1
|
Keerthiga R, Xie Y, Pei DS, Fu A. The multifaceted modulation of mitochondrial metabolism in tumorigenesis. Mitochondrion 2025; 80:101977. [PMID: 39505244 DOI: 10.1016/j.mito.2024.101977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Changes in mitochondrial metabolism produce a malignant transformation from normal cells to tumor cells. Mitochondrial metabolism, comprising bioenergetic metabolism, biosynthetic process, biomolecular decomposition, and metabolic signal conversion, obviously forms a unique sign in the process of tumorigenesis. Several oncometabolites produced by mitochondrial metabolism maintain tumor phenotype, which are recognized as tumor indicators. The mitochondrial metabolism synchronizes the metabolic and genetic outcome to the potent tumor microenvironmental signals, thereby further promoting tumor initiation. Moreover, the bioenergetic and biosynthetic metabolism within tumor mitochondria orchestrates dynamic contributions toward cancer progression and invasion. In this review, we describe the contribution of mitochondrial metabolism in tumorigenesis through shaping several hallmarks such as microenvironment modulation, plasticity, mitochondrial calcium, mitochondrial dynamics, and epithelial-mesenchymal transition. The review will provide a new insight into the abnormal mitochondrial metabolism in tumorigenesis, which will be conducive to tumor prevention and therapy through targeting tumor mitochondria.
Collapse
Affiliation(s)
- Rajendiran Keerthiga
- College of Pharmaceutical Science, Southwest University, Chongqing, 400716, China; Department of Computational Biology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Thandalam, Chennai 602105, Tamil Nadu, India
| | - Yafang Xie
- College of Pharmaceutical Science, Southwest University, Chongqing, 400716, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
| | - Ailing Fu
- College of Pharmaceutical Science, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
2
|
Chen F, Xue Y, Zhang W, Zhou H, Zhou Z, Chen T, YinWang E, Li H, Ye Z, Gao J, Wang S. The role of mitochondria in tumor metastasis and advances in mitochondria-targeted cancer therapy. Cancer Metastasis Rev 2024; 43:1419-1443. [PMID: 39307891 PMCID: PMC11554835 DOI: 10.1007/s10555-024-10211-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/08/2024] [Indexed: 11/05/2024]
Abstract
Mitochondria are central actors in diverse physiological phenomena ranging from energy metabolism to stress signaling and immune modulation. Accumulating scientific evidence points to the critical involvement of specific mitochondrial-associated events, including mitochondrial quality control, intercellular mitochondrial transfer, and mitochondrial genetics, in potentiating the metastatic cascade of neoplastic cells. Furthermore, numerous recent studies have consistently emphasized the highly significant role mitochondria play in coordinating the regulation of tumor-infiltrating immune cells and immunotherapeutic interventions. This review provides a comprehensive and rigorous scholarly investigation of this subject matter, exploring the intricate mechanisms by which mitochondria contribute to tumor metastasis and examining the progress of mitochondria-targeted cancer therapies.
Collapse
Affiliation(s)
- Fanglu Chen
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yucheng Xue
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Wenkan Zhang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hao Zhou
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhiyi Zhou
- The First People's Hospital of Yuhang District, Hangzhou, Zhejiang, China
| | - Tao Chen
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Eloy YinWang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hengyuan Li
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhaoming Ye
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China.
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Shengdong Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China.
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Pietramale AN, Bame X, Doty ME, Hill RA. Mitochondria are absent from microglial processes performing surveillance, chemotaxis, and phagocytic engulfment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618505. [PMID: 39463986 PMCID: PMC11507814 DOI: 10.1101/2024.10.15.618505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Microglia continually surveil the brain allowing for rapid detection of tissue damage or infection. Microglial metabolism is linked to tissue homeostasis, yet how mitochondria are subcellularly partitioned in microglia and dynamically reorganize during surveillance, injury responses, and phagocytic engulfment in the intact brain are not known. Here, we performed intravital imaging of microglia mitochondria, revealing that microglial processes diverge, with some containing multiple mitochondria while others are completely void. Microglial processes that engage in minute-to-minute surveillance typically do not have mitochondria. Moreover, unlike process surveillance, mitochondrial motility does not change with animal anesthesia. Likewise, the processes that acutely chemoattract to a lesion site or initially engage with a neuron undergoing programmed cell death do not contain mitochondria. Rather, microglia mitochondria have a delayed arrival into the responding cell processes. Thus, there is subcellular heterogeneity of mitochondrial partitioning and asymmetry between mitochondrial localization and cell process motility or acute damage responses.
Collapse
Affiliation(s)
| | - Xhoela Bame
- Department of Biological Sciences, Dartmouth College, Hanover NH, USA
| | - Megan E. Doty
- Department of Biological Sciences, Dartmouth College, Hanover NH, USA
| | - Robert A. Hill
- Department of Biological Sciences, Dartmouth College, Hanover NH, USA
| |
Collapse
|
4
|
Libring S, Berestesky ED, Reinhart-King CA. The movement of mitochondria in breast cancer: internal motility and intercellular transfer of mitochondria. Clin Exp Metastasis 2024; 41:567-587. [PMID: 38489056 PMCID: PMC11499424 DOI: 10.1007/s10585-024-10269-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/18/2024] [Indexed: 03/17/2024]
Abstract
As a major energy source for cells, mitochondria are involved in cell growth and proliferation, as well as migration, cell fate decisions, and many other aspects of cellular function. Once thought to be irreparably defective, mitochondrial function in cancer cells has found renewed interest, from suggested potential clinical biomarkers to mitochondria-targeting therapies. Here, we will focus on the effect of mitochondria movement on breast cancer progression. Mitochondria move both within the cell, such as to localize to areas of high energetic need, and between cells, where cells within the stroma have been shown to donate their mitochondria to breast cancer cells via multiple methods including tunneling nanotubes. The donation of mitochondria has been seen to increase the aggressiveness and chemoresistance of breast cancer cells, which has increased recent efforts to uncover the mechanisms of mitochondrial transfer. As metabolism and energetics are gaining attention as clinical targets, a better understanding of mitochondrial function and implications in cancer are required for developing effective, targeted therapeutics for cancer patients.
Collapse
Affiliation(s)
- Sarah Libring
- Department of Biomedical Engineering, Vanderbilt University, 440 Engineering and Science Building, 1212 25thAvenue South, Nashville, TN, 37235, USA
| | - Emily D Berestesky
- Department of Biomedical Engineering, Vanderbilt University, 440 Engineering and Science Building, 1212 25thAvenue South, Nashville, TN, 37235, USA
| | - Cynthia A Reinhart-King
- Department of Biomedical Engineering, Vanderbilt University, 440 Engineering and Science Building, 1212 25thAvenue South, Nashville, TN, 37235, USA.
| |
Collapse
|
5
|
Javed Z, Shin DH, Pan W, White SR, Elhaw AT, Kim YS, Kamlapurkar S, Cheng YY, Benson JC, Abdelnaby AE, Phaëton R, Wang HG, Yang S, Sullivan MLG, St Croix CM, Watkins SC, Mullett SJ, Gelhaus SL, Lee N, Coffman LG, Aird KM, Trebak M, Mythreye K, Walter V, Hempel N. Drp1 splice variants regulate ovarian cancer mitochondrial dynamics and tumor progression. EMBO Rep 2024; 25:4281-4310. [PMID: 39191946 PMCID: PMC11467262 DOI: 10.1038/s44319-024-00232-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/13/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Aberrant mitochondrial fission/fusion dynamics are frequently associated with pathologies, including cancer. We show that alternative splice variants of the fission protein Drp1 (DNM1L) contribute to the complexity of mitochondrial fission/fusion regulation in tumor cells. High tumor expression of the Drp1 alternative splice variant lacking exon 16 relative to other transcripts is associated with poor outcome in ovarian cancer patients. Lack of exon 16 results in Drp1 localization to microtubules and decreased association with mitochondrial fission sites, culminating in fused mitochondrial networks, enhanced respiration, changes in metabolism, and enhanced pro-tumorigenic phenotypes in vitro and in vivo. These effects are inhibited by siRNAs designed to specifically target the endogenously expressed transcript lacking exon 16. Moreover, lack of exon 16 abrogates mitochondrial fission in response to pro-apoptotic stimuli and leads to decreased sensitivity to chemotherapeutics. These data emphasize the pathophysiological importance of Drp1 alternative splicing, highlight the divergent functions and consequences of changing the relative expression of Drp1 splice variants in tumor cells, and strongly warrant consideration of alternative splicing in future studies focused on Drp1.
Collapse
Affiliation(s)
- Zaineb Javed
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Dong Hui Shin
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
- School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Weihua Pan
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sierra R White
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Vascular Medicine Institute (VMI), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amal Taher Elhaw
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Yeon Soo Kim
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Shriya Kamlapurkar
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ya-Yun Cheng
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - J Cory Benson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ahmed Emam Abdelnaby
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rébécca Phaëton
- Department of Obstetrics & Gynecology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
- GlaxoSmithKline, Collegeville, PA, USA
| | - Hong-Gang Wang
- Department of Pediatrics, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Shengyu Yang
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Mara L G Sullivan
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Claudette M St Croix
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Simon C Watkins
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Steven J Mullett
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Health Sciences Mass Spectrometry Core, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stacy L Gelhaus
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Health Sciences Mass Spectrometry Core, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nam Lee
- Division of Pharmacology, Chemistry and Biochemistry, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Lan G Coffman
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Katherine M Aird
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Mohamed Trebak
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
- Vascular Medicine Institute (VMI), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Karthikeyan Mythreye
- Department of Pathology and O'Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vonn Walter
- Department of Public Health Sciences, Division of Biostatistics and Bioinformatics and Department of Biochemistry and Molecular Biology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Nadine Hempel
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Vascular Medicine Institute (VMI), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Li X, Tie J, Sun Y, Gong C, Deng S, Chen X, Li S, Wang Y, Wang Z, Wu F, Liu H, Wu Y, Zhang G, Guo Q, Yang Y, Wang Y. Targeting DNM1L/DRP1-FIS1 axis inhibits high-grade glioma progression by impeding mitochondrial respiratory cristae remodeling. J Exp Clin Cancer Res 2024; 43:273. [PMID: 39350223 PMCID: PMC11440692 DOI: 10.1186/s13046-024-03194-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND The dynamics of mitochondrial respiratory cristae (MRC) and its impact on oxidative phosphorylation (OXPHOS) play a crucial role in driving the progression of high-grade glioma (HGG). However, the underlying mechanism remains unclear. METHODS In the present study, we employed machine learning-based transmission electron microscopy analysis of 7141 mitochondria from 54 resected glioma patients. Additionally, we conducted bioinformatics analysis and multiplex immunohistochemical (mIHC) staining of clinical glioma microarrays to identify key molecules involved in glioma. Subsequently, we modulated the expression levels of mitochondrial dynamic-1-like protein (DNM1L/DRP1), and its two receptors, mitochondrial fission protein 1 (FIS1) and mitochondrial fission factor (MFF), via lentiviral transfection to further investigate the central role of these molecules in the dynamics of glioblastoma (GBM) cells and glioma stem cells (GSCs). We then evaluated the potential impact of DNM1L/DRP1, FIS1, and MFF on the proliferation and progression of GBM cells and GSCs using a combination of CCK-8 assay, Transwell assay, Wound Healing assay, tumor spheroid formation assay and cell derived xenograft assay employing NOD/ShiLtJGpt-Prkdcem26Cd52Il2rgem26Cd22/Gpt (NCG) mouse model. Subsequently, we validated the ability of the DNM1L/DRP1-FIS1 axis to remodel MRC structure through mitophagy by utilizing Seahorse XF analysis technology, mitochondrial function detection, MRC abundance detection and monitoring dynamic changes in mitophagy. RESULTS Our findings revealed that compared to low-grade glioma (LGG), HGG exhibited more integrated MRC structures. Further research revealed that DNM1L/DRP1, FIS1, and MFF played pivotal roles in governing mitochondrial fission and remodeling MRC in HGG. The subsequent validation demonstrated that DNM1L/DRP1 exerts a positive regulatory effect on FIS1, whereas the interaction between MFF and FIS1 demonstrates a competitive inhibition relationship. The down-regulation of the DNM1L/DRP1-FIS1 axis significantly impaired mitophagy, thereby hindering the remodeling of MRC and inhibiting OXPHOS function in glioma, ultimately leading to the inhibition of its aggressive progression. In contrast, MFF exerts a contrasting effect on MRC integrity, OXPHOS activity, and glioma progression. CONCLUSIONS This study highlights that the DNM1L/DRP1-FIS1 axis stabilizes MRC structures through mitophagy in HGG cells while driving their OXPHOS activity ultimately leading to robust disease progression. The inhibition of the DNM1L/DRP1-FIS1 axis hinders MRC remodeling and suppresses GBM progression. We propose that down-regulation of the DNM1L/DRP1-FIS1 axis could be a potential therapeutic strategy for treating HGG.
