1
|
Maller C, Schedel F, Köhn M. A Modular Approach for the Synthesis of Diverse Heterobifunctional Cyanine Dyes. J Org Chem 2024; 89:3844-3856. [PMID: 38413005 PMCID: PMC10949230 DOI: 10.1021/acs.joc.3c02673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/29/2024]
Abstract
Herein, we present a straightforward synthetic route for the design and synthesis of diverse heterobifunctional cyanine 5 dyes. We optimized the workup by harnessing the pH- and functional group-dependent solubility of the asymmetric cyanine 5 dyes. Therefore, purification through chromatography is deferred until the last synthesis step. Demonstrating successful large-scale synthesis, our modular approach prevents functional group degradation by introducing them in the last synthesis step. These modifiable heterobifunctional dyes offer significant utility in advancing biological studies.
Collapse
Affiliation(s)
- Corina Maller
- Signalling
Research Centres BIOSS and CIBSS, University
of Freiburg, Freiburg 79104, Germany
- Faculty
of Chemistry and Pharmacy, University of
Freiburg, Freiburg 79104, Germany
- Faculty
of Biology, University of Freiburg, Freiburg 79104, Germany
| | - Franziska Schedel
- Signalling
Research Centres BIOSS and CIBSS, University
of Freiburg, Freiburg 79104, Germany
- Faculty
of Chemistry and Pharmacy, University of
Freiburg, Freiburg 79104, Germany
- Faculty
of Biology, University of Freiburg, Freiburg 79104, Germany
- Spermann
Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg 79104, Germany
| | - Maja Köhn
- Signalling
Research Centres BIOSS and CIBSS, University
of Freiburg, Freiburg 79104, Germany
- Faculty
of Biology, University of Freiburg, Freiburg 79104, Germany
| |
Collapse
|
2
|
Jouad K, Eliseeva SV, Collet G, Colas C, Da Silva D, Hiebel MA, El Brahmi N, Akssira M, Petoud S, El Kazzouli S, Suzenet F. Near-Infrared Emitting Poly(amidoamine) Dendrimers with an Anthraquinone Core toward Versatile Non-Invasive Biological Imaging. Biomacromolecules 2022; 23:1392-1402. [PMID: 35235298 DOI: 10.1021/acs.biomac.1c01604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Today, there is a very strong demand for versatile near-infrared (NIR) imaging agents suitable for non-invasive optical imaging in living organisms (in vivo imaging). Here, we created a family of NIR-emitting macromolecules that take advantage of the unique structure of dendrimers. In contrast to existing fluorescent dendrimers bearing fluorophores at their periphery or in their cavities, a NIR fluorescent structure is incorporated into the core of the dendrimer. Using the poly(amidoamine) dendrimer structure, we want to promote the biocompatibility of the NIR-emissive system and to have functional groups available at the periphery to obtain specific biological functionalities such as the ability to deliver drugs or for targeting a biological location. We report here the divergent synthesis and characterization by NMR and mass spectrometries of poly(amidoamine) dendrimers derived from the fluorescent NIR-emitting anthraquinone core (AQ-PAMAF). AQ-PAMAFs ranging from the generation -0.5 up to 3 were synthesized with a good level of control resulting in homogeneous and complete dendrimers. Absorption, excitation, and emission spectra, as well as quantum yields, of AQ-PAMAFs have been determined in aqueous solutions and compared with the corresponding properties of the AQ-core. It has been demonstrated that the absorption bands of AQ-PAMAFs range from UV to 750 nm while emission is observed in the range of 650-950 nm. Fluorescence macroscopy experiments confirmed that the NIR signal of AQ-PAMAFs can be detected with a satisfactory signal-to-noise ratio in aqueous solution, in blood, and through 1 mm thick tissue-mimicking phantom. The results show that our approach is highly promising for the design of an unprecedented generation of versatile NIR-emitting agents.
Collapse
Affiliation(s)
- Kamal Jouad
- Institut de Chimie Organique et Analytique UMR 7311, Université d'Orléans Rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France.,Euromed Research Center, Euromed Faculty of Pharmacy, Euromed University of Fes, Route de Meknes, 30000 Fez, Morocco
| | - Svetlana V Eliseeva
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Guillaume Collet
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45071 Orléans Cedex 2, France.,Le Studium Loire Valley Institute for Advanced Studies, 45000 Orléans & Tours, France
| | - Cyril Colas
- Institut de Chimie Organique et Analytique UMR 7311, Université d'Orléans Rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France.,Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - David Da Silva
- Institut de Chimie Organique et Analytique UMR 7311, Université d'Orléans Rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France
| | - Marie-Aude Hiebel
- Institut de Chimie Organique et Analytique UMR 7311, Université d'Orléans Rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France
| | - Nabil El Brahmi
- Euromed Research Center, Euromed Faculty of Pharmacy, Euromed University of Fes, Route de Meknes, 30000 Fez, Morocco
| | - Mohamed Akssira
- Faculty of Sciences and Technologies of Mohammedia, URAC 22 FSTM, University Hassan II, BP 146, 28800 Mohammedia, Morocco
| | - Stéphane Petoud
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Saïd El Kazzouli
- Euromed Research Center, Euromed Faculty of Pharmacy, Euromed University of Fes, Route de Meknes, 30000 Fez, Morocco
| | - Franck Suzenet
- Institut de Chimie Organique et Analytique UMR 7311, Université d'Orléans Rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France
| |
Collapse
|
3
|
Reiber T, Zavoiura O, Dose C, Yushchenko DA. Fluorophore Multimerization as an Efficient Approach towards Bright Protein Labels. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Thorge Reiber
- Department of Chemical Biology Miltenyi Biotec B.V. & Co. KG Friedrich-Ebert Straße 68 51429 Bergisch Gladbach Germany
| | - Oleksandr Zavoiura
- Department of Chemical Biology Miltenyi Biotec B.V. & Co. KG Friedrich-Ebert Straße 68 51429 Bergisch Gladbach Germany
| | - Christian Dose
- Department of Chemical Biology Miltenyi Biotec B.V. & Co. KG Friedrich-Ebert Straße 68 51429 Bergisch Gladbach Germany
| | - Dmytro A. Yushchenko
