194 DOI: 10.1016/j.tplants.2018.07.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/09/2018] [Accepted: 07/13/2018] [Indexed: 05/24/2023]
Abstract
Since the publication of the fluid mosaic as a relevant model for biological membranes, accumulating evidence has revealed the outstanding complexity of the composition and organization of the plant plasma membrane (PM). Powerful new methodologies have uncovered the remarkable multiscale and multicomponent heterogeneity of PM subcompartmentalization, and this is emerging as a general trait with different features and properties. It is now evident that the dynamics of such a complex organization are intrinsically related to signaling pathways that regulate key physiological processes. Listing and linking recent progress in precisely qualifying these heterogeneities will help to draw an integrated picture of the plant PM. Understanding the key principles governing such a complex dynamic organization will contribute to deciphering the crucial role of the PM in cell physiology.
Collapse
Affiliation(s)
- Julien Gronnier
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche (UMR) 5200, Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux, Bordeaux, France; Present address: Laboratory of Cyril Zipfel, Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Patricia Gerbeau-Pissot
- Agroécologie, Institut National Supérieur des Sciences Agronomiques, de l'Alimentation, et de l'Environnement (AgroSup) Dijon, CNRS, Institut National de la Recherche Agronomique (INRA), Université Bourgogne Franche-Comté, Dijon, France
| | - Véronique Germain
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche (UMR) 5200, Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux, Bordeaux, France
| | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche (UMR) 5200, Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux, Bordeaux, France; These authors contributed equally to this work
| | - Françoise Simon-Plas
- Agroécologie, Institut National Supérieur des Sciences Agronomiques, de l'Alimentation, et de l'Environnement (AgroSup) Dijon, CNRS, Institut National de la Recherche Agronomique (INRA), Université Bourgogne Franche-Comté, Dijon, France; These authors contributed equally to this work.
| |
Collapse
|
29
|
Yano Y, Hanashima S, Yasuda T, Tsuchikawa H, Matsumori N, Kinoshita M, Al Sazzad MA, Slotte JP, Murata M. Sphingomyelin Stereoisomers Reveal That Homophilic Interactions Cause Nanodomain Formation. Biophys J 2018; 115:1530-1540. [PMID: 30274830 DOI: 10.1016/j.bpj.2018.08.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/31/2018] [Accepted: 08/27/2018] [Indexed: 01/03/2023] Open
Abstract
Sphingomyelin is an abundant lipid in some cellular membrane domains, such as lipid rafts. Hydrogen bonding and hydrophobic interactions of the lipid with surrounding components such as neighboring sphingomyelin and cholesterol (Cho) are widely considered to stabilize the raft-like liquid-ordered (Lo) domains in membrane bilayers. However, details of their interactions responsible for the formation of Lo domains remain largely unknown. In this study, the enantiomer of stearoyl sphingomyelin (ent-SSM) was prepared, and its physicochemical properties were compared with the natural SSM and the diastereomer of SSM to examine possible stereoselective lipid-lipid interactions. Interestingly, differential scanning calorimetry experiments demonstrated that palmitoyl sphingomyelin, with natural stereochemistry, exhibited higher miscibility with SSM bilayers than with ent-SSM bilayers, indicating that the homophilic sphingomyelin interactions occurred in a stereoselective manner. Solid-state 2H NMR revealed that Cho elicited its ordering effect very similarly on SSM and ent-SSM (and even on the diastereomer of SSM), suggesting that SSM-Cho interactions are not significantly affected by stereospecific hydrogen bonding. SSM and ent-SSM formed gel-like domains with very similar lateral packing in SSM/Cho/palmitoyloleoyl phosphatidylcholine membranes, as shown by fluorescence lifetime experiments. This observation can be explained by a homophilic hydrogen-bond network, which was largely responsible for the formation of gel-like nanodomains of SSMs (or ent-SSM). Our previous study revealed that Cho-poor gel-like domains contributed significantly to the formation of an Lo phase in sphingomyelin/Cho membranes. The results of the study presented here further show that SSM-SSM interactions occur near the headgroup region, whereas hydrophobic SSM-Cho interactions appeared important in the bilayer interior for Lo domain formation. The homophilic interactions of sphingomyelins could be mainly responsible for the formation of the domains of nanometer size, which may correspond to the small sphingomyelin/Cho-based rafts that temporally occur in biological membranes.