Collapse
Affiliation(s)
- Xiaodong Li
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Jingjing Tie
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China
- Department of Human Anatomy, Histology and Embryology, Medical School of Yan'an University, Yan'an, China
| | - Yuze Sun
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Chengrong Gong
- Department of Computer Fundamentals, The Fourth Military Medical University, Xi'an, 710032, China
| | - Shizhou Deng
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xiyu Chen
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Shujiao Li
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yaoliang Wang
- Department of Neurosurgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Zhenhua Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Feifei Wu
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China
| | - Hui Liu
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yousheng Wu
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China
| | - Guopeng Zhang
- Department of Computer Fundamentals, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Qingdong Guo
- Department of Neurosurgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Yanling Yang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Yayun Wang
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
7
|
Boulton DP, Caino MC. Emerging roles for Mitochondrial Rho GTPases in tumor biology. J Biol Chem 2024; 300:107670. [PMID: 39128718 PMCID: PMC11402688 DOI: 10.1016/j.jbc.2024.107670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024] Open
Abstract
Mitochondrial Rho GTPases (MIRO1 and MIRO2) are primarily studied for their role as resident mitochondrial anchor proteins that facilitate mitochondria trafficking in neurons. However, it is now appreciated that these proteins have critical roles in cancer. In this review, we focus on examining the role of MIROs in cancer, including expression changes in tumors and the molecular mechanisms by which MIROs impact tumor cell growth, invasion, and metastasis. Additionally, we give an overview of how MIRO's functions in normal cells within the tumor microenvironment can support or inhibit tumor growth and metastasis. Although this is still an emerging field, the current consensus is that the MIROs primarily promote tumor progression of disparate tumor types. As mitochondrial proteins are now being targeted in the clinic, we discuss their potential as novel proteins to target in cancer.
Collapse
Affiliation(s)
- Dillon P Boulton
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado, USA; Pharmacology Graduate Program, University of Colorado, Aurora, Colorado, USA
| | - M Cecilia Caino
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado, USA; University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
8
|
Hofstadter WA, Cook KC, Tsopurashvili E, Gebauer R, Pražák V, Machala EA, Park JW, Grünewald K, Quemin ERJ, Cristea IM. Infection-induced peripheral mitochondria fission drives ER encapsulations and inter-mitochondria contacts that rescue bioenergetics. Nat Commun 2024; 15:7352. [PMID: 39187492 PMCID: PMC11347691 DOI: 10.1038/s41467-024-51680-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024] Open
Abstract
The dynamic regulation of mitochondria shape via fission and fusion is critical for cellular responses to stimuli. In homeostatic cells, two modes of mitochondrial fission, midzone and peripheral, provide a decision fork between either proliferation or clearance of mitochondria. However, the relationship between specific mitochondria shapes and functions remains unclear in many biological contexts. While commonly associated with decreased bioenergetics, fragmented mitochondria paradoxically exhibit elevated respiration in several disease states, including infection with the prevalent pathogen human cytomegalovirus (HCMV) and metastatic melanoma. Here, incorporating super-resolution microscopy with mass spectrometry and metabolic assays, we use HCMV infection to establish a molecular mechanism for maintaining respiration within a fragmented mitochondria population. We establish that HCMV induces fragmentation through peripheral mitochondrial fission coupled with suppression of mitochondria fusion. Unlike uninfected cells, the progeny of peripheral fission enter mitochondria-ER encapsulations (MENCs) where they are protected from degradation and bioenergetically stabilized during infection. MENCs also stabilize pro-viral inter-mitochondria contacts (IMCs), which electrochemically link mitochondria and promote respiration. Demonstrating a broader relevance, we show that the fragmented mitochondria within metastatic melanoma cells also form MENCs. Our findings establish a mechanism where mitochondria fragmentation can promote increased respiration, a feature relevant in the context of human diseases.
Collapse
Affiliation(s)
| | - Katelyn C Cook
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | - Robert Gebauer
- Department of Chemistry, MIN Faculty, Universität Hamburg, Hamburg, Germany
- Department of Structural Cell Biology of Viruses, Centre for Structural Systems Biology, Leibniz Institute of Virology, Hamburg, Germany
| | - Vojtěch Pražák
- Department of Chemistry, MIN Faculty, Universität Hamburg, Hamburg, Germany
- Department of Structural Cell Biology of Viruses, Centre for Structural Systems Biology, Leibniz Institute of Virology, Hamburg, Germany
| | - Emily A Machala
- Department of Chemistry, MIN Faculty, Universität Hamburg, Hamburg, Germany
- Department of Structural Cell Biology of Viruses, Centre for Structural Systems Biology, Leibniz Institute of Virology, Hamburg, Germany
| | - Ji Woo Park
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Kay Grünewald
- Department of Chemistry, MIN Faculty, Universität Hamburg, Hamburg, Germany
- Department of Structural Cell Biology of Viruses, Centre for Structural Systems Biology, Leibniz Institute of Virology, Hamburg, Germany
| | - Emmanuelle R J Quemin
- Department of Chemistry, MIN Faculty, Universität Hamburg, Hamburg, Germany
- Department of Structural Cell Biology of Viruses, Centre for Structural Systems Biology, Leibniz Institute of Virology, Hamburg, Germany
- Department of Virology, Institute for Integrative Biology of the Cell, CNRS UMR9198, Gif-sur-Yvette, France
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
9
|
Wang M, Pang SW. Detecting Nanotopography Induced Changes in Cell Migration Directions Using Oxygen Sensors. BIOSENSORS 2024; 14:389. [PMID: 39194618 DOI: 10.3390/bios14080389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 08/29/2024]
Abstract
This study investigates the oxygen (O2) consumption of single cells during changes in their migration direction. This is the first integration of nanotopographies with an O2 biosensor in a platform, allowing the real-time monitoring of O2 consumption in cells and the ability to distinguish cells migrating in the same direction from those migrating in the opposite direction. Advanced nanofabrication technologies were used to pattern nanoholes or nanopillars on grating ridges, and their effects were evaluated using fluorescence microscopy, cell migration assays, and O2 consumption analysis. The results revealed that cells on the nanopillars over grating ridges exhibited an enhanced migration motility and more frequent directional changes. Additionally, these cells showed an increased number of protrusions and filopodia with denser F-actin areas and an increased number of dotted F-actin structures around the nanopillars. Dynamic metabolic responses were also evident, as indicated by the fluorescence intensity peaks of platinum octaethylporphyrin ketone dye, reflecting an increased O2 consumption and higher mitochondria activities, due to the higher energy required in response to directional changes. The study emphasizes the complex interplay between O2 consumption and cell migration directional changes, providing insights into biomaterial science and regenerative medicine. It suggests innovative designs for biomaterials that guide cell migration and metabolism, advocating nanoengineered platforms to harness the intricate relationships between cells and their microenvironments for therapeutic applications.
Collapse
Affiliation(s)
- Muting Wang
- Department of Electrical Engineering, Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Hong Kong, China
| | - Stella W Pang
- Department of Electrical Engineering, Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
10
|
Marlar-Pavey M, Tapias-Gomez D, Mettlen M, Friedman JR. Compositionally unique mitochondria in filopodia support cellular migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600105. [PMID: 38948746 PMCID: PMC11212966 DOI: 10.1101/2024.06.21.600105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Local metabolic demand within cells varies widely and the extent to which individual mitochondria can be specialized to meet these functional needs is unclear. We examined the subcellular distribution of MICOS, a spatial and functional organizer of mitochondria, and discovered that it dynamically enriches at the tip of a minor population of mitochondria in the cell periphery that we term "METEORs". METEORs have a unique composition; MICOS enrichment sites are depleted of mtDNA and matrix proteins and contain high levels of the Ca2+ uniporter MCU, suggesting a functional specialization. METEORs are also enriched for the myosin MYO19, which promotes their trafficking to a small subset of filopodia. We identify a positive correlation between the length of filopodia and the presence of METEORs and show that elimination of mitochondria from filopodia impairs cellular motility. Our data reveal a novel type of mitochondrial heterogeneity and suggest compositionally specialized mitochondria support cell migration.
Collapse
Affiliation(s)
| | - Daniel Tapias-Gomez
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Marcel Mettlen
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jonathan R. Friedman
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
11
|
Mesa D, Barbieri E, Raimondi A, Freddi S, Miloro G, Jendrisek G, Caldieri G, Quarto M, Schiano Lomoriello I, Malabarba MG, Bresci A, Manetti F, Vernuccio F, Abdo H, Scita G, Lanzetti L, Polli D, Tacchetti C, Pinton P, Bonora M, Di Fiore PP, Sigismund S. A tripartite organelle platform links growth factor receptor signaling to mitochondrial metabolism. Nat Commun 2024; 15:5119. [PMID: 38879572 PMCID: PMC11180189 DOI: 10.1038/s41467-024-49543-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 06/08/2024] [Indexed: 06/19/2024] Open
Abstract
One open question in the biology of growth factor receptors is how a quantitative input (i.e., ligand concentration) is decoded by the cell to produce specific response(s). Here, we show that an EGFR endocytic mechanism, non-clathrin endocytosis (NCE), which is activated only at high ligand concentrations and targets receptor to degradation, requires a tripartite organelle platform involving the plasma membrane (PM), endoplasmic reticulum (ER) and mitochondria. At these contact sites, EGFR-dependent, ER-generated Ca2+ oscillations are sensed by mitochondria, leading to increased metabolism and ATP production. Locally released ATP is required for cortical actin remodeling and EGFR-NCE vesicle fission. The same biochemical circuitry is also needed for an effector function of EGFR, i.e., collective motility. The multiorganelle signaling platform herein described mediates direct communication between EGFR signaling and mitochondrial metabolism, and is predicted to have a broad impact on cell physiology as it is activated by another growth factor receptor, HGFR/MET.
Collapse
Affiliation(s)
- Deborah Mesa
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Andrea Raimondi
- Experimental Imaging Centre, IRCCS San Raffaele Hospital Scientific Institute, Milan, Italy
- Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Stefano Freddi
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Gorana Jendrisek
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Micaela Quarto
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Irene Schiano Lomoriello
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Maria Grazia Malabarba
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Arianna Bresci
- Department of Physics, Politecnico di Milano, Milan, Italy
| | | | | | - Hind Abdo
- IFOM, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Giorgio Scita
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
- IFOM, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Letizia Lanzetti
- Department of Oncology, University of Torino Medical School, Candiolo, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Dario Polli
- Department of Physics, Politecnico di Milano, Milan, Italy
- CNR Institute for Photonics and Nanotechnology (CNR-IFN), Milan, Italy
| | - Carlo Tacchetti
- Experimental Imaging Centre, IRCCS San Raffaele Hospital Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Massimo Bonora
- Department of Medical Sciences, Section of Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Pier Paolo Di Fiore
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy.
- IEO, European Institute of Oncology IRCCS, Milan, Italy.
| | - Sara Sigismund
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy.
- IEO, European Institute of Oncology IRCCS, Milan, Italy.
| |
Collapse
|
12
|
Gkini V, Gómez-Lozano I, Heikinheimo O, Namba T. Dynamic changes in mitochondrial localization in human neocortical basal radial glial cells during cell cycle. J Comp Neurol 2024; 532:e25630. [PMID: 38852043 DOI: 10.1002/cne.25630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/25/2024] [Accepted: 05/09/2024] [Indexed: 06/10/2024]
Abstract
Mitochondria play critical roles in neural stem/progenitor cell proliferation and fate decisions. The subcellular localization of mitochondria in neural stem/progenitor cells during mitosis potentially influences the distribution of mitochondria to the daughter cells and thus their fates. Therefore, understanding the spatial dynamics of mitochondria provides important knowledge about brain development. In this study, we analyzed the subcellular localization of mitochondria in the fetal human neocortex with a particular focus on the basal radial glial cells (bRGCs), a neural stem/progenitor cell subtype attributed to the evolutionary expansion of the human neocortex. During interphase, bRGCs exhibit a polarized localization of mitochondria that is localized at the base of the process or the proximal part of the process. Thereafter, mitochondria in bRGCs at metaphase show unpolarized distribution in which the mitochondria are randomly localized in the cytoplasm. During anaphase and telophase, mitochondria are still localized evenly, but mainly in the periphery of the cytoplasm. Mitochondria start to accumulate at the cleavage furrow during cytokinesis. These results suggest that the mitochondrial localization in bRGCs is tightly regulated during the cell cycle, which may ensure the proper distribution of mitochondria to the daughter cells and, thus in turn, influence their fates.