- Department of Chemical Biology Miltenyi Biotec B.V. & Co. KG Friedrich-Ebert Straße 68 51429 Bergisch Gladbach Germany
- Laboratory of Chemical Biology The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo namesti 2 16610 Prague 6 Czech Republic
| |
Collapse
|
4
|
A review on synthesis and applications of dendrimers. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-02053-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Non-traditional intrinsic luminescence: inexplicable blue fluorescence observed for dendrimers, macromolecules and small molecular structures lacking traditional/conventional luminophores. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2018.09.004] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Saul P, Mamone S, Glöggler S. Nuclear singlet multimers (NUSIMERs) with long-lived singlet states. Chem Sci 2019; 10:413-417. [PMID: 30746089 PMCID: PMC6334717 DOI: 10.1039/c8sc02831a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/24/2018] [Indexed: 01/13/2023] Open
Abstract
Magnetic resonance (NMR) is a powerful tool in chemical analysis, structure determination and in medical diagnostics. Developing novel biological sensors for this field holds promise to better investigate protein structures or target diseases more efficiently. Herein, we explore nuclear spin singlet states in dendritic macromolecules as a platform molecule to develop stimuli responsive probes. We have developed a nuclear singlet multimer (NUSIMER) based on a generation 5 poly(amidoamine) dendrimer (PAMAM) which contains on average about 90 accessible nuclear spin singlet states with lifetimes up to 10-fold longer than the T 1 relaxation times (up to 10 seconds T s vs. T 1 < 0.5 seconds) in a single molecule. We demonstrate little influence on the singlet lifetime in phosphate buffer (H2O) and a high viscosity gel environment in the presence of paramagnetic oxygen. Additionally, we demonstrate an increase in singlet lifetime upon the release of a protective chemical moiety from the NUSIMER following a stimulus, whereby no change in longitudinal relaxation time is observed. The robustness and change in singlet lifetime of the NUSIMER holds promise for the development of a novel type of biosensors.
Collapse
Affiliation(s)
- Philip Saul
- NMR Signal Enhancement Group , Max-Planck-Institutefor Biophysical Chemistry , Am Faßberg 11 , 37077 Göttingen , Germany .
- Center for Biostructural Imaging of Neurodegeneration of UMG , Von-Siebold-Straße 3A , 37075 Göttingen , Germany
| | - Salvatore Mamone
- NMR Signal Enhancement Group , Max-Planck-Institutefor Biophysical Chemistry , Am Faßberg 11 , 37077 Göttingen , Germany .
- Center for Biostructural Imaging of Neurodegeneration of UMG , Von-Siebold-Straße 3A , 37075 Göttingen , Germany
| | - Stefan Glöggler
- NMR Signal Enhancement Group , Max-Planck-Institutefor Biophysical Chemistry , Am Faßberg 11 , 37077 Göttingen , Germany .
- Center for Biostructural Imaging of Neurodegeneration of UMG , Von-Siebold-Straße 3A , 37075 Göttingen , Germany
| |
Collapse
|
7
|
Martín-Serrano Ortiz Á, Stenström P, Mesa Antunez P, Andrén OCJ, Torres MJ, Montañez MI, Malkoch M. Design of multivalent fluorescent dendritic probes for site-specific labeling of biomolecules. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.29055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ángela Martín-Serrano Ortiz
- Research Laboratory and Allergy Unit; IBIMA-Regional University Hospital of Malaga-UMA, Hospital Civil, Plaza del Hospital Civil; Malaga 29009 Spain
- BIONAND-Andalusian Centre for Nanomedicine and Biotechnology, Parque Tecnológico de Andalucía; Malaga 29590 Spain
| | - Patrik Stenström
- Department of Fibre and Polymer Technology, Teknikringen 56-58; KTH Royal Institute of Technology; Stockholm 100 44 Sweden
| | - Pablo Mesa Antunez
- Department of Fibre and Polymer Technology, Teknikringen 56-58; KTH Royal Institute of Technology; Stockholm 100 44 Sweden
| | - Oliver C. J. Andrén
- Department of Fibre and Polymer Technology, Teknikringen 56-58; KTH Royal Institute of Technology; Stockholm 100 44 Sweden
| | - Maria J. Torres
- Research Laboratory and Allergy Unit; IBIMA-Regional University Hospital of Malaga-UMA, Hospital Civil, Plaza del Hospital Civil; Malaga 29009 Spain
- BIONAND-Andalusian Centre for Nanomedicine and Biotechnology, Parque Tecnológico de Andalucía; Malaga 29590 Spain
| | - Maria I. Montañez
- Research Laboratory and Allergy Unit; IBIMA-Regional University Hospital of Malaga-UMA, Hospital Civil, Plaza del Hospital Civil; Malaga 29009 Spain
- BIONAND-Andalusian Centre for Nanomedicine and Biotechnology, Parque Tecnológico de Andalucía; Malaga 29590 Spain
| | - Michael Malkoch
- Department of Fibre and Polymer Technology, Teknikringen 56-58; KTH Royal Institute of Technology; Stockholm 100 44 Sweden
| |
Collapse
|
8
|
Le PN, Huynh CK, Tran NQ. Advances in thermosensitive polymer-grafted platforms for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:1016-1030. [PMID: 30184725 DOI: 10.1016/j.msec.2018.02.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/16/2017] [Accepted: 02/08/2018] [Indexed: 02/06/2023]
Abstract
Studies on "smart" polymeric material performing environmental stimuli such as temperature, pH, magnetic field, enzyme and photo-sensation have recently paid much attention to practical applications. Among of them, thermo-responsive grafted copolymers, amphiphilic steroids as well as polyester molecules have been utilized in the fabrication of several multifunctional platforms. Indeed, they performed a strikingly functional improvement comparing to some original materials and exhibited a holistic approach for biomedical applications. In case of drug delivery systems (DDS), there has been some successful proof of thermal-responsive grafted platforms on clinical trials such as ThermoDox®, BIND-014, Cynviloq IG-001, Genexol-PM, etc. This review would detail the recent progress and highlights of some temperature-responsive polymer-grafted nanomaterials or hydrogels in the 'smart' DDS that covered from synthetic polymers to nature-driven biomaterials and novel generations of some amphiphilic functional platforms. These approaches could produce several types of smart biomaterials for human health care in future.