Collapse
Affiliation(s)
- Yo Yano
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan; ERATO, Lipid Active Structure Project, Japan Science and Technology Agency, Graduate School of Science, Osaka University, Osaka, Japan
| | - Shinya Hanashima
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
| | - Tomokazu Yasuda
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
| | - Hiroshi Tsuchikawa
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Graduate School of Science, Kyushu University, Fukuoka, Japan
| | - Masanao Kinoshita
- Department of Chemistry, Graduate School of Science, Kyushu University, Fukuoka, Japan
| | - Md Abdullah Al Sazzad
- Biochemistry, Faculty of Science Engineering, Åbo Akademi University, Turku, Finland
| | - J Peter Slotte
- Biochemistry, Faculty of Science Engineering, Åbo Akademi University, Turku, Finland.
| | - Michio Murata
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan; ERATO, Lipid Active Structure Project, Japan Science and Technology Agency, Graduate School of Science, Osaka University, Osaka, Japan.
| |
Collapse
|
30
|
Cornell CE, Skinkle AD, He S, Levental I, Levental KR, Keller SL. Tuning Length Scales of Small Domains in Cell-Derived Membranes and Synthetic Model Membranes. Biophys J 2018; 115:690-701. [PMID: 30049406 DOI: 10.1016/j.bpj.2018.06.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/15/2018] [Accepted: 06/19/2018] [Indexed: 01/10/2023] Open
Abstract
Micron-scale, coexisting liquid-ordered (Lo) and liquid-disordered (Ld) phases are straightforward to observe in giant unilamellar vesicles (GUVs) composed of ternary lipid mixtures. Experimentally, uniform membranes undergo demixing when temperature is decreased: domains subsequently nucleate, diffuse, collide, and coalesce until only one domain of each phase remains. The sizes of these two domains are limited only by the size of the system. Under different conditions, vesicles exhibit smaller-scale domains of fixed sizes, leading to the question of what sets the length scale. In membranes with excess area, small domains are expected when coarsening is hindered or when a microemulsion or modulated phase arises. Here, we test predictions of how the size, morphology, and fluorescence levels of small domains vary with the membrane's temperature, tension, and composition. Using GUVs and cell-derived giant plasma membrane vesicles, we find that 1) the characteristic size of domains decreases when temperature is increased or membrane tension is decreased, 2) stripes are favored over circular domains for lipid compositions with low energy per unit interface, 3) fluorescence levels are consistent with domain registration across both monolayer leaflets of the bilayer, and 4) small domains form in GUVs composed of lipids both with and without ester-linked lipids. Our experimental results are consistent with several elements of current theories for microemulsions and modulated phases and inconsistent with others, suggesting a motivation to modify or enhance current theories.
Collapse
Affiliation(s)
- Caitlin E Cornell
- Department of Chemistry, University of Washington, Seattle, Washington
| | | | - Shushan He
- Department of Chemistry, University of Washington, Seattle, Washington
| | - Ilya Levental
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Kandice R Levental
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Sarah L Keller
- Department of Chemistry, University of Washington, Seattle, Washington.
| |
Collapse
|
31
|
Affiliation(s)
- Derek Marsh
- Max-Planck-Institut für biophysikalische Chemie, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
32
|
Raghunathan K, Kenworthy AK. Dynamic pattern generation in cell membranes: Current insights into membrane organization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2018-2031. [PMID: 29752898 DOI: 10.1016/j.bbamem.2018.05.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/30/2018] [Accepted: 05/03/2018] [Indexed: 12/18/2022]
Abstract
It has been two decades since the lipid raft hypothesis was first presented. Even today, whether these nanoscale cholesterol-rich domains are present in cell membranes is not completely resolved. However, especially in the last few years, a rich body of literature has demonstrated both the presence and the importance of non-random distribution of biomolecules on the membrane, which is the focus of this review. These new developments have pushed the experimental limits of detection and have brought us closer to observing lipid domains in the plasma membrane of live cells. Characterization of biomolecules associated with lipid rafts has revealed a deep connection between biological regulation and function and membrane compositional heterogeneities. Finally, tantalizing new developments in the field have demonstrated that lipid domains might not just be associated with the plasma membrane of eukaryotes but could potentially be a ubiquitous membrane-organizing principle in several other biological systems. This article is part of a Special Issue entitled: Emergence of Complex Behavior in Biomembranes edited by Marjorie Longo.
Collapse
Affiliation(s)
- Krishnan Raghunathan
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, PA 15224, USA.
| | - Anne K Kenworthy
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
33
|
Löser L, Saalwächter K, Mendes Ferreira T. Liquid-liquid phase coexistence in lipid membranes observed by natural abundance 1H- 13C solid-state NMR. Phys Chem Chem Phys 2018; 20:9751-9754. [PMID: 29611606 DOI: 10.1039/c8cp01012a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrate that 1H-13C solid-state MAS NMR is suitable to detect liquid disordered/liquid ordered phase coexistence in a DOPC/DPPC/cholesterol mixture with natural abundance of isotopes as an alternative to 2H NMR. Such methodology is potentially applicable to study lipid phase coexistence phenomena in biological matter with high lipid content, e.g. lung surfactant or myelin, for which isotopic labeling is not possible.