Collapse
Affiliation(s)
- Vasiliki Gkini
- Neuroscience Center, HiLIFE - Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Inés Gómez-Lozano
- Neuroscience Center, HiLIFE - Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Oskari Heikinheimo
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Takashi Namba
- Neuroscience Center, HiLIFE - Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
13
|
Li Y, Yang Z, Zhang S, Li J. Miro-mediated mitochondrial transport: A new dimension for disease-related abnormal cell metabolism? Biochem Biophys Res Commun 2024; 705:149737. [PMID: 38430606 DOI: 10.1016/j.bbrc.2024.149737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/15/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Mitochondria are versatile and highly dynamic organelles found in eukaryotic cells that play important roles in a variety of cellular processes. The importance of mitochondrial transport in cell metabolism, including variations in mitochondrial distribution within cells and intercellular transfer, has grown in recent years. Several studies have demonstrated that abnormal mitochondrial transport represents an early pathogenic alteration in a variety of illnesses, emphasizing its significance in disease development and progression. Mitochondrial Rho GTPase (Miro) is a protein found on the outer mitochondrial membrane that is required for cytoskeleton-dependent mitochondrial transport, mitochondrial dynamics (fusion and fission), and mitochondrial Ca2+ homeostasis. Miro, as a critical regulator of mitochondrial transport, has yet to be thoroughly investigated in illness. This review focuses on recent developments in recognizing Miro as a crucial molecule in controlling mitochondrial transport and investigates its roles in diverse illnesses. It also intends to shed light on the possibilities of targeting Miro as a therapeutic method for a variety of diseases.
Collapse
Affiliation(s)
- Yanxing Li
- Xi'an Jiaotong University Health Science Center, Xi'an, 710000, Shaanxi, People's Republic of China
| | - Zhen Yang
- Xi'an Jiaotong University Health Science Center, Xi'an, 710000, Shaanxi, People's Republic of China
| | - Shumei Zhang
- Xi'an Jiaotong University Health Science Center, Xi'an, 710000, Shaanxi, People's Republic of China
| | - Jianjun Li
- Department of Cardiology, Jincheng People's Hospital Affiliated to Changzhi Medical College, Jincheng, Shanxi, People's Republic of China.
| |
Collapse
|
14
|
Liu Y, Wang YJ, Du Y, Liu W, Huang X, Fan Z, Lu J, Yi R, Xiang XW, Xia X, Gu H, Liu YJ, Liu B. DNA nanomachines reveal an adaptive energy mode in confinement-induced amoeboid migration powered by polarized mitochondrial distribution. Proc Natl Acad Sci U S A 2024; 121:e2317492121. [PMID: 38547056 PMCID: PMC10998588 DOI: 10.1073/pnas.2317492121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/19/2024] [Indexed: 04/02/2024] Open
Abstract
Energy metabolism is highly interdependent with adaptive cell migration in vivo. Mechanical confinement is a critical physical cue that induces switchable migration modes of the mesenchymal-to-amoeboid transition (MAT). However, the energy states in distinct migration modes, especially amoeboid-like stable bleb (A2) movement, remain unclear. In this report, we developed multivalent DNA framework-based nanomachines to explore strategical mitochondrial trafficking and differential ATP levels during cell migration in mechanically heterogeneous microenvironments. Through single-particle tracking and metabolomic analysis, we revealed that fast A2-moving cells driven by biomimetic confinement recruited back-end positioning of mitochondria for powering highly polarized cytoskeletal networks, preferentially adopting an energy-saving mode compared with a mesenchymal mode of cell migration. We present a versatile DNA nanotool for cellular energy exploration and highlight that adaptive energy strategies coordinately support switchable migration modes for facilitating efficient metastatic escape, offering a unique perspective for therapeutic interventions in cancer metastasis.
Collapse
Affiliation(s)
- Yixin Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Ya-Jun Wang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Yang Du
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Wei Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Xuedong Huang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Zihui Fan
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Jiayin Lu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Runqiu Yi
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Xiao-Wei Xiang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Xinwei Xia
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Hongzhou Gu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Yan-Jun Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai200438, China
| |
Collapse
|
15
|
Du R, Han X, Deng L, Wang X. Epithelial and mesenchymal phenotypes determine the dynamics of circulating breast tumor cells in microfluidic capillaries under chemotherapy-induced stress. BIOMICROFLUIDICS 2024; 18:024106. [PMID: 38585003 PMCID: PMC10998713 DOI: 10.1063/5.0188861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/28/2024] [Indexed: 04/09/2024]
Abstract
Circulating tumor cells (CTCs) with different epithelial and mesenchymal phenotypes play distinct roles in the metastatic cascade. However, the influence of their phenotypic traits and chemotherapy on their transit and retention within capillaries remains unclear. To explore this, we developed a microfluidic device comprising 216 microchannels of different widths from 5 to 16 μm to mimic capillaries. This platform allowed us to study the behaviors of human breast cancer epithelial MCF-7 and mesenchymal MDA-MB-231 cells through microchannels under chemotherapy-induced stress. Our results revealed that when the cell diameter to microchannel width ratio exceeded 1.2, MCF-7 cells exhibited higher transit percentages than MDA-MB-231 cells under a flow rate of 0.13 mm/s. Tamoxifen (250 nM) reduced the transit percentage of MCF-7 cells, whereas 100 nM paclitaxel decreased transit percentages for both cell types. These differential responses were partially due to altered cell stiffness following drug treatments. When cells were entrapped at microchannel entrances, tamoxifen, paclitaxel, and high-flow stress (0.5 mm/s) induced a reduction in mitochondrial membrane potential (MMP) in MCF-7 cells. Tamoxifen treatment also elevated reactive oxygen species (ROS) levels in MCF-7 cells. Conversely, MMP and ROS levels in entrapped MDA-MB-231 cells remained unaffected. Consequently, the viability and proliferation of entrapped MCF-7 cells declined under these chemical and physical stress conditions. Our findings emphasize that phenotypically distinct CTCs may undergo selective filtration and exhibit varied responses to chemotherapy in capillaries, thereby impacting cancer metastasis outcomes. This highlights the importance of considering both cell phenotype and drug response to improve treatment strategies.
Collapse
Affiliation(s)
| | | | - Linhong Deng
- Authors to whom correspondence should be addressed: and
| | - Xiang Wang
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
16
|
Javed Z, Shin DH, Pan W, White SR, Kim YS, Elhaw AT, Kamlapurkar S, Cheng YY, Benson JC, Abdelnaby AE, Phaëton R, Wang HG, Yang S, Sullivan ML, St.Croix CM, Watkins SC, Mullett SJ, Gelhaus SL, Lee N, Coffman LG, Aird KM, Trebak M, Mythreye K, Walter V, Hempel N. Alternative splice variants of the mitochondrial fission protein DNM1L/Drp1 regulate mitochondrial dynamics and tumor progression in ovarian cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.20.558501. [PMID: 37790404 PMCID: PMC10542115 DOI: 10.1101/2023.09.20.558501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Aberrant mitochondrial fission/fusion dynamics have been reported in cancer cells. While post translational modifications are known regulators of the mitochondrial fission/fusion machinery, we show that alternative splice variants of the fission protein Drp1 (DNM1L) have specific and unique roles in cancer, adding to the complexity of mitochondrial fission/fusion regulation in tumor cells. Ovarian cancer specimens express an alternative splice transcript variant of Drp1 lacking exon 16 of the variable domain, and high expression of this splice variant relative to other transcripts is associated with poor patient outcome. Unlike the full-length variant, expression of Drp1 lacking exon 16 leads to decreased association of Drp1 to mitochondrial fission sites, more fused mitochondrial networks, enhanced respiration, and TCA cycle metabolites, and is associated with a more metastatic phenotype in vitro and in vivo. These pro-tumorigenic effects can also be inhibited by specific siRNA-mediated inhibition of the endogenously expressed transcript lacking exon 16. Moreover, lack of exon 16 abrogates mitochondrial fission in response to pro-apoptotic stimuli and leads to decreased sensitivity to chemotherapeutics. These data emphasize the significance of the pathophysiological consequences of Drp1 alternative splicing and divergent functions of Drp1 splice variants, and strongly warrant consideration of Drp1 splicing in future studies.
Collapse
Affiliation(s)
- Zaineb Javed
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, PA, USA
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, PA, USA
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Dong Hui Shin
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Weihua Pan
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, PA, USA
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, PA, USA
| | - Sierra R. White
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, PA, USA
- Vascular Medicine Institute (VMI), University of Pittsburgh School of Medicine, PA, USA
| | - Yeon Soo Kim
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Amal Taher Elhaw
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, PA, USA
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, PA, USA
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Shriya Kamlapurkar
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, PA, USA
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, PA, USA
| | - Ya-Yun Cheng
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, PA, USA
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, PA, USA
| | - J Cory Benson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, PA, USA
| | - Ahmed Emam Abdelnaby
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, PA, USA
| | - Rébécca Phaëton
- Department of Obstetrics & Gynecology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Hong-Gang Wang
- Department of Pediatrics, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Shengyu Yang
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA, USA; Health Sciences Mass Spectrometry Core, University of Pittsburgh, PA, USA
| | - Mara L.G. Sullivan
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, PA, USA; Division of Pharmacology, Chemistry and Biochemistry, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Claudette M. St.Croix
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, PA, USA; Division of Pharmacology, Chemistry and Biochemistry, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Simon C. Watkins
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, PA, USA; Division of Pharmacology, Chemistry and Biochemistry, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Steven J. Mullett
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, PA, USA
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA, USA; Health Sciences Mass Spectrometry Core, University of Pittsburgh, PA, USA
| | - Stacy L. Gelhaus
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, PA, USA
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA, USA; Health Sciences Mass Spectrometry Core, University of Pittsburgh, PA, USA
| | - Nam Lee
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, PA, USA; Division of Pharmacology, Chemistry and Biochemistry, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Lan G. Coffman
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, PA, USA
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, PA, USA
| | - Katherine M. Aird
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, PA, USA
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Mohamed Trebak
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, PA, USA
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
- Vascular Medicine Institute (VMI), University of Pittsburgh School of Medicine, PA, USA
- Vascular Medicine Institute (VMI), University of Pittsburgh School of Medicine, PA, USA
| | - Karthikeyan Mythreye
- Department of Pathology and O’Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vonn Walter
- Department of Public Health Sciences, Division of Biostatistics and Bioinformatics and Department of Biochemistry and Molecular Biology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Nadine Hempel
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, PA, USA
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, PA, USA
- Vascular Medicine Institute (VMI), University of Pittsburgh School of Medicine, PA, USA
| |
Collapse
|
17
|
Gural N, Irimia D. Microfluidic devices for precise measurements of cell directionality reveal a role for glutamine during cell migration. Sci Rep 2023; 13:23032. [PMID: 38155198 PMCID: PMC10754855 DOI: 10.1038/s41598-023-49866-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 12/12/2023] [Indexed: 12/30/2023] Open
Abstract
Cancer cells that migrate from tumors into surrounding tissues are responsible for cancer dissemination through the body. Microfluidic devices have been instrumental in discovering unexpected features of cancer cell migration, including the migration in self-generated gradients and the contributions of cell-cell contact during collective migration. Here, we design microfluidic channels with five successive bifurcations to characterize the directionality of cancer cell migration with high precision. We uncover an unexpected role for glutamine in epithelial cancer cell orientation, which could be replaced by alfa-keto glutarate but not glucose.