Collapse
Affiliation(s)
- Phung Ngan Le
- Institute of Research and Development, Duy Tan University, Da Nang City 550000, Viet Nam; Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1A TL29, District 12, Hochiminh City 700000, Viet Nam
| | - Chan Khon Huynh
- Biomedical Engineering Department, International University, National Universities in HCMC, HCMC 70000, Viet Nam
| | - Ngoc Quyen Tran
- Institute of Research and Development, Duy Tan University, Da Nang City 550000, Viet Nam; Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1A TL29, District 12, Hochiminh City 700000, Viet Nam; Graduate School of Science and Technology Viet Nam, Vietnam Academy of Science and Technology, 1A TL29, District 12, Hochiminh City 700000, Viet Nam.
| |
Collapse
|
9
|
Sadaf A, Du Y, Santillan C, Mortensen JS, Molist I, Seven AB, Hariharan P, Skiniotis G, Loland CJ, Kobilka BK, Guan L, Byrne B, Chae PS. Dendronic trimaltoside amphiphiles (DTMs) for membrane protein study. Chem Sci 2017; 8:8315-8324. [PMID: 29619178 PMCID: PMC5858085 DOI: 10.1039/c7sc03700g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/14/2017] [Indexed: 01/07/2023] Open
Abstract
A novel amphiphile with a dendronic hydrophobic group (DTM-A6) was markedly effective at stabilizing and visualizing a GPCR-Gs complex.
The critical contribution of membrane proteins in normal cellular function makes their detailed structure and functional analysis essential. Detergents, amphipathic agents with the ability to maintain membrane proteins in a soluble state in aqueous solution, have key roles in membrane protein manipulation. Structural and functional stability is a prerequisite for biophysical characterization. However, many conventional detergents are limited in their ability to stabilize membrane proteins, making development of novel detergents for membrane protein manipulation an important research area. The architecture of a detergent hydrophobic group, that directly interacts with the hydrophobic segment of membrane proteins, is a key factor in dictating their efficacy for both membrane protein solubilization and stabilization. In the current study, we developed two sets of maltoside-based detergents with four alkyl chains by introducing dendronic hydrophobic groups connected to a trimaltoside head group, designated dendronic trimaltosides (DTMs). Representative DTMs conferred enhanced stabilization to multiple membrane proteins compared to the benchmark conventional detergent, DDM. One DTM (i.e., DTM-A6) clearly outperformed DDM in stabilizing human β2 adrenergic receptor (β2AR) and its complex with Gs protein. A further evaluation of this DTM led to a clear visualization of β2AR-Gs complex via electron microscopic analysis. Thus, the current study not only provides novel detergent tools useful for membrane protein study, but also suggests that the dendronic architecture has a role in governing detergent efficacy for membrane protein stabilization.
Collapse
Affiliation(s)
- Aiman Sadaf
- Department of Bionanotechnology , Hanyang University , Ansan , 155-88 , Korea .
| | - Yang Du
- Molecular and Cellular Physiology , Stanford , CA 94305 , USA .
| | - Claudia Santillan
- Department of Cell Physiology and Molecular Biophysics , Center for Membrane Protein Research , School of Medicine , Texas Tech University Health Sciences Center , Lubbock , TX 79430 , USA .
| | - Jonas S Mortensen
- Center of Neuroscience , University of Copenhagen , DK 2200 Copenhagen , Denmark .
| | - Iago Molist
- Department of Life Sciences , Imperial College London , London , SW7 2AZ , UK .
| | - Alpay B Seven
- Structural Biology & Molecular and Cellular Physiology , Stanford , CA 94305 , USA .
| | - Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics , Center for Membrane Protein Research , School of Medicine , Texas Tech University Health Sciences Center , Lubbock , TX 79430 , USA .
| | - Georgios Skiniotis
- Structural Biology & Molecular and Cellular Physiology , Stanford , CA 94305 , USA .
| | - Claus J Loland
- Center of Neuroscience , University of Copenhagen , DK 2200 Copenhagen , Denmark .
| | - Brian K Kobilka
- Molecular and Cellular Physiology , Stanford , CA 94305 , USA .
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics , Center for Membrane Protein Research , School of Medicine , Texas Tech University Health Sciences Center , Lubbock , TX 79430 , USA .
| | - Bernadette Byrne
- Department of Life Sciences , Imperial College London , London , SW7 2AZ , UK .
| | - Pil Seok Chae
- Department of Bionanotechnology , Hanyang University , Ansan , 155-88 , Korea .
| |
Collapse
|
10
|
Anwaier G, Chen C, Cao Y, Qi R. A review of molecular imaging of atherosclerosis and the potential application of dendrimer in imaging of plaque. Int J Nanomedicine 2017; 12:7681-7693. [PMID: 29089763 PMCID: PMC5656339 DOI: 10.2147/ijn.s142385] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite the fact that technological advancements have been made in diagnosis and treatment, cardiovascular diseases (CVDs) remain the leading cause of mortality and morbidity worldwide. Early detection of atherosclerosis (AS), especially vulnerable plaques, plays a crucial role in the prevention of acute coronary syndrome (ACS). Targeting the critical cytokines and molecules that are upregulated during the biological process of AS by in vivo molecular imaging has been widely used in plaque imaging. With their three-dimensional architecture, composition, and abundant terminal functional groups, dendrimers provide a platform for multitargeting and multimodal imaging. Thus, modified dendrimers with the key molecules upregulated in AS plaques will be an innovative attempt to achieve targeted imaging of AS plaques specifically and efficiently. This review was aimed to address some recent works on imaging of AS plaques using various types of image technology and further discuss the applications of dendrimers, an innovative yet seldom used method in imaging of AS plaques due to some limitations and challenges, and we highlight the bright future of the modified dendrimers in characterizing AS plaques.
Collapse
Affiliation(s)
- Gulinigaer Anwaier
- Peking University Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of education, Peking University Health Science Center.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing.,School of Basic Medical Science, Shihezi University, Shihezi, Xinjiang, People's Republic of China
| | - Cong Chen
- Peking University Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of education, Peking University Health Science Center.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing
| | - Yini Cao
- Peking University Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of education, Peking University Health Science Center.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing
| | - Rong Qi
- Peking University Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of education, Peking University Health Science Center.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing.,School of Basic Medical Science, Shihezi University, Shihezi, Xinjiang, People's Republic of China
| |
Collapse
|
11
|
Modified PAMAM dendrimer with 4-carbomethoxypyrrolidone surface groups-its uptake, efflux, and location in a cell. Colloids Surf B Biointerfaces 2017; 159:211-216. [PMID: 28797971 DOI: 10.1016/j.colsurfb.2017.07.052] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 07/19/2017] [Accepted: 07/24/2017] [Indexed: 01/23/2023]
Abstract
Traditional amine terminated PAMAM dendrimers may be readily surface engineered by a facile one-pot conversion with dialkyl itaconate esters into 4-carbomethoxypyrrolidone terminated PAMAM (G=0-4) dendrimers. These terminated dendrimers are uniquely characterized by exhibiting blue fluorescence emissions (λexc=370nm, λmaxem=440nm). Thanks to this property they can be directly analyzed by confocal microscopy and flow cytometry without additional fluorescence labeling, treatment of dendrimers with chemicals or adjusting pH. These intrinsically fluorescent dendrimers were shown to be very effective for assessing important biological cell features such as cellular entry, intracellular trafficking/localization and efflux properties. For example, all tested cell lines (e.g., B14, BRL-3A, and mHippoE-18) rapidly accumulated PAMAM-pyrrolidone dendrimer. The BRL-3A cell line exhibited both cytoplasmic and nuclear localization patterns; whereas in B14 cells and mHippoE-18 cells, the blue dendrimer fluorescence could only be detected in intracellular endosome-like structures. The dendrimer was observed to be released from all three cell lines during the first 24h; however, efflux was substantially slower from the B-14 cell line. The highest efflux rate was observed for the mHippoE-18 cells. This first successful biological experiment opens a broad spectrum of using these dendrimers as new bioimaging agents for extensive biological cell characterizations.
Collapse
|
12
|
Perspectives on dendritic architectures and their biological applications: From core to cell. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 173:61-83. [PMID: 28564631 DOI: 10.1016/j.jphotobiol.2017.05.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/15/2017] [Accepted: 05/18/2017] [Indexed: 12/24/2022]
Abstract
The challenges of medicine today include the increasing stipulation for sensitive and effective systems that can improve the pathological responses with a simultaneous reduction in accumulation and drug side effects. The demand can be fulfilled through the advancements in nanomedicine that includes nanostructures and nanodevices for diagnosing, treating, and prevention of various diseases. In this respect, the nanoscience provides various novel techniques with carriers such as micelles, dendrimers, particles and vesicles for the transportation of active moieties. Further, an efficient way to improve these systems is through stimuli a responsive system that utilizes supramolecular hyperbranched structures to meet the above criteria. The stimuli-responsive dendritic architectures exhibit spatial, temporal, convenient, effective, safety and controlled drug release in response to specific trigger through electrostatic interactions plus π stacking. The stimuli-responsive systems are capable of sequestering the drug molecules underneath a predefined set of conditions and discharge them in a different environment through either exogenous or endogenous stimulus. The incorporation of photoresponsive moieties at various components of dendrimer such as core, branches or at the peripheral end exaggerates its significance in various allied fields of nanotechnology which includes sensors, photoswitch, electronic widgets and in drug delivery systems. This is due to the light instigated geometrical modifications at the core or at the surface molecules which generates huge conformational changes throughout the hyperbranched structure. Further, numerous synthetic methodologies have been investigated for utilization of dendrimers in therapeutic drug delivery and its applicability towards stimuli responsive systems such as photo-instigated, thermal-instigated, and pH-instigated hyperbranched structures and their advancement in the field of nanomedicine. This paper highlights the fascinating theoretical advances and principal mechanisms of dendrimer synthesis and their ability to capture light that strengthens its applicability from radiant energy to medical photonics.
Collapse
|
13
|
In vitro and in vivo uptake studies of PAMAM G4.5 dendrimers in breast cancer. J Nanobiotechnology 2016; 14:45. [PMID: 27297021 PMCID: PMC4906583 DOI: 10.1186/s12951-016-0197-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 05/23/2016] [Indexed: 11/25/2022] Open
Abstract
Background Breast cancer is the second leading cause of cancer death worldwide. Nanotechnology approaches can overcome the side effects of chemotherapy as well as improve the efficacy of drugs. Dendrimers are nanometric size polymers which are suitable as drug delivery systems. To the best of our knowledge, studies on the application of PAMAM G4.5 (polyamidoamine half generation 4) dendrimers as potential drug delivery systems in breast cancer have not been reported. In this work we developed a PAMAM G4.5 dendrimer containing FITC (fluorescein isothiocyanate) dye to study their uptake by murine breast cancer cells and BALB/c mice breast tumors. Results We performed a reaction between FITC and PAMAM G4.5 dendrimers which were previously derivatized with piperazine (linker molecule), characterized them by 1H NMR (proton nuclear magnetic resonance) spectroscopy and MALDI-TOF (matrix-assisted laser desorption/ionization- time-of-flight) mass spectrometry. The experimental data indicated that 2 FITC molecules could be bound covalently at the PAMAM G4.5 dendrimer surface, with 17 FITC molecules probably occluded in PAMAM dendrimers cavity. PAMAM-FITC dendrimer (PAMAM G4.5-piperazinyl-FITC dendrimer) size distribution was evaluated by DLS (dynamic light scattering) and TEM (transmission electron microscopy). The nanoparticle hydrodynamic size was 96.3 ± 1.4 nm with a PdI (polydispersion index) of 0.0296 ± 0.0171, and the size distribution measured by TEM was 44.2 ± 9.2 nm. PAMAM-FITC dendrimers were neither cytotoxic in 4T1 cells nor hemolytic up to 24 h of incubation. In addition, they were uptaken in vitro by 4T1 cells and in vivo by BALB/c mice breast tumors. PAMAM G4.5-piperazinyl-FITC dendrimer intracellular distribution was observed through histologic analysis of the tumor by laser confocal microscopy. Conclusion These results indicate that PAMAM G4.5 dendrimers enter tumor tissue cells, being good candidates to be used as antitumor drug delivery systems for breast cancer treatment and diagnosis.
Collapse
|
14
|
Pakhomov AA, Kononevich YN, Stukalova MV, Svidchenko EA, Surin NM, Cherkaev GV, Shchegolikhina OI, Martynov VI, Muzafarov AM. Synthesis and photophysical properties of a new BODIPY-based siloxane dye. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.01.059] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
15
|
Hou Y, Arai S, Kitaguchi T, Suzuki M. Intracellular bottom-up generation of targeted nanosensors for single-molecule imaging. NANOSCALE 2016; 8:3218-3225. [PMID: 26731153 DOI: 10.1039/c5nr08012f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Organic dyes are useful tools for sensing cellular activities but unfavorable in single-molecule imaging, whereas quantum dots (QDs) are widely applied in single-molecule imaging but with few sensing applications. Here, to visualize cellular activities by monitoring the response of a single probe in living cells, we propose a bottom-up approach to generate nanoprobes where four organic dyes are conjugated to tetravalent single-chain avidin (scAVD) proteins via an intracellular click reaction. We demonstrate that the nanoprobes, exhibiting increased brightness and enhanced photostability, were detectable as single dots in living cells. The ease of intracellular targeting allowed the tracking of endoplasmic reticulum (ER) remodeling with nanometer spatial resolution. Conjugating thermosensitive dyes generated temperature-sensitive nanoprobes on ER membranes that successfully monitored local temperature changes in response to external heat pulses. Our approach is potentially a suitable tool for visualizing localized cellular activities with single probe sensitivity in living cells.
Collapse
Affiliation(s)
- Yanyan Hou
- WASEDA Bioscience Research Institute in Singapore (WABIOS), 11 Biopolis Way, #05-02 Helios, Singapore 138667, Singapore.
| | | | | | | |
Collapse
|
16
|
Sinha S, Gaur P, Dev S, Mukherjee T, Mathew J, Mukhopadhyay S, Ghosh S. Highly photostable zinc selective molecular marker bearing flexible pivotal unit: opto-fluorescence enhancement effect and imaging applications in living systems. Dalton Trans 2016; 44:9506-15. [PMID: 25919349 DOI: 10.1039/c5dt00713e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel molecular probes for imaging zinc in biological systems are gaining interest as they help in understanding the role of zinc in regulating various bio-events. In this regard, a new C2-symmetric molecular system has been developed and successfully applied as light-up material for signaling divalent zinc with green emission. The fluorescence enhancement was highly zinc specific and this newly developed probe bears a submicromolar detection capability. While probe and the ensemble -Zn(2+) exhibited remarkably high photostability, light-triggered fluorescence enhancement was observed in the case of -Zn(2+). The nature of the -Zn(2+) complex and the associated spectral shift are further supported by theoretical calculations. As the present probe absorbs in the visible region and emits in the green, it was preferred as a potential material for imaging zinc in biological systems including animal and plant cells such as pollen grains and fish egg cells. Such fluorescence imaging of zinc revealed the efficacy of the probe in detection and localization of zinc in various biological systems.
Collapse
Affiliation(s)
- Sougata Sinha
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi-175001, H.P., India.
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
This article gives an overview of the various kinds of nanoparticles (NPs) that are widely used for purposes of fluorescent imaging, mainly of cells and tissues. Following an introduction and a discussion of merits of fluorescent NPs compared to molecular fluorophores, labels and probes, the article assesses the kinds and specific features of nanomaterials often used in bioimaging. These include fluorescently doped silicas and sol-gels, hydrophilic polymers (hydrogels), hydrophobic organic polymers, semiconducting polymer dots, quantum dots, carbon dots, other carbonaceous nanomaterials, upconversion NPs, noble metal NPs (mainly gold and silver), various other nanomaterials, and dendrimers. Another section covers coatings and methods for surface modification of NPs. Specific examples on the use of nanoparticles in (a) plain fluorescence imaging of cells, (b) targeted imaging, (c) imaging of chemical species, and (d) imaging of temperature are given next. A final section covers aspects of multimodal imaging (such as fluorescence/nmr), imaging combined with drug and gene delivery, or imaging combined with therapy or diagnosis. The electronic supplementary information (ESI) gives specific examples for materials and methods used in imaging, sensing, multimodal imaging and theranostics such as imaging combined with drug delivery or photodynamic therapy. The article contains 273 references in the main part, and 157 references in the ESI.
Collapse
Affiliation(s)
- Otto S Wolfbeis
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany.
| |
Collapse
|
18
|
Reilly DT, Kim SH, Katzenellenbogen JA, Schroeder CM. Fluorescent Nanoconjugate Derivatives with Enhanced Photostability for Single Molecule Imaging. Anal Chem 2015; 87:11048-57. [DOI: 10.1021/acs.analchem.5b03059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Daniel T. Reilly
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Sung Hoon Kim
- Department
of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - John A. Katzenellenbogen
- Department
of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Charles M. Schroeder
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Center
for Biophysics and Quantitative Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
19
|
Zhao L, Zhu J, Cheng Y, Xiong Z, Tang Y, Guo L, Shi X, Zhao J. Chlorotoxin-Conjugated Multifunctional Dendrimers Labeled with Radionuclide 131I for Single Photon Emission Computed Tomography Imaging and Radiotherapy of Gliomas. ACS APPLIED MATERIALS & INTERFACES 2015; 7:19798-19808. [PMID: 26291070 DOI: 10.1021/acsami.5b05836] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Chlorotoxin-conjugated multifunctional dendrimers labeled with radionuclide 131I were synthesized and utilized for targeted single photon emission computed tomography (SPECT) imaging and radiotherapy of cancer. In this study, generation five amine-terminated poly(amidoamine) dendrimers were used as a platform to be sequentially conjugated with polyethylene glycol (PEG), targeting agent chlorotoxin (CTX), and 3-(4'-hydroxyphenyl)propionic acid-OSu (HPAO). This was followed by acetylation of the remaining dendrimer terminal amines and radiolabeling with 131I to form the targeted theranostic dendrimeric nanoplatform. We show that the dendrimer platform possessing approximately 7.7 CTX and 21.1 HPAO moieties on each dendrimer displays excellent cytocompatibility in a given concentration range (0-20 μM) and can specifically target cancer cells overexpressing matrix metallopeptidase 2 (MMP2) due to the attached CTX. With the attached HPAO moiety having the phenol group, the dendrimer platform can be effectively labeled with radioactive 131I with good stability and high radiochemical purity. Importantly, the 131I labeling renders the dendrimer platform with an ability to be used for targeted SPECT imaging and radiotherapy of an MMP2-overexpressing glioma model in vivo. The developed radiolabeled multifunctional dendrimeric nanoplatform may hold great promise to be used for targeted theranostics of human gliomas.
Collapse
Affiliation(s)
- Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University , Shanghai 200080, People's Republic of China
| | - Jingyi Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University , Shanghai 201620, People's Republic of China
| | - Yongjun Cheng
- Department of Nuclear Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University , Shanghai 200080, People's Republic of China
| | - Zhijuan Xiong
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, People's Republic of China
| | - Yueqin Tang
- Experiment Center, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University , Shanghai 200080, People's Republic of China
| | - Lilei Guo
- Department of Nuclear Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University , Shanghai 200080, People's Republic of China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University , Shanghai 201620, People's Republic of China
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, People's Republic of China
| | - Jinhua Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University , Shanghai 200080, People's Republic of China
| |
Collapse
|
20
|
Manono J, Dougherty CA, Jones K, DeMuth J, Holl MMB, DiMaggio S. Generation 3 PAMAM dendrimer TAMRA conjugates containing precise dye/dendrimer ratios. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2015; 4:86-92. [PMID: 26549978 PMCID: PMC4631223 DOI: 10.1016/j.mtcomm.2015.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The synthesis, isolation, and characterization of generation 3 poly(amidoamine) (G3 PAMAM) dendrimer containing precise ratios of 5-carboxytetramethylrhodamine succinimidyl ester (TAMRA) dye (n = 1-3) per polymer particle are reported. Stochastic conjugation of TAMRA dye to the dendrimer was followed by separation into precise dye-polymer ratios using rp-HPLC. The isolated materials were characterized by rp-UPLC, MALDI-TOF-MS, and 1H NMR spectroscopy, UV-vis, and fluorescence spectroscopies.