Collapse
Affiliation(s)
- Lucas Löser
- NMR - Institute for Physics, Martin-Luther University Halle-Wittenberg, Germany.
| | | | | |
Collapse
|
34
|
Chirality-Dependent Interaction of d- and l-Menthol with Biomembrane Models. MEMBRANES 2017; 7:membranes7040069. [PMID: 29244740 PMCID: PMC5746828 DOI: 10.3390/membranes7040069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 01/19/2023]
Abstract
Chirality plays a vital role in biological membranes and has a significant effect depending on the type and arrangement of the isomer. Menthol has two typical chiral forms, d- and l-, which exhibit different behaviours. l-Menthol is known for its physiological effect on sensitivity (i.e. a cooling effect), whereas d-menthol causes skin irritation. Menthol molecules may affect not only the thermoreceptors on biomembranes, but also the membrane itself. Membrane heterogeneity (lipid rafts, phase separation) depends on lipid packing and acyl chain ordering. Our interest is to elaborate the chirality dependence of d- and l-menthol on membrane heterogeneity. We revealed physical differences between the two optical isomers of menthol on membrane heterogeneity by studying model membranes using nuclear magnetic resonance and microscopic observation.
Collapse
|
35
|
Cornell CE, McCarthy NLC, Levental KR, Levental I, Brooks NJ, Keller SL. n-Alcohol Length Governs Shift in L o-L d Mixing Temperatures in Synthetic and Cell-Derived Membranes. Biophys J 2017; 113:1200-1211. [PMID: 28801104 PMCID: PMC5607138 DOI: 10.1016/j.bpj.2017.06.066] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/07/2017] [Accepted: 06/29/2017] [Indexed: 11/30/2022] Open
Abstract
A persistent challenge in membrane biophysics has been to quantitatively predict how membrane physical properties change upon addition of new amphiphiles (e.g., lipids, alcohols, peptides, or proteins) in order to assess whether the changes are large enough to plausibly result in biological ramifications. Because of their roles as general anesthetics, n-alcohols are perhaps the best-studied amphiphiles of this class. When n-alcohols are added to model and cell membranes, changes in membrane parameters tend to be modest. One striking exception is found in the large decrease in liquid-liquid miscibility transition temperatures (Tmix) observed when short-chain n-alcohols are incorporated into giant plasma membrane vesicles (GPMVs). Coexisting liquid-ordered and liquid-disordered phases are observed at temperatures below Tmix in GPMVs as well as in giant unilamellar vesicles (GUVs) composed of ternary mixtures of a lipid with a low melting temperature, a lipid with a high melting temperature, and cholesterol. Here, we find that when GUVs of canonical ternary mixtures are formed in aqueous solutions of short-chain n-alcohols (n ≤ 10), Tmix increases relative to GUVs in water. This shift is in the opposite direction from that reported for cell-derived GPMVs. The increase in Tmix is robust across GUVs of several types of lipids, ratios of lipids, types of short-chain n-alcohols, and concentrations of n-alcohols. However, as chain lengths of n-alcohols increase, nonmonotonic shifts in Tmix are observed. Alcohols with chain lengths of 10-14 carbons decrease Tmix in ternary GUVs of dioleoyl-PC/dipalmitoyl-PC/cholesterol, whereas 16 carbons increase Tmix again. Gray et al. observed a similar influence of the length of n-alcohols on the direction of the shift in Tmix. These results are consistent with a scenario in which the relative partitioning of n-alcohols between liquid-ordered and liquid-disordered phases evolves as the chain length of the n-alcohol increases.
Collapse
Affiliation(s)
- Caitlin E Cornell
- University of Washington, Department of Chemistry, Seattle, Washington
| | | | - Kandice R Levental
- Department of Integrative Biology and Pharmacology, McGovern Medical School at The University of Texas Medical Center, Houston, Texas
| | - Ilya Levental
- Department of Integrative Biology and Pharmacology, McGovern Medical School at The University of Texas Medical Center, Houston, Texas
| | - Nicholas J Brooks
- Department of Chemistry, Imperial College London, London, United Kingdom
| | - Sarah L Keller
- University of Washington, Department of Chemistry, Seattle, Washington.
| |
Collapse
|
36
|
Caritá AC, Mattei B, Domingues CC, de Paula E, Riske KA. Effect of Triton X-100 on Raft-Like Lipid Mixtures: Phase Separation and Selective Solubilization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:7312-7321. [PMID: 28474888 DOI: 10.1021/acs.langmuir.7b01134] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Under certain conditions, biological membranes exhibit resistance to solubilization, even at high detergent concentration. These insoluble fragments are enriched in sphingolipids, cholesterol, and certain proteins having a preference for more organized environments. Here we investigated the effect of detergent Triton X-100 (TX-100) on raft-like lipid mixtures composed of POPC (palmitoyl oleoyl phosphatidylcholine, an unsaturated lipid), SM (sphingomyelin, a saturated lipid), and cholesterol, focusing on the detergent-induced phase separation at subsolubilizing concentration and the extent of solubilization at higher concentration. Giant unilamellar vesicles (GUVs) of POPC/SM/chol containing a fluorescent probe known to prefer the liquid-disordered phase were prepared and observed with fluorescence microscopy. A phase diagram constructed in the presence and absence of 0.1 mM TX-100 showed that the detergent induces macroscopic liquid-ordered/liquid-disordered (Lo/Ld) phase separation over a wide range of membrane composition, indicating that TX-100 has the ability to rearrange the lateral heterogeneity of the lipid mixture. The extent of solubilization of the POPC/SM/chol GUVs was quantified by measuring the vesicle size before and after the injection of a high concentration of TX-100. In parallel, the solubilization extent of large unilamellar vesicles (LUVs) was assessed by turbidity measurements. The extent of solubilization decreases significantly as the fractions of SM and cholesterol in the mixture increase. The origin of the detergent resistance is the low partitioning of TX-100 in cholesterol-rich membranes, especially in SM-containing ones, as evidenced by isothermal titration calorimetry experiments on LUVs. Our results provide a guide to future research on the effects of TX-100 on raft-like lipid mixtures.