Collapse
Affiliation(s)
- Nil Gural
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Daniel Irimia
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Shriners Hospitals for Children, Boston, MA, USA.
| |
Collapse
|
18
|
Mosier JA, Fabiano ED, Ludolph CM, White AE, Reinhart-King CA. Confinement primes cells for faster migration by polarizing active mitochondria. NANOSCALE ADVANCES 2023; 6:209-220. [PMID: 38125598 PMCID: PMC10729874 DOI: 10.1039/d3na00478c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 11/07/2023] [Indexed: 12/23/2023]
Abstract
Mechanical cues in the tumor microenvironment interplay with internal cellular processes to control cancer cell migration. Microscale pores present in tumor tissue confer varying degrees of confinement on migrating cells, increasing matrix contact and inducing cytoskeletal rearrangement. Previously, we observed that increased collagen matrix contact significantly increased cell migration speed and cell-induced strains within the matrix. However, the effects of this confinement on future cell migration are not fully understood. Here, we use a collagen microtrack platform to determine the effect of confinement on priming MDA-MB-231 cancer cells for fast migration. We show that migration through a confined track results in increased speed and accumulation of migratory machinery, including actin and active mitochondria, in the front of migrating breast cancer cells. By designing microtracks that allow cells to first navigate a region of high confinement, then a region of low confinement, we assessed whether migration in high confinement changes future migratory behavior. Indeed, cells maintain their speed attained in high confinement even after exiting to a region of low confinement, indicating that cells maintain memory of previous matrix cues to fuel fast migration. Active mitochondria maintain their location at the front of the cell even after cells leave high confinement. Furthermore, knocking out vinculin to disrupt focal adhesions disrupts active mitochondrial localization and disrupts the fast migration seen upon release from confinement. Together, these data suggest that active mitochondrial localization in confinement may facilitate fast migration post-confinement. By better understanding how confinement contributes to future cancer cell migration, we can identify potential therapeutic targets to inhibit breast cancer metastasis.
Collapse
Affiliation(s)
- Jenna A Mosier
- Department of Biomedical Engineering, Vanderbilt University Nashville TN USA
| | - Emily D Fabiano
- Department of Biomedical Engineering, Vanderbilt University Nashville TN USA
| | - Catherine M Ludolph
- Department of Chemical Engineering, University of Texas at Austin Austin TX USA
| | - Addison E White
- Department of Biomedical Engineering, Vanderbilt University Nashville TN USA
| | | |
Collapse
|
19
|
Kim B, Lopez AT, Thevarajan I, Osuna MF, Mallavarapu M, Gao B, Osborne JK. Unexpected Differences in the Speed of Non-Malignant versus Malignant Cell Migration Reveal Differential Basal Intracellular ATP Levels. Cancers (Basel) 2023; 15:5519. [PMID: 38067222 PMCID: PMC10705159 DOI: 10.3390/cancers15235519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 02/12/2024] Open
Abstract
Cellular locomotion is required for survival, fertility, proper embryonic development, regeneration, and wound healing. Cell migration is a major component of metastasis, which accounts for two-thirds of all solid tumor deaths. While many studies have demonstrated increased energy requirements, metabolic rates, and migration of cancer cells compared with normal cells, few have systematically compared normal and cancer cell migration as well as energy requirements side by side. Thus, we investigated how non-malignant and malignant cells migrate, utilizing several cell lines from the breast and lung. Initial screening was performed in an unbiased high-throughput manner for the ability to migrate/invade on collagen and/or Matrigel. We unexpectedly observed that all the non-malignant lung cells moved significantly faster than cells derived from lung tumors regardless of the growth media used. Given the paradigm-shifting nature of our discovery, we pursued the mechanisms that could be responsible. Neither mass, cell doubling, nor volume accounted for the individual speed and track length of the normal cells. Non-malignant cells had higher levels of intracellular ATP at premigratory-wound induction stages. Meanwhile, cancer cells also increased intracellular ATP at premigratory-wound induction, but not to the levels of the normal cells, indicating the possibility for further therapeutic investigation.
Collapse
Affiliation(s)
- Bareun Kim
- Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA; (B.K.); (A.T.L.); (I.T.); (M.F.O.); (M.M.)
| | - Anthony T. Lopez
- Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA; (B.K.); (A.T.L.); (I.T.); (M.F.O.); (M.M.)
| | - Indhujah Thevarajan
- Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA; (B.K.); (A.T.L.); (I.T.); (M.F.O.); (M.M.)
| | - Maria F. Osuna
- Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA; (B.K.); (A.T.L.); (I.T.); (M.F.O.); (M.M.)
| | - Monica Mallavarapu
- Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA; (B.K.); (A.T.L.); (I.T.); (M.F.O.); (M.M.)
| | - Boning Gao
- Hamon Center for Therapeutic Oncology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA;
| | - Jihan K. Osborne
- Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA; (B.K.); (A.T.L.); (I.T.); (M.F.O.); (M.M.)
| |
Collapse
|
20
|
Zhou M, Ma Y, Rock EC, Chiang CC, Luker KE, Luker GD, Chen YC. Microfluidic single-cell migration chip reveals insights into the impact of extracellular matrices on cell movement. LAB ON A CHIP 2023; 23:4619-4635. [PMID: 37750357 PMCID: PMC10615797 DOI: 10.1039/d3lc00651d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Cell migration is a complex process that plays a crucial role in normal physiology and pathologies such as cancer, autoimmune diseases, and mental disorders. Conventional cell migration assays face limitations in tracking a large number of individual migrating cells. To address this challenge, we have developed a high-throughput microfluidic cell migration chip, which seamlessly integrates robotic liquid handling and computer vision to swiftly monitor the movement of 3200 individual cells, providing unparalleled single-cell resolution for discerning distinct behaviors of the fast-moving cell population. This study focuses on the ECM's role in regulating cellular migration, utilizing this cutting-edge microfluidic technology to investigate the impact of ten different ECMs on triple-negative breast cancer cell lines. We found that collagen IV, collagen III, and collagen I coatings were the top enhancers of cell movement. Combining these ECMs increased cell motility, but the effect was sub-additive. Furthermore, we examined 87 compounds and found that while some compounds inhibited migration on all substrates, significantly distinct effects on differently coated substrates were observed, underscoring the importance of considering ECM coating. We also utilized cells expressing a fluorescent actin reporter and observed distinct actin structures in ECM-interacting cells. ScRNA-Seq analysis revealed that ECM coatings induced EMT and enhanced cell migration. Finally, we identified genes that were particularly up-regulated by collagen IV and the selective inhibitors successfully blocked cell migration on collagen IV. Overall, the study provides insights into the impact of various ECMs on cell migration and dynamics of cell movement with implications for developing therapeutic strategies to combat diseases related to cell motility.
Collapse
Affiliation(s)
- Mengli Zhou
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
- Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yushu Ma
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| | - Edwin C Rock
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
| | - Chun-Cheng Chiang
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| | - Kathryn E Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| | - Gary D Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
- Department of Microbiology and Immunology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel, Blvd., Ann Arbor, MI 48109-2099, USA
| | - Yu-Chih Chen
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
- CMU-Pitt Ph.D. Program in Computational Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|
21
|
Colpman P, Dasgupta A, Archer SL. The Role of Mitochondrial Dynamics and Mitotic Fission in Regulating the Cell Cycle in Cancer and Pulmonary Arterial Hypertension: Implications for Dynamin-Related Protein 1 and Mitofusin2 in Hyperproliferative Diseases. Cells 2023; 12:1897. [PMID: 37508561 PMCID: PMC10378656 DOI: 10.3390/cells12141897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Mitochondria, which generate ATP through aerobic respiration, also have important noncanonical functions. Mitochondria are dynamic organelles, that engage in fission (division), fusion (joining) and translocation. They also regulate intracellular calcium homeostasis, serve as oxygen-sensors, regulate inflammation, participate in cellular and organellar quality control and regulate the cell cycle. Mitochondrial fission is mediated by the large GTPase, dynamin-related protein 1 (Drp1) which, when activated, translocates to the outer mitochondrial membrane (OMM) where it interacts with binding proteins (Fis1, MFF, MiD49 and MiD51). At a site demarcated by the endoplasmic reticulum, fission proteins create a macromolecular ring that divides the organelle. The functional consequence of fission is contextual. Physiological fission in healthy, nonproliferating cells mediates organellar quality control, eliminating dysfunctional portions of the mitochondria via mitophagy. Pathological fission in somatic cells generates reactive oxygen species and triggers cell death. In dividing cells, Drp1-mediated mitotic fission is critical to cell cycle progression, ensuring that daughter cells receive equitable distribution of mitochondria. Mitochondrial fusion is regulated by the large GTPases mitofusin-1 (Mfn1) and mitofusin-2 (Mfn2), which fuse the OMM, and optic atrophy 1 (OPA-1), which fuses the inner mitochondrial membrane. Mitochondrial fusion mediates complementation, an important mitochondrial quality control mechanism. Fusion also favors oxidative metabolism, intracellular calcium homeostasis and inhibits cell proliferation. Mitochondrial lipids, cardiolipin and phosphatidic acid, also regulate fission and fusion, respectively. Here we review the role of mitochondrial dynamics in health and disease and discuss emerging concepts in the field, such as the role of central versus peripheral fission and the potential role of dynamin 2 (DNM2) as a fission mediator. In hyperproliferative diseases, such as pulmonary arterial hypertension and cancer, Drp1 and its binding partners are upregulated and activated, positing mitochondrial fission as an emerging therapeutic target.
Collapse
Affiliation(s)
- Pierce Colpman
- Department of Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Asish Dasgupta
- Department of Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Stephen L Archer
- Department of Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
22
|
Gural N, Irimia D. Microfluidic Devices for Precise Measurements of Cell Directionality Reveal a Role for Glutamine during Cell Migration. RESEARCH SQUARE 2023:rs.3.rs-2799430. [PMID: 37205536 PMCID: PMC10187405 DOI: 10.21203/rs.3.rs-2799430/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Cancer cells that migrate from tumors into surrounding tissues are responsible for cancer dissemination through the body. Microfluidic devices have been instrumental in discovering unexpected features of cancer cell migration, including the migration in self-generated gradients and the contributions of cell-cell contact during collective migration. Here, we design microfluidic channels with five successive bifurcations to characterize the directionality of cancer cell migration with high precision. We find that the directional decisions of cancer cells moving through bifurcating channels in response to self-generated epidermal growth factor (EGF) gradients require the presence of glutamine in the culture media. A biophysical model helps quantify the contribution of glucose and glutamine to cancer cell orientation during migration in self-generated gradients. Our study uncovers an unexpected interplay between cancer cell metabolism and cancer cell migration studies and may eventually lead to new ways to delay cancer cell invasion.
Collapse
|
23
|
Raudenská M, Petrláková K, Juriňáková T, Leischner Fialová J, Fojtů M, Jakubek M, Rösel D, Brábek J, Masařík M. Engine shutdown: migrastatic strategies and prevention of metastases. Trends Cancer 2023; 9:293-308. [PMID: 36804341 DOI: 10.1016/j.trecan.2023.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 02/17/2023]
Abstract
Most cancer-related deaths among patients with solid tumors are caused by metastases. Migrastatic strategies represent a unique therapeutic approach to prevent all forms of cancer cell migration and invasion. Because the migration machinery has been shown to promote metastatic dissemination, successful migrastatic therapy may reduce the need for high-dose cytotoxic therapies that are currently used to prevent the risk of metastatic dissemination. In this review we focus on anti-invasive and antimetastatic strategies that hold promise for the treatment of solid tumors. The best targets for migrastatic therapy would be those that are required by all forms of motility, such as ATP availability, mitochondrial metabolism, and cytoskeletal dynamics and cell contractility.