Collapse
Affiliation(s)
- Janet Manono
- Department of Chemistry, Xavier University of Louisiana, New Orleans LA 70125, USA
| | - Casey A. Dougherty
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kirsten Jones
- Department of Chemistry, Xavier University of Louisiana, New Orleans LA 70125, USA
| | - Joshua DeMuth
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Stassi DiMaggio
- Department of Chemistry, Xavier University of Louisiana, New Orleans LA 70125, USA
| |
Collapse
|
21
|
Dougherty CA, Vaidyanathan S, Orr BG, Banaszak Holl MM. Fluorophore:dendrimer ratio impacts cellular uptake and intracellular fluorescence lifetime. Bioconjug Chem 2015; 26:304-15. [PMID: 25625297 DOI: 10.1021/bc5005735] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
G5-NH2-TAMRAn (n = 1-4, 5+, and 1.5(avg)) were prepared with n = 1-4 as a precise dye:dendrimer ratio, 5+ as a mixture of dendrimers with 5 or more dye per dendrimer, and 1.5(avg) as a Poisson distribution of dye:dendrimer ratios with a mean of 1.5 dye per dendrimer. The absorption intensity increased sublinearly with n whereas the fluorescence emission and lifetime decreased with an increasing number of dyes per dendrimer. Flow cytometry was employed to quantify uptake into HEK293A cells. Dendrimers with 2-4 dyes were found to have greater uptake than dendrimer with a single dye. Fluorescence lifetime imaging microscopy (FLIM) showed that the different dye:dendrimer ratio alone was sufficient to change the fluorescence lifetime of the material observed inside cells. We also observed that the lifetime of G5-NH2-TAMRA5+ increased when present in the cell as compared to solution. However, cells treated with G5-NH2-TAMRA1.5(avg) did not exhibit the high lifetime components present in G5-NH2-TAMRA1 and G5-NH2-TAMRA5+. In general, the effects of the dye:dendrimer ratio on fluorescence lifetime were of similar magnitude to environmentally induced lifetime shifts.
Collapse
Affiliation(s)
- Casey A Dougherty
- Department of Chemistry, ‡Department of Biomedical Engineering, and §Department of Physics, University of Michigan , Ann Arbor, Michigan 48109, United States
| | | | | | | |
Collapse
|
22
|
Kaastrup K, Sikes HD. Investigation of dendrimers functionalized with eosin as macrophotoinitiators for polymerization-based signal amplification reactions. RSC Adv 2015. [DOI: 10.1039/c4ra14466j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Water-soluble macrophotoinitiators with up to 24 eosin substituents and one protein per dendrimer were assessed in interfacial binding assays.
Collapse
Affiliation(s)
- K. Kaastrup
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| | - H. D. Sikes
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| |
Collapse
|
23
|
Lu Y, Sun W, Gu Z. Stimuli-responsive nanomaterials for therapeutic protein delivery. J Control Release 2014; 194:1-19. [PMID: 25151983 PMCID: PMC4330094 DOI: 10.1016/j.jconrel.2014.08.015] [Citation(s) in RCA: 280] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 10/24/2022]
Abstract
Protein therapeutics have emerged as a significant role in treatment of a broad spectrum of diseases, including cancer, metabolic disorders and autoimmune diseases. The efficacy of protein therapeutics, however, is limited by their instability, immunogenicity and short half-life. In order to overcome these barriers, tremendous efforts have recently been made in developing controlled protein delivery systems. Stimuli-triggered release is an appealing and promising approach for protein delivery and has made protein delivery with both spatiotemporal- and dosage-controlled manners possible. This review surveys recent advances in controlled protein delivery of proteins or peptides using stimuli-responsive nanomaterials. Strategies utilizing both physiological and external stimuli are introduced and discussed.
Collapse
Affiliation(s)
- Yue Lu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA; Center for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wujin Sun
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA; Center for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zhen Gu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA; Center for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
24
|
van Dongen M, Dougherty CA, Banaszak Holl MM. Multivalent polymers for drug delivery and imaging: the challenges of conjugation. Biomacromolecules 2014; 15:3215-34. [PMID: 25120091 PMCID: PMC4157765 DOI: 10.1021/bm500921q] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/06/2014] [Indexed: 12/11/2022]
Abstract
Multivalent polymers offer a powerful opportunity to develop theranostic materials on the size scale of proteins that can provide targeting, imaging, and therapeutic functionality. Achieving this goal requires the presence of multiple targeting molecules, dyes, and/or drugs on the polymer scaffold. This critical review examines the synthetic, analytical, and functional challenges associated with the heterogeneity introduced by conjugation reactions as well as polymer scaffold design. First, approaches to making multivalent polymer conjugations are discussed followed by an analysis of materials that have shown particular promise biologically. Challenges in characterizing the mixed ligand distributions and the impact of these distributions on biological applications are then discussed. Where possible, molecular-level interpretations are provided for the structures that give rise to the functional ligand and molecular weight distributions present in the polymer scaffolds. Lastly, recent strategies employed for overcoming or minimizing the presence of ligand distributions are discussed. This review focuses on multivalent polymer scaffolds where average stoichiometry and/or the distribution of products have been characterized by at least one experimental technique. Key illustrative examples are provided for scaffolds that have been carried forward to in vitro and in vivo testing with significant biological results.