Collapse
Affiliation(s)
- Amanda C Caritá
- Departamento de Biofísica, Universidade Federal de São Paulo , Sao Paulo, Brazil
| | - Bruno Mattei
- Departamento de Biofísica, Universidade Federal de São Paulo , Sao Paulo, Brazil
| | - Cleyton C Domingues
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas , Campinas, SP Brazil
| | - Eneida de Paula
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas , Campinas, SP Brazil
| | - Karin A Riske
- Departamento de Biofísica, Universidade Federal de São Paulo , Sao Paulo, Brazil
| |
Collapse
|
37
|
Heberle FA, Pabst G. Complex biomembrane mimetics on the sub-nanometer scale. Biophys Rev 2017; 9:353-373. [PMID: 28717925 PMCID: PMC5578918 DOI: 10.1007/s12551-017-0275-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 06/26/2017] [Indexed: 12/12/2022] Open
Abstract
Biomimetic lipid vesicles are indispensable tools for gaining insight into the biophysics of cell physiology on the molecular level. The level of complexity of these model systems has steadily increased, and now spans from domain-forming lipid mixtures to asymmetric lipid bilayers. Here, we review recent progress in the development and application of elastic neutron and X-ray scattering techniques for studying these systems in situ and under physiologically relevant conditions on the nanometer to sub-nanometer length scales. In particular, we focus on: (1) structural details of coexisting liquid-ordered and liquid-disordered domains, including their thickness and lipid packing mismatch as a function of a size transition from nanoscopic to macroscopic domains; (2) membrane-mediated protein partitioning into lipid domains; (3) the role of the aqueous medium in tuning interactions between membranes and domains; and (4) leaflet-specific structure in asymmetric bilayers and passive lipid flip-flop.
Collapse
Affiliation(s)
- Frederick A Heberle
- The Bredesen Center, University of Tennessee, Knoxville, TN, 37996, USA.,Joint Institute for Biological Sciences and Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Georg Pabst
- Institute of Molecular Biosciences, Biophysics Division, NAWI Graz, University of Graz, 8010, Graz, Austria. .,BioTechMed-Graz, 8010, Graz, Austria.
| |
Collapse
|
38
|
Kardash ME, Dzuba SA. Lipid-Mediated Clusters of Guest Molecules in Model Membranes and Their Dissolving in the Presence of Lipid Rafts. J Phys Chem B 2017; 121:5209-5217. [DOI: 10.1021/acs.jpcb.7b01561] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maria E. Kardash
- Institute of Chemical Kinetics
and Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Physics, Novosibirsk State University, 630090, Novosibirsk, Russia
| | - Sergei A. Dzuba
- Institute of Chemical Kinetics
and Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Physics, Novosibirsk State University, 630090, Novosibirsk, Russia
| |
Collapse
|
39
|
Non-linear van't Hoff behavior in pulmonary surfactant model membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1133-1143. [PMID: 28336314 DOI: 10.1016/j.bbamem.2017.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 03/14/2017] [Accepted: 03/18/2017] [Indexed: 11/22/2022]
Abstract
Pulmonary surfactant exhibits phase coexistence over a wide range of surface pressure and temperature. Less is known about the effect of temperature on pulmonary surfactant models. Given the lack of studies on this issue, we used electron paramagnetic resonance (EPR) and nonlinear least-squares (NLLS) simulations to investigate the thermotropic phase behavior of the matrix that mimics the pulmonary surfactant lipid complex, i.e., the lipid mixture composed of dipalmitoyl phosphatidylcholine (DPPC), palmitoyl-oleoyl phosphatidylcholine (POPC) and palmitoyl-oleoyl phosphatidylglycerol (POPG). Irrespective of pH, the EPR spectra recorded from 5°C to 25°C in the DPPC/POPC/POPG (4:3:1) model membrane contain two spectral components corresponding to lipids in gel-like and fluid-like phases, indicating a coexistence of two domains in that range. The temperature dependence of the distribution of spin labels between the domains yielded nonlinear van't Hoff plots. The thermodynamic parameters evaluated were markedly different for DPPC and for the ternary DPPC/POPC/POPG (4:3:1) membranes and exhibited a dependence on chemical environment. While enthalpy and entropy changes for DPPC were always positive and presented a quadratic behavior with temperature, those of the ternary mixture were linearly dependent on temperature and changed from negative to positive values. Despite that, enthalpy-entropy compensation takes place in the two systems. The thermotropic process associated with the coexistence of the two domains is entropically-driven in DPPC and either entropically- or enthalpically-driven in the pulmonary surfactant membrane depending on the pH, ionic strength and temperature. The significance of these results to the structure and function of the pulmonary surfactant lipid matrix is discussed.
Collapse
|
40
|
Belička M, Weitzer A, Pabst G. High-resolution structure of coexisting nanoscopic and microscopic lipid domains. SOFT MATTER 2017; 13:1823-1833. [PMID: 28170020 DOI: 10.1039/c6sm02727j] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We studied coexisting micro- and nanoscopic liquid-ordered/liquid-disordered domains in fully hydrated multilamellar vesicles using small-angle X-ray scattering. Large domains exhibited long-range out-of-plane positional correlations of like domains, consistent with previous reports. In contrast, such correlations were absent in nanoscopic domains. Advancing a global analysis of the in situ data allowed us to gain a deep insight into the structural and elastic properties of the coexisting domains, including the partitioning of cholesterol in each domain. In agreement with a previous report, we found that the thickness mismatch between ordered and disordered domains decreased for nanoscopic domains. At the same time, we found also the lipid packing mismatch to be decreased for nano-domains, mainly due to the liquid-disordered domains becoming more densely packed when decreasing their size.
Collapse
Affiliation(s)
- Michal Belička
- University of Graz, Institute of Molecular Biosciences, Biophysics Division, NAWI Graz, Humboldtstr. 50/III, A-8010 Graz, Austria. and BioTechMed-Graz, A-8010 Graz, Austria
| | - Anna Weitzer
- University of Graz, Institute of Molecular Biosciences, Biophysics Division, NAWI Graz, Humboldtstr. 50/III, A-8010 Graz, Austria. and BioTechMed-Graz, A-8010 Graz, Austria
| | - Georg Pabst
- University of Graz, Institute of Molecular Biosciences, Biophysics Division, NAWI Graz, Humboldtstr. 50/III, A-8010 Graz, Austria. and BioTechMed-Graz, A-8010 Graz, Austria
| |
Collapse
|
41
|
Hasan IY, Mechler A. Nanoviscosity Measurements Revealing Domain Formation in Biomimetic Membranes. Anal Chem 2017; 89:1855-1862. [PMID: 28208292 DOI: 10.1021/acs.analchem.6b04256] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Partitioning of lipid molecules in biomimetic membranes is a model system for the study of naturally occurring domains, such as rafts, in biological membranes. The existence of nanometer scale membrane domains in binary lipid mixtures has been shown with microscopy methods; however, the nature of these domains has not been established unequivocally. A common notion is to ascribe domain separation to thermodynamic phase equilibria. However, characterizing thermodynamic phases of single bilayer membranes has not been possible due to their extreme dimensions: the size of the domains falls to the order of tens to hundreds of nanometers whereas the membrane thickness is only a few nanometers. Here, we present direct measurements of phase transitions in single bilayers of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) phospholipid mixtures using quartz crystal microbalance-based nanoviscosity measurements. Coexisting thermodynamic phases have been successfully identified, and a phase diagram was constructed for the single bilayer binary lipid system. It was demonstrated that domain separation only takes place in planar membranes, and thus, it is absent in liposomes and not detectable in calorimetric measurements on liposome suspensions. On the basis of energetic analysis, the main transition was identified as the breaking of van der Waals interactions between the acyl chains.
Collapse
Affiliation(s)
- Imad Younus Hasan
- La Trobe Institute for Molecular Science, La Trobe University , Melbourne, Victoria 3086, Australia
| | - Adam Mechler
- La Trobe Institute for Molecular Science, La Trobe University , Melbourne, Victoria 3086, Australia
| |
Collapse
|
42
|
Hasan IY, Mechler A. Analytical approaches to study domain formation in biomimetic membranes. Analyst 2017; 142:3062-3078. [PMID: 28758651 DOI: 10.1039/c7an01038a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Novel characterization methods open new horizons in the study of membrane mixtures.
Collapse
Affiliation(s)
- Imad Younus Hasan
- La Trobe Institute for Molecular Science
- La Trobe University
- Melbourne
- Australia
| | - Adam Mechler
- La Trobe Institute for Molecular Science
- La Trobe University
- Melbourne
- Australia
| |
Collapse
|
43
|
Engberg O, Yasuda T, Hautala V, Matsumori N, Nyholm TKM, Murata M, Slotte JP. Lipid Interactions and Organization in Complex Bilayer Membranes. Biophys J 2016; 110:1563-1573. [PMID: 27074681 DOI: 10.1016/j.bpj.2015.12.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/01/2015] [Accepted: 12/21/2015] [Indexed: 11/18/2022] Open
Abstract
Bilayer lipids influence the lateral structure of the membranes, but the relationship between lipid properties and the lateral structure formed is not always understood. Model membrane studies on bilayers containing cholesterol and various phospholipids (PLs) suggest that high and low temperature melting PLs may segregate, especially in the presence of cholesterol. The effect of different PL headgroups on lateral structure of bilayers is also not clear. Here, we have examined the formation of lateral heterogeneity in increasingly complex (up to five-component) multilamellar bilayers. We have used time-resolved fluorescence spectroscopy with domain-selective fluorescent probes (PL-conjugated trans-parinaric acid), and (2)H NMR spectroscopy with site or perdeuterated PLs. We have measured changes in bilayer order using such domain-selective probes both as a function of temperature and composition. Our results from time-resolved fluorescence and (2)H NMR showed that in ternary bilayers, acyl chain order and thermostability in sphingomyelin-rich domains were not affected to any greater extent by the headgroup structure of the monounsaturated PLs (phosphatidylcholine, phosphatidylethanolamine, or phosphatidylserine) in the bilayer. In the complex five-component bilayers, we could not detect major differences between the different monounsaturated PLs regarding cholesterol-induced ordering. However, cholesterol clearly influenced deuterated N-palmitoyl sphingomyelin differently than the other deuterated PLs, suggesting that cholesterol favored N-palmitoyl sphingomyelin over the other PLs. Taken together, both the fluorescence spectroscopy and (2)H NMR data suggest that the complex five-component membranes displayed lateral heterogeneity, at least in the lower temperature regimen examined.
Collapse
Affiliation(s)
- Oskar Engberg
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Tomokazu Yasuda
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan; Lipid Active Structure Project, Japan Science and Technology Agency, ERATO, Toyonaka, Osaka, Japan
| | - Victor Hautala
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Nobuaki Matsumori
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan; Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Thomas K M Nyholm
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Michio Murata
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan; Lipid Active Structure Project, Japan Science and Technology Agency, ERATO, Toyonaka, Osaka, Japan.
| | - J Peter Slotte
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.
| |
Collapse
|
44
|
Moss FR, Boxer SG. Atomic Recombination in Dynamic Secondary Ion Mass Spectrometry Probes Distance in Lipid Assemblies: A Nanometer Chemical Ruler. J Am Chem Soc 2016; 138:16737-16744. [PMID: 27977192 DOI: 10.1021/jacs.6b10655] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The lateral organization of biological membranes is thought to take place on the nanometer length scale. However, this length scale and the dynamic nature of small lipid and protein domains have made characterization of such organization in biological membranes and model systems difficult. Here we introduce a new method for measuring the colocalization of lipids in monolayers and bilayers using stable isotope labeling. We take advantage of a process that occurs in dynamic SIMS called atomic recombination, in which atoms on different molecules combine to form diatomic ions that are detected with a NanoSIMS instrument. This process is highly sensitive to the distance between molecules. By measuring the efficiency of the formation of 13C15N- ions from 13C and 15N atoms on different lipid molecules, we measure variations in the lateral organization of bilayers even though these heterogeneities occur on a length scale of only a few nm, well below the diameter of the primary ion beam of the NanoSIMS instrument or even the best super-resolution fluorescence methods. Using this technique, we provide direct evidence for nanoscale phase separation in a model membrane, which may provide a better model for the organization of biological membranes than lipid mixtures with microscale phase separation. We expect this technique to be broadly applicable to any assembly where very short scale proximity is of interest or unknown, both in chemical and biological systems.
Collapse
Affiliation(s)
- Frank R Moss
- Department of Chemistry, Stanford University , Stanford, California 94305-5012, United States
| | - Steven G Boxer
- Department of Chemistry, Stanford University , Stanford, California 94305-5012, United States
| |
Collapse
|
45
|
Glycosphingolipid-Protein Interaction in Signal Transduction. Int J Mol Sci 2016; 17:ijms17101732. [PMID: 27754465 PMCID: PMC5085762 DOI: 10.3390/ijms17101732] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/04/2016] [Accepted: 10/10/2016] [Indexed: 12/31/2022] Open
Abstract
Glycosphingolipids (GSLs) are a class of ceramide-based glycolipids essential for embryo development in mammals. The synthesis of specific GSLs depends on the expression of distinctive sets of GSL synthesizing enzymes that is tightly regulated during development. Several reports have described how cell surface receptors can be kept in a resting state or activate alternative signalling events as a consequence of their interaction with GSLs. Specific GSLs, indeed, interface with specific protein domains that are found in signalling molecules and which act as GSL sensors to modify signalling responses. The regulation exerted by GSLs on signal transduction is orthogonal to the ligand–receptor axis, as it usually does not directly interfere with the ligand binding to receptors. Due to their properties of adjustable production and orthogonal action on receptors, GSLs add a new dimension to the control of the signalling in development. GSLs can, indeed, dynamically influence progenitor cell response to morphogenetic stimuli, resulting in alternative differentiation fates. Here, we review the available literature on GSL–protein interactions and their effects on cell signalling and development.
Collapse
|
46
|
Kullberg A, Ekholm OO, Slotte JP. Miscibility of Sphingomyelins and Phosphatidylcholines in Unsaturated Phosphatidylcholine Bilayers. Biophys J 2016; 109:1907-16. [PMID: 26536267 DOI: 10.1016/j.bpj.2015.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/26/2015] [Accepted: 09/11/2015] [Indexed: 10/22/2022] Open
Abstract
Polyunsaturated phospholipids are common in biological membranes and affect the lateral structure of bilayers. We have examined how saturated sphingomyelin (SM; palmitoyl and stearoyl SM (PSM and SSM, respectively)) and phosphatidylcholine (PC; dipalmitoyl PC and 1-palmitoyl-2-stearoyl PC (DPPC and PSPC, respectively)) segregate laterally to form ordered gel phases in increasingly unsaturated PC bilayers (sn-1: 16:0 and sn-2: 18:1...22:6; or sn-1 and sn-2: 18:1...22:6). The formation of gel phases was determined from the lifetime analysis of trans-parinaric acid. Using calorimetry, we also determined gel phase formation by PSM and DPPC in unsaturated PC mixed bilayers. Comparing PSM with DPPC, we observed that PSM formed a gel phase with less order than DPPC at comparable bilayer concentrations. The same was true when SSM was compared with PSPC. Furthermore, we observed that at equal saturated phospholipid concentration, the gel phases formed were less ordered in unsaturated PCs having 16:0 in sn-1, as compared to PCs having unsaturated acyl chains in both sn-1 and sn-2. The gel phases formed by the saturated phospholipids in unsaturated PC bilayers did not appear to achieve properties similar to pure saturated phospholipid bilayers, suggesting that complete lateral phase separation did not occur. Based on scanning calorimetry analysis, the melting of the gel phases formed by PSM and DPPC in unsaturated PC mixed bilayers (at 45 mol % saturated phospholipid) had low cooperativity and hence most likely were of mixed composition, in good agreement with trans-parinaric acid lifetime data. We conclude that both interfacial properties of the saturated phospholipids and their chain length, as well as the presence of 16:0 in sn-1 of the unsaturated PCs and the total number of cis unsaturations and acyl chain length (18 to 22) of the unsaturated PCs, all affected the formation of gel phases enriched in saturated phospholipids, under the conditions used.
Collapse
Affiliation(s)
- Anders Kullberg
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Oscar Oz Ekholm
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - J Peter Slotte
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.
| |
Collapse
|
47
|
Cui Y, Kenworthy AK, Edidin M, Divan R, Rosenmann D, Wang P. Analyzing Single Giant Unilamellar Vesicles With a Slotline-Based RF Nanometer Sensor. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES 2016; 64:1339-1347. [PMID: 27713585 PMCID: PMC5046228 DOI: 10.1109/tmtt.2016.2536021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Novel techniques that enable reagent free detection and analysis of single cells are of great interest for the development of biological and medical sciences as well as point-of-care health service technologies. Highly sensitive and broadband radio-frequency (RF) sensors are promising candidates for such a technique. In this work, we present a highly sensitive and tunable RF sensor, which is based on interference processes and built with a 100 nm slotline structure. The highly concentrated RF fields, up to ~1.76×107 V/m, enable strong interactions between Giant unilamellar vesicles (GUVs) and fields for high sensitivity operations. We also provide two modeling approaches to extract cell dielectric properties from measured scattering parameters. GUVs of different molecular compositions are synthesized and analyzed with the RF sensor at ~2 GHz, ~2.5 GHz, and ~2.8 GHz with an initial |S21 | min of ~-100 dB. Corresponding GUV dielectric properties are obtained. A one-dimensional scanning of single GUV is also demonstrated.
Collapse
Affiliation(s)
- Yan Cui
- Department of Electrical and Computer Engineering, Clemson University, SC 29634, USA
| | - Anne K Kenworthy
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Michael Edidin
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Ralu Divan
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439 USA
| | - Daniel Rosenmann
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439 USA
| | - Pingshan Wang
- Department of Electrical and Computer Engineering, Clemson University, SC 29634, USA
| |
Collapse
|
48
|
Andersson Trojer M, Brezesinski G. Self-assembly of lipid domains in the extracellular leaflet of the plasma membrane and models thereof. Curr Opin Colloid Interface Sci 2016. [DOI: 10.1016/j.cocis.2016.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
49
|
Bleecker JV, Cox PA, Foster RN, Litz JP, Blosser MC, Castner DG, Keller SL. Thickness Mismatch of Coexisting Liquid Phases in Noncanonical Lipid Bilayers. J Phys Chem B 2016; 120:2761-70. [PMID: 26890258 DOI: 10.1021/acs.jpcb.5b10165] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lipid composition dictates membrane thickness, which in turn can influence membrane protein activity. Lipid composition also determines whether a membrane demixes into coexisting liquid-crystalline phases. Previous direct measurements of demixed lipid membranes have always found a liquid-ordered phase that is thicker than the liquid-disordered phase. Here we investigated noncanonical ternary lipid mixtures designed to produce bilayers with thicker disordered phases than ordered phases. The membranes were composed of short, saturated (ordered) lipids; long, unsaturated (disordered) lipids; and cholesterol. We found that few of these systems yield coexisting liquid phases above 10 °C. For membranes that do demix into two liquid phases, we measured the thickness mismatch between the phases by atomic force microscopy and found that not one of the systems yields thicker disordered than ordered phases under standard experimental conditions. We found no monotonic relationship between demixing temperatures of these ternary systems and either estimated thickness mismatches between the liquid phases or the physical parameters of single-component membranes composed of the individual lipids. These results highlight the robustness of a membrane's liquid-ordered phase to be thicker than the liquid-disordered phase, regardless of the membrane's lipid composition.
Collapse
Affiliation(s)
- Joan V Bleecker
- Departments of Chemistry, ‡Chemical Engineering, and §Bioengineering, University of Washington , Seattle, Washington 98195, United States
| | - Phillip A Cox
- Departments of Chemistry, ‡Chemical Engineering, and §Bioengineering, University of Washington , Seattle, Washington 98195, United States
| | - Rami N Foster
- Departments of Chemistry, ‡Chemical Engineering, and §Bioengineering, University of Washington , Seattle, Washington 98195, United States
| | - Jonathan P Litz
- Departments of Chemistry, ‡Chemical Engineering, and §Bioengineering, University of Washington , Seattle, Washington 98195, United States
| | - Matthew C Blosser
- Departments of Chemistry, ‡Chemical Engineering, and §Bioengineering, University of Washington , Seattle, Washington 98195, United States
| | - David G Castner
- Departments of Chemistry, ‡Chemical Engineering, and §Bioengineering, University of Washington , Seattle, Washington 98195, United States
| | - Sarah L Keller
- Departments of Chemistry, ‡Chemical Engineering, and §Bioengineering, University of Washington , Seattle, Washington 98195, United States
| |
Collapse
|
50
|
Georgieva R, Mircheva K, Vitkova V, Balashev K, Ivanova T, Tessier C, Koumanov K, Nuss P, Momchilova A, Staneva G. Phospholipase A2-Induced Remodeling Processes on Liquid-Ordered/Liquid-Disordered Membranes Containing Docosahexaenoic or Oleic Acid: A Comparison Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:1756-1770. [PMID: 26794691 DOI: 10.1021/acs.langmuir.5b03317] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Vesicle cycling, which is an important biological event, involves the interplay between membrane lipids and proteins, among which the enzyme phospholipase A2 (PLA2) plays a critical role. The capacity of PLA2 to trigger the budding and fission of liquid-ordered (L(o)) domains has been examined in palmitoyl-docosahexaenoylphosphatidylcholine (PDPC) and palmitoyl-oleoylphosphatidylcholine (POPC)/sphingomyelin/cholesterol membranes. They both exhibited a L(o)/liquid-disordered (L(d)) phase separation. We demonstrated that PLA2 was able to trigger budding in PDPC-containing vesicles but not POPC ones. The enzymatic activity, line tension, and elasticity of the membrane surrounding the L(o) domains are critical for budding. The higher line tension of Lo domains in PDPC mixtures was assigned to the greater difference in order parameters of the coexisting phases. The higher amount of lysophosphatidylcholine generated by PLA2 in the PDPC-containing mixtures led to a less-rigid membrane, compared to POPC. The more elastic L(d) membranes in PDPC mixtures exert a lower counteracting force against the L(o) domain bending.
Collapse
Affiliation(s)
- Rayna Georgieva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences , Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Kristina Mircheva
- Biophysical Chemistry Laboratory, Department of Physical Chemistry, Faculty of Chemistry and Pharmacy, University of Sofia , 1 J. Bourchier Str., 1164 Sofia, Bulgaria
| | - Victoria Vitkova
- Institute of Solid State Physics, Bulgarian Academy of Sciences , 72 Tsarigradsko Chaussee, 1784 Sofia, Bulgaria
| | - Konstantin Balashev
- Biophysical Chemistry Laboratory, Department of Physical Chemistry, Faculty of Chemistry and Pharmacy, University of Sofia , 1 J. Bourchier Str., 1164 Sofia, Bulgaria
| | - Tzvetanka Ivanova
- Biophysical Chemistry Laboratory, Department of Physical Chemistry, Faculty of Chemistry and Pharmacy, University of Sofia , 1 J. Bourchier Str., 1164 Sofia, Bulgaria
| | - Cedric Tessier
- Sorbonne Universites-UPMC Univ Paris 06, UMR 7203, INSERM ERL 1157, CHU St. Antoine, 27 rue Chaligny, 75012 Paris, France
- Department of Psychiatry, Hôpital Saint-Antoine, AP-HP , Paris, France
| | - Kamen Koumanov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences , Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Philippe Nuss
- Sorbonne Universites-UPMC Univ Paris 06, UMR 7203, INSERM ERL 1157, CHU St. Antoine, 27 rue Chaligny, 75012 Paris, France
- Department of Psychiatry, Hôpital Saint-Antoine, AP-HP , Paris, France
| | - Albena Momchilova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences , Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Galya Staneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences , Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| |
Collapse
|