Collapse
Affiliation(s)
- Martina Raudenská
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Kateřina Petrláková
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Tamara Juriňáková
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Jindřiška Leischner Fialová
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Michaela Fojtů
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Milan Jakubek
- BIOCEV (Biotechnology and Biomedicine Center in Vestec), First Faculty of Medicine, Charles University, Prumyslova 595, CZ-252 50 Vestec, Czech Republic
| | - Daniel Rösel
- Department of Cell Biology, BIOCEV, Faculty of Science, Charles University, CZ-252 50, Vestec, Prague-West, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, BIOCEV, Faculty of Science, Charles University, CZ-252 50, Vestec, Prague-West, Czech Republic
| | - Michal Masařík
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; BIOCEV (Biotechnology and Biomedicine Center in Vestec), First Faculty of Medicine, Charles University, Prumyslova 595, CZ-252 50 Vestec, Czech Republic.
| |
Collapse
|
24
|
Qian RC, Zhou ZR, Wu Y, Yang Z, Guo W, Li DW, Lu Y. Combination Cancer Treatment: Using Engineered DNAzyme Molecular Machines for Dynamic Inter- and Intracellular Regulation. Angew Chem Int Ed Engl 2022; 61:e202210935. [PMID: 36253586 PMCID: PMC10245287 DOI: 10.1002/anie.202210935] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Indexed: 11/05/2022]
Abstract
Despite the promise of combination cancer therapy, it remains challenging to develop targeted strategies that are nontoxic to normal cells. Here we report a combination therapeutic strategy based on engineered DNAzyme molecular machines that can promote cancer apoptosis via dynamic inter- and intracellular regulation. To achieve external regulation of T-cell/cancer cell interactions, we designed a DNAzyme-based molecular machine with an aptamer and an i-motif, as the MUC-1-selective aptamer allows the specific recognition of cancer cells. The i-motif is folded under the tumor acidic microenvironment, shortening the intercellular distance. As a result, T-cells are released by metal ion activated DNAzyme cleavage. To achieve internal regulation of mitochondria, we delivered another DNAzyme-based molecular machine with mitochondria-targeted peptides into cancer cells to induce mitochondria aggregation. Our strategy achieved an enhanced killing effect in zinc deficient cancer cells.
Collapse
Affiliation(s)
- Ruo-Can Qian
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Ze-Rui Zhou
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yuting Wu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zhenglin Yang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Weijie Guo
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Da-Wei Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
25
|
Hassan Ibrahim I, Balah A, Gomaa Abd Elfattah Hassan A, Gamal Abd El-Aziz H. Role of motor proteins in human cancers. Saudi J Biol Sci 2022; 29:103436. [PMID: 36131778 PMCID: PMC9483653 DOI: 10.1016/j.sjbs.2022.103436] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/04/2022] [Accepted: 09/01/2022] [Indexed: 11/30/2022] Open
Abstract
Motor proteins include several protein families (Kinesin, Dynein and Myosin) responsible for intracellular transport, intercellular communication, among other functions. In cancer cells, motor proteins along with microtubules (MT) and other tubulin and actin structures, are crucial for cell proliferation and invasion. The cBioPortal platform for Cancer Genomics database was queried for solid cancers in a combined cohort of 9204 patients with complete cancer genomics data. To assess the importance of motor proteins in cancer, copy number alterations (CNAs) and survival rates were analyzed in the combined dataset. Kinesin, Dynein, and Myosin families showed CNAs in 47%, 49%, and 57 % of patients, respectively, in at least one of their members. Survival analysis showed that CNAs in Kinesin and Dynein, families' genes in the same patients were significantly correlated to decreased overall survival. These results added more evidence to previous literature highlighting the importance of motor proteins as a target in cancer therapy. Kinesin inhibitors could act by several mechanisms such as inhibiting spindle assembly or centrosome separation during mitosis, leading to cell cycle arrest and eventually apoptosis. Dynein inhibitors modulate Dynein's activity and MT binding, inhibiting cell proliferation and invasion. Myosin inhibitors act by stabilizing MT, inducing cell cycle arrest and inhibiting invasiveness. Increasing the specificity of motor proteins targeting drugs could improve cancer therapy and patient survival.
Collapse
Affiliation(s)
- Iman Hassan Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Postal code 11765, Egypt
| | - Amany Balah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al- Azhar University, Postal code 11765, Egypt
| | - Abrar Gomaa Abd Elfattah Hassan
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Postal code 11765, Egypt
| | - Heba Gamal Abd El-Aziz
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Postal code 11765, Egypt
| |
Collapse
|
26
|
Smith CE, Jones DNM. NMR resonance assignment of the N-terminal GTPase domain of human Miro2 Bound to GTP. BIOMOLECULAR NMR ASSIGNMENTS 2022; 16:349-355. [PMID: 36050579 PMCID: PMC9510121 DOI: 10.1007/s12104-022-10103-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/23/2022] [Indexed: 05/21/2023]
Abstract
Miro2 and Miro1 are mitochondrial-associated proteins critical for regulating mitochondrial movement within the cell. Both Miro1 and Miro2 have roles in promoting neuron function, but recently Miro2 has been shown to have additional roles in response to nutrient starvation in tumor cells. Miro1 and 2 consist of two small GTPase domains flanking a pair of EF-hands. The N-terminal GTPase (nGTPase) domain is responsible for initiating mitochondrial trafficking and interactions with GCN1 in prostate cancer. The crystal structure of Miro1 nGTPase bound to GTP has been solved. However, no structural data is available for the nGTPase domain of Miro2. To better understand the similarities and differences in the functions of Miro1 and Miro2, we have initiated structural studies of Miro2. Here we report the backbone NMR chemical shift assignments of a 22 KDa construct of the nGTPase domain of Miro2 bound to GTP that includes residues 1-180 of the full-length protein. We affirm that the overall secondary structure of this complex closely resembles that of Miro1 nGTPase bound to GTP. Minor variations in the overall structures can be attributed to crystal packing interactions in the structure of Miro1. These NMR studies will form the foundation for future work identifying the specific interaction sites between Miro2 and its cellular binding partners.
Collapse
Affiliation(s)
- Cassandra E Smith
- Program in Structural Biology and Biochemistry, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - David N M Jones
- Program in Structural Biology and Biochemistry, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA.
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
27
|
Groenendyk J, Stoletov K, Paskevicius T, Li W, Dai N, Pujol M, Busaan E, Ng HH, Boukouris AE, Saleme B, Haromy A, Cui K, Hu M, Yan Y, Zhang R, Michelakis E, Chen XZ, Lewis JD, Tang J, Agellon LB, Michalak M. Loss of the fructose transporter SLC2A5 inhibits cancer cell migration. Front Cell Dev Biol 2022; 10:896297. [PMID: 36268513 PMCID: PMC9578049 DOI: 10.3389/fcell.2022.896297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Metastasis is the primary cause of cancer patient death and the elevation of SLC2A5 gene expression is often observed in metastatic cancer cells. Here we evaluated the importance of SLC2A5 in cancer cell motility by silencing its gene. We discovered that CRISPR/Cas9-mediated inactivation of the SLC2A5 gene inhibited cancer cell proliferation and migration in vitro as well as metastases in vivo in several animal models. Moreover, SLC2A5-attenuated cancer cells exhibited dramatic alterations in mitochondrial architecture and localization, uncovering the importance of SLC2A5 in directing mitochondrial function for cancer cell motility and migration. The direct association of increased abundance of SLC2A5 in cancer cells with metastatic risk in several types of cancers identifies SLC2A5 as an important therapeutic target to reduce or prevent cancer metastasis.
Collapse
Affiliation(s)
- Jody Groenendyk
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | | | | | - Wenjuan Li
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Ning Dai
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Myriam Pujol
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Erin Busaan
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Hoi Hei Ng
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | | | - Bruno Saleme
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Alois Haromy
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Kaisa Cui
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Miao Hu
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | - Yanan Yan
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | - Rui Zhang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | | | - Xing-Zhen Chen
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
| | - John D. Lewis
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Jingfeng Tang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | - Luis B. Agellon
- School of Human Nutrition, McGill University, Montreal, QC, Canada
- *Correspondence: Luis B. Agellon, ; Marek Michalak,
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Luis B. Agellon, ; Marek Michalak,
| |
Collapse
|
28
|
Nahacka Z, Novak J, Zobalova R, Neuzil J. Miro proteins and their role in mitochondrial transfer in cancer and beyond. Front Cell Dev Biol 2022; 10:937753. [PMID: 35959487 PMCID: PMC9358137 DOI: 10.3389/fcell.2022.937753] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
Mitochondria are organelles essential for tumor cell proliferation and metastasis. Although their main cellular function, generation of energy in the form of ATP is dispensable for cancer cells, their capability to drive their adaptation to stress originating from tumor microenvironment makes them a plausible therapeutic target. Recent research has revealed that cancer cells with damaged oxidative phosphorylation import healthy (functional) mitochondria from surrounding stromal cells to drive pyrimidine synthesis and cell proliferation. Furthermore, it has been shown that energetically competent mitochondria are fundamental for tumor cell migration, invasion and metastasis. The spatial positioning and transport of mitochondria involves Miro proteins from a subfamily of small GTPases, localized in outer mitochondrial membrane. Miro proteins are involved in the structure of the MICOS complex, connecting outer and inner-mitochondrial membrane; in mitochondria-ER communication; Ca2+ metabolism; and in the recycling of damaged organelles via mitophagy. The most important role of Miro is regulation of mitochondrial movement and distribution within (and between) cells, acting as an adaptor linking organelles to cytoskeleton-associated motor proteins. In this review, we discuss the function of Miro proteins in various modes of intercellular mitochondrial transfer, emphasizing the structure and dynamics of tunneling nanotubes, the most common transfer modality. We summarize the evidence for and propose possible roles of Miro proteins in nanotube-mediated transfer as well as in cancer cell migration and metastasis, both processes being tightly connected to cytoskeleton-driven mitochondrial movement and positioning.
Collapse
Affiliation(s)
- Zuzana Nahacka
- Laboratory of Molecular Therapy, Institute of Biotechnology, Czech Academy of Sciences, Prague, Czechia
- *Correspondence: Zuzana Nahacka, ; Jiri Neuzil,
| | - Jaromir Novak
- Laboratory of Molecular Therapy, Institute of Biotechnology, Czech Academy of Sciences, Prague, Czechia
- Faculty of Science, Charles University, Prague, Czechia
| | - Renata Zobalova
- Laboratory of Molecular Therapy, Institute of Biotechnology, Czech Academy of Sciences, Prague, Czechia
| | - Jiri Neuzil
- Laboratory of Molecular Therapy, Institute of Biotechnology, Czech Academy of Sciences, Prague, Czechia
- School of Pharmacy and Medical Science, Griffith University, Southport, QLD, Australia
- *Correspondence: Zuzana Nahacka, ; Jiri Neuzil,
| |
Collapse
|
29
|
Shannon N, Gravelle R, Cunniff B. Mitochondrial trafficking and redox/phosphorylation signaling supporting cell migration phenotypes. Front Mol Biosci 2022; 9:925755. [PMID: 35936783 PMCID: PMC9355248 DOI: 10.3389/fmolb.2022.925755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Regulation of cell signaling cascades is critical in making sure the response is activated spatially and for a desired duration. Cell signaling cascades are spatially and temporally controlled through local protein phosphorylation events which are determined by the activation of specific kinases and/or inactivation of phosphatases to elicit a complete and thorough response. For example, A-kinase-anchoring proteins (AKAPs) contribute to the local regulated activity protein kinase A (PKA). The activity of kinases and phosphatases can also be regulated through redox-dependent cysteine modifications that mediate the activity of these proteins. A primary example of this is the activation of the epidermal growth factor receptor (EGFR) and the inactivation of the phosphatase and tensin homologue (PTEN) phosphatase by reactive oxygen species (ROS). Therefore, the local redox environment must play a critical role in the timing and magnitude of these events. Mitochondria are a primary source of ROS and energy (ATP) that contributes to redox-dependent signaling and ATP-dependent phosphorylation events, respectively. The strategic positioning of mitochondria within cells contributes to intracellular gradients of ROS and ATP, which have been shown to correlate with changes to protein redox and phosphorylation status driving downstream cellular processes. In this review, we will discuss the relationship between subcellular mitochondrial positioning and intracellular ROS and ATP gradients that support dynamic oxidation and phosphorylation signaling and resulting cellular effects, specifically associated with cell migration signaling.
