1
|
Chenna S, Koopman WJH, Prehn JHM, Connolly NMC. Mechanisms and mathematical modelling of ROS production by the mitochondrial electron transport chain. Am J Physiol Cell Physiol 2022; 323:C69-C83. [PMID: 35613354 DOI: 10.1152/ajpcell.00455.2021] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Reactive oxygen species (ROS) are recognised both as damaging molecules and intracellular signalling entities. In addition to its role in ATP generation, the mitochondrial electron transport chain (ETC) constitutes a relevant source of mitochondrial ROS, in particular during pathological conditions. Mitochondrial ROS homeostasis depends on species- and site-dependent ROS production, their bioreactivity, diffusion, and scavenging. However, our quantitative understanding of mitochondrial ROS homeostasis has thus far been hampered by technical limitations, including lack of truly site- and/or ROS-specific reporter molecules. In this context, the use of computational models is of great value to complement and interpret empirical data, as well as to predict variables that are difficult to assess experimentally. During the last decades, various mechanistic models of ETC-mediated ROS production have been developed. Although these often-complex models have generated novel insights, their parameterisation, analysis, and integration with other computational models is not straightforward. In contrast, phenomenological (sometimes termed "minimal") models use a relatively small set of equations to describe empirical relationship(s) between ROS-related and other parameters, and generally aim to explore system behaviour and generate hypotheses for experimental validation. In this review, we first discuss ETC-linked ROS homeostasis and introduce various detailed mechanistic models. Next, we present how bioenergetic parameters (e.g. NADH/NAD+ ratio, mitochondrial membrane potential) relate to site-specific ROS production within the ETC and how these relationships can be used to design minimal models of ROS homeostasis. Finally, we illustrate how minimal models have been applied to explore pathophysiological aspects of ROS.
Collapse
Affiliation(s)
- Sandeep Chenna
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Werner J H Koopman
- Department of Pediatrics, Amalia Children's Hospital, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud Center for Mitochondrial Disorders (RCMM), Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands.,Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Jochen H M Prehn
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,SFI FutureNeuro Research Centre, Dublin, Ireland
| | - Niamh M C Connolly
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
2
|
Colpo AC, Lima ME, da Rosa HS, Leal AP, Colares CC, Zago AC, Salgueiro ACF, Bertelli PR, Minetto L, Moura S, Mendez ASL, Folmer V. Ilex paraguariensis extracts extend the lifespan of Drosophila melanogaster fed a high-fat diet. ACTA ACUST UNITED AC 2017; 51:e6784. [PMID: 29211252 PMCID: PMC5711008 DOI: 10.1590/1414-431x20176784] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/19/2017] [Indexed: 12/30/2022]
Abstract
Studies have suggested that total energy intake and diet composition affect lifespan and ageing. A high-fat diet induces oxidative stress and affects the development of diseases. In contrast, antioxidants are capable of reducing its harmful effects. Yerba mate beverages are an important source of antioxidants, but there is scarce knowledge about their effects on suppressing fat accumulation. Here, we investigated the compounds present in yerba mate extracts and assessed their effects on Drosophila melanogaster given a high cholesterol diet. LS-ESI-MS analysis showed the presence of matesaponins, phenolic compounds and methylxanthines in all of the examined extracts. In Drosophila, under extract treatment conditions, the mean lifespan was significantly extended from 38 to 43 days, there was an increase in the ability to support induced stress and decrease in lipid peroxidation products. Moreover, yerba mate extracts recovered the glutathione S-transferases (GST) activity and reduced the cholesterol level. Taken together, our results support that extracts can extend lifespan by reducing the detrimental effect of a high-fat diet in D. melanogaster, and this outcome can be associated with the compound content in the extracts. This study improves the understanding of natural interventions that reduce stress-induced oxidative damage, which is fundamental in promoting healthy ageing.