Collapse
Affiliation(s)
- Mallory
A. van Dongen
- Chemistry Department, University of Michigan, Ann Arbor, Michigan 48103, United States
| | - Casey A. Dougherty
- Chemistry Department, University of Michigan, Ann Arbor, Michigan 48103, United States
| | - Mark M. Banaszak Holl
- Chemistry Department, University of Michigan, Ann Arbor, Michigan 48103, United States
| |
Collapse
|
25
|
LeCroy GE, Sonkar SK, Yang F, Veca LM, Wang P, Tackett KN, Yu JJ, Vasile E, Qian H, Liu Y, Luo PG, Sun YP. Toward structurally defined carbon dots as ultracompact fluorescent probes. ACS NANO 2014; 8:4522-9. [PMID: 24702526 DOI: 10.1021/nn406628s] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
There has been much discussion on the need to develop fluorescent quantum dots (QDs) as ultracompact probes, with overall size profiles comparable to those of the genetically encoded fluorescent tags. In the use of conventional semiconductor QDs for such a purpose, the beautifully displayed dependence of fluorescence color on the particle diameter becomes a limitation. More recently, carbon dots have emerged as a new platform of QD-like fluorescent nanomaterials. The optical absorption and fluorescence emissions in carbon dots are not bandgap in origin, different from those in conventional semiconductor QDs. The absence of any theoretically defined fluorescence color-dot size relationships in carbon dots may actually be exploited as a unique advantage in the size reduction toward having carbon dots serve as ultracompact QD-like fluorescence probes. Here we report on carbon dots of less than 5 nm in the overall dot diameter with the use of 2,2'-(ethylenedioxy)bis(ethylamine) (EDA) molecules for the carbon particle surface passivation. The EDA-carbon dots were found to be brightly fluorescent, especially over the spectral range of green fluorescent protein. These aqueous soluble smaller carbon dots also enabled more quantitative characterizations, including the use of solution-phase NMR techniques, and the results suggested that the dot structures were relatively simple and better-defined. The potential for these smaller carbon dots to serve as fluorescence probes of overall sizes comparable to those of fluorescent proteins is discussed.
Collapse
Affiliation(s)
- Gregory Ethan LeCroy
- Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University , Clemson, South Carolina 29634, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Dougherty CA, Furgal JC, van Dongen MA, Goodson T, Banaszak Holl MM, Manono J, DiMaggio S. Isolation and characterization of precise dye/dendrimer ratios. Chemistry 2014; 20:4638-45. [PMID: 24604830 DOI: 10.1002/chem.201304854] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/15/2014] [Indexed: 01/16/2023]
Abstract
Fluorescent dyes are commonly conjugated to nanomaterials for imaging applications using stochastic synthesis conditions that result in a Poisson distribution of dye/particle ratios and therefore a broad range of photophysical and biodistribution properties. We report the isolation and characterization of generation 5 poly(amidoamine) (G5 PAMAM) dendrimer samples containing 1, 2, 3, and 4 fluorescein (FC) or 6-carboxytetramethylrhodamine succinimidyl ester (TAMRA) dyes per polymer particle. For the fluorescein case, this was achieved by stochastically functionalizing dendrimer with a cyclooctyne "click" ligand, separation into sample containing precisely defined "click" ligand/particle ratios using reverse-phase high performance liquid chromatography (RP-HPLC), followed by reaction with excess azide-functionalized fluorescein dye. For the TAMRA samples, stochastically functionalized dendrimer was directly separated into precise dye/particle ratios using RP-HPLC. These materials were characterized using (1)H and (19)F NMR spectroscopy, RP-HPLC, UV/Vis and fluorescence spectroscopy, lifetime measurements, and MALDI.
Collapse
Affiliation(s)
- Casey A Dougherty
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109-1055 (USA)
| | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Payne CK. Fluorescent dendritic nanoprobes: a new class of fluorescent probes for biological applications. Biophys J 2013; 104:1394. [PMID: 23561512 DOI: 10.1016/j.bpj.2013.01.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 01/28/2013] [Indexed: 10/27/2022] Open
Affiliation(s)
- Christine K Payne
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA.
| |
Collapse
|
29
|
Zooming in on biological processes with fluorescence nanoscopy. Curr Opin Biotechnol 2013; 24:646-53. [PMID: 23498844 DOI: 10.1016/j.copbio.2013.02.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 02/17/2013] [Accepted: 02/18/2013] [Indexed: 11/23/2022]
Abstract
Fluorescence nanoscopy enables the study of biological phenomena at nanometer scale spatial resolution. Recent biological studies using fluorescence nanoscopy have showcased the ability of these techniques to directly observe protein organization, subcellular molecular interactions, structural dynamics, electrical signaling, and diffusion of cytosolic proteins at unprecedented spatial resolution. Super-resolution imaging techniques critically rely on bright fluorescent probes such as organic dyes or fluorescent proteins. Recently, these methods have been extended to live cells and multicolor, three-dimensional imaging, thereby providing exquisite spatiotemporal resolutions of the order of 10-20 nm and 1-2 s for subcellular imaging. Further improvements in image processing algorithms, labeling techniques, correlative microscopy, and development of advanced fluorescent probes will be required to achieve true molecular-scale resolution using these techniques.
Collapse
|
30
|
|