Collapse
Affiliation(s)
- Nathaniel Shannon
- Department of Pathology and Laboratory Medicine, Redox Biology Program, University of Vermont Larner College of Medicine, Burlington, VT, United States
| | - Randi Gravelle
- Department of Pathology and Laboratory Medicine, Redox Biology Program, University of Vermont Larner College of Medicine, Burlington, VT, United States
| | - Brian Cunniff
- Department of Pathology and Laboratory Medicine, Redox Biology Program, University of Vermont Larner College of Medicine, Burlington, VT, United States
- University of Vermont Cancer Center, University of Vermont Larner College of Medicine, Burlington, VT, United States
- *Correspondence: Brian Cunniff,
| |
Collapse
|
30
|
Jin P, Jiang J, Zhou L, Huang Z, Nice EC, Huang C, Fu L. Mitochondrial adaptation in cancer drug resistance: prevalence, mechanisms, and management. J Hematol Oncol 2022; 15:97. [PMID: 35851420 PMCID: PMC9290242 DOI: 10.1186/s13045-022-01313-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 02/08/2023] Open
Abstract
Drug resistance represents a major obstacle in cancer management, and the mechanisms underlying stress adaptation of cancer cells in response to therapy-induced hostile environment are largely unknown. As the central organelle for cellular energy supply, mitochondria can rapidly undergo dynamic changes and integrate cellular signaling pathways to provide bioenergetic and biosynthetic flexibility for cancer cells, which contributes to multiple aspects of tumor characteristics, including drug resistance. Therefore, targeting mitochondria for cancer therapy and overcoming drug resistance has attracted increasing attention for various types of cancer. Multiple mitochondrial adaptation processes, including mitochondrial dynamics, mitochondrial metabolism, and mitochondrial apoptotic regulatory machinery, have been demonstrated to be potential targets. However, recent increasing insights into mitochondria have revealed the complexity of mitochondrial structure and functions, the elusive functions of mitochondria in tumor biology, and the targeting inaccessibility of mitochondria, which have posed challenges for the clinical application of mitochondrial-based cancer therapeutic strategies. Therefore, discovery of both novel mitochondria-targeting agents and innovative mitochondria-targeting approaches is urgently required. Here, we review the most recent literature to summarize the molecular mechanisms underlying mitochondrial stress adaptation and their intricate connection with cancer drug resistance. In addition, an overview of the emerging strategies to target mitochondria for effectively overcoming chemoresistance is highlighted, with an emphasis on drug repositioning and mitochondrial drug delivery approaches, which may accelerate the application of mitochondria-targeting compounds for cancer therapy.
Collapse
Affiliation(s)
- Ping Jin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Jingwen Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China.
| | - Li Fu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518060, Guangdong, People's Republic of China.
| |
Collapse
|
31
|
Bandopadhyay S, Prasad P, Ray U, Das Ghosh D, Roy SS. SIRT6 promotes mitochondrial fission and subsequent cellular invasion in ovarian cancer. FEBS Open Bio 2022; 12:1657-1676. [PMID: 35686673 PMCID: PMC9433826 DOI: 10.1002/2211-5463.13452] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 05/31/2022] [Indexed: 11/11/2022] Open
Abstract
Ovarian cancer ranks fifth in terms of cancer mortality in women due to lack of early diagnosis and poor clinical management. Characteristics like high cellular proliferation, EMT and metabolic alterations contribute to oncogenicity. Cancer, being a "metabolic disorder," is governed by various key regulatory factors like metabolic enzymes, oncogenes, and tumor suppressors. Sirtuins (SIRT1-SIRT7) belong to the group of NAD+ deacetylase and ADP-ribosylation enzymes that function as NAD+ sensors and metabolic regulators. Among sirtuin orthologs, SIRT6 emerges as an important oncogenic player, although its possible mechanistic involvement in ovarian cancer advancement is still elusive. Our data indicated a higher expression of SIRT6 in ovarian cancer tissues compared with the non-malignant ovarian tissue. Further, we observed that overexpression of SIRT6 enhances glycolysis and oxidative phosphorylation in ovarian cancer cells. The energy derived from these processes facilitates migration and invasion through invadopodia formation by reorganization of actin fibers. Mechanistically, SIRT6 has been shown to promote ERK1/2-driven activatory phosphorylation of DRP1 at serine-616, which has an obligatory role in inducing mitochondrial fission. These fragmented mitochondria facilitate cell movement important for metastases. siRNA-mediated downregulation of SIRT6 was found to decrease cellular invasion through compromised mitochondrial fragmentation and subsequent reduction in stress fiber formation in ovarian cancer cells. Thus, the present report establishes the impact of SIRT6 in the regulation of morphological and functional aspects of mitochondria that modulates invasion in ovarian cancer cells.
Collapse
Affiliation(s)
- Shreya Bandopadhyay
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Parash Prasad
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Upasana Ray
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Damayanti Das Ghosh
- Basic and Translational Research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| | - Sib Sankar Roy
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
32
|
Morin M, Moindjie H, Nahmias C. Le transport mitochondrial. Med Sci (Paris) 2022; 38:585-593. [DOI: 10.1051/medsci/2022085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
La reprogrammation métabolique est l’un des marqueurs de la carcinogenèse. Au cœur de cette reprogrammation se trouvent les mitochondries qui produisent l’énergie sous forme de molécules d’ATP. La régulation spatio-temporelle de la production d’ATP, indispensable pour fournir l’énergie au bon endroit et au bon moment, est assurée par le transport intracellulaire des mitochondries. Les complexes Miro/TRAK présents à la surface des mitochondries se lient aux protéines motrices de la cellule (dynéine, kinésine, myosine) pour transporter les mitochondries le long du cytosquelette. Ces acteurs du transport mitochondrial sont souvent dérégulés dans le cancer. Nous présentons dans cette revue les mécanismes par lesquels le transport mitochondrial contribue à la migration, à la division cellulaire et à la réponse au stress des cellules cancéreuses. Décrypter ces mécanismes pourrait ouvrir la voie à de nouvelles approches thérapeutiques en oncologie.
Collapse
|
33
|
Li Z, Mao L, Yu B, Liu H, Zhang Q, Bian Z, Zhang X, Liao W, Sun S. GB7 acetate, a galbulimima alkaloid from Galbulimima belgraveana, possesses anticancer effects in colorectal cancer cells. J Pharm Anal 2022; 12:339-349. [PMID: 35582406 PMCID: PMC9091789 DOI: 10.1016/j.jpha.2021.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 11/23/2022] Open
Abstract
GB7 acetate is a galbulimima alkaloid obtained from Galbulimima belgraveana. However, information regarding its structure, biological activities, and related mechanisms is not entirely available. A series of spectroscopic analyses, structural degradation, interconversion, and crystallography were performed to identify the structure of GB7 acetate. The MTT assay was applied to measure cell proliferation on human colorectal cancer HCT 116 cells. The expressions of the related proteins were measured by Western blotting. Transmission electron microscopy (TEM), acridine orange (AO) and monodansylcadaverine (MDC) staining were used to detect the presence of autophagic vesicles and autolysosomes. A transwell assay was performed to demonstrate metastatic capabilities. Oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) assays were performed to determine the mitochondrial oxidative phosphorylation (OXPHOS) and glycolysis activity of HCT 116 cells. The data showed that GB7 acetate suppressed the proliferation and colony-forming ability of HCT 116 cells. Pretreatment with GB7 acetate significantly induced the formation of autophagic vesicles and autolysosomes. GB7 acetate upregulated the expressions of LC3 and Thr172 phosphorylated adenosine 5'-monophosphate (AMP)-activated protein kinase α (p-AMPKα), which are key elements of autophagy. In addition, GB7 acetate suppressed the metastatic capabilities of HCT 116 cells. Additionally, the production of matrix metallo-proteinase-2 (MMP-2) and MMP-9 was reduced, whereas the expression of E-cadherin (E-cad) was upregulated. Furthermore, GB7 acetate significantly reduced mitochondrial OXPHOS and glycolysis. In conclusion, the structure of the novel Galbulimima alkaloid GB7 acetate was identified. GB7 acetate was shown to have anti-proliferative, pro-autophagic, anti-metastatic, and anti-metabolite capabilities in HCT 116 cells. This study might provide new insights into cancer treatment efficacy and cancer chemoprevention.
Collapse
Affiliation(s)
- Ziyin Li
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Lianzhi Mao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Bin Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Huahuan Liu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Qiuyu Zhang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Zhongbo Bian
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Xudong Zhang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Wenzhen Liao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Suxia Sun
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
34
|
Walker BR, Moraes CT. Nuclear-Mitochondrial Interactions. Biomolecules 2022; 12:biom12030427. [PMID: 35327619 PMCID: PMC8946195 DOI: 10.3390/biom12030427] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/21/2022] [Accepted: 02/26/2022] [Indexed: 12/12/2022] Open
Abstract
Mitochondria, the cell’s major energy producers, also act as signaling hubs, interacting with other organelles both directly and indirectly. Despite having its own circular genome, the majority of mitochondrial proteins are encoded by nuclear DNA. To respond to changes in cell physiology, the mitochondria must send signals to the nucleus, which can, in turn, upregulate gene expression to alter metabolism or initiate a stress response. This is known as retrograde signaling. A variety of stimuli and pathways fall under the retrograde signaling umbrella. Mitochondrial dysfunction has already been shown to have severe implications for human health. Disruption of retrograde signaling, whether directly associated with mitochondrial dysfunction or cellular environmental changes, may also contribute to pathological deficits. In this review, we discuss known signaling pathways between the mitochondria and the nucleus, examine the possibility of direct contacts, and identify pathological consequences of an altered relationship.
Collapse
Affiliation(s)
- Brittni R. Walker
- Neuroscience Program, University of Miami Miller School of Medicine, 1420 NW 9th Avenue, Rm. 229, Miami, FL 33136, USA;
| | - Carlos T. Moraes
- Department of Neurology, University of Miami Miller School of Medicine, 1420 NW 9th Avenue, Rm. 229, Miami, FL 33136, USA
- Correspondence: ; Tel.: +1-305-243-5858
| |
Collapse
|
35
|
Madan S, Uttekar B, Chowdhary S, Rikhy R. Mitochondria Lead the Way: Mitochondrial Dynamics and Function in Cellular Movements in Development and Disease. Front Cell Dev Biol 2022; 9:781933. [PMID: 35186947 PMCID: PMC8848284 DOI: 10.3389/fcell.2021.781933] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/16/2021] [Indexed: 01/09/2023] Open
Abstract
The dynamics, distribution and activity of subcellular organelles are integral to regulating cell shape changes during various physiological processes such as epithelial cell formation, cell migration and morphogenesis. Mitochondria are famously known as the powerhouse of the cell and play an important role in buffering calcium, releasing reactive oxygen species and key metabolites for various activities in a eukaryotic cell. Mitochondrial dynamics and morphology changes regulate these functions and their regulation is, in turn, crucial for various morphogenetic processes. In this review, we evaluate recent literature which highlights the role of mitochondrial morphology and activity during cell shape changes in epithelial cell formation, cell division, cell migration and tissue morphogenesis during organism development and in disease. In general, we find that mitochondrial shape is regulated for their distribution or translocation to the sites of active cell shape dynamics or morphogenesis. Often, key metabolites released locally and molecules buffered by mitochondria play crucial roles in regulating signaling pathways that motivate changes in cell shape, mitochondrial shape and mitochondrial activity. We conclude that mechanistic analysis of interactions between mitochondrial morphology, activity, signaling pathways and cell shape changes across the various cell and animal-based model systems holds the key to deciphering the common principles for this interaction.
Collapse
|
36
|
Kumar Sharma R, Chafik A, Bertolin G. Mitochondrial transport, partitioning and quality control at the heart of cell proliferation and fate acquisition. Am J Physiol Cell Physiol 2022; 322:C311-C325. [PMID: 35044857 DOI: 10.1152/ajpcell.00256.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondria are essential to cell homeostasis, and alterations in mitochondrial distribution, segregation or turnover have been linked to complex pathologies such as neurodegenerative diseases or cancer. Understanding how these functions are coordinated in specific cell types is a major challenge to discover how mitochondria globally shape cell functionality. In this review, we will first describe how mitochondrial transport and dynamics are regulated throughout the cell cycle in yeast and in mammals. Second, we will explore the functional consequences of mitochondrial transport and partitioning on cell proliferation, fate acquisition, stemness, and on the way cells adapt their metabolism. Last, we will focus on how mitochondrial clearance programs represent a further layer of complexity for cell differentiation, or in the maintenance of stemness. Defining how mitochondrial transport, dynamics and clearance are mutually orchestrated in specific cell types may help our understanding of how cells can transition from a physiological to a pathological state.