Collapse
Affiliation(s)
- A C Colpo
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Uruguaiana, RS, Brasil.,Laboratório Escola de Análises Clínicas, Curso de Farmácia, Universidade da Região da Campanha, Bagé, RS, Brasil
| | - M E Lima
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Uruguaiana, RS, Brasil
| | - H S da Rosa
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Uruguaiana, RS, Brasil
| | - A P Leal
- Laboratório Escola de Análises Clínicas, Curso de Farmácia, Universidade da Região da Campanha, Bagé, RS, Brasil
| | - C C Colares
- Laboratório Escola de Análises Clínicas, Curso de Farmácia, Universidade da Região da Campanha, Bagé, RS, Brasil
| | - A C Zago
- Laboratório Escola de Análises Clínicas, Curso de Farmácia, Universidade da Região da Campanha, Bagé, RS, Brasil
| | - A C F Salgueiro
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Uruguaiana, RS, Brasil
| | - P R Bertelli
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - L Minetto
- Laboratório de Biotecnologia de Produtos Naturais e Sintéticos, Instituto de Biotecnologia, Universidade de Caxias do Sul, Caxias do Sul, RS, Brasil
| | - S Moura
- Laboratório de Biotecnologia de Produtos Naturais e Sintéticos, Instituto de Biotecnologia, Universidade de Caxias do Sul, Caxias do Sul, RS, Brasil
| | - A S L Mendez
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Uruguaiana, RS, Brasil.,Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - V Folmer
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Uruguaiana, RS, Brasil
| |
Collapse
|
3
|
Wang H, Sun Z, Rehman RU, Shen T, Riaz S, Li X, Hua E, Zhao J. Apple phlorizin supplementation attenuates oxidative stress in hamsters fed a high-fat diet. J Food Biochem 2017. [DOI: 10.1111/jfbc.12445] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hao Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education; Tianjin University of Science & Technology; Tianjin China
| | - Zhenou Sun
- Key Laboratory of Food Nutrition and Safety, Ministry of Education; Tianjin University of Science & Technology; Tianjin China
| | - Rizwan-Ur Rehman
- Key Laboratory of Food Nutrition and Safety, Ministry of Education; Tianjin University of Science & Technology; Tianjin China
| | - Tingting Shen
- College of Biological Engineering; Tianjin University of Science & Technology; Tianjin China
| | - Sania Riaz
- Center of Excellence in Molecular Biology; University of Punjab; Lahore Pakistan
| | - Xiang Li
- Key Laboratory of Food Nutrition and Safety, Ministry of Education; Tianjin University of Science & Technology; Tianjin China
| | - ErBing Hua
- College of Biological Engineering; Tianjin University of Science & Technology; Tianjin China
| | - Jiang Zhao
- Key Laboratory of Food Nutrition and Safety, Ministry of Education; Tianjin University of Science & Technology; Tianjin China
| |
Collapse
|
4
|
Ganji A, Salehi I, Nazari M, Taheri M, Komaki A. Effects of Hypericum scabrum extract on learning and memory and oxidant/antioxidant status in rats fed a long-term high-fat diet. Metab Brain Dis 2017; 32:1255-1265. [PMID: 28536937 DOI: 10.1007/s11011-017-0022-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/28/2017] [Indexed: 01/24/2023]
Abstract
A high-fat diet (HFD) causes deficits in learning and memory by increasing oxidative stress. Antioxidants are known to improve learning and memory. Since Hypericum scabrum (H. scabrum) extract is rich in antioxidants, the aim of this study was to investigate the effects of the administration of H. scabrum extract on passive avoidance learning (PAL), novel object recognition (NOR), and locomotor activity in male rats on a HFD. Fifty-four male Wistar rats (weighing 220 ± 10 g) were divided into the following six groups: (1) Control (standard diet), (2) Ext100 (standard diet supplemented with 100 mg/kg extract once/day), (3) Ext300 (standard diet supplemented with 300 mg/kg extract once/day), (4) HFD (high-fat diet), (5) HFD + Ext100, and (6) HFD + Ext300. Rats in these groups were maintained on their respective diets for 3 months. In the PAL test, the step-through latencies in the retention test (STLr) were significantly higher in the HFD + extract group than in the HFD group. The time spent in the dark compartment (TDC) was significantly lesser and the time spent in exploring the novel object was significantly greater in the HFD + extract group than in the HFD group. In the HFD-fed rats, the activity of catalase had significantly decreased, and level of malondialdehyde had significantly increased; H. scabrum extract administration significantly reversed these changes. In conclusion, these results suggested that the administration of H. scabrum extract and its strong antioxidant properties enhanced learning and memory and reversed the memory impairment induced by chronic HFD consumption.
Collapse
Affiliation(s)
- Ahmad Ganji
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Kurdistan Institute of Education, Kurdistan, Iran
| | - Iraj Salehi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoumeh Nazari
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoumeh Taheri
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, 65178/518, Hamadan, Iran.
| |
Collapse
|
5
|
Wang HL, Sun ZO, Rehman RU, Wang H, Wang YF, Wang H. Rosemary Extract-Mediated Lifespan Extension and Attenuated Oxidative Damage inDrosophila melanogasterFed on High-Fat Diet. J Food Sci 2017; 82:1006-1011. [DOI: 10.1111/1750-3841.13656] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 12/27/2016] [Accepted: 01/17/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Hua-li Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China; Tianjin Univ. of Science & Technology; Tianjin 300457 China
| | - Zhen-ou Sun
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China; Tianjin Univ. of Science & Technology; Tianjin 300457 China
| | - Rizwan-ur Rehman
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China; Tianjin Univ. of Science & Technology; Tianjin 300457 China
| | - Hong Wang
- College of Biological Engineering; Tianjin Univ. of Science & Technology; Tianjin 300457 China
| | - Yi-fei Wang
- College of Biological Engineering; Tianjin Univ. of Science & Technology; Tianjin 300457 China
| | - Hao Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China; Tianjin Univ. of Science & Technology; Tianjin 300457 China
| |
Collapse
|
6
|
Pintana H, Sripetchwandee J, Supakul L, Apaijai N, Chattipakorn N, Chattipakorn S. Garlic extract attenuates brain mitochondrial dysfunction and cognitive deficit in obese-insulin resistant rats. Appl Physiol Nutr Metab 2014; 39:1373-9. [PMID: 25350296 DOI: 10.1139/apnm-2014-0255] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Oxidative stress in the obese-insulin resistant condition has been shown to affect cognitive as well as brain mitochondrial functions. Garlic extract has exerted a potent antioxidant effect. However, the effects of garlic extract on the brain of obese-insulin resistant rats have never been investigated. We hypothesized that garlic extract improves cognitive function and brain mitochondrial function in obese-insulin resistant rats induced by long-term high-fat diet (HFD) consumption. Male Wistar rats were fed either normal diet or HFD for 16 weeks (n = 24/group). At week 12, rats in each dietary group received either vehicle or garlic extract (250 and 500 mg·kg(-1)·day(-1)) for 28 days. Learning and memory behaviors, metabolic parameters, and brain mitochondrial function were determined at the end of treatment. HFD led to increased body weight, visceral fat, plasma insulin, cholesterol, and malondialdehyde (MDA) levels, indicating the development of insulin resistance. Furthermore, HFD rats had cognitive deficit and brain mitochondrial dysfunction. HFD rats treated with both doses of garlic extract had decreased body weight, visceral fat, plasma cholesterol, and MDA levels. Garlic extract also improved cognitive function and brain mitochondrial function, which were impaired in obese-insulin resistant rats caused by HFD consumption.
Collapse
Affiliation(s)
- Hiranya Pintana
- a Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | | | | | | | | |
Collapse
|