1
|
Schirripa Spagnolo C, Luin S. Trajectory Analysis in Single-Particle Tracking: From Mean Squared Displacement to Machine Learning Approaches. Int J Mol Sci 2024; 25:8660. [PMID: 39201346 PMCID: PMC11354962 DOI: 10.3390/ijms25168660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Single-particle tracking is a powerful technique to investigate the motion of molecules or particles. Here, we review the methods for analyzing the reconstructed trajectories, a fundamental step for deciphering the underlying mechanisms driving the motion. First, we review the traditional analysis based on the mean squared displacement (MSD), highlighting the sometimes-neglected factors potentially affecting the accuracy of the results. We then report methods that exploit the distribution of parameters other than displacements, e.g., angles, velocities, and times and probabilities of reaching a target, discussing how they are more sensitive in characterizing heterogeneities and transient behaviors masked in the MSD analysis. Hidden Markov Models are also used for this purpose, and these allow for the identification of different states, their populations and the switching kinetics. Finally, we discuss a rapidly expanding field-trajectory analysis based on machine learning. Various approaches, from random forest to deep learning, are used to classify trajectory motions, which can be identified by motion models or by model-free sets of trajectory features, either previously defined or automatically identified by the algorithms. We also review free software available for some of the analysis methods. We emphasize that approaches based on a combination of the different methods, including classical statistics and machine learning, may be the way to obtain the most informative and accurate results.
Collapse
Affiliation(s)
| | - Stefano Luin
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, I-56127 Pisa, Italy
- NEST Laboratory, Istituto Nanoscienze-CNR, Piazza San Silvestro 12, I-56127 Pisa, Italy
| |
Collapse
|
2
|
Vertessen A, Verstraten RC, Morais Smith C. Dissipative systems fractionally coupled to a bath. CHAOS (WOODBURY, N.Y.) 2024; 34:063103. [PMID: 38829797 DOI: 10.1063/5.0204304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/12/2024] [Indexed: 06/05/2024]
Abstract
Quantum diffusion is a major topic in condensed-matter physics, and the Caldeira-Leggett model has been one of the most successful approaches to study this phenomenon. Here, we generalize this model by coupling the bath to the system through a Liouville fractional derivative. The Liouville fractional Langevin equation is then derived in the classical regime, without imposing a non-Ohmic macroscopic spectral function for the bath. By investigating the short- and long-time behavior of the mean squared displacement, we show that this model is able to describe a large variety of anomalous diffusion. Indeed, we find ballistic, sub-ballistic, and super-ballistic behavior for short times, whereas for long times, we find saturation and sub- and super-diffusion.
Collapse
Affiliation(s)
- A Vertessen
- Institute for Theoretical Physics, Utrecht University, Princetonplein 5, 3584CC Utrecht, The Netherlands
| | - R C Verstraten
- Institute for Theoretical Physics, Utrecht University, Princetonplein 5, 3584CC Utrecht, The Netherlands
| | - C Morais Smith
- Institute for Theoretical Physics, Utrecht University, Princetonplein 5, 3584CC Utrecht, The Netherlands
| |
Collapse
|
3
|
Szasz A. Peto's "Paradox" and Six Degrees of Cancer Prevalence. Cells 2024; 13:197. [PMID: 38275822 PMCID: PMC10814230 DOI: 10.3390/cells13020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Peto's paradox and the epidemiologic observation of the average six degrees of tumor prevalence are studied and hypothetically solved. A simple consideration, Petho's paradox challenges our intuitive understanding of cancer risk and prevalence. Our simple consideration is that the more a cell divides, the higher the chance of acquiring cancerous mutations, and so the larger or longer-lived organisms have more cells and undergo more cell divisions over their lifetime, expecting to have a higher risk of developing cancer. Paradoxically, it is not supported by the observations. The allometric scaling of species could answer the Peto paradox. Another paradoxical human epidemiology observation in six average mutations is necessary for cancer prevalence, despite the random expectations of the tumor causes. To solve this challenge, game theory could be applied. The inherited and random DNA mutations in the replication process nonlinearly drive cancer development. The statistical variance concept does not reasonably describe tumor development. Instead, the Darwinian natural selection principle is applied. The mutations in the healthy organism's cellular population can serve the species' evolutionary adaptation by the selective pressure of the circumstances. Still, some cells collect multiple uncorrected mutations, adapt to the extreme stress in the stromal environment, and develop subclinical phases of cancer in the individual. This process needs extensive subsequent DNA replications to heritage and collect additional mutations, which are only marginal alone. Still, together, they are preparing for the first stage of the precancerous condition. In the second stage, when one of the caretaker genes is accidentally mutated, the caused genetic instability prepares the cell to fight for its survival and avoid apoptosis. This can be described as a competitive game. In the third stage, the precancerous cell develops uncontrolled proliferation with the damaged gatekeeper gene and forces the new game strategy with binary cooperation with stromal cells for alimentation. In the fourth stage, the starving conditions cause a game change again, starting a cooperative game, where the malignant cells cooperate and force the cooperation of the stromal host, too. In the fifth stage, the resetting of homeostasis finishes the subclinical stage, and in the fifth stage, the clinical phase starts. The prevention of the development of mutated cells is more complex than averting exposure to mutagens from the environment throughout the organism's lifetime. Mutagenic exposure can increase the otherwise random imperfect DNA reproduction, increasing the likelihood of cancer development, but mutations exist. Toxic exposure is more challenging; it may select the tolerant cells on this particular toxic stress, so these mutations have more facility to avoid apoptosis in otherwise collected random mutational states.
Collapse
Affiliation(s)
- Andras Szasz
- Department of Biotechnics, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| |
Collapse
|
4
|
Kuhn A, Roosjen M, Mutte S, Dubey SM, Carrillo Carrasco VP, Boeren S, Monzer A, Koehorst J, Kohchi T, Nishihama R, Fendrych M, Sprakel J, Friml J, Weijers D. RAF-like protein kinases mediate a deeply conserved, rapid auxin response. Cell 2024; 187:130-148.e17. [PMID: 38128538 PMCID: PMC10783624 DOI: 10.1016/j.cell.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 06/29/2023] [Accepted: 11/18/2023] [Indexed: 12/23/2023]
Abstract
The plant-signaling molecule auxin triggers fast and slow cellular responses across land plants and algae. The nuclear auxin pathway mediates gene expression and controls growth and development in land plants, but this pathway is absent from algal sister groups. Several components of rapid responses have been identified in Arabidopsis, but it is unknown if these are part of a conserved mechanism. We recently identified a fast, proteome-wide phosphorylation response to auxin. Here, we show that this response occurs across 5 land plant and algal species and converges on a core group of shared targets. We found conserved rapid physiological responses to auxin in the same species and identified rapidly accelerated fibrosarcoma (RAF)-like protein kinases as central mediators of auxin-triggered phosphorylation across species. Genetic analysis connects this kinase to both auxin-triggered protein phosphorylation and rapid cellular response, thus identifying an ancient mechanism for fast auxin responses in the green lineage.
Collapse
Affiliation(s)
- Andre Kuhn
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, the Netherlands
| | - Mark Roosjen
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, the Netherlands
| | - Sumanth Mutte
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, the Netherlands
| | - Shiv Mani Dubey
- Department of Experimental Plant Biology, Charles University, Prague, Czech Republic
| | | | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, the Netherlands
| | - Aline Monzer
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Jasper Koehorst
- Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen, the Netherlands
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Ryuichi Nishihama
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| | - Matyáš Fendrych
- Department of Experimental Plant Biology, Charles University, Prague, Czech Republic
| | - Joris Sprakel
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, the Netherlands
| | - Jiří Friml
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, the Netherlands.
| |
Collapse
|
5
|
Lingam M. Information Transmission via Molecular Communication in Astrobiological Environments. ASTROBIOLOGY 2024; 24:84-99. [PMID: 38109216 DOI: 10.1089/ast.2023.0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The ubiquity of information transmission via molecular communication between cells is comprehensively documented on Earth; this phenomenon might even have played a vital role in the origin(s) and early evolution of life. Motivated by these considerations, a simple model for molecular communication entailing the diffusion of signaling molecules from transmitter to receiver is elucidated. The channel capacity C (maximal rate of information transmission) and an optimistic heuristic estimate of the actual information transmission rate ℐ are derived for this communication system; the two quantities, especially the latter, are demonstrated to be broadly consistent with laboratory experiments and more sophisticated theoretical models. The channel capacity exhibits a potentially weak dependence on environmental parameters, whereas the actual information transmission rate may scale with the intercellular distance d as ℐ ∝ d-4 and could vary substantially across settings. These two variables are roughly calculated for diverse astrobiological environments, ranging from Earth's upper oceans (C ∼ 3.1 × 103 bits/s; ℐ ∼ 4.7 × 10-2 bits/s) and deep sea hydrothermal vents (C ∼ 4.2 × 103 bits/s; ℐ ∼ 1.2 × 10-1 bits/s) to the hydrocarbon lakes and seas of Titan (C ∼ 3.8 × 103 bits/s; ℐ ∼ 2.6 × 10-1 bits/s).
Collapse
Affiliation(s)
- Manasvi Lingam
- Department of Aerospace, Physics and Space Sciences, Florida Institute of Technology, Melbourne, Florida, USA
- Department of Physics, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
6
|
Anthuparambil ND, Girelli A, Timmermann S, Kowalski M, Akhundzadeh MS, Retzbach S, Senft MD, Dargasz M, Gutmüller D, Hiremath A, Moron M, Öztürk Ö, Poggemann HF, Ragulskaya A, Begam N, Tosson A, Paulus M, Westermeier F, Zhang F, Sprung M, Schreiber F, Gutt C. Exploring non-equilibrium processes and spatio-temporal scaling laws in heated egg yolk using coherent X-rays. Nat Commun 2023; 14:5580. [PMID: 37696830 PMCID: PMC10495384 DOI: 10.1038/s41467-023-41202-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/23/2023] [Indexed: 09/13/2023] Open
Abstract
The soft-grainy microstructure of cooked egg yolk is the result of a series of out-of-equilibrium processes of its protein-lipid contents; however, it is unclear how egg yolk constituents contribute to these processes to create the desired microstructure. By employing X-ray photon correlation spectroscopy, we investigate the functional contribution of egg yolk constituents: proteins, low-density lipoproteins (LDLs), and yolk-granules to the development of grainy-gel microstructure and microscopic dynamics during cooking. We find that the viscosity of the heated egg yolk is solely determined by the degree of protein gelation, whereas the grainy-gel microstructure is controlled by the extent of LDL aggregation. Overall, protein denaturation-aggregation-gelation and LDL-aggregation follows Arrhenius-type time-temperature superposition (TTS), indicating an identical mechanism with a temperature-dependent reaction rate. However, above 75 °C TTS breaks down and temperature-independent gelation dynamics is observed, demonstrating that the temperature can no longer accelerate certain non-equilibrium processes above a threshold value.
Collapse
Affiliation(s)
- Nimmi Das Anthuparambil
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany.
- Department Physik, Universität Siegen, 57072, Siegen, Germany.
| | - Anita Girelli
- Institut für Angewandte Physik, Universität Tübingen, 72076, Tübingen, Germany
| | | | - Marvin Kowalski
- Department Physik, Universität Siegen, 57072, Siegen, Germany
| | | | - Sebastian Retzbach
- Institut für Angewandte Physik, Universität Tübingen, 72076, Tübingen, Germany
| | - Maximilian D Senft
- Institut für Angewandte Physik, Universität Tübingen, 72076, Tübingen, Germany
| | | | - Dennis Gutmüller
- Institut für Angewandte Physik, Universität Tübingen, 72076, Tübingen, Germany
| | - Anusha Hiremath
- Institut für Angewandte Physik, Universität Tübingen, 72076, Tübingen, Germany
| | - Marc Moron
- Fakultät Physik/DELTA, Technische Universität Dortmund, 44221, Dortmund, Germany
| | - Özgül Öztürk
- Department Physik, Universität Siegen, 57072, Siegen, Germany
| | | | | | - Nafisa Begam
- Institut für Angewandte Physik, Universität Tübingen, 72076, Tübingen, Germany
| | - Amir Tosson
- Department Physik, Universität Siegen, 57072, Siegen, Germany
| | - Michael Paulus
- Fakultät Physik/DELTA, Technische Universität Dortmund, 44221, Dortmund, Germany
| | - Fabian Westermeier
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Fajun Zhang
- Institut für Angewandte Physik, Universität Tübingen, 72076, Tübingen, Germany
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Frank Schreiber
- Institut für Angewandte Physik, Universität Tübingen, 72076, Tübingen, Germany
| | - Christian Gutt
- Department Physik, Universität Siegen, 57072, Siegen, Germany.
| |
Collapse
|
7
|
Abelenda-Núñez I, Ortega F, Rubio RG, Guzmán E. Anomalous Colloidal Motion under Strong Confinement. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302115. [PMID: 37116105 DOI: 10.1002/smll.202302115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/13/2023] [Indexed: 06/19/2023]
Abstract
Diffusion of biological macromolecules in the cytoplasm is a paradigm of colloidal diffusion in an environment characterized by a strong restriction of the accessible volume. This makes of the understanding of the physical rules governing colloidal diffusion under conditions mimicking the reduction in accessible volume occurring in the cell cytoplasm, a problem of a paramount importance. This work aims to study how the thermal motion of spherical colloidal beads in the inner cavity of giant unilamellar vesicles (GUVs) is modified by strong confinement conditions, and the viscoelastic character of the medium. Using single particle tracking, it is found that both the confinement and the environmental viscoelasticity lead to the emergence of anomalous motion pathways for colloidal microbeads encapsulated in the aqueous inner cavity of GUVs. This anomalous diffusion is strongly dependent on the ratio between the volume of the colloidal particle and that of the GUV under consideration as well as on the viscosity of the particle's liquid environment. Therefore, the results evidence that the reduction of the free volume accessible to colloidal motion pushes the diffusion far from a standard Brownian pathway as a result of the change in the hydrodynamic boundary conditions driving the particle motion.
Collapse
Affiliation(s)
- Irene Abelenda-Núñez
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n., Madrid, 28040, Spain
| | - Francisco Ortega
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n., Madrid, 28040, Spain
- Unidad de Materia Condensada, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1., Madrid, 28040, Spain
| | - Ramón G Rubio
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n., Madrid, 28040, Spain
| | - Eduardo Guzmán
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n., Madrid, 28040, Spain
- Unidad de Materia Condensada, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1., Madrid, 28040, Spain
| |
Collapse
|
8
|
Garibo-I-Orts Ò, Firbas N, Sebastiá L, Conejero JA. Gramian angular fields for leveraging pretrained computer vision models with anomalous diffusion trajectories. Phys Rev E 2023; 107:034138. [PMID: 37072993 DOI: 10.1103/physreve.107.034138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/28/2023] [Indexed: 04/20/2023]
Abstract
Anomalous diffusion is present at all scales, from atomic to large ones. Some exemplary systems are ultracold atoms, telomeres in the nucleus of cells, moisture transport in cement-based materials, arthropods' free movement, and birds' migration patterns. The characterization of the diffusion gives critical information about the dynamics of these systems and provides an interdisciplinary framework with which to study diffusive transport. Thus, the problem of identifying underlying diffusive regimes and inferring the anomalous diffusion exponent α with high confidence is critical to physics, chemistry, biology, and ecology. Classification and analysis of raw trajectories combining machine learning techniques with statistics extracted from them have widely been studied in the Anomalous Diffusion Challenge [Muñoz-Gil et al., Nat. Commun. 12, 6253 (2021)2041-172310.1038/s41467-021-26320-w]. Here we present a new data-driven method for working with diffusive trajectories. This method utilizes Gramian angular fields (GAF) to encode one-dimensional trajectories as images (Gramian matrices), while preserving their spatiotemporal structure for input to computer-vision models. This allows us to leverage two well-established pretrained computer-vision models, ResNet and MobileNet, to characterize the underlying diffusive regime and infer the anomalous diffusion exponent α. Short raw trajectories of lengths between 10 and 50 are commonly encountered in single-particle tracking experiments and are the most difficult ones to characterize. We show that GAF images can outperform the current state-of-the-art while increasing accessibility to machine learning methods in an applied setting.
Collapse
Affiliation(s)
- Òscar Garibo-I-Orts
- GRID-Grupo de Investigacion en Ciencia de Datos Valencian International University-VIU, Carrer Pintor Sorolla 21, 46002 València, Spain
| | - Nicolas Firbas
- DBS-Department of Biological Sciences, National University of Singapore 16 Science Drive 4, Singapore 117558, Singapore
| | - Laura Sebastiá
- VRAIN-Valencian Research Institute for Artificial Intelligence Universitat Politècnica de València, Cami de Vera s/n, 46022 València, Spain
| | - J Alberto Conejero
- Instituto Universitario de Matemática Pura y Aplicada Universitat Politècnica de València, Cami de Vera s/n, 46022 València, Spain
| |
Collapse
|
9
|
Najafi J, Dmitrieff S, Minc N. Size- and position-dependent cytoplasm viscoelasticity through hydrodynamic interactions with the cell surface. Proc Natl Acad Sci U S A 2023; 120:e2216839120. [PMID: 36802422 PMCID: PMC9992773 DOI: 10.1073/pnas.2216839120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/23/2023] [Indexed: 02/23/2023] Open
Abstract
Many studies of cytoplasm rheology have focused on small components in the submicrometer scale. However, the cytoplasm also baths large organelles like nuclei, microtubule asters, or spindles that often take significant portions of cells and move across the cytoplasm to regulate cell division or polarization. Here, we translated passive components of sizes ranging from few up to ~50 percents of the cell diameter, through the vast cytoplasm of live sea urchin eggs, with calibrated magnetic forces. Creep and relaxation responses indicate that for objects larger than the micron size, the cytoplasm behaves as a Jeffreys material, viscoelastic at short timescales, and fluidizing at longer times. However, as component size approached that of cells, cytoplasm viscoelastic resistance increased in a nonmonotonic manner. Flow analysis and simulations suggest that this size-dependent viscoelasticity emerges from hydrodynamic interactions between the moving object and the static cell surface. This effect also yields to position-dependent viscoelasticity with objects initially closer to the cell surface being harder to displace. These findings suggest that the cytoplasm hydrodynamically couples large organelles to the cell surface to restrain their motion, with important implications for cell shape sensing and cellular organization.
Collapse
Affiliation(s)
- Javad Najafi
- Université de Paris, CNRS, Institut Jacques Monod,75006Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75013Paris, France
| | - Serge Dmitrieff
- Université de Paris, CNRS, Institut Jacques Monod,75006Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75013Paris, France
| | - Nicolas Minc
- Université de Paris, CNRS, Institut Jacques Monod,75006Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75013Paris, France
| |
Collapse
|
10
|
Fuentes-Lemus E, Davies MJ. Effect of crowding, compartmentalization and nanodomains on protein modification and redox signaling - current state and future challenges. Free Radic Biol Med 2023; 196:81-92. [PMID: 36657730 DOI: 10.1016/j.freeradbiomed.2023.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/21/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023]
Abstract
Biological milieus are highly crowded and heterogeneous systems where organization of macromolecules within nanodomains (e.g. membraneless compartments) is vital to the regulation of metabolic processes. There is an increasing interest in understanding the effects that such packed environments have on different biochemical and biological processes. In this context, the redox biochemistry and redox signaling fields are moving towards investigating oxidative processes under conditions that exhibit these key features of biological systems in order to solve existing paradigms including those related to the generation and transmission of specific redox signals within and between cells in both normal physiology and under conditions of oxidative stress. This review outlines the effects that crowding, nanodomain formation and altered local viscosities can have on biochemical processes involving proteins, and then discusses some of the reactions and pathways involving proteins and oxidants that may, or are known to, be modulated by these factors. We postulate that knowledge of protein modification processes (e.g. kinetics, pathways and product formation) under conditions that mimic biological milieus, will provide a better understanding of the response of cells to endogenous and exogenous stressors, and their role in ageing, signaling, health and disease.
Collapse
Affiliation(s)
- Eduardo Fuentes-Lemus
- Department of Biomedical Sciences, Panum Institute, Blegdamsvej 3, University of Copenhagen, Copenhagen, 2200, Denmark.
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, Blegdamsvej 3, University of Copenhagen, Copenhagen, 2200, Denmark
| |
Collapse
|
11
|
Runfola C, Vitali S, Pagnini G. The Fokker-Planck equation of the superstatistical fractional Brownian motion with application to passive tracers inside cytoplasm. ROYAL SOCIETY OPEN SCIENCE 2022; 9:221141. [PMID: 36340511 PMCID: PMC9627453 DOI: 10.1098/rsos.221141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
By collecting from literature data experimental evidence of anomalous diffusion of passive tracers inside cytoplasm, and in particular of subdiffusion of mRNA molecules inside live Escherichia coli cells, we obtain the probability density function of molecules' displacement and we derive the corresponding Fokker-Planck equation. Molecules' distribution emerges to be related to the Krätzel function and its Fokker-Planck equation to be a fractional diffusion equation in the Erdélyi-Kober sense. The irreducibility of the derived Fokker-Planck equation to those of other literature models is also discussed.
Collapse
Affiliation(s)
- C. Runfola
- Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, I-40127 Bologna, Italy
- BCAM – Basque Center for Applied Mathematics, Alameda de Mazarredo 14, E-48009 Bilbao, Basque Country, Spain
| | - S. Vitali
- BCAM – Basque Center for Applied Mathematics, Alameda de Mazarredo 14, E-48009 Bilbao, Basque Country, Spain
- Eurecat, Centre Tecnológic de Catalunya, Unit of Digital Health, Data Analytics in Medicine, E-08005 Barcelona, Catalunya, Spain
| | - G. Pagnini
- BCAM – Basque Center for Applied Mathematics, Alameda de Mazarredo 14, E-48009 Bilbao, Basque Country, Spain
- Ikerbasque – Basque Foundation for Science, Plaza Euskadi 5, E-48009 Bilbao, Basque Country, Spain
| |
Collapse
|
12
|
The Role of Diffusivity in Oil and Gas Industries: Fundamentals, Measurement, and Correlative Techniques. Processes (Basel) 2022. [DOI: 10.3390/pr10061194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The existence of various native or nonnative species/fluids, along with having more than one phase in the subsurface and within the integrated production and injection systems, generates unique challenges as the pressure, temperature, composition and time (P-T-z and t) domains exhibit multi-scale characteristics. In such systems, fluid/component mixing, whether for natural reasons or man-made reasons, is one of the most complex aspects of the behavior of the system, as inherent compositions are partially or all due to these phenomena. Any time a gradient is introduced, these systems try to converge thermodynamically to an equilibrium state while being in the disequilibrium state at scale during the transitional process. These disequilibrium states create diffusive gradients, which, in the absence of flow, control the mixing processes leading to equilibrium at a certain time scale, which could also be a function of various time and length scales associated with the system. Therefore, it is crucial to understand these aspects, especially when technologies that need or utilize these concepts are under development. For example, as the technology of gas-injection-based enhanced oil recovery, CO2 sequestration and flooding have been developed, deployed and applied to several reservoirs/aquifers worldwide, performing research on mass-transfer mechanisms between gas, oil and aqueous phases became more important, especially in terms of optimal design considerations. It is well-known that in absence of direct frontal contact and convective mixing, diffusive mixing is one of most dominant mass-transfer mechanisms, which has an impact on the effectiveness of the oil recovery and gas injection processes. Therefore, in this work, we review the fundamentals of diffusive mixing processes in general terms and summarize the theoretical, experimental and empirical studies to estimate the diffusion coefficients at high pressure—temperature conditions at various time and length scales relevant to reservoir-fluid systems.
Collapse
|
13
|
The sodium proton exchanger NHE9 regulates phagosome maturation and bactericidal activity in macrophages. J Biol Chem 2022; 298:102150. [PMID: 35716776 PMCID: PMC9293770 DOI: 10.1016/j.jbc.2022.102150] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022] Open
Abstract
Acidification of phagosomes is essential for the bactericidal activity of macrophages. Targeting machinery that regulates pH within the phagosomes is a prominent strategy employed by various pathogens that have emerged as major threats to public health. Nascent phagosomes acquire the machinery for pH regulation through a graded maturation process involving fusion with endolysosomes. In addition, meticulous coordination between proton pumping and leakage mechanisms is crucial for maintaining optimal pH within the phagosome. However, relative to mechanisms involved in acidifying the phagosome lumen, little is known about proton leakage pathways in this organelle. Sodium proton transporter NHE9 is a known proton leakage pathway located on the endosomes. As phagosomes acquire proteins through fusions with endosomes during maturation, NHE9 seemed a promising candidate for regulating proton fluxes on the phagosome. Here, using genetic and biophysical approaches, we show NHE9 is an important proton leakage pathway associated with the maturing phagosome. NHE9 is highly expressed in immune cells, specifically macrophages; however, NHE9 expression is strongly downregulated upon bacterial infection. We show that compensatory ectopic NHE9 expression hinders the directed motion of phagosomes along microtubules and promotes early detachment from the microtubule tracks. As a result, these phagosomes have shorter run lengths and are not successful in reaching the lysosome. In accordance with this observation, we demonstrate that NHE9 expression levels negatively correlate with bacterial survival. Together, our findings show that NHE9 regulates lumenal pH to affect phagosome maturation, and consequently, microbicidal activity in macrophages.
Collapse
|
14
|
Patra P, Banerjee R, Chakrabarti J. Effect of biphosphate salt on dipalmitoylphosphatidylcholine bilayer deformation by Tat polypeptide. Biopolymers 2022; 113:e23518. [PMID: 35621373 DOI: 10.1002/bip.23518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/06/2022]
Abstract
Translocation of positively charged cell penetrating peptides (CPP) through cell membrane is important in drug delivery. Here we report all-atom molecular dynamics simulations to investigate how a biphosphate salt in a solvent affects the interaction of a CPP, HIV-1 Tat peptide with model dipalmitoylphosphatidylcholine (DPPC) lipid bilayer. Tat peptide has a large number of basic arginines and a couple of polar glutamines. We observe that in absence of salt, the basic residues of the polypeptide get localized in the vicinity of the membrane without altering the bilayer properties much; polypeptide induce local thinning of the bilayer membrane at the area of localization. In presence of biphosphate salt, the basic residues, dressed by the biphosphate ions, are repelled by the phosphate head groups of the lipid molecules. However, polar glutamine prefers to stay in the vicinity of the bilayer. This leads to larger local bilayer thickness at the contact point by the polar residue and non-uniform bilayer thickness profile. The thickness deformation of bilayer structure disappears upon mutating the polar residue, suggesting importance of the polar residue in bilayer deformation. Our studies point to control bilayer deformation by appropriate peptide sequence and solvent conditions.
Collapse
Affiliation(s)
- Piya Patra
- Maulana Abul Kalam Azad University of Technology, West Bengal, Haringhata, Nadia, West Bengal, India
| | - Raja Banerjee
- Maulana Abul Kalam Azad University of Technology, West Bengal, Haringhata, Nadia, West Bengal, India
| | - Jaydeb Chakrabarti
- Department of Chemical, Biological and Macro-Molecular Sciences, Thematic Unit of Excellence on Computational Materials Science and Technical Research Centre, S. N. Bose National Centre for Basic Sciences, Salt Lake, Kolkata, West Bengal, India
| |
Collapse
|
15
|
Ablowitz MJ, Been JB, Carr LD. Fractional Integrable Nonlinear Soliton Equations. PHYSICAL REVIEW LETTERS 2022; 128:184101. [PMID: 35594099 DOI: 10.1103/physrevlett.128.184101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/08/2022] [Indexed: 06/15/2023]
Abstract
Nonlinear integrable equations serve as a foundation for nonlinear dynamics, and fractional equations are well known in anomalous diffusion. We connect these two fields by presenting the discovery of a new class of integrable fractional nonlinear evolution equations describing dispersive transport in fractional media. These equations can be constructed from nonlinear integrable equations using a widely generalizable mathematical process utilizing completeness relations, dispersion relations, and inverse scattering transform techniques. As examples, this general method is used to characterize fractional extensions to two physically relevant, pervasive integrable nonlinear equations: the Korteweg-deVries and nonlinear Schrödinger equations. These equations are shown to predict superdispersive transport of nondissipative solitons in fractional media.
Collapse
Affiliation(s)
- Mark J Ablowitz
- Department of Applied Mathematics, University of Colorado, Boulder, Colorado 80309, USA
| | - Joel B Been
- Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, Colorado 80401, USA
- Department of Physics, Colorado School of Mines, Golden, Colorado 80401, USA
| | - Lincoln D Carr
- Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, Colorado 80401, USA
- Department of Physics, Colorado School of Mines, Golden, Colorado 80401, USA
- Quantum Engineering Program, Colorado School of Mines, Golden, Colorado 80401, USA
| |
Collapse
|
16
|
Khatun S, Singh A, Shikha K, Ganguly A, Gupta AN. Plasmid DNA Undergoes Two Compaction Regimes under Macromolecular Crowding. ACS Macro Lett 2022; 11:186-192. [PMID: 35574767 DOI: 10.1021/acsmacrolett.1c00593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The laser light scattering experiments were performed to explore the role of dextran (size (d): 2.6, 6.9, and 17.0 nm) in compacting the plasmids (pBS: 2.9 kbps; pCMV-Tag2B: 4.3 kbps; and pET28a: 5.3 kbps) in vitro in the volume fraction (ϕ) range 0.01 to 0.15 of the macromolecular crowder. Two compaction regimes were observed in terms of the radius of gyration (Rg) for plasmid-dextran combinations, wherein the plasmid diffusivity is governed by normal diffusion and subdiffusion, respectively. Generalized scaling, Rg ∼ ϕ-1/(1+x), where x represents the conformational geometry of plasmids, is reported. The plasmid conformation depends on the crowder's size, with larger conformational changes observed in the presence of smaller crowders. The second virial coefficient (A2) and translational diffusion coefficient (Dt) indicate that entropically driven depletion of crowders, excluded volume, and interplasmid repulsive interactions govern plasmids' conformational changes, validated herein from the scaling of Dt with molecular weight.
Collapse
Affiliation(s)
- Suparna Khatun
- Biophysics and Soft Matter Laboratory, Department of Physics, Indian Institute of Technology, Kharagpur 721302, India
| | - Anurag Singh
- Biophysics and Soft Matter Laboratory, Department of Physics, Indian Institute of Technology, Kharagpur 721302, India
| | - Kumari Shikha
- School of Bio Science, Indian Institute of Technology, Kharagpur 721302, India
| | - Agneyo Ganguly
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302, India
| | - Amar Nath Gupta
- Biophysics and Soft Matter Laboratory, Department of Physics, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|
17
|
Vernerey FJ, Lalitha Sridhar S, Muralidharan A, Bryant SJ. Mechanics of 3D Cell-Hydrogel Interactions: Experiments, Models, and Mechanisms. Chem Rev 2021; 121:11085-11148. [PMID: 34473466 DOI: 10.1021/acs.chemrev.1c00046] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hydrogels are highly water-swollen molecular networks that are ideal platforms to create tissue mimetics owing to their vast and tunable properties. As such, hydrogels are promising cell-delivery vehicles for applications in tissue engineering and have also emerged as an important base for ex vivo models to study healthy and pathophysiological events in a carefully controlled three-dimensional environment. Cells are readily encapsulated in hydrogels resulting in a plethora of biochemical and mechanical communication mechanisms, which recapitulates the natural cell and extracellular matrix interaction in tissues. These interactions are complex, with multiple events that are invariably coupled and spanning multiple length and time scales. To study and identify the underlying mechanisms involved, an integrated experimental and computational approach is ideally needed. This review discusses the state of our knowledge on cell-hydrogel interactions, with a focus on mechanics and transport, and in this context, highlights recent advancements in experiments, mathematical and computational modeling. The review begins with a background on the thermodynamics and physics fundamentals that govern hydrogel mechanics and transport. The review focuses on two main classes of hydrogels, described as semiflexible polymer networks that represent physically cross-linked fibrous hydrogels and flexible polymer networks representing the chemically cross-linked synthetic and natural hydrogels. In this review, we highlight five main cell-hydrogel interactions that involve key cellular functions related to communication, mechanosensing, migration, growth, and tissue deposition and elaboration. For each of these cellular functions, recent experiments and the most up to date modeling strategies are discussed and then followed by a summary of how to tune hydrogel properties to achieve a desired functional cellular outcome. We conclude with a summary linking these advancements and make the case for the need to integrate experiments and modeling to advance our fundamental understanding of cell-matrix interactions that will ultimately help identify new therapeutic approaches and enable successful tissue engineering.
Collapse
Affiliation(s)
- Franck J Vernerey
- Department of Mechanical Engineering, University of Colorado at Boulder, 1111 Engineering Drive, Boulder, Colorado 80309-0428, United States.,Materials Science and Engineering Program, University of Colorado at Boulder, 4001 Discovery Drive, Boulder, Colorado 80309-613, United States
| | - Shankar Lalitha Sridhar
- Department of Mechanical Engineering, University of Colorado at Boulder, 1111 Engineering Drive, Boulder, Colorado 80309-0428, United States
| | - Archish Muralidharan
- Materials Science and Engineering Program, University of Colorado at Boulder, 4001 Discovery Drive, Boulder, Colorado 80309-613, United States
| | - Stephanie J Bryant
- Materials Science and Engineering Program, University of Colorado at Boulder, 4001 Discovery Drive, Boulder, Colorado 80309-613, United States.,Department of Chemical and Biological Engineering, University of Colorado at Boulder, 3415 Colorado Avenue, Boulder, Colorado 80309-0596, United States.,BioFrontiers Institute, University of Colorado at Boulder, 3415 Colorado Avenue, Boulder, Colorado 80309-0596, United States
| |
Collapse
|
18
|
Abstract
AbstractWe provide upper and lower bounds for the mean
$\mathscr{M}(H)$
of
$\sup_{t\geq 0} \{B_H(t) - t\}$
, with
$B_H(\!\cdot\!)$
a zero-mean, variance-normalized version of fractional Brownian motion with Hurst parameter
$H\in(0,1)$
. We find bounds in (semi-) closed form, distinguishing between
$H\in(0,\frac{1}{2}]$
and
$H\in[\frac{1}{2},1)$
, where in the former regime a numerical procedure is presented that drastically reduces the upper bound. For
$H\in(0,\frac{1}{2}]$
, the ratio between the upper and lower bound is bounded, whereas for
$H\in[\frac{1}{2},1)$
the derived upper and lower bound have a strongly similar shape. We also derive a new upper bound for the mean of
$\sup_{t\in[0,1]} B_H(t)$
,
$H\in(0,\frac{1}{2}]$
, which is tight around
$H=\frac{1}{2}$
.
Collapse
|
19
|
Anderson SJ, Garamella J, Adalbert S, McGorty RJ, Robertson-Anderson RM. Subtle changes in crosslinking drive diverse anomalous transport characteristics in actin-microtubule networks. SOFT MATTER 2021; 17:4375-4385. [PMID: 33908593 PMCID: PMC8189643 DOI: 10.1039/d1sm00093d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Anomalous diffusion in crowded and complex environments is widely studied due to its importance in intracellular transport, fluid rheology and materials engineering. Specifically, diffusion through the cytoskeleton, a network comprised of semiflexible actin filaments and rigid microtubules that interact both sterically and via crosslinking, plays a principal role in viral infection, vesicle transport and targeted drug delivery. Here, we elucidate the impact of crosslinking on particle diffusion in composites of actin and microtubules with actin-actin, microtubule-microtubule and actin-microtubule crosslinking. We analyze a suite of transport metrics by coupling single-particle tracking and differential dynamic microscopy. Using these complementary techniques, we find that particles display non-Gaussian and non-ergodic subdiffusion that is markedly enhanced by cytoskeletal crosslinking, which we attribute to suppressed microtubule mobility. However, the extent to which transport deviates from normal Brownian diffusion depends strongly on the crosslinking motif - with actin-microtubule crosslinking inducing the most pronounced anomalous characteristics. Our results reveal that subtle changes to actin-microtubule interactions can have complex impacts on particle diffusion in cytoskeleton composites, and suggest that a combination of reduced filament mobility and more variance in actin mobilities leads to more strongly anomalous particle transport.
Collapse
Affiliation(s)
- S J Anderson
- Department of Physics & Biophysics, University of San Diego, San Diego, CA 92110, USA.
| | - J Garamella
- Department of Physics & Biophysics, University of San Diego, San Diego, CA 92110, USA.
| | - S Adalbert
- Department of Physics & Biophysics, University of San Diego, San Diego, CA 92110, USA.
| | - R J McGorty
- Department of Physics & Biophysics, University of San Diego, San Diego, CA 92110, USA.
| | | |
Collapse
|
20
|
Matsuo T. A theoretical study on the effects of interdomain flexibility on drug encounter rate for coronavirus nucleocapsid-type proteins. Biophys Chem 2021; 272:106574. [PMID: 33730680 PMCID: PMC7939999 DOI: 10.1016/j.bpc.2021.106574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 12/25/2022]
Abstract
To study the effects of the interdomain flexibility on the encounter rate of nucleocapsid-type protein with drug molecules, where two domains (NTD) are connected by a flexible linker and each NTD has a drug binding site, two-dimensional random walk simulation was carried out as a function of the interdomain flexibility and the drug concentration. NTDs represented as circles undergo random motions constrained by the interdomain flexibility while drug molecules are represented by lattice points. It was found that as the interdomain flexibility increases, the time interval between the drug bindings to the 1st and 2nd NTDs decreases, suggesting that the 2nd drug binding is accelerated. Furthermore, this effect was more significant at lower drug concentrations. These results suggest that the interdomain linker plays a key role in the drug binding process and thus emphasize the importance of characterization of their physicochemical properties to better evaluate the efficacy of potential drugs.
Collapse
Affiliation(s)
- Tatsuhito Matsuo
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1106, Japan; Laboratoire Interdisciplinaire de Physique (LiPhy), Grenoble-Alpes University, 140 rue de la physique, 38402 Saint Martin d'Hères, France; Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France.
| |
Collapse
|
21
|
Yoshida S, Schmid W, Vo N, Calabrase W, Kisley L. Computationally-efficient spatiotemporal correlation analysis super-resolves anomalous diffusion. OPTICS EXPRESS 2021; 29:7616-7629. [PMID: 33726259 DOI: 10.1364/oe.416465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Anomalous diffusion dynamics in confined nanoenvironments govern the macroscale properties and interactions of many biophysical and material systems. Currently, it is difficult to quantitatively link the nanoscale structure of porous media to anomalous diffusion within them. Fluorescence correlation spectroscopy super-resolution optical fluctuation imaging (fcsSOFI) has been shown to extract nanoscale structure and Brownian diffusion dynamics within gels, liquid crystals, and polymers, but has limitations which hinder its wider application to more diverse, biophysically-relevant datasets. Here, we parallelize the least-squares curve fitting step on a GPU improving computation times by up to a factor of 40, implement anomalous diffusion and two-component Brownian diffusion models, and make fcsSOFI more accessible by packaging it in a user-friendly GUI. We apply fcsSOFI to simulations of the protein fibrinogen diffusing in polyacrylamide of varying matrix densities and super-resolve locations where slower, anomalous diffusion occurs within smaller, confined pores. The improvements to fcsSOFI in speed, scope, and usability will allow for the wider adoption of super-resolution correlation analysis to diverse research topics.
Collapse
|
22
|
Lalitha Sridhar S, Dunagin J, Koo K, Hough L, Vernerey F. Enhanced Diffusion by Reversible Binding to Active Polymers. Macromolecules 2021; 54:1850-1858. [PMID: 35663922 PMCID: PMC9161825 DOI: 10.1021/acs.macromol.0c02306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cells are known to use reversible binding to active biopolymer networks to allow diffusive transport of particles in an otherwise impenetrable mesh. We here determine the motion of a particle that experiences random forces during binding and unbinding events while being constrained by attached polymers. Using Monte-Carlo simulations and a statistical mechanics model, we find that enhanced diffusion is possible with active polymers. However, this is possible only under optimum conditions that has to do with the relative length of the chains to that of the plate. For example, in systems where the plate is shorter than the chains, diffusion is maximum when many chains have the potential to bind but few remain bound at any one time. Interestingly, if the chains are shorter than the plate, we find that diffusion is maximized when more active chains remain transiently bound. The model provides insight into these findings by elucidating the mechanisms for binding-mediated diffusion in biology and design rules for macromolecular transport in transient synthetic polymers.
Collapse
Affiliation(s)
- Shankar Lalitha Sridhar
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Jeffrey Dunagin
- Department of Physics, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Kanghyeon Koo
- Civil, Environmental and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Loren Hough
- Department of Physics, University of Colorado Boulder, Boulder, Colorado 80309, United States
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Franck Vernerey
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
23
|
Behjatian A, Bespalova M, Karedla N, Krishnan M. Electroviscous effect for a confined nanosphere in solution. Phys Rev E 2020; 102:042607. [PMID: 33212723 DOI: 10.1103/physreve.102.042607] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/20/2020] [Indexed: 11/07/2022]
Abstract
A charged colloidal particle suspended in an electrolyte experiences electroviscous stresses arising from motion-driven electrohydrodynamic phenomena. Under certain conditions, the additional contribution from electroviscous drag forces to the total drag experienced by the moving particle can lead to measurable deviations of particle diffusion coefficients from values predicted by the well known Stokes-Einstein relation that describes diffusive behavior of small particles in an unbounded charge-free fluid. In this study, we investigate the role of electroviscous stresses on nanoparticle diffusion in confined geometries using both simulations and experiment. We compare our experimental measurements with the results of a numerically solved continuum model based on the Poisson-Nernst-Planck-Stokes system of equations and find good agreement between experiment and theory. Depending on the radius of the counterion species in solution and the degree of confinement, we find that the viscous drag on polystyrene nanoparticles can be augmented by approximately 10-25% compared to the values predicted by pure hydrodynamic models in the absence of free charge in the fluid. This enhancement corresponds approximately to a 5-10% increase compared to the electroviscous contribution for a charged particle in an unbounded fluid. Contrary to recent reports in the experimental literature, we find neither experimental nor theoretical evidence of an anomalously large enhancement of electroviscous forces on a confined charged nanoparticle in solution.
Collapse
Affiliation(s)
- Ali Behjatian
- Physical & Theoretical Chemistry Laboratory, Department of Chemistry, South Parks Road, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Maria Bespalova
- Physical & Theoretical Chemistry Laboratory, Department of Chemistry, South Parks Road, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Narain Karedla
- Physical & Theoretical Chemistry Laboratory, Department of Chemistry, South Parks Road, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Madhavi Krishnan
- Physical & Theoretical Chemistry Laboratory, Department of Chemistry, South Parks Road, University of Oxford, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
24
|
Armstrong MJ, Rodriguez JB, Dahl P, Salamon P, Hess H, Katira P. Power Law Behavior in Protein Desorption Kinetics Originating from Sequential Binding and Unbinding. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13527-13534. [PMID: 33152250 DOI: 10.1021/acs.langmuir.0c02260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The study of protein adsorption at the single molecule level has recently revealed that the adsorption is reversible, but with a long-tailed residence time distribution which can be approximated with a sum of exponential functions putatively related to distinct adsorption sites. Here it is proposed that the shape of the residence time distribution results from an adsorption process with sequential and reversible steps that contribute to overall binding strength resembling "zippering". In this model, the survival function of the residence time distribution of single proteins varies from an exponential distribution for a single adsorption step to a power law distribution with exponent -1/2 for a large number of adsorption steps. The adsorption of fluorescently labeled fibrinogen to glass surfaces is experimentally studied with single molecule imaging. The experimental residence time distribution can be readily fit by the proposed model. This demonstrates that the observed long residence times can arise from stepwise adsorption rather than rare but strong binding sites and provides guidance for the control of protein adsorption to biomaterials.
Collapse
Affiliation(s)
- Megan J Armstrong
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Juan B Rodriguez
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Peter Dahl
- Department of Mechanical Engineering, San Diego State University, San Diego, California 98182, United States
| | - Peter Salamon
- Department of Mathematics and Statistics and Viral Information Institute, San Diego State University, San Diego, California 98182, United States
| | - Henry Hess
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Parag Katira
- Department of Mechanical Engineering, San Diego State University, San Diego, California 98182, United States
| |
Collapse
|
25
|
Zhang RL, Pratiwi FW, Chen BC, Chen P, Wu SH, Mou CY. Simultaneous Single-Particle Tracking and Dynamic pH Sensing Reveal Lysosome-Targetable Mesoporous Silica Nanoparticle Pathways. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42472-42484. [PMID: 32657564 DOI: 10.1021/acsami.0c07917] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Nanoparticle (NP)-based targeted drug delivery is intended to transport therapeutically active molecules to specific cells and particular intracellular compartments. However, there is limited knowledge regarding the complete route of NPs in this targeting scenario. In this study, simultaneously performing motion and dynamic pH sensing using single-particle tracking (SPT) leads to an alternative method of gaining insights into the mesoporous silica nanoparticle's (MSN) journey in targeting lysosome. Two different pH-sensitive dyes and a reference dye are incorporated into mesoporous silica nanoparticles (MSNs) via co-condensation to broaden the measurable pH range (pH 4-7.5) of the nanoprobe. The phosphonate, amine, and lysosomal sorting peptides (YQRLGC) are conjugated onto the MSN's surface to study intracellular nano-biointeractions of two oppositely charged and lysosome-targetable MSNs. The brightness and stability of these MSNs allow their movement and dynamic pH evolution during their journey to be simultaneously monitored in real time. Importantly, a multidimensional analysis of MSN's movement and local pH has revealed new model intracellular dynamic states and distributions of MSNs, previously inaccessible when using single parameters alone. A key result is that YQRLGC-conjugated MSNs took an alternative route to target lysosomes apart from the traditional one, which sped up to 4 h and enhanced their targeting efficiency (up to 32%). The findings enrich our understanding of the intracellular journey of MSNs. This study offers complementary information on correlating the surface design with the full pathway of nanoparticles to achieve targeted delivery of therapeutic payload.
Collapse
Affiliation(s)
- Rong-Lin Zhang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Feby Wijaya Pratiwi
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Research Center for Applied Sciences, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Bi-Chang Chen
- Research Center for Applied Sciences, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Peilin Chen
- Research Center for Applied Sciences, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Si-Han Wu
- Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, 250 Wu Xinyi Street, Taipei 11031, Taiwan
| | - Chung-Yuan Mou
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, 250 Wu Xinyi Street, Taipei 11031, Taiwan
| |
Collapse
|
26
|
Investigation of the Time-Dependent Transitions Between the Time-Fractional and Standard Diffusion in a Hierarchical Porous Material. Transp Porous Media 2020. [DOI: 10.1007/s11242-020-01435-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
Singh RK, Mahato J, Chowdhury A, Sain A, Nandi A. Non-Gaussian subdiffusion of single-molecule tracers in a hydrated polymer network. J Chem Phys 2020; 152:024903. [PMID: 31941310 DOI: 10.1063/1.5128743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Single molecule tracking experiments inside a hydrated polymer network have shown that the tracer motion is subdiffusive due to the viscoelastic environment inside the gel-like network. This property can be related to the negative autocorrelation of the instantaneous displacements at short times. Although the displacements of the individual tracers exhibit Gaussian statistics, the displacement distribution of all the trajectories combined from different spatial locations of the polymer network exhibits a non-Gaussian distribution. Here, we analyze many individual tracer trajectories to show that the central portion of the non-Gaussian distribution can be well approximated by an exponential distribution that spreads sublinearly with time. We explain all these features seen in the experiment by a generalized Langevin model for an overdamped particle with algebraically decaying correlations. We show that the degree of non-Gaussianity can change with the extent of heterogeneity, which is controlled in our model by the experimentally observed distributions of the motion parameters.
Collapse
Affiliation(s)
- R K Singh
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Jaladhar Mahato
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Arindam Chowdhury
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Anirban Sain
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Amitabha Nandi
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
28
|
Maelfeyt B, Tabei SMA, Gopinathan A. Anomalous intracellular transport phases depend on cytoskeletal network features. Phys Rev E 2019; 99:062404. [PMID: 31330659 DOI: 10.1103/physreve.99.062404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Indexed: 01/06/2023]
Abstract
Intracellular transport in eukaryotic cells consists of phases of passive, diffusion-based transport and active, motor-driven transport along filaments that make up the cell's cytoskeleton. The interplay between superdiffusive transport along cytoskeletal filaments and the anomalous nature of subdiffusion in the bulk can lead to novel effects in transport behavior at the cellular scale. Here we develop a computational model of the process with cargo being ballistically transported along explicitly modeled cytoskeletal filament networks and passively transported in the cytoplasm by a subdiffusive continuous-time random walk (CTRW). We show that, over a physiologically relevant range of filament lengths and numbers, the network introduces a filament-length sensitive superdiffusive phase at early times which crosses over to a phase where the CTRW is dominant and produces subdiffusion at late times. We apply our approach to the problem of insulin secretion from cells and show that the superdiffusive phase introduced by the filament network manifests as a peak in the secretion at early times followed by an extended sustained release phase that is dominated by the CTRW process at late times. Our results are consistent with in vivo observations of insulin transport in healthy cells and shed light on the potential for the cell to tune functionally important transport phases by altering its cytoskeletal network.
Collapse
Affiliation(s)
- Bryan Maelfeyt
- Department of Physics, University of California Merced, Merced California, USA
| | - S M Ali Tabei
- Department of Physics, University of Northern Iowa, Cedar Falls Iowa, USA
| | - Ajay Gopinathan
- Department of Physics, University of California Merced, Merced California, USA
| |
Collapse
|
29
|
Wulstein DM, Regan KE, Garamella J, McGorty RJ, Robertson-Anderson RM. Topology-dependent anomalous dynamics of ring and linear DNA are sensitive to cytoskeleton crosslinking. SCIENCE ADVANCES 2019; 5:eaay5912. [PMID: 31853502 PMCID: PMC6910835 DOI: 10.1126/sciadv.aay5912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/18/2019] [Indexed: 05/21/2023]
Abstract
Cytoskeletal crowding plays a key role in the diffusion of DNA molecules through the cell, acting as a barrier to effective intracellular transport and conformational stability required for processes such as transfection, viral infection, and gene therapy. Here, we elucidate the transport properties and conformational dynamics of linear and ring DNA molecules diffusing through entangled and crosslinked composite networks of actin and microtubules. We couple single-molecule conformational tracking with differential dynamic microscopy to reveal that ring and linear DNA exhibit unexpectedly distinct transport properties that are influenced differently by cytoskeleton crosslinking. Ring DNA coils are swollen and undergo heterogeneous and biphasic subdiffusion that is hindered by crosslinking. Conversely, crosslinking actually facilitates the single-mode subdiffusion that compacted linear chains exhibit. Our collective results demonstrate that transient threading by cytoskeleton filaments plays a key role in the dynamics of ring DNA, whereas the mobility of the cytoskeleton dictates transport of linear DNA.
Collapse
Affiliation(s)
| | | | - Jonathan Garamella
- Department of Physics and Biophysics, University of San Diego, San Diego, CA 92110, USA
| | | | | |
Collapse
|
30
|
Anderson SJ, Matsuda C, Garamella J, Peddireddy KR, Robertson-Anderson RM, McGorty R. Filament Rigidity Vies with Mesh Size in Determining Anomalous Diffusion in Cytoskeleton. Biomacromolecules 2019; 20:4380-4388. [PMID: 31687803 DOI: 10.1021/acs.biomac.9b01057] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The diffusion of microscopic particles through the cell, important to processes such as viral infection, gene delivery, and vesicle transport, is largely controlled by the complex cytoskeletal network, comprised of semiflexible actin filaments and rigid microtubules, that pervades the cytoplasm. By varying the relative concentrations of actin and microtubules, the cytoskeleton can display a host of different structural and dynamic properties that, in turn, impact the diffusion of particles through the composite network. Here, we couple single-particle tracking with differential dynamic microscopy to characterize the transport of microsphere tracers diffusing through composite in vitro networks with varying ratios of actin and microtubules. We analyze multiple complementary metrics for anomalous transport to show that particles exhibit anomalous subdiffusion in all networks, which our data suggest arises from caging by networks. Further, subdiffusive characteristics are markedly more pronounced in actin-rich networks, which exhibit similarly more prominent viscoelastic properties compared to microtubule-rich composites. While the smaller mesh size of actin-rich composites compared to microtubule-rich composites plays an important role in these results, the rigidity of the filaments comprising the network also influences the anomalous characteristics that we observe. Our results suggest that as microtubules in our composites are replaced with actin filaments, the decreasing filament rigidity competes with increasing network connectivity to drive anomalous transport.
Collapse
Affiliation(s)
- Sylas J Anderson
- Department of Physics and Biophysics , University of San Diego , San Diego , California 92110 , United States
| | - Christelle Matsuda
- Department of Physics and Biophysics , University of San Diego , San Diego , California 92110 , United States
| | - Jonathan Garamella
- Department of Physics and Biophysics , University of San Diego , San Diego , California 92110 , United States
| | - Karthik Reddy Peddireddy
- Department of Physics and Biophysics , University of San Diego , San Diego , California 92110 , United States
| | - Rae M Robertson-Anderson
- Department of Physics and Biophysics , University of San Diego , San Diego , California 92110 , United States
| | - Ryan McGorty
- Department of Physics and Biophysics , University of San Diego , San Diego , California 92110 , United States
| |
Collapse
|
31
|
Aure RRL, Bernido CC, Carpio-Bernido MV, Bacabac RG. Damped White Noise Diffusion with Memory for Diffusing Microprobes in Ageing Fibrin Gels. Biophys J 2019; 117:1029-1036. [PMID: 31495446 PMCID: PMC6818180 DOI: 10.1016/j.bpj.2019.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/11/2019] [Accepted: 08/14/2019] [Indexed: 02/03/2023] Open
Abstract
From observations of colloidal tracer particles in fibrin undergoing gelation, we introduce an analytical framework that allows the determination of the probability density function for a stochastic process beyond fractional Brownian motion. Using passive microrheology via videomicroscopy, mean square displacements of tracer particles suspended in fibrin at different ageing times are obtained. The anomalous diffusion is then described by a damped white noise process with memory, with analytical results closely matching experimental plots of mean square displacements and probability density function. We further show that the white noise functional stochastic approach applied to passive microrheology reveals the existence of a gelation parameter μ which elucidates the dynamics of constrained tracer particles embedded in a time-dependent soft material. In addition, we found that microstructural heterogeneity of particle environments decreases as the ageing time increases. This study offers experimental insights on the ageing of fibrin gels while presenting a white noise functional stochastic approach that could be applied to other systems exhibiting non-Markovian diffusive behavior.
Collapse
Affiliation(s)
- Rev R L Aure
- Medical Biophysics Group, Department of Physics, University of San Carlos, Cebu City, Philippines; Department of Mathematics and Physics, Visayas State University, Baybay City, Leyte, Philippines
| | - Christopher C Bernido
- Theoretical and Computational Sciences and Engineering Group, Department of Physics, University of San Carlos, Cebu City, Philippines; Research Center for Theoretical Physics, Central Visayan Institute Foundation, Jagna, Bohol, Philippines.
| | - M Victoria Carpio-Bernido
- Theoretical and Computational Sciences and Engineering Group, Department of Physics, University of San Carlos, Cebu City, Philippines; Research Center for Theoretical Physics, Central Visayan Institute Foundation, Jagna, Bohol, Philippines
| | - Rommel G Bacabac
- Medical Biophysics Group, Department of Physics, University of San Carlos, Cebu City, Philippines
| |
Collapse
|
32
|
Malsagov A, Mandjes M. Approximations for reflected fractional Brownian motion. Phys Rev E 2019; 100:032120. [PMID: 31640037 DOI: 10.1103/physreve.100.032120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Indexed: 06/10/2023]
Abstract
Fractional Brownian motion is a widely used stochastic process that is particularly suited to model anomalous diffusion. We focus on capturing the mean and variance of fractional Brownian motion reflected at level 0. As explicit expressions or numerical techniques are not available, we base our analysis on Monte Carlo simulation. Our main findings concern closed-form approximations of the mean and variance, with a near-perfect fit.
Collapse
Affiliation(s)
- Artagan Malsagov
- Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Science Park 105, 1098 XH Amsterdam, The Netherlands
| | - Michel Mandjes
- Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Science Park 105, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
33
|
Kang SM, Rethinasabapathy M, Lee GW, Kwak CH, Park B, Kim WS, Huh YS. Generation of multifunctional encoded particles using a tetrapod microneedle injector. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.02.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
34
|
|
35
|
Regan K, Wulstein D, Rasmussen H, McGorty R, Robertson-Anderson RM. Bridging the spatiotemporal scales of macromolecular transport in crowded biomimetic systems. SOFT MATTER 2019; 15:1200-1209. [PMID: 30543245 PMCID: PMC6365203 DOI: 10.1039/c8sm02023j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Crowding plays a key role in the transport and conformations of biological macromolecules. Gene therapy, viral infection, and transfection require DNA to traverse the crowded cytoplasm, including the cytoskeletal network of filamentous proteins. Given the complexity of cellular crowding, the dynamics of biological molecules can be highly dependent on the spatiotemporal scale probed. We present a powerful platform that spans molecular and cellular scales by coupling single-molecule conformational tracking (SMCT) and selective-plane illumination differential dynamic microscopy (SPIDDM). We elucidate the transport and conformational properties of large DNA, crowded by custom-designed networks of actin and microtubules, to link single-molecule conformations with ensemble DNA transport and cytoskeleton structure. We show that actin crowding leads to DNA compaction and suppression of fluctuations, combined with subdiffusion and heterogeneous transport, whereas microtubules have much more subdued impact across all scales. In composite networks of both filaments, scale-dependent effects emerge such that actin dictates ensemble DNA transport while microtubules influence single-molecule dynamics. We show that these intriguing results arise from a complex interplay between network rigidity, mesh size, filament concentration, and DNA size.
Collapse
Affiliation(s)
- Kathryn Regan
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, CA 92110, USA.
| | | | | | | | | |
Collapse
|
36
|
Coker HLE, Cheetham MR, Kattnig DR, Wang YJ, Garcia-Manyes S, Wallace MI. Controlling Anomalous Diffusion in Lipid Membranes. Biophys J 2019; 116:1085-1094. [PMID: 30846364 DOI: 10.1016/j.bpj.2018.12.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/21/2018] [Accepted: 12/14/2018] [Indexed: 12/24/2022] Open
Abstract
Diffusion in cell membranes is not just simple two-dimensional Brownian motion but typically depends on the timescale of the observation. The physical origins of this anomalous subdiffusion are unresolved, and model systems capable of quantitative and reproducible control of membrane diffusion have been recognized as a key experimental bottleneck. Here, we control anomalous diffusion using supported lipid bilayers containing lipids derivatized with polyethylene glycol (PEG) headgroups. Bilayers with specific excluded area fractions are formed by control of PEG lipid mole fraction. These bilayers exhibit a switch in diffusive behavior, becoming anomalous as bilayer continuity is disrupted. Using a combination of single-molecule fluorescence and interferometric imaging, we measure the anomalous behavior in this model over four orders of magnitude in time. Diffusion in these bilayers is well described by a power-law dependence of the mean-square displacement with observation time. Anomaleity in this system can be tailored by simply controlling the mole fraction of PEG lipid, producing bilayers with diffusion parameters similar to those observed for anomalous diffusion in biological membranes.
Collapse
Affiliation(s)
- Helena L E Coker
- Department of Chemistry, King's College London, London, United Kingdom; Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - Matthew R Cheetham
- Department of Chemistry, King's College London, London, United Kingdom; Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - Daniel R Kattnig
- Living Systems Institute & Department of Physics, University of Exeter, Exeter, United Kingdom
| | - Yong J Wang
- Department of Physics, King's College London, London, United Kingdom
| | | | - Mark I Wallace
- Department of Chemistry, King's College London, London, United Kingdom.
| |
Collapse
|
37
|
Weatherill EE, Coker HLE, Cheetham MR, Wallace MI. Urea-mediated anomalous diffusion in supported lipid bilayers. Interface Focus 2018; 8:20180028. [PMID: 30443327 PMCID: PMC6227775 DOI: 10.1098/rsfs.2018.0028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2018] [Indexed: 12/16/2022] Open
Abstract
Diffusion in biological membranes is seldom simply Brownian motion; instead, the rate of diffusion is dependent on the time scale of observation and so is often described as anomalous. In order to help better understand this phenomenon, model systems are needed where the anomalous diffusion of the lipid bilayer can be tuned and quantified. We recently demonstrated one such model by controlling the excluded area fraction in supported lipid bilayers (SLBs) through the incorporation of lipids derivatized with polyethylene glycol. Here, we extend this work, using urea to induce anomalous diffusion in SLBs. By tuning incubation time and urea concentration, we produce bilayers that exhibit anomalous behaviour on the same scale as that observed in biological membranes.
Collapse
Affiliation(s)
- E. E. Weatherill
- Department of Chemistry, Britannia House, King's College London, 7 Trinity Street, London SE1 1DB, UK
| | - H. L. E. Coker
- Department of Chemistry, Britannia House, King's College London, 7 Trinity Street, London SE1 1DB, UK
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - M. R. Cheetham
- Department of Chemistry, Britannia House, King's College London, 7 Trinity Street, London SE1 1DB, UK
- Cavendish Laboratory, Department of Physics, NanoPhotonics Centre, University of Cambridge, Cambridge CB3 0HE, UK
| | - M. I. Wallace
- Department of Chemistry, Britannia House, King's College London, 7 Trinity Street, London SE1 1DB, UK
| |
Collapse
|
38
|
Tadavani SK, Yethiraj A. Anomalous dynamics in tracer-particle motions in an electrohydrodynamically driven oil-in-oil system. Phys Rev E 2018; 98:022602. [PMID: 30253573 DOI: 10.1103/physreve.98.022602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Indexed: 11/07/2022]
Abstract
We characterize the superdiffusive dynamics of tracer particles in an electrohydrodynamically driven emulsion of oil droplets in an immiscible oil medium, where the amplitude and frequency of an external electric field are the control parameters. In the weakly driven electrohydrodynamic regime, the droplets are trapped dielectrophoretically on a patterned electrode, and the driving is therefore spatially varying. We find excellent agreement with a 〈x^{2}〉∼t^{1.5} power law and find that this superdiffusive dynamics arises from an underlying displacement distribution that is distinctly non-Gaussian and exponential for small displacements and short times. While these results are comparable with a random-velocity field model, the tracer particle speeds are in fact spatially varying in two dimensions, arising from a spatially varying electrohydrodynamic driving force. This suggests that the important ingredient for the superdiffusive t^{1.5} behavior observed is a velocity field that is isotropic in the plane and spatially correlated. Finally, we can extract, from the superdiffusive dynamics, a experimental length scale that corresponds to the lateral range of the hydrodynamic flows. This experimental length scale is non zero only above a threshold ion mobility length.
Collapse
Affiliation(s)
- Somayeh Khajehpour Tadavani
- Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X7 Canada
| | - Anand Yethiraj
- Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X7 Canada
| |
Collapse
|
39
|
Vitali S, Sposini V, Sliusarenko O, Paradisi P, Castellani G, Pagnini G. Langevin equation in complex media and anomalous diffusion. J R Soc Interface 2018; 15:20180282. [PMID: 30158182 PMCID: PMC6127165 DOI: 10.1098/rsif.2018.0282] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/30/2018] [Indexed: 11/30/2022] Open
Abstract
The problem of biological motion is a very intriguing and topical issue. Many efforts are being focused on the development of novel modelling approaches for the description of anomalous diffusion in biological systems, such as the very complex and heterogeneous cell environment. Nevertheless, many questions are still open, such as the joint manifestation of statistical features in agreement with different models that can also be somewhat alternative to each other, e.g. continuous time random walk and fractional Brownian motion. To overcome these limitations, we propose a stochastic diffusion model with additive noise and linear friction force (linear Langevin equation), thus involving the explicit modelling of velocity dynamics. The complexity of the medium is parametrized via a population of intensity parameters (relaxation time and diffusivity of velocity), thus introducing an additional randomness, in addition to white noise, in the particle's dynamics. We prove that, for proper distributions of these parameters, we can get both Gaussian anomalous diffusion, fractional diffusion and its generalizations.
Collapse
Affiliation(s)
- Silvia Vitali
- Department of Physics and Astronomy, Bologna University, Viale Berti Pichat 6/2, 40126 Bologna, Italy
| | - Vittoria Sposini
- Institute for Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Strasse 24/25, 14476 Potsdam-Golm, Germany
- BCAM-Basque Center for Applied Mathematics, Alameda de Mazarredo 14, 48009 Bilbao, Basque Country, Spain
| | - Oleksii Sliusarenko
- BCAM-Basque Center for Applied Mathematics, Alameda de Mazarredo 14, 48009 Bilbao, Basque Country, Spain
| | - Paolo Paradisi
- BCAM-Basque Center for Applied Mathematics, Alameda de Mazarredo 14, 48009 Bilbao, Basque Country, Spain
- ISTI-CNR, Institute of Information Science and Technologies 'A. Faedo' (Consiglio Nazionale delle Ricerche), Via Moruzzi 1, 56124 Pisa, Italy
| | - Gastone Castellani
- Department of Physics and Astronomy, Bologna University, Viale Berti Pichat 6/2, 40126 Bologna, Italy
| | - Gianni Pagnini
- BCAM-Basque Center for Applied Mathematics, Alameda de Mazarredo 14, 48009 Bilbao, Basque Country, Spain
- Ikerbasque-Basque Foundation for Science, Calle de María Díaz de Haro 3, 48013 Bilbao, Basque Country, Spain
| |
Collapse
|
40
|
Etoc F, Balloul E, Vicario C, Normanno D, Liße D, Sittner A, Piehler J, Dahan M, Coppey M. Non-specific interactions govern cytosolic diffusion of nanosized objects in mammalian cells. NATURE MATERIALS 2018; 17:740-746. [PMID: 29967464 DOI: 10.1038/s41563-018-0120-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 05/30/2018] [Indexed: 05/24/2023]
Abstract
The diffusivity of macromolecules in the cytoplasm of eukaryotic cells varies over orders of magnitude and dictates the kinetics of cellular processes. However, a general description that associates the Brownian or anomalous nature of intracellular diffusion to the architectural and biochemical properties of the cytoplasm has not been achieved. Here we measure the mobility of individual fluorescent nanoparticles in living mammalian cells to obtain a comprehensive analysis of cytoplasmic diffusion. We identify a correlation between tracer size, its biochemical nature and its mobility. Inert particles with size equal or below 50 nm behave as Brownian particles diffusing in a medium of low viscosity with negligible effects of molecular crowding. Increasing the strength of non-specific interactions of the nanoparticles within the cytoplasm gradually reduces their mobility and leads to subdiffusive behaviour. These experimental observations and the transition from Brownian to subdiffusive motion can be captured in a minimal phenomenological model.
Collapse
Affiliation(s)
- Fred Etoc
- Laboratoire Physico-Chimie, Institut Curie, CNRS UMR168, PSL Research University, Université Pierre et Marie Curie-Paris, Paris, France
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY, USA
| | - Elie Balloul
- Laboratoire Physico-Chimie, Institut Curie, CNRS UMR168, PSL Research University, Université Pierre et Marie Curie-Paris, Paris, France
| | - Chiara Vicario
- Laboratoire Physico-Chimie, Institut Curie, CNRS UMR168, PSL Research University, Université Pierre et Marie Curie-Paris, Paris, France
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Davide Normanno
- Laboratoire Physico-Chimie, Institut Curie, CNRS UMR168, PSL Research University, Université Pierre et Marie Curie-Paris, Paris, France.
- Centre de Recherche en Cancérologie de Marseille, CNRS UMR7258, Inserm U1068, Aix-Marseille Université UM105, Institut Paoli-Calmettes, Marseilles, France.
| | - Domenik Liße
- Division of Biophysics, Department of Biology, Osnabrück University, Osnabrück, Germany
| | - Assa Sittner
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Jacob Piehler
- Division of Biophysics, Department of Biology, Osnabrück University, Osnabrück, Germany
| | - Maxime Dahan
- Laboratoire Physico-Chimie, Institut Curie, CNRS UMR168, PSL Research University, Université Pierre et Marie Curie-Paris, Paris, France.
| | - Mathieu Coppey
- Laboratoire Physico-Chimie, Institut Curie, CNRS UMR168, PSL Research University, Université Pierre et Marie Curie-Paris, Paris, France.
| |
Collapse
|
41
|
Mardoum WM, Gorczyca SM, Regan KE, Wu TC, Robertson-Anderson RM. Crowding Induces Entropically-Driven Changes to DNA Dynamics That Depend on Crowder Structure and Ionic Conditions. FRONTIERS IN PHYSICS 2018; 6:53. [PMID: 31667164 PMCID: PMC6820857 DOI: 10.3389/fphy.2018.00053] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Macromolecular crowding plays a principal role in a wide range of biological processes including gene expression, chromosomal compaction, and viral infection. However, the impact that crowding has on the dynamics of nucleic acids remains a topic of debate. To address this problem, we use single-molecule fluorescence microscopy and custom particle-tracking algorithms to investigate the impact of varying macromolecular crowding conditions on the transport and conformational dynamics of large DNA molecules. Specifically, we measure the mean-squared center-of-mass displacements, as well as the conformational size, shape, and fluctuations, of individual 115 kbp DNA molecules diffusing through various in vitro solutions of crowding polymers. We determine the role of crowder structure and concentration, as well as ionic conditions, on the diffusion and configurational dynamics of DNA. We find that branched, compact crowders (10 kDa PEG, 420 kDa Ficoll) drive DNA to compact, whereas linear, flexible crowders (10, 500 kDa dextran) cause DNA to elongate. Interestingly, the extent to which DNA mobility is reduced by increasing crowder concentrations appears largely insensitive to crowder structure (branched vs. linear), despite the highly different configurations DNA assumes in each case. We also characterize the role of ionic conditions on crowding-induced DNA dynamics. We show that both DNA diffusion and conformational size exhibit an emergent non-monotonic dependence on salt concentration that is not seen in the absence of crowders.
Collapse
Affiliation(s)
- Warren M. Mardoum
- Department of Physics and Biophysics, University of San Diego, San Diego, CA, United States
| | - Stephanie M. Gorczyca
- Department of Physics and Biophysics, University of San Diego, San Diego, CA, United States
| | - Kathryn E. Regan
- Department of Physics and Biophysics, University of San Diego, San Diego, CA, United States
| | - Tsai-Chin Wu
- Department of Physics and Biophysics, University of San Diego, San Diego, CA, United States
| | | |
Collapse
|
42
|
Asaro RJ, Zhu Q, Cabrales P, Carruthers A. Do Skeletal Dynamics Mediate Sugar Uptake and Transport in Human Erythrocytes? Biophys J 2018; 114:1440-1454. [PMID: 29590601 PMCID: PMC5883875 DOI: 10.1016/j.bpj.2018.01.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 01/16/2018] [Accepted: 01/22/2018] [Indexed: 01/02/2023] Open
Abstract
We explore, herein, the hypothesis that transport of molecules or ions into erythrocytes may be affected and directly stimulated by the dynamics of the spectrin/actin skeleton. Skeleton/actin motions are driven by thermal fluctuations that may be influenced by ATP hydrolysis as well as by structural alterations of the junctional complexes that connect the skeleton to the cell's lipid membrane. Specifically, we focus on the uptake of glucose into erythrocytes via glucose transporter 1 and on the kinetics of glucose disassociation at the endofacial side of glucose transporter 1. We argue that glucose disassociation is affected by both hydrodynamic forces induced by the actin/spectrin skeleton and by probable contact of the swinging 37-nm-long F-actin protofilament with glucose, an effect we dub the "stickball effect." Our hypothesis and results are interpreted within the framework of the kinetic measurements and compartmental kinetic models of Carruthers and co-workers; these experimental results and models describe glucose disassociation as the "slow step" (i.e., rate-limiting step) in the uptake process. Our hypothesis is further supported by direct simulations of skeleton-enhanced transport using our molecular-based models for the actin/spectrin skeleton as well as by experimental measurements of glucose uptake into cells subject to shear deformations, which demonstrate the hydrodynamic effects of advection. Our simulations have, in fact, previously demonstrated enhanced skeletal dynamics in cells in shear deformations, as they occur naturally within the skeleton, which is an effect also supported by experimental observations.
Collapse
Affiliation(s)
- Robert J Asaro
- Department of Structural Engineering, University of California, San Diego, La Jolla, California.
| | - Qiang Zhu
- Department of Structural Engineering, University of California, San Diego, La Jolla, California
| | - Pedro Cabrales
- Department of Biological Engineering, University of California, San Diego, La Jolla, California
| | | |
Collapse
|
43
|
Fringes S, Holzner F, Knoll AW. The nanofluidic confinement apparatus: studying confinement-dependent nanoparticle behavior and diffusion. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:301-310. [PMID: 29441273 PMCID: PMC5789440 DOI: 10.3762/bjnano.9.30] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 01/12/2018] [Indexed: 05/25/2023]
Abstract
The behavior of nanoparticles under nanofluidic confinement depends strongly on their distance to the confining walls; however, a measurement in which the gap distance is varied is challenging. Here, we present a versatile setup for investigating the behavior of nanoparticles as a function of the gap distance, which is controlled to the nanometer. The setup is designed as an open system that operates with a small amount of dispersion of ≈20 μL, permits the use of coated and patterned samples and allows high-numerical-aperture microscopy access. Using the tool, we measure the vertical position (termed height) and the lateral diffusion of 60 nm, charged, Au nanospheres as a function of confinement between a glass surface and a polymer surface. Interferometric scattering detection provides an effective particle illumination time of less than 30 μs, which results in lateral and vertical position detection accuracy ≈10 nm for diffusing particles. We found the height of the particles to be consistently above that of the gap center, corresponding to a higher charge on the polymer substrate. In terms of diffusion, we found a strong monotonic decay of the diffusion constant with decreasing gap distance. This result cannot be explained by hydrodynamic effects, including the asymmetric vertical position of the particles in the gap. Instead we attribute it to an electroviscous effect. For strong confinement of less than 120 nm gap distance, we detect the onset of subdiffusion, which can be correlated to the motion of the particles along high-gap-distance paths.
Collapse
Affiliation(s)
- Stefan Fringes
- IBM Research - Zurich, Säumerstr. 4, 8803 Rüschlikon, Switzerland
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH 8057 Zürich, Switzerland
| | - Felix Holzner
- IBM Research - Zurich, Säumerstr. 4, 8803 Rüschlikon, Switzerland
- SwissLitho AG, Technoparkstrasse 1, 8005 Zurich, Switzerland
| | - Armin W Knoll
- IBM Research - Zurich, Säumerstr. 4, 8803 Rüschlikon, Switzerland
| |
Collapse
|
44
|
Viral highway to nucleus exposed by image correlation analyses. Sci Rep 2018; 8:1152. [PMID: 29348472 PMCID: PMC5773500 DOI: 10.1038/s41598-018-19582-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/04/2018] [Indexed: 01/26/2023] Open
Abstract
Parvoviral genome translocation from the plasma membrane into the nucleus is a coordinated multistep process mediated by capsid proteins. We used fast confocal microscopy line scan imaging combined with image correlation methods including auto-, pair- and cross-correlation, and number and brightness analysis, to study the parvovirus entry pathway at the single-particle level in living cells. Our results show that the endosome-associated movement of virus particles fluctuates from fast to slow. Fast transit of single cytoplasmic capsids to the nuclear envelope is followed by slow movement of capsids and fast diffusion of capsid fragments in the nucleoplasm. The unique combination of image analyses allowed us to follow the fate of intracellular single virus particles and their interactions with importin β revealing previously unknown dynamics of the entry pathway.
Collapse
|
45
|
Subdiffusion via dynamical localization induced by thermal equilibrium fluctuations. Sci Rep 2017; 7:16451. [PMID: 29184075 PMCID: PMC5705761 DOI: 10.1038/s41598-017-16601-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 11/15/2017] [Indexed: 12/03/2022] Open
Abstract
We reveal the mechanism of subdiffusion which emerges in a straightforward, one dimensional classical nonequilibrium dynamics of a Brownian ratchet driven by both a time-periodic force and Gaussian white noise. In a tailored parameter set for which the deterministic counterpart is in a non-chaotic regime, subdiffusion is a long-living transient whose lifetime can be many, many orders of magnitude larger than characteristic time scales of the setup thus being amenable to experimental observations. As a reason for this subdiffusive behaviour in the coordinate space we identify thermal noise induced dynamical localization in the velocity (momentum) space. This novel idea is distinct from existing knowledge and has never been reported for any classical or quantum system. It suggests reconsideration of generally accepted opinion that subdiffusion is due to broad distributions or strong correlations which reflect disorder, trapping, viscoelasticity of the medium or geometrical constraints.
Collapse
|
46
|
Tavakoli M, Taylor JN, Li CB, Komatsuzaki T, Pressé S. Single Molecule Data Analysis: An Introduction. ADVANCES IN CHEMICAL PHYSICS 2017. [DOI: 10.1002/9781119324560.ch4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Meysam Tavakoli
- Physics Department; Indiana University-Purdue University Indianapolis; Indianapolis IN 46202 USA
| | - J. Nicholas Taylor
- Research Institute for Electronic Science; Hokkaido University; Kita 20 Nishi 10 Kita-Ku Sapporo 001-0020 Japan
| | - Chun-Biu Li
- Research Institute for Electronic Science; Hokkaido University; Kita 20 Nishi 10 Kita-Ku Sapporo 001-0020 Japan
- Department of Mathematics; Stockholm University; 106 91 Stockholm Sweden
| | - Tamiki Komatsuzaki
- Research Institute for Electronic Science; Hokkaido University; Kita 20 Nishi 10 Kita-Ku Sapporo 001-0020 Japan
| | - Steve Pressé
- Physics Department; Indiana University-Purdue University Indianapolis; Indianapolis IN 46202 USA
- Department of Chemistry and Chemical Biology; Indiana University-Purdue University Indianapolis; Indianapolis IN 46202 USA
- Department of Cell and Integrative Physiology; Indiana University School of Medicine; Indianapolis IN 46202 USA
- Department of Physics and School of Molecular Sciences; Arizona State University; Tempe AZ 85287 USA
| |
Collapse
|
47
|
Mukherjee D, Kundu N, Chakravarty L, Behera B, Chakrabarti P, Sarkar N, Maiti TK. Membrane perturbation through novel cell-penetrating peptides influences intracellular accumulation of imatinib mesylate in CML cells. Cell Biol Toxicol 2017; 34:233-245. [PMID: 29046997 DOI: 10.1007/s10565-017-9414-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/18/2017] [Indexed: 12/17/2022]
Abstract
Chronic myeloid leukemia is a stem cell disease with the presence of Philadelphia chromosome generated through reciprocal translocation of chromosome 9 and 22. The use of first- and second-generation tyrosine kinase inhibitors has been successful to an extent. However, resistance against such drugs is an emerging problem. Apart from several drug-resistant mechanisms, drug influx/efflux ratio appears to be one of the key determinants of therapeutic outcomes. In addition, intracellular accumulation of drug critically depends on cell membrane fluidity and lipid raft dynamics. Previously, we reported two novel cell-penetrating peptides (CPPs), namely, cationic IR15 and anionic SR11 present in tryptic digest of Abrus agglutinin. Here, the potential of IR15 and SR11 to influence intracellular concentration of imatinib has been evaluated. Fluorescent correlation spectroscopy and lifetime imaging were employed to map membrane fluidity and lipid raft distribution following peptide-drug co-administration. Results show that IR15 and SR11 are the two CPPs which can modulate membrane fluidity and lipid raft distribution in K562 cells. Both IR15 and SR11 significantly reduce the viability of CML cells in the presence of imatinib by increasing the intracellular accumulation of the drug.
Collapse
Affiliation(s)
- Devdeep Mukherjee
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Niloy Kundu
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Lopamudra Chakravarty
- Department of Haematology, Nil Ratan Sircar Medical College and Hospital, Kolkata, India
| | - Birendra Behera
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Prantar Chakrabarti
- Department of Haematology, Nil Ratan Sircar Medical College and Hospital, Kolkata, India
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Tapas Kumar Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
48
|
Russian A, Dentz M, Gouze P. Self-averaging and weak ergodicity breaking of diffusion in heterogeneous media. Phys Rev E 2017; 96:022156. [PMID: 28950545 DOI: 10.1103/physreve.96.022156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Indexed: 06/07/2023]
Abstract
Diffusion in natural and engineered media is quantified in terms of stochastic models for the heterogeneity-induced fluctuations of particle motion. However, fundamental properties such as ergodicity and self-averaging and their dependence on the disorder distribution are often not known. Here, we investigate these questions for diffusion in quenched disordered media characterized by spatially varying retardation properties, which account for particle retention due to physical or chemical interactions with the medium. We link self-averaging and ergodicity to the disorder sampling efficiency R_{n}, which quantifies the number of disorder realizations a noise ensemble may sample in a single disorder realization. Diffusion for disorder scenarios characterized by a finite mean transition time is ergodic and self-averaging for any dimension. The strength of the sample to sample fluctuations decreases with increasing spatial dimension. For an infinite mean transition time, particle motion is weakly ergodicity breaking in any dimension because single particles cannot sample the heterogeneity spectrum in finite time. However, even though the noise ensemble is not representative of the single-particle time statistics, subdiffusive motion in q≥2 dimensions is self-averaging, which means that the noise ensemble in a single realization samples a representative part of the heterogeneity spectrum.
Collapse
Affiliation(s)
- Anna Russian
- Dipartimento di Ingegneria Civile e Ambientale, Politecnico di Milano, Milano, Italy
| | - Marco Dentz
- Spanish National Research Council (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Philippe Gouze
- Géosciences, Université de Montpellier, CNRS, Montpellier, France
| |
Collapse
|
49
|
Aoyama M, Yoshioka Y, Arai Y, Hirai H, Ishimoto R, Nagano K, Higashisaka K, Nagai T, Tsutsumi Y. Intracellular trafficking of particles inside endosomal vesicles is regulated by particle size. J Control Release 2017; 260:183-193. [DOI: 10.1016/j.jconrel.2017.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 05/10/2017] [Accepted: 06/11/2017] [Indexed: 02/04/2023]
|
50
|
Lee A, Tsekouras K, Calderon C, Bustamante C, Pressé S. Unraveling the Thousand Word Picture: An Introduction to Super-Resolution Data Analysis. Chem Rev 2017; 117:7276-7330. [PMID: 28414216 PMCID: PMC5487374 DOI: 10.1021/acs.chemrev.6b00729] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Super-resolution microscopy provides direct insight into fundamental biological processes occurring at length scales smaller than light's diffraction limit. The analysis of data at such scales has brought statistical and machine learning methods into the mainstream. Here we provide a survey of data analysis methods starting from an overview of basic statistical techniques underlying the analysis of super-resolution and, more broadly, imaging data. We subsequently break down the analysis of super-resolution data into four problems: the localization problem, the counting problem, the linking problem, and what we've termed the interpretation problem.
Collapse
Affiliation(s)
- Antony Lee
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
- Jason L. Choy Laboratory of Single-Molecule Biophysics, University of California at Berkeley, Berkeley, California 94720, United States
| | - Konstantinos Tsekouras
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
- Department of Physics, Arizona State University, Tempe, Arizona 85287, United States
| | | | - Carlos Bustamante
- Jason L. Choy Laboratory of Single-Molecule Biophysics, University of California at Berkeley, Berkeley, California 94720, United States
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, California 94720, United States
- Institute for Quantitative Biosciences-QB3, University of California at Berkeley, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, United States
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, California 94720, United States
- Kavli Energy Nanosciences Institute, University of California at Berkeley, Berkeley, California 94720, United States
| | - Steve Pressé
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
- Department of Chemistry and Chemical Biology, Indiana University–Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
- Department of Cell and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Department of Physics, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|