Collapse
Affiliation(s)
- Rakesh Kumar Sharma
- Univ Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes), UMR 6290, Rennes, France
| | - Abderrahman Chafik
- Univ Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes), UMR 6290, Rennes, France
| | - Giulia Bertolin
- Univ Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes), UMR 6290, Rennes, France
| |
Collapse
|
37
|
Puttrich V, Rohlena J, Braun M, Lansky Z. In Vitro Reconstitution of Molecular Motor-Driven Mitochondrial Transport. Methods Mol Biol 2022; 2431:533-546. [PMID: 35412296 DOI: 10.1007/978-1-0716-1990-2_28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Intracellular trafficking of organelles driven by molecular motors underlies essential cellular processes. Mitochondria, the powerhouses of the cell, are one of the major cargoes of molecular motors. Efficient distribution of mitochondria ensures cellular fitness while defects in this process contribute to severe pathologies, such as neurodegenerative diseases. Reconstitution of the mitochondrial microtubule-based transport in vitro in a bottom-up approach provides a powerful tool to investigate the mitochondrial trafficking machinery in a controlled environment in the absence of complex intracellular interactions. In this chapter, we describe the procedures for achieving such reconstitution of mitochondrial transport.
Collapse
Affiliation(s)
- Verena Puttrich
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Prague West, Czech Republic
| | - Jakub Rohlena
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Prague West, Czech Republic
| | - Marcus Braun
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Prague West, Czech Republic
| | - Zdenek Lansky
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Prague West, Czech Republic.
| |
Collapse
|
38
|
Chen Y, Li Y. Metabolic reprogramming and immunity in cancer. CANCER IMMUNOLOGY AND IMMUNOTHERAPY 2022:137-196. [DOI: 10.1016/b978-0-12-823397-9.00006-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
39
|
Cao H, Duan L, Zhang Y, Cao J, Zhang K. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct Target Ther 2021; 6:426. [PMID: 34916490 PMCID: PMC8674418 DOI: 10.1038/s41392-021-00830-x] [Citation(s) in RCA: 340] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 02/05/2023] Open
Abstract
Hydrogel is a type of versatile platform with various biomedical applications after rational structure and functional design that leverages on material engineering to modulate its physicochemical properties (e.g., stiffness, pore size, viscoelasticity, microarchitecture, degradability, ligand presentation, stimulus-responsive properties, etc.) and influence cell signaling cascades and fate. In the past few decades, a plethora of pioneering studies have been implemented to explore the cell-hydrogel matrix interactions and figure out the underlying mechanisms, paving the way to the lab-to-clinic translation of hydrogel-based therapies. In this review, we first introduced the physicochemical properties of hydrogels and their fabrication approaches concisely. Subsequently, the comprehensive description and deep discussion were elucidated, wherein the influences of different hydrogels properties on cell behaviors and cellular signaling events were highlighted. These behaviors or events included integrin clustering, focal adhesion (FA) complex accumulation and activation, cytoskeleton rearrangement, protein cyto-nuclei shuttling and activation (e.g., Yes-associated protein (YAP), catenin, etc.), cellular compartment reorganization, gene expression, and further cell biology modulation (e.g., spreading, migration, proliferation, lineage commitment, etc.). Based on them, current in vitro and in vivo hydrogel applications that mainly covered diseases models, various cell delivery protocols for tissue regeneration and disease therapy, smart drug carrier, bioimaging, biosensor, and conductive wearable/implantable biodevices, etc. were further summarized and discussed. More significantly, the clinical translation potential and trials of hydrogels were presented, accompanied with which the remaining challenges and future perspectives in this field were emphasized. Collectively, the comprehensive and deep insights in this review will shed light on the design principles of new biomedical hydrogels to understand and modulate cellular processes, which are available for providing significant indications for future hydrogel design and serving for a broad range of biomedical applications.
Collapse
Affiliation(s)
- Huan Cao
- Department of Nuclear Medicine, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, 610064, Chengdu, P. R. China
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Lixia Duan
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China
| | - Yan Zhang
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China
| | - Jun Cao
- Department of Nuclear Medicine, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, 610064, Chengdu, P. R. China.
| | - Kun Zhang
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China.
| |
Collapse
|
40
|
Microtubule-Based Mitochondrial Dynamics as a Valuable Therapeutic Target in Cancer. Cancers (Basel) 2021; 13:cancers13225812. [PMID: 34830966 PMCID: PMC8616325 DOI: 10.3390/cancers13225812] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 12/11/2022] Open
Abstract
Mitochondria constitute an ever-reorganizing dynamic network that plays a key role in several fundamental cellular functions, including the regulation of metabolism, energy production, calcium homeostasis, production of reactive oxygen species, and programmed cell death. Each of these activities can be found to be impaired in cancer cells. It has been reported that mitochondrial dynamics are actively involved in both tumorigenesis and metabolic plasticity, allowing cancer cells to adapt to unfavorable environmental conditions and, thus, contributing to tumor progression. The mitochondrial dynamics include fusion, fragmentation, intracellular trafficking responsible for redistributing the organelle within the cell, biogenesis, and mitophagy. Although the mitochondrial dynamics are driven by the cytoskeleton-particularly by the microtubules and the microtubule-associated motor proteins dynein and kinesin-the molecular mechanisms regulating these complex processes are not yet fully understood. More recently, an exchange of mitochondria between stromal and cancer cells has also been described. The advantage of mitochondrial transfer in tumor cells results in benefits to cell survival, proliferation, and spreading. Therefore, understanding the molecular mechanisms that regulate mitochondrial trafficking can potentially be important for identifying new molecular targets in cancer therapy to interfere specifically with tumor dissemination processes.
Collapse
|
41
|
Zhao Y, Zhang H, Wang H, Ye M, Jin X. Role of formin INF2 in human diseases. Mol Biol Rep 2021; 49:735-746. [PMID: 34698992 DOI: 10.1007/s11033-021-06869-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/21/2021] [Indexed: 01/08/2023]
Abstract
Formin proteins catalyze actin nucleation and microfilament polymerization. Inverted formin 2 (INF2) is an atypical diaphanous-related formin characterized by polymerization and depolymerization of actin. Accumulating evidence showed that INF2 is associated with kidney disease focal segmental glomerulosclerosis and cancers, such as colorectal and thyroid cancer where it functions as a tumor suppressor, glioblastoma, breast, prostate, and gastric cancer, via its oncogenic function. However, studies on the underlying molecular mechanisms of the different roles of INF2 in diverse cancers are limited. This review comprehensively describes the structure, biochemical features, and primary pathogenic mutations of INF2.
Collapse
Affiliation(s)
- Yiting Zhao
- Department of Hepato-Biliary-Pancreatic Surgery, The Affiliated Ningbo Medical Center of LiHuiLi Hospital of Medical School of Ningbo University, Ningbo, 315048, China.,The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China
| | - Hui Zhang
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China.,The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China
| | - Haibiao Wang
- Department of Hepato-Biliary-Pancreatic Surgery, The Affiliated Ningbo Medical Center of LiHuiLi Hospital of Medical School of Ningbo University, Ningbo, 315048, China. .,Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China.
| | - Meng Ye
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China. .,The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China.
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China. .,The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China.
| |
Collapse
|
42
|
Lacombe ML, Lamarche F, De Wever O, Padilla-Benavides T, Carlson A, Khan I, Huna A, Vacher S, Calmel C, Desbourdes C, Cottet-Rousselle C, Hininger-Favier I, Attia S, Nawrocki-Raby B, Raingeaud J, Machon C, Guitton J, Le Gall M, Clary G, Broussard C, Chafey P, Thérond P, Bernard D, Fontaine E, Tokarska-Schlattner M, Steeg P, Bièche I, Schlattner U, Boissan M. The mitochondrially-localized nucleoside diphosphate kinase D (NME4) is a novel metastasis suppressor. BMC Biol 2021; 19:228. [PMID: 34674701 PMCID: PMC8529772 DOI: 10.1186/s12915-021-01155-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 09/17/2021] [Indexed: 12/11/2022] Open
Abstract
Background Mitochondrial nucleoside diphosphate kinase (NDPK-D, NME4, NM23-H4) is a multifunctional enzyme mainly localized in the intermembrane space, bound to the inner membrane. Results We constructed loss-of-function mutants of NDPK-D, lacking either NDP kinase activity or membrane interaction and expressed mutants or wild-type protein in cancer cells. In a complementary approach, we performed depletion of NDPK-D by RNA interference. Both loss-of-function mutations and NDPK-D depletion promoted epithelial-mesenchymal transition and increased migratory and invasive potential. Immunocompromised mice developed more metastases when injected with cells expressing mutant NDPK-D as compared to wild-type. This metastatic reprogramming is a consequence of mitochondrial alterations, including fragmentation and loss of mitochondria, a metabolic switch from respiration to glycolysis, increased ROS generation, and further metabolic changes in mitochondria, all of which can trigger pro-metastatic protein expression and signaling cascades. In human cancer, NME4 expression is negatively associated with markers of epithelial-mesenchymal transition and tumor aggressiveness and a good prognosis factor for beneficial clinical outcome. Conclusions These data demonstrate NME4 as a novel metastasis suppressor gene, the first localizing to mitochondria, pointing to a role of mitochondria in metastatic dissemination. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01155-5.
Collapse
Affiliation(s)
- Marie-Lise Lacombe
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Frederic Lamarche
- Université Grenoble Alpes, INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), and SFR Environmental and Systems Biology (BEeSy), Grenoble, France
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | | | - Alyssa Carlson
- Molecular Biology and Biochemistry Department, Wesleyan University, Middletown, USA
| | - Imran Khan
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | - Anda Huna
- Cancer Research Center of Lyon, INSERM U1052, CNRS UMR 5286, Léon Bérard Center, Lyon University, Lyon, France
| | - Sophie Vacher
- Unit of Pharmacogenetics, Department of Genetics, Curie Institute, Paris, France
| | - Claire Calmel
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Céline Desbourdes
- Université Grenoble Alpes, INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), and SFR Environmental and Systems Biology (BEeSy), Grenoble, France
| | - Cécile Cottet-Rousselle
- Université Grenoble Alpes, INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), and SFR Environmental and Systems Biology (BEeSy), Grenoble, France
| | - Isabelle Hininger-Favier
- Université Grenoble Alpes, INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), and SFR Environmental and Systems Biology (BEeSy), Grenoble, France
| | - Stéphane Attia
- Université Grenoble Alpes, INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), and SFR Environmental and Systems Biology (BEeSy), Grenoble, France
| | - Béatrice Nawrocki-Raby
- Reims Champagne Ardenne University, INSERM, P3Cell UMR-S 1250, SFR CAP-SANTE, Reims, France
| | - Joël Raingeaud
- INSERM U1279, Gustave Roussy Institute, Villejuif, France
| | - Christelle Machon
- Cancer Research Center of Lyon, INSERM U1052, CNRS UMR 5286, Léon Bérard Center, Lyon University, Lyon, France
| | - Jérôme Guitton
- Cancer Research Center of Lyon, INSERM U1052, CNRS UMR 5286, Léon Bérard Center, Lyon University, Lyon, France
| | - Morgane Le Gall
- Proteomics Platform 3P5, Paris University, Cochin Institute, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - Guilhem Clary
- Proteomics Platform 3P5, Paris University, Cochin Institute, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - Cedric Broussard
- Proteomics Platform 3P5, Paris University, Cochin Institute, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - Philippe Chafey
- Proteomics Platform 3P5, Paris University, Cochin Institute, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - Patrice Thérond
- AP-HP, CHU Bicêtre, Laboratory of Biochemistry, Le Kremlin-Bicêtre Hospital, Le Kremlin-Bicêtre, France.,EA7537, Paris Saclay University, Châtenay-Malabry, France
| | - David Bernard
- Cancer Research Center of Lyon, INSERM U1052, CNRS UMR 5286, Léon Bérard Center, Lyon University, Lyon, France
| | - Eric Fontaine
- Université Grenoble Alpes, INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), and SFR Environmental and Systems Biology (BEeSy), Grenoble, France
| | - Malgorzata Tokarska-Schlattner
- Université Grenoble Alpes, INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), and SFR Environmental and Systems Biology (BEeSy), Grenoble, France
| | - Patricia Steeg
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | - Ivan Bièche
- Unit of Pharmacogenetics, Department of Genetics, Curie Institute, Paris, France
| | - Uwe Schlattner
- Université Grenoble Alpes, INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), Institut Universitaire de France (IUF), Grenoble, France.
| | - Mathieu Boissan
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France. .,AP-HP, Laboratory of Biochemistry and Hormonology, Tenon Hospital, Paris, France.
| |
Collapse
|
43
|
Zhang X, Mak M. Biophysical Informatics Approach For Quantifying Phenotypic Heterogeneity In Cancer Cell Migration In Confined Microenvironments. Bioinformatics 2021; 37:2042–2052. [PMID: 33523141 PMCID: PMC11579712 DOI: 10.1093/bioinformatics/btab053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/12/2020] [Accepted: 01/26/2021] [Indexed: 02/05/2023] Open
Abstract
MOTIVATION Cancer cell heterogeneity can manifest genetically and phenotypically. Bioinformatics methods have been used to analyze complex genomics and transcriptomics data, but have not been well-established for analyzing biophysical data of phenotypically heterogeneous tumor cells. Here, we take an informatics approach to analyze the biophysical data of MDA-MB-231 cells, a widely used breast cancer cell line, during their spontaneous migration through confined environments. Experimentally, we vary the constriction microchannel geometries (wide channel, short constriction, and long constriction) and apply drug treatments. We find that cells in the short constriction are similar in morphology to the cells in the wide channel. However, their fluorescence profiles are comparable to those in the long constriction. We demonstrate that the cell migratory phenotype is correlated more to mitochondria in a non-confined environment and more to actin in a confined environment. We demonstrate that the cells' migratory phenotypes are altered by ciliobrevin D, a dynein inhibitor, in both confined and non-confined environments. Overall, our approach elucidates phenotypic heterogeneity in cancer cells under confined microenvironments at single-cell resolution. RESULTS Here, we apply a bioinformatics approach to a single cell invasion assay. We demonstrate that this method can determine distinctions in morphology, cytoskeletal activities, and mitochondrial activities under various geometric constraints and for cells of different speeds. Our approach can be readily adapted to various heterogeneity studies for different types of input biophysical data. In addition, this approach can be applied to studies related to biophysical changes due to differences in external stimuli, such as treatment effects on cellular and subcellular activities, at single-cell resolution. Finally, as similar bioinformatics methods have been widely applied in studies of genetic heterogeneity, biophysical information extracted using this approach can be analyzed together with the genetic data to relate genetic and phenotypic heterogeneity. AVAILABILITY The data that support the findings of this study are available from the corresponding author upon reasonable request. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Xingjian Zhang
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA
| | - Michael Mak
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
44
|
Castillo Ferrer C, Berthenet K, Ichim G. Apoptosis - Fueling the oncogenic fire. FEBS J 2021; 288:4445-4463. [PMID: 33179432 PMCID: PMC8451771 DOI: 10.1111/febs.15624] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
Apoptosis, the most extensively studied form of programmed cell death, is essential for organismal homeostasis. Apoptotic cell death has widely been reported as a tumor suppressor mechanism. However, recent studies have shown that apoptosis exerts noncanonical functions and may paradoxically promote tumor growth and metastasis. The hijacking of apoptosis by cancer cells may arise at different levels, either via the interaction of apoptotic cells with their local or distant microenvironment, or through the abnormal pro-oncogenic roles of the main apoptosis effectors, namely caspases and mitochondria, particularly upon failed apoptosis. In this review, we highlight some of the recently described mechanisms by which apoptosis and these effectors may promote cancer aggressiveness. We believe that a better understanding of the noncanonical roles of apoptosis may be crucial for developing more efficient cancer therapies.
Collapse
Affiliation(s)
- Camila Castillo Ferrer
- Cancer Target and Experimental TherapeuticsInstitute for Advanced BiosciencesINSERM U1209CNRS UMR5309Grenoble Alpes UniversityFrance
- EPHEPSL Research UniversityParisFrance
| | - Kevin Berthenet
- Cancer Research Center of Lyon (CRCL) INSERM 1052CNRS 5286LyonFrance
- Cancer Cell Death Laboratory, part of LabEx DEVweCANUniversité de LyonFrance
| | - Gabriel Ichim
- Cancer Research Center of Lyon (CRCL) INSERM 1052CNRS 5286LyonFrance
- Cancer Cell Death Laboratory, part of LabEx DEVweCANUniversité de LyonFrance
| |
Collapse
|
45
|
Agarwal E, Goldman AR, Tang HY, Kossenkov AV, Ghosh JC, Languino LR, Vaira V, Speicher DW, Altieri DC. A cancer ubiquitome landscape identifies metabolic reprogramming as target of Parkin tumor suppression. SCIENCE ADVANCES 2021; 7:7/35/eabg7287. [PMID: 34433563 PMCID: PMC8386929 DOI: 10.1126/sciadv.abg7287] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 07/02/2021] [Indexed: 05/16/2023]
Abstract
Changes in metabolism that affect mitochondrial and glycolytic networks are hallmarks of cancer, but their impact in disease is still elusive. Using global proteomics and ubiquitome screens, we now show that Parkin, an E3 ubiquitin ligase and key effector of mitophagy altered in Parkinson's disease, shuts off mitochondrial dynamics and inhibits the non-oxidative phase of the pentose phosphate pathway. This blocks tumor cell movements, creates metabolic and oxidative stress, and inhibits primary and metastatic tumor growth. Uniformly down-regulated in cancer patients, Parkin tumor suppression requires its E3 ligase function, is reversed by antioxidants, and is independent of mitophagy. These data demonstrate that cancer metabolic networks are potent oncogenes directly targeted by endogenous tumor suppression.
Collapse
Affiliation(s)
- Ekta Agarwal
- Prostate Cancer Discovery and Development Program, The Wistar Institute, Philadelphia, PA 19104, USA
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Aaron R Goldman
- Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Hsin-Yao Tang
- Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Andrew V Kossenkov
- Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Jagadish C Ghosh
- Prostate Cancer Discovery and Development Program, The Wistar Institute, Philadelphia, PA 19104, USA
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Lucia R Languino
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Valentina Vaira
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan 20122, Italy
| | - David W Speicher
- Prostate Cancer Discovery and Development Program, The Wistar Institute, Philadelphia, PA 19104, USA
- Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Dario C Altieri
- Prostate Cancer Discovery and Development Program, The Wistar Institute, Philadelphia, PA 19104, USA.
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| |
Collapse
|
46
|
Pedersen SF, Flinck M, Pardo LA. The Interplay between Dysregulated Ion Transport and Mitochondrial Architecture as a Dangerous Liaison in Cancer. Int J Mol Sci 2021; 22:ijms22105209. [PMID: 34069047 PMCID: PMC8156689 DOI: 10.3390/ijms22105209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
Transport of ions and nutrients is a core mitochondrial function, without which there would be no mitochondrial metabolism and ATP production. Both ion homeostasis and mitochondrial phenotype undergo pervasive changes during cancer development, and both play key roles in driving the malignancy. However, the link between these events has been largely ignored. This review comprehensively summarizes and critically discusses the role of the reciprocal relationship between ion transport and mitochondria in crucial cellular functions, including metabolism, signaling, and cell fate decisions. We focus on Ca2+, H+, and K+, which play essential and highly interconnected roles in mitochondrial function and are profoundly dysregulated in cancer. We describe the transport and roles of these ions in normal mitochondria, summarize the changes occurring during cancer development, and discuss how they might impact tumorigenesis.
Collapse
Affiliation(s)
- Stine F. Pedersen
- Department of Biology, Faculty of Science, University of Copenhagen, 2100 Copenhagen, Denmark;
- Correspondence: (S.F.P.); (L.A.P.)
| | - Mette Flinck
- Department of Biology, Faculty of Science, University of Copenhagen, 2100 Copenhagen, Denmark;
| | - Luis A. Pardo
- Oncophysiology Group, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
- Correspondence: (S.F.P.); (L.A.P.)
| |
Collapse
|
47
|
Abstract
Many tumors are now understood to be heterogenous cell populations arising from a minority of epithelial-like cancer stem cells (CSCs). CSCs demonstrate distinctive metabolic signatures from the more differentiated surrounding tumor bulk that confer resistance to traditional chemotherapeutic regimens and potential for tumor relapse. Many CSC phenotypes including metabolism, epithelial-to-mesenchymal transition, cellular signaling pathway activity, and others, arise from altered mitochondrial function and turnover, which are regulated by constant cycles of mitochondrial fusion and fission. Further, recycling of mitochondria through mitophagy in CSCs is associated with maintenance of reactive oxygen species levels that dictate gene expression. The protein machinery that drives mitochondrial dynamics is surprisingly simple and may represent attractive new therapeutic avenues to target CSC metabolism and selectively eradicate tumor-generating cells to reduce the risks of metastasis and relapse for a variety of tumor types.
Collapse
Affiliation(s)
- Dane T Sessions
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, VA, 22908, USA
| | - David F Kashatus
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, VA, 22908, USA.
| |
Collapse
|
48
|
Abstract
Mitochondria are multifunctional organelles that not only produce energy for the cell, but are also important for cell signalling, apoptosis and many biosynthetic pathways. In most cell types, they form highly dynamic networks that are constantly remodelled through fission and fusion events, repositioned by motor-dependent transport and degraded when they become dysfunctional. Motor proteins and their tracks are key regulators of mitochondrial homeostasis, and in this Review, we discuss the diverse functions of the three classes of motor proteins associated with mitochondria - the actin-based myosins, as well as the microtubule-based kinesins and dynein. In addition, Miro and TRAK proteins act as adaptors that link kinesin-1 and dynein, as well as myosin of class XIX (MYO19), to mitochondria and coordinate microtubule- and actin-based motor activities. Here, we highlight the roles of motor proteins and motor-linked track dynamics in the transporting and docking of mitochondria, and emphasize their adaptations in specialized cells. Finally, we discuss how motor-cargo complexes mediate changes in mitochondrial morphology through fission and fusion, and how they modulate the turnover of damaged organelles via quality control pathways, such as mitophagy. Understanding the importance of motor proteins for mitochondrial homeostasis will help to elucidate the molecular basis of a number of human diseases.
Collapse
Affiliation(s)
- Antonina J Kruppa
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Folma Buss
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
49
|
Morphodynamic signatures of MDA-MB-231 single cells and cell doublets undergoing invasion in confined microenvironments. Sci Rep 2021; 11:6529. [PMID: 33753788 PMCID: PMC7985374 DOI: 10.1038/s41598-021-85640-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 02/25/2021] [Indexed: 11/20/2022] Open
Abstract
Cancer cell metastasis is a major factor in cancer-related mortality. During the process of metastasis, cancer cells exhibit migratory phenotypes and invade through pores in the dense extracellular matrix. However, the characterization of morphological and subcellular features of cells in similar migratory phenotypes and the effects of geometric confinement on cell morphodynamics are not well understood. Here, we investigate the phenotypes of highly aggressive MDA-MB-231 cells in single cell and cell doublet (an initial and simplified collective state) forms in confined microenvironments. We group phenotypically similar single cells and cell doublets and characterize related morphological and subcellular features. We further detect two distinct migratory phenotypes, fluctuating and non-fluctuating, within the fast migrating single cell group. In addition, we demonstrate an increase in the number of protrusions formed at the leading edge of cells after invasion through geometric confinement. Finally, we track the short and long term effects of varied degrees of confinement on protrusion formation. Overall, our findings elucidate the underlying morphological and subcellular features associated with different single cell and cell doublet phenotypes and the impact of invasion through confined geometry on cell behavior.
Collapse
|
50
|
Praharaj PP, Patro BS, Bhutia SK. Dysregulation of mitophagy and mitochondrial homeostasis in cancer stem cells: Novel mechanism for anti-cancer stem cell-targeted cancer therapy. Br J Pharmacol 2021; 179:5015-5035. [PMID: 33527371 DOI: 10.1111/bph.15401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/11/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
Despite the potential of cancer medicine, cancer stem cells (CSCs) associated with chemoresistance and disease recurrence are the significant challenges currently opposing the efficacy of available cancer treatment options. Mitochondrial dynamics involving the fission-fusion cycle and mitophagy are the major contributing factors to better adaptation, enabling CSCs to survive and grow better under tumour micro-environment-associated stress. Moreover, mitophagy is balanced with mitochondrial biogenesis to maintain mitochondrial homeostasis in CSCs, which are necessary for the growth and maintenance of CSCs and regulate metabolic switching from glycolysis to oxidative phosphorylation. In this review, we discuss different aspects of mitochondrial dynamics, mitophagy, and mitochondrial homeostasis and their effects on modulating CSCs behaviour during cancer development. Moreover, the efficacy of pharmacological targeting of these cellular processes using anti-CSC drugs in combination with currently available chemotherapeutic drugs improves the patient's survival of aggressive cancer types.
Collapse
Affiliation(s)
- Prakash Priyadarshi Praharaj
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | | | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| |
Collapse
|