1
|
Cylke A, Serbanescu D, Banerjee S. Energy allocation theory for bacterial growth control in and out of steady state. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574890. [PMID: 38260684 PMCID: PMC10802433 DOI: 10.1101/2024.01.09.574890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Efficient allocation of energy resources to key physiological functions allows living organisms to grow and thrive in diverse environments and adapt to a wide range of perturbations. To quantitatively understand how unicellular organisms utilize their energy resources in response to changes in growth environment, we introduce a theory of dynamic energy allocation which describes cellular growth dynamics based on partitioning of metabolizable energy into key physiological functions: growth, division, cell shape regulation, energy storage and loss through dissipation. By optimizing the energy flux for growth, we develop the equations governing the time evolution of cell morphology and growth rate in diverse environments. The resulting model accurately captures experimentally observed dependencies of bacterial cell size on growth rate, superlinear scaling of metabolic rate with cell size, and predicts nutrient-dependent trade-offs between energy expended for growth, division, and shape maintenance. By calibrating model parameters with available experimental data for the model organism E. coli, our model is capable of describing bacterial growth control in dynamic conditions, particularly during nutrient shifts and osmotic shocks. The model captures these perturbations with minimal added complexity and our unified approach predicts the driving factors behind a wide range of observed morphological and growth phenomena.
Collapse
Affiliation(s)
- Arianna Cylke
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Diana Serbanescu
- Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
- Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK
| | - Shiladitya Banerjee
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
2
|
Valdivieso González D, Jara J, Almendro-Vedia VG, Orgaz B, López-Montero I. Expansion microscopy applied to mono- and dual-species biofilms. NPJ Biofilms Microbiomes 2023; 9:92. [PMID: 38049404 PMCID: PMC10696089 DOI: 10.1038/s41522-023-00460-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023] Open
Abstract
Expansion microscopy (ExM) is a new super-resolution technique based on embedding the biological sample within a hydrogel and its physical expansion after swelling. This allows increasing its size by several times while preserving its structural details. Applied to prokaryotic cells, ExM requires digestion steps for efficient expansion as bacteria are surrounded by a rigid cell wall. Furthermore, bacteria can live in social groups forming biofilms, where cells are protected from environmental stresses by a self-produced matrix. The extracellular matrix represents an additional impenetrable barrier for ExM. Here we optimize the current protocols of ExM and apply them to mono- and dual-species biofilms formed by clinical isolates of Limosilactobacillus reuteri, Enterococcus faecalis, Serratia marcescens and Staphylococcus aureus. Using scanning electron microscopy for comparison, our results demonstrate that embedded bacteria expanded 3-fold. Moreover, ExM allowed visualizing the three-dimensional architecture of the biofilm and identifying the distribution of different microbial species and their interactions. We also detected the presence of the extracellular matrix after expansion with a specific stain of the polysaccharide component. The potential applications of ExM in biofilms will improve our understanding of these complex communities and have far-reaching implications for industrial and clinical research.
Collapse
Affiliation(s)
- David Valdivieso González
- Dto. Química Física, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Ps. Juan XXIII 1, 28040, Madrid, Spain
- Instituto de Investigación Biomédica Hospital Doce de Octubre (Imas12), Avda. de Córdoba s/n, 28041, Madrid, Spain
| | - Josué Jara
- Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Víctor G Almendro-Vedia
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Ps. Juan XXIII 1, 28040, Madrid, Spain
- Sección Departamental de Farmacia Galénica y Tecnología Alimentaria, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid, Spain
- Instituto de Investigación Biomédica Hospital Doce de Octubre (Imas12), Avda. de Córdoba s/n, 28041, Madrid, Spain
| | - Belén Orgaz
- Sección Departamental de Farmacia Galénica y Tecnología Alimentaria, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid, Spain
| | - Iván López-Montero
- Dto. Química Física, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid, Spain.
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Ps. Juan XXIII 1, 28040, Madrid, Spain.
- Instituto de Investigación Biomédica Hospital Doce de Octubre (Imas12), Avda. de Córdoba s/n, 28041, Madrid, Spain.
| |
Collapse
|
3
|
Affiliation(s)
- Sven Truckenbrodt
- Convergent Research, E11 Bio. 1600 Harbor Bay Parkway, Alameda, California94502, United States
| |
Collapse
|
4
|
Mendonça AA, Pinto-Neto WDP, da Paixão GA, Santos DDS, De Morais MA, De Souza RB. Journey of the Probiotic Bacteria: Survival of the Fittest. Microorganisms 2022; 11:95. [PMID: 36677387 PMCID: PMC9861974 DOI: 10.3390/microorganisms11010095] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
This review aims to bring a more general view of the technological and biological challenges regarding production and use of probiotic bacteria in promoting human health. After a brief description of the current concepts, the challenges for the production at an industrial level are presented from the physiology of the central metabolism to the ability to face the main forms of stress in the industrial process. Once produced, these cells are processed to be commercialized in suspension or dried forms or added to food matrices. At this stage, the maintenance of cell viability and vitality is of paramount for the quality of the product. Powder products requires the development of strategies that ensure the integrity of components and cellular functions that allow complete recovery of cells at the time of consumption. Finally, once consumed, probiotic cells must face a very powerful set of physicochemical mechanisms within the body, which include enzymes, antibacterial molecules and sudden changes in pH. Understanding the action of these agents and the induction of cellular tolerance mechanisms is fundamental for the selection of increasingly efficient strains in order to survive from production to colonization of the intestinal tract and to promote the desired health benefits.
Collapse
Affiliation(s)
- Allyson Andrade Mendonça
- Laboratory of Microbial Genetics, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Walter de Paula Pinto-Neto
- Laboratory of Microbial Genetics, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Giselle Alves da Paixão
- Laboratory of Microbial Metabolism, Institute of Biological Sciences, University of Pernambuco, Recife 50100-130, Brazil
| | - Dayane da Silva Santos
- Laboratory of Microbial Genetics, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Marcos Antonio De Morais
- Laboratory of Microbial Genetics, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Rafael Barros De Souza
- Laboratory of Microbial Metabolism, Institute of Biological Sciences, University of Pernambuco, Recife 50100-130, Brazil
| |
Collapse
|
5
|
Czech L, Gertzen C, Smits SHJ, Bremer E. Guilty by association: importers, exporters and
MscS
‐type mechanosensitive channels encoded in biosynthetic gene clusters for the stress‐protectant ectoine. Environ Microbiol 2022; 24:5306-5331. [DOI: 10.1111/1462-2920.16203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/07/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Laura Czech
- Department of Biology, Laboratory for Microbiology and Center for Synthetic Microbiology (SYNMIKRO) Philipps‐University Marburg Marburg Germany
- Department of Chemistry and Center for Synthetic Microbiology (SYNMIKRO) Philipps‐University Marburg Marburg Germany
| | - Christoph Gertzen
- Center for Structural Studies (CSS) Heinrich‐Heine‐University Düsseldorf Düsseldorf Germany
- Institute of Pharmaceutical and Medicinal Chemistry Heinrich‐Heine‐University Düsseldorf Düsseldorf Germany
| | - Sander H. J. Smits
- Center for Structural Studies (CSS) Heinrich‐Heine‐University Düsseldorf Düsseldorf Germany
- Institute of Biochemistry Heinrich Heine University Düsseldorf Düsseldorf Germany
| | - Erhard Bremer
- Department of Biology, Laboratory for Microbiology and Center for Synthetic Microbiology (SYNMIKRO) Philipps‐University Marburg Marburg Germany
| |
Collapse
|
6
|
Han R, Vollmer W, Perry JD, Stoodley P, Chen J. Simultaneous determination of the mechanical properties and turgor of a single bacterial cell using atomic force microscopy. NANOSCALE 2022; 14:12060-12068. [PMID: 35946610 DOI: 10.1039/d2nr02577a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Bacterial mechanical properties (cell wall stiffness and turgor) are important factors for bacterial survival in harsh environments. For an individual bacterial cell, it is challenging to determine the cell wall stiffness and turgor simultaneously. In this study, we adopted a combined finite element modelling and mathematical modelling approach to simultaneously determine bacterial cell wall stiffness and turgor of an individual bacterial cell based on atomic force microscopy (AFM) nanoindentation. The mechanical properties and turgor of Staphylococcus epidermidis, determined by our method are consistent with other independent studies. For a given aqueous environment, bacterial cell wall stiffness increased linearly with an increase in turgor. Higher osmolarity leads to a decrease in both cell wall stiffness and turgor. We also demonstrated that the change of turgor is associated with a change in viscosity of the bacterial cell.
Collapse
Affiliation(s)
- Rui Han
- School of Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK.
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| | - John D Perry
- Microbiology Department, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN, UK
| | - Paul Stoodley
- Department of Microbial Infection and Immunity and the Department of Orthopaedics, The Ohio State University, Columbus, OH, 43210, USA
- National Centre for Advanced Tribology at Southampton (nCATS), National Biofilm Innovation Centre (NBIC), Mechanical Engineering, University of Southampton, Southampton, S017 1BJ, UK
| | - Jinju Chen
- School of Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK.
| |
Collapse
|
7
|
Kitahara Y, Oldewurtel ER, Wilson S, Sun Y, Altabe S, de Mendoza D, Garner EC, van Teeffelen S. The role of cell-envelope synthesis for envelope growth and cytoplasmic density in Bacillus subtilis. PNAS NEXUS 2022; 1:pgac134. [PMID: 36082236 PMCID: PMC9437589 DOI: 10.1093/pnasnexus/pgac134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/21/2022] [Indexed: 01/29/2023]
Abstract
All cells must increase their volumes in response to biomass growth to maintain intracellular mass density within physiologically permissive bounds. Here, we investigate the regulation of volume growth in the Gram-positive bacterium Bacillus subtilis. To increase volume, bacteria enzymatically expand their cell envelopes and insert new envelope material. First, we demonstrate that cell-volume growth is determined indirectly, by expanding their envelopes in proportion to mass growth, similarly to the Gram-negative Escherichia coli, despite their fundamentally different envelope structures. Next, we studied, which pathways might be responsible for robust surface-to-mass coupling: We found that both peptidoglycan synthesis and membrane synthesis are required for proper surface-to-mass coupling. However, surprisingly, neither pathway is solely rate-limiting, contrary to wide-spread belief, since envelope growth continues at a reduced rate upon complete inhibition of either process. To arrest cell-envelope growth completely, the simultaneous inhibition of both envelope-synthesis processes is required. Thus, we suggest that multiple envelope-synthesis pathways collectively confer an important aspect of volume regulation, the coordination between surface growth, and biomass growth.
Collapse
Affiliation(s)
- Yuki Kitahara
- Département de Microbiologie, Infectiologie, et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada,Université de Paris, Paris, France,Microbial Morphogenesis and Growth Lab, Institut Pasteur, Paris, France
| | - Enno R Oldewurtel
- Microbial Morphogenesis and Growth Lab, Institut Pasteur, Paris, France
| | - Sean Wilson
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, USA,Center for Systems Biology, Harvard University, Cambridge, MA, USA
| | - Yingjie Sun
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, USA,Center for Systems Biology, Harvard University, Cambridge, MA, USA
| | - Silvia Altabe
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Conicet- and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Diego de Mendoza
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Conicet- and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Ethan C Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, USA,Center for Systems Biology, Harvard University, Cambridge, MA, USA
| | | |
Collapse
|
8
|
Senevirathne SWAI, Toh YC, Yarlagadda PKDV. Fluid Flow Induces Differential Detachment of Live and Dead Bacterial Cells from Nanostructured Surfaces. ACS OMEGA 2022; 7:23201-23212. [PMID: 35847259 PMCID: PMC9280952 DOI: 10.1021/acsomega.2c01208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanotopographic surfaces are proven to be successful in killing bacterial cells upon contact. This non-chemical bactericidal property has paved an alternative way of fighting bacterial colonization and associated problems, especially the issue of bacteria evolving resistance against antibiotic and antiseptic agents. Recent advancements in nanotopographic bactericidal surfaces have made them suitable for many applications in medical and industrial sectors. The bactericidal effect of nanotopographic surfaces is classically studied under static conditions, but the actual potential applications do have fluid flow in them. In this study, we have studied how fluid flow can affect the adherence of bacterial cells on nanotopographic surfaces. Gram-positive and Gram-negative bacterial species were tested under varying fluid flow rates for their retention and viability after flow exposure. The total number of adherent cells for both species was reduced in the presence of flow, but there was no flowrate dependency. There was a significant reduction in the number of live cells remaining on nanotopographic surfaces with an increasing flowrate for both species. Conversely, we observed a flowrate-independent increase in the number of adherent dead cells. Our results indicated that the presence of flow differentially affected the adherent live and dead bacterial cells on nanotopographic surfaces. This could be because dead bacterial cells were physically pierced by the nano-features, whereas live cells adhered via physiochemical interactions with the surface. Therefore, fluid shear was insufficient to overcome adhesion forces between the surface and dead cells. Furthermore, hydrodynamic forces due to the flow can cause more planktonic and detached live cells to collide with nano-features on the surface, causing more cells to lyse. These results show that nanotopographic surfaces do not have self-cleaning ability as opposed to natural bactericidal nanotopographic surfaces, and nanotopographic surfaces tend to perform better under flow conditions. These findings are highly useful for developing and optimizing nanotopographic surfaces for medical and industrial applications.
Collapse
Affiliation(s)
- S. W.
M. A. Ishantha Senevirathne
- Centre
for Biomedical Technologies, Queensland
University of Technology, Brisbane, QLD 4000, Australia
- School
of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane 4000 QLD Australia
| | - Yi-Chin Toh
- Centre
for Biomedical Technologies, Queensland
University of Technology, Brisbane, QLD 4000, Australia
- School
of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane 4000 QLD Australia
| | - Prasad K. D. V. Yarlagadda
- Centre
for Biomedical Technologies, Queensland
University of Technology, Brisbane, QLD 4000, Australia
- School
of Mechanical, Medical, and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane 4000 QLD Australia
| |
Collapse
|
9
|
Abstract
The hypervariable residues that compose the major part of proteins’ surfaces are generally considered outside evolutionary control. Yet, these “nonconserved” residues determine the outcome of stochastic encounters in crowded cells. It has recently become apparent that these encounters are not as random as one might imagine, but carefully orchestrated by the intracellular electrostatics to optimize protein diffusion, interactivity, and partner search. The most influential factor here is the protein surface-charge density, which takes different optimal values across organisms with different intracellular conditions. In this study, we examine how far the net-charge density and other physicochemical properties of proteomes will take us in terms of distinguishing organisms in general. The results show that these global proteome properties not only follow the established taxonomical hierarchy, but also provide clues to functional adaptation. In many cases, the proteome–property divergence is even resolved at species level. Accordingly, the variable parts of the genes are not as free to drift as they seem in sequence alignment, but present a complementary tool for functional, taxonomic, and evolutionary assignment.
Collapse
|
10
|
Haubrich BA, Nayyab S, Gallati M, Hernandez J, Williams C, Whitman A, Zimmerman T, Li Q, Chen Y, Zhou CZ, Basu A, Reid CW. Inhibition of Streptococcus pneumoniae growth by masarimycin. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35467499 DOI: 10.1099/mic.0.001182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Despite renewed interest, development of chemical biology methods to study peptidoglycan metabolism has lagged in comparison to the glycobiology field in general. To address this, a panel of diamides were screened against the Gram-positive bacterium Streptococcus pneumoniae to identify inhibitors of bacterial growth. The screen identified the diamide masarimycin as a bacteriostatic inhibitor of S. pneumoniae growth with an MIC of 8 µM. The diamide inhibited detergent-induced autolysis in a concentration-dependent manner, indicating perturbation of peptidoglycan degradation as the mode-of-action. Cell based screening of masarimycin against a panel of autolysin mutants, identified a higher MIC against a ΔlytB strain lacking an endo-N-acetylglucosaminidase involved in cell division. Subsequent biochemical and phenotypic analyses suggested that the higher MIC was due to an indirect interaction with LytB. Further analysis of changes to the cell surface in masarimycin treated cells identified the overexpression of several moonlighting proteins, including elongation factor Tu which is implicated in regulating cell shape. Checkerboard assays using masarimycin in concert with additional antibiotics identified an antagonistic relationship with the cell wall targeting antibiotic fosfomycin, which further supports a cell wall mode-of-action.
Collapse
Affiliation(s)
- Brad A Haubrich
- Center for Health and Behavioral Sciences, Department of Science and Technology, Bryant University, 1150 Douglas Pike, Smithfield, RI 02917, USA.,Department of Basic Sciences, Touro University Nevada, College of Osteopathic Medicine, Henderson, NV 89014, USA
| | - Saman Nayyab
- Center for Health and Behavioral Sciences, Department of Science and Technology, Bryant University, 1150 Douglas Pike, Smithfield, RI 02917, USA.,Amherst Department of Molecular and Cellular Biology, University of Massachusetts, 230 Stockbridge Rd Amherst, MA, USA
| | - Mika Gallati
- Center for Health and Behavioral Sciences, Department of Science and Technology, Bryant University, 1150 Douglas Pike, Smithfield, RI 02917, USA
| | - Jazmeen Hernandez
- Center for Health and Behavioral Sciences, Department of Science and Technology, Bryant University, 1150 Douglas Pike, Smithfield, RI 02917, USA
| | - Caroline Williams
- Center for Health and Behavioral Sciences, Department of Science and Technology, Bryant University, 1150 Douglas Pike, Smithfield, RI 02917, USA
| | - Andrew Whitman
- Center for Health and Behavioral Sciences, Department of Science and Technology, Bryant University, 1150 Douglas Pike, Smithfield, RI 02917, USA
| | - Tahl Zimmerman
- Department of Family and Consumer Sciences, North Carolina A&T State University, Greensboro, NC, USA
| | - Qiong Li
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, PR China
| | - Yuxing Chen
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, PR China
| | - Cong-Zhao Zhou
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, PR China
| | - Amit Basu
- Department of Chemistry, Brown University, Providence, RI, USA
| | - Christopher W Reid
- Center for Health and Behavioral Sciences, Department of Science and Technology, Bryant University, 1150 Douglas Pike, Smithfield, RI 02917, USA
| |
Collapse
|
11
|
On the osmotic pressure of cells. QRB DISCOVERY 2022. [PMID: 37529285 PMCID: PMC10392628 DOI: 10.1017/qrd.2022.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Abstract
The chemical potential of water (
$ {\mu}_{{\mathrm{H}}_2\mathrm{O}} $
) provides an essential thermodynamic characterization of the environment of living organisms, and it is of equal significance as the temperature. For cells,
$ {\mu}_{{\mathrm{H}}_2\mathrm{O}} $
is conventionally expressed in terms of the osmotic pressure (πosm). We have previously suggested that the main contribution to the intracellular πosm of the bacterium E. coli is from soluble negatively-charged proteins and their counter-ions. Here, we expand on this analysis by examining how evolutionary divergent cell types cope with the challenge of maintaining πosm within viable values. Complex organisms, like mammals, maintain constant internal πosm ≈ 0.285 osmol, matching that of 0.154 M NaCl. For bacteria it appears that optimal growth conditions are found for similar or slightly higher πosm (0.25-0.4 osmol), despite that they represent a much earlier stage in evolution. We argue that this value reflects a general adaptation for optimising metabolic function under crowded intracellular conditions. Environmental πosm that differ from this optimum require therefore special measures, as exemplified with gram-positive and gram-negative bacteria. To handle such situations, their membrane encapsulations allow for a compensating turgor pressure that can take both positive and negative values, where positive pressures allow increased frequency of metabolic events through increased intracellular protein concentrations. A remarkable exception to the rule of 0.25-0.4 osmol, is found for halophilic archaea with internal πosm ≈ 15 osmol. The internal organization of these archaea differs in that they utilize a repulsive electrostatic mechanism operating only in the ionic-liquid regime to avoid aggregation, and that they stand out from other organisms by having no turgor pressure.
Collapse
|
12
|
Alabresm A, Chandler SL, Benicewicz BC, Decho AW. Nanotargeting of Resistant Infections with a Special Emphasis on the Biofilm Landscape. Bioconjug Chem 2021; 32:1411-1430. [PMID: 34319073 PMCID: PMC8527872 DOI: 10.1021/acs.bioconjchem.1c00116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bacterial resistance to antimicrobial compounds is a growing concern in medical and public health circles. Overcoming the adaptable and duplicative resistance mechanisms of bacteria requires chemistry-based approaches. Engineered nanoparticles (NPs) now offer unique advantages toward this effort. However, most in situ infections (in humans) occur as attached biofilms enveloped in a protective surrounding matrix of extracellular polymers, where survival of microbial cells is enhanced. This presents special considerations in the design and deployment of antimicrobials. Here, we review recent efforts to combat resistant bacterial strains using NPs and, then, explore how NP surfaces may be specifically engineered to enhance the potency and delivery of antimicrobial compounds. Special NP-engineering challenges in the design of NPs must be overcome to penetrate the inherent protective barriers of the biofilm and to successfully deliver antimicrobials to bacterial cells. Future challenges are discussed in the development of new antibiotics and their mechