1
|
Fluid Films as Models for Understanding the Impact of Inhaled Particles in Lung Surfactant Layers. COATINGS 2022. [DOI: 10.3390/coatings12020277] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pollution is currently a public health problem associated with different cardiovascular and respiratory diseases. These are commonly originated as a result of the pollutant transport to the alveolar cavity after their inhalation. Once pollutants enter the alveolar cavity, they are deposited on the lung surfactant (LS) film, altering their mechanical performance which increases the respiratory work and can induce a premature alveolar collapse. Furthermore, the interactions of pollutants with LS can induce the formation of an LS corona decorating the pollutant surface, favoring their penetration into the bloodstream and distribution along different organs. Therefore, it is necessary to understand the most fundamental aspects of the interaction of particulate pollutants with LS to mitigate their effects, and design therapeutic strategies. However, the use of animal models is often invasive, and requires a careful examination of different bioethics aspects. This makes it necessary to design in vitro models mimicking some physico-chemical aspects with relevance for LS performance, which can be done by exploiting the tools provided by the science and technology of interfaces to shed light on the most fundamental physico-chemical bases governing the interaction between LS and particulate matter. This review provides an updated perspective of the use of fluid films of LS models for shedding light on the potential impact of particulate matter in the performance of LS film. It should be noted that even though the used model systems cannot account for some physiological aspects, it is expected that the information contained in this review can contribute on the understanding of the potential toxicological effects of air pollution.
Collapse
|
2
|
Castillo-Sánchez JC, Roldán N, García-Álvarez B, Batllori E, Galindo A, Cruz A, Perez-Gil J. The highly packed and dehydrated structure of pre-formed unexposed human pulmonary surfactant isolated from amniotic fluid. Am J Physiol Lung Cell Mol Physiol 2021; 322:L191-L203. [PMID: 34851730 DOI: 10.1152/ajplung.00230.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
By coating the alveolar air-liquid interface, lung surfactant overwhelms surface tension forces that, otherwise, would hinder the lifetime effort of breathing. Years of research have provided a picture of how highly hydrophobic and specialized proteins in surfactant promote rapid and efficient formation of phospholipid-based complex three-dimensional films at the respiratory surface, highly stable under the demanding breathing mechanics. However, recent evidence suggest that the structure and performance of surfactant typically isolated from bronchoalveolar lung lavages may be far from that of nascent, still unused, surfactant as freshly secreted by type II pneumocytes into the alveolar airspaces. In the present work, we report the isolation of lung surfactant from human amniotic fluid (amniotic fluid surfactant, AFS) and a detailed description of its composition, structure and surface activity in comparison to a natural surfactant (NS) purified from porcine bronchoalveolar lavages. We observe that the lipid/protein complexes in AFS exhibit a substantially higher lipid packing and dehydration than in NS. AFS shows melting transitions at higher temperatures than NS and a conspicuous presence of non-lamellar phases. The surface activity of AFS is not only comparable to that of NS under physiologically-meaningful conditions, but displays significantly higher resistance to inhibition by serum or meconium, agents that inactivate surfactant in the context of severe respiratory pathologies. We propose that AFS may be the optimal model to study the molecular mechanisms sustaining pulmonary surfactant performance in health and disease, and the reference material to develop improved therapeutic surfactant preparations to treat yet unresolved respiratory pathologies.
Collapse
Affiliation(s)
- José Carlos Castillo-Sánchez
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, Madrid, Spain.,Research Institute "Hospital 12 Octubre (imas12)", Complutense University, Madrid, Spain
| | - Nuria Roldán
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, Madrid, Spain.,Research Institute "Hospital 12 Octubre (imas12)", Complutense University, Madrid, Spain
| | - Begoña García-Álvarez
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, Madrid, Spain
| | - Emma Batllori
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, Madrid, Spain.,Research Institute "Hospital 12 Octubre (imas12)", Complutense University, Madrid, Spain
| | - Alberto Galindo
- Department of Obstetrics and Gynecology, Hospital Universitario 12 de Octubre. Red de Salud Materno Infantil y del Desarrollo (SAMID). Instituto de Investigación Hospital 12 de Octubre (imas12). Universidad Complutense de Madrid, Spain
| | - Antonio Cruz
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, Madrid, Spain.,Research Institute "Hospital 12 Octubre (imas12)", Complutense University, Madrid, Spain
| | - Jesus Perez-Gil
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, Madrid, Spain.,Research Institute "Hospital 12 Octubre (imas12)", Complutense University, Madrid, Spain
| |
Collapse
|
3
|
Autilio C. Techniques to evaluate surfactant activity for a personalized therapy of RDS neonates. Biomed J 2021; 44:671-677. [PMID: 34758409 PMCID: PMC8847822 DOI: 10.1016/j.bj.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/28/2021] [Accepted: 11/01/2021] [Indexed: 02/06/2023] Open
Abstract
According to both European and American Guidelines, preterm neonates have to be treated by nasal continuous air pressure (CPAP) early in the delivery room. The administration of surfactant should be reserved only for babies with respiratory distress syndrome (RDS) with increased oxygen requirement, according to different thresholds of FiO2. However, these oxygenation thresholds do not fully take into consideration the lung physiopathology and mechanics or the lung surfactant biology of RDS neonates. Since surfactant replacement therapy (SRT) seems to be more effective if it is initiated within the first 3 hours after birth, the use of a reliable bench-to-bedside biological test able to predict as soon as possible the necessity of SRT will help optimise individualised therapies and personalise the actual collective strategy used to treat RDS neonates. With this in mind, in the present review several quantitative and qualitative biological tests to assess the surfactant status in RDS neonates are introduced as potential candidates for the early prediction of SRT requirement, summarising the state-of-the-art in the evaluation of surfactant activity.
Collapse
Affiliation(s)
- Chiara Autilio
- Department of Biochemistry and Molecular Biology and Research Institute ``Hospital 12 de Octubre (imas12)'', Faculty of Biology, Complutense University, Jose Antonio Novais 12, Madrid, Spain; Clinical Pathology and Microbiology Unit, "San Carlo" Hospital, Potenza, Italy.
| |
Collapse
|
4
|
Structural hallmarks of lung surfactant: Lipid-protein interactions, membrane structure and future challenges. Arch Biochem Biophys 2021; 703:108850. [PMID: 33753033 DOI: 10.1016/j.abb.2021.108850] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/20/2021] [Accepted: 03/16/2021] [Indexed: 11/23/2022]
Abstract
Lung surfactant (LS) is an outstanding example of how a highly regulated and dynamic membrane-based system has evolved to sustain a wealth of structural reorganizations in order to accomplish its biophysical function, as it coats and stabilizes the respiratory air-liquid interface in the mammalian lung. The present review dissects the complexity of the structure-function relationships in LS through an updated description of the lipid-protein interactions and the membrane structures that sustain its synthesis, secretion, interfacial performance and recycling. We also revise the current models and the biophysical techniques employed to study the membranous architecture of LS. It is important to consider that the structure and functional properties of LS are often studied in bulk or under static conditions, in spite that surfactant function is strongly connected with a highly dynamic behaviour, sustained by very polymorphic structures and lipid-lipid, lipid-protein and protein-protein interactions that reorganize in precise spatio-temporal coordinates. We have tried to underline the evidences available of the existence of such structural dynamism in LS. A last important aspect is that the synthesis and assembly of LS is a strongly regulated intracellular process to ensure the establishment of the proper interactions driving LS surface activity, while protecting the integrity of other cell membranes. The use of simplified lipid models or partial natural materials purified from animal tissues could be too simplistic to understand the true molecular mechanisms defining surfactant function in vivo. In this line, we will bring into the attention of the reader the methodological challenges and the questions still open to understand the structure-function relationships of LS at its full biological relevance.
Collapse
|
5
|
Martínez-Calle M, Parra-Ortiz E, Cruz A, Olmeda B, Pérez-Gil J. Towards the Molecular Mechanism of Pulmonary Surfactant Protein SP-B: At the Crossroad of Membrane Permeability and Interfacial Lipid Transfer. J Mol Biol 2020; 433:166749. [PMID: 33309854 DOI: 10.1016/j.jmb.2020.166749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/14/2020] [Accepted: 12/03/2020] [Indexed: 11/17/2022]
Abstract
Pulmonary surfactant is a lipid-protein complex that coats the alveolar air-liquid interface, enabling the proper functioning of lung mechanics. The hydrophobic surfactant protein SP-B, in particular, plays an indispensable role in promoting the rapid adsorption of phospholipids into the interface. For this, formation of SP-B ring-shaped assemblies seems to be important, as oligomerization could be required for the ability of the protein to generate membrane contacts and to mediate lipid transfer among surfactant structures. SP-B, together with the other hydrophobic surfactant protein SP-C, also promotes permeability of surfactant membranes to polar molecules although the molecular mechanisms underlying this property, as well as its relevance for the surface activity of the protein, remain undefined. In this work, the contribution of SP-B and SP-C to surfactant membrane permeability has been further investigated, by evaluation of the ability of differently-sized fluorescent polar probes to permeate through giant vesicles with different lipid/protein composition. Our results are consistent with the generation by SP-B of pores with defined size in surfactant membranes. Furthermore, incubation of surfactant with an anti-SP-B antibody not only blocked membrane permeability but also affected lipid transfer into the air-water interface, as observed in a captive bubble surfactometer device. Our findings include the identification of SP-C and anionic phospholipids as modulators required for maintaining native-like permeability features in pulmonary surfactant membranes. Proper permeability through membrane assemblies could be crucial to complement the overall role of surfactant in maintaining alveolar equilibrium, beyond its biophysical function in stabilizing the respiratory air-liquid interface.
Collapse
Affiliation(s)
- Marta Martínez-Calle
- Department of Biochemistry, Faculty of Biology, Complutense University, Madrid, Spain; Research Institute "Hospital 12 de Octubre (imas12)", Complutense University, Madrid, Spain
| | - Elisa Parra-Ortiz
- Department of Biochemistry, Faculty of Biology, Complutense University, Madrid, Spain
| | - Antonio Cruz
- Department of Biochemistry, Faculty of Biology, Complutense University, Madrid, Spain; Research Institute "Hospital 12 de Octubre (imas12)", Complutense University, Madrid, Spain
| | - Barbara Olmeda
- Department of Biochemistry, Faculty of Biology, Complutense University, Madrid, Spain; Research Institute "Hospital 12 de Octubre (imas12)", Complutense University, Madrid, Spain.
| | - Jesús Pérez-Gil
- Department of Biochemistry, Faculty of Biology, Complutense University, Madrid, Spain; Research Institute "Hospital 12 de Octubre (imas12)", Complutense University, Madrid, Spain
| |
Collapse
|
6
|
Lipid-Protein and Protein-Protein Interactions in the Pulmonary Surfactant System and Their Role in Lung Homeostasis. Int J Mol Sci 2020; 21:ijms21103708. [PMID: 32466119 PMCID: PMC7279303 DOI: 10.3390/ijms21103708] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Pulmonary surfactant is a lipid/protein complex synthesized by the alveolar epithelium and secreted into the airspaces, where it coats and protects the large respiratory air–liquid interface. Surfactant, assembled as a complex network of membranous structures, integrates elements in charge of reducing surface tension to a minimum along the breathing cycle, thus maintaining a large surface open to gas exchange and also protecting the lung and the body from the entrance of a myriad of potentially pathogenic entities. Different molecules in the surfactant establish a multivalent crosstalk with the epithelium, the immune system and the lung microbiota, constituting a crucial platform to sustain homeostasis, under health and disease. This review summarizes some of the most important molecules and interactions within lung surfactant and how multiple lipid–protein and protein–protein interactions contribute to the proper maintenance of an operative respiratory surface.
Collapse
|
7
|
Liekkinen J, Enkavi G, Javanainen M, Olmeda B, Pérez-Gil J, Vattulainen I. Pulmonary Surfactant Lipid Reorganization Induced by the Adsorption of the Oligomeric Surfactant Protein B Complex. J Mol Biol 2020; 432:3251-3268. [DOI: 10.1016/j.jmb.2020.02.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022]
|
8
|
Sett R, Paul BK, Guchhait N. Unsaturation of the phospholipid side-chain influences its interaction with cyclodextrins: A spectroscopic exploration using a phenazinium dye. Colloids Surf B Biointerfaces 2019; 180:150-158. [DOI: 10.1016/j.colsurfb.2019.04.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 04/19/2019] [Accepted: 04/20/2019] [Indexed: 11/30/2022]
|
9
|
Roldan N, Pérez-Gil J, Morrow MR, García-Álvarez B. Divide & Conquer: Surfactant Protein SP-C and Cholesterol Modulate Phase Segregation in Lung Surfactant. Biophys J 2017; 113:847-859. [PMID: 28834721 PMCID: PMC5567427 DOI: 10.1016/j.bpj.2017.06.059] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 05/15/2017] [Accepted: 06/26/2017] [Indexed: 02/04/2023] Open
Abstract
Lung surfactant (LS) is an essential system supporting the respiratory function. Cholesterol can be deleterious for LS function, a condition that is reversed by the presence of the lipopeptide SP-C. In this work, the structure of LS-mimicking membranes has been analyzed under the combined effect of SP-C and cholesterol by deuterium NMR and phosphorus NMR and by electron spin resonance. Our results show that SP-C induces phase segregation at 37°C, resulting in an ordered phase with spectral features resembling an interdigitated state enriched in dipalmitoylphosphatidylcholine, a liquid-crystalline bilayer phase, and an extremely mobile phase consistent with small vesicles or micelles. In the presence of cholesterol, POPC and POPG motion seem to be more hindered by SP-C than dipalmitoylphosphatidylcholine. The use of deuterated cholesterol did not show signs of specific interactions that could be attributed to SP-C or to the other hydrophobic surfactant protein SP-B. Palmitoylation of SP-C had an indirect effect on the extent of protein-lipid perturbations by stabilizing SP-C structure, and seemed to be important to maximize differences among the lipids participating in each phase. These results shed some light on how SP-C-induced lipid perturbations can alter membrane structure to sustain LS functionality at the air-liquid interface.
Collapse
Affiliation(s)
- Nuria Roldan
- Department of Biochemistry, Faculty of Biology, Complutense University, Madrid, Spain; Healthcare Research Institute of Hospital 12 de Octubre, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Jesús Pérez-Gil
- Department of Biochemistry, Faculty of Biology, Complutense University, Madrid, Spain; Healthcare Research Institute of Hospital 12 de Octubre, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Michael R Morrow
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Begoña García-Álvarez
- Department of Biochemistry, Faculty of Biology, Complutense University, Madrid, Spain; Healthcare Research Institute of Hospital 12 de Octubre, Hospital Universitario 12 de Octubre, Madrid, Spain.
| |
Collapse
|
10
|
Olmeda B, Martínez-Calle M, Pérez-Gil J. Pulmonary surfactant metabolism in the alveolar airspace: Biogenesis, extracellular conversions, recycling. Ann Anat 2016; 209:78-92. [PMID: 27773772 DOI: 10.1016/j.aanat.2016.09.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/22/2016] [Accepted: 09/25/2016] [Indexed: 01/03/2023]
Abstract
Pulmonary surfactant is a lipid-protein complex that lines and stabilizes the respiratory interface in the alveoli, allowing for gas exchange during the breathing cycle. At the same time, surfactant constitutes the first line of lung defense against pathogens. This review presents an updated view on the processes involved in biogenesis and intracellular processing of newly synthesized and recycled surfactant components, as well as on the extracellular surfactant transformations before and after the formation of the surface active film at the air-water interface. Special attention is paid to the crucial regulation of surfactant homeostasis, because its disruption is associated with several lung pathologies.
Collapse
Affiliation(s)
- Bárbara Olmeda
- Department of Biochemistry, Faculty of Biology, and Research Institute "Hospital 12 de Octubre", Complutense University, 28040 Madrid, Spain
| | - Marta Martínez-Calle
- Department of Biochemistry, Faculty of Biology, and Research Institute "Hospital 12 de Octubre", Complutense University, 28040 Madrid, Spain
| | - Jesus Pérez-Gil
- Department of Biochemistry, Faculty of Biology, and Research Institute "Hospital 12 de Octubre", Complutense University, 28040 Madrid, Spain.
| |
Collapse
|
11
|
Chavarha M, Loney RW, Rananavare SB, Hall SB. Hydrophobic surfactant proteins strongly induce negative curvature. Biophys J 2016; 109:95-105. [PMID: 26153706 DOI: 10.1016/j.bpj.2015.05.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 04/23/2015] [Accepted: 05/28/2015] [Indexed: 01/31/2023] Open
Abstract
The hydrophobic surfactant proteins SP-B and SP-C greatly accelerate the adsorption of vesicles containing the surfactant lipids to form a film that lowers the surface tension of the air/water interface in the lungs. Pulmonary surfactant enters the interface by a process analogous to the fusion of two vesicles. As with fusion, several factors affect adsorption according to how they alter the curvature of lipid leaflets, suggesting that adsorption proceeds via a rate-limiting structure with negative curvature, in which the hydrophilic face of the phospholipid leaflets is concave. In the studies reported here, we tested whether the surfactant proteins might promote adsorption by inducing lipids to adopt a more negative curvature, closer to the configuration of the hypothetical intermediate. Our experiments used x-ray diffraction to determine how the proteins in their physiological ratio affect the radius of cylindrical monolayers in the negatively curved, inverse hexagonal phase. With binary mixtures of dioleoylphosphatidylethanolamine (DOPE) and dioleoylphosphatidylcholine (DOPC), the proteins produced a dose-related effect on curvature that depended on the phospholipid composition. With DOPE alone, the proteins produced no change. With an increasing mol fraction of DOPC, the response to the proteins increased, reaching a maximum 50% reduction in cylindrical radius at 5% (w/w) protein. This change represented a doubling of curvature at the outer cylindrical surface. The change in spontaneous curvature, defined at approximately the level of the glycerol group, would be greater. Analysis of the results in terms of a Langmuir model for binding to a surface suggests that the effect of the lipids is consistent with a change in the maximum binding capacity. Our findings show that surfactant proteins can promote negative curvature, and support the possibility that they facilitate adsorption by that mechanism.
Collapse
Affiliation(s)
- Mariya Chavarha
- Department of Biochemistry & Molecular Biology, Oregon Health & Science University, Portland, Oregon; Department of Medicine, Oregon Health & Science University, Portland, Oregon; Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, Oregon
| | - Ryan W Loney
- Department of Biochemistry & Molecular Biology, Oregon Health & Science University, Portland, Oregon; Department of Medicine, Oregon Health & Science University, Portland, Oregon; Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, Oregon
| | | | - Stephen B Hall
- Department of Biochemistry & Molecular Biology, Oregon Health & Science University, Portland, Oregon; Department of Medicine, Oregon Health & Science University, Portland, Oregon; Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, Oregon.
| |
Collapse
|
12
|
Olmeda B, García‐Álvarez B, Gómez MJ, Martínez‐Calle M, Cruz A, Pérez‐Gil J. A model for the structure and mechanism of action of pulmonary surfactant protein B. FASEB J 2015; 29:4236-47. [DOI: 10.1096/fj.15-273458] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/15/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Bárbara Olmeda
- Departmento de Bioquímica, Facultad de BiologíaUniversidad ComplutenseMadridSpain
| | | | - Manuel J. Gómez
- Centro de Astrobiología (INTA‐CSIC), Torrejón de ArdozMadridSpain
| | - Marta Martínez‐Calle
- Departmento de Bioquímica, Facultad de BiologíaUniversidad ComplutenseMadridSpain
| | - Antonio Cruz
- Departmento de Bioquímica, Facultad de BiologíaUniversidad ComplutenseMadridSpain
| | - Jesús Pérez‐Gil
- Departmento de Bioquímica, Facultad de BiologíaUniversidad ComplutenseMadridSpain
| |
Collapse
|
13
|
Composition, structure and mechanical properties define performance of pulmonary surfactant membranes and films. Chem Phys Lipids 2014; 185:153-75. [PMID: 25260665 DOI: 10.1016/j.chemphyslip.2014.09.002] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/06/2014] [Accepted: 09/11/2014] [Indexed: 12/30/2022]
Abstract
The respiratory surface in the mammalian lung is stabilized by pulmonary surfactant, a membrane-based system composed of multiple lipids and specific proteins, the primary function of which is to minimize the surface tension at the alveolar air-liquid interface, optimizing the mechanics of breathing and avoiding alveolar collapse, especially at the end of expiration. The goal of the present review is to summarize current knowledge regarding the structure, lipid-protein interactions and mechanical features of surfactant membranes and films and how these properties correlate with surfactant biological function inside the lungs. Surfactant mechanical properties can be severely compromised by different agents, which lead to surfactant inhibition and ultimately contributes to the development of pulmonary disorders and pathologies in newborns, children and adults. A detailed comprehension of the unique mechanical and rheological properties of surfactant layers is crucial for the diagnostics and treatment of lung diseases, either by analyzing the contribution of surfactant impairment to the pathophysiology or by improving the formulations in surfactant replacement therapies. Finally, a short review is also included on the most relevant experimental techniques currently employed to evaluate lung surfactant mechanics, rheology, and inhibition and reactivation processes.
Collapse
|
14
|
Lopez-Rodriguez E, Pérez-Gil J. Structure-function relationships in pulmonary surfactant membranes: from biophysics to therapy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1568-85. [PMID: 24525076 DOI: 10.1016/j.bbamem.2014.01.028] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 01/22/2014] [Accepted: 01/27/2014] [Indexed: 01/01/2023]
Abstract
Pulmonary surfactant is an essential lipid-protein complex to maintain an operative respiratory surface at the mammalian lungs. It reduces surface tension at the alveolar air-liquid interface to stabilise the lungs against physical forces operating along the compression-expansion breathing cycles. At the same time, surfactant integrates elements establishing a primary barrier against the entry of pathogens. Lack or deficiencies of the surfactant system are associated with respiratory pathologies, which treatment often includes supplementation with exogenous materials. The present review summarises current models on the molecular mechanisms of surfactant function, with particular emphasis in its biophysical properties to stabilise the lungs and the molecular alterations connecting impaired surfactant with diseased organs. It also provides a perspective on the current surfactant-based strategies to treat respiratory pathologies. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.
Collapse
Affiliation(s)
- Elena Lopez-Rodriguez
- Departamento de Bioquimica y Biologia Molecular, Facultad de Biologia, Universidad Complutense de Madrid, Madrid, Spain; Institute for Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany; Biomedical Research in End Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany
| | - Jesús Pérez-Gil
- Departamento de Bioquimica y Biologia Molecular, Facultad de Biologia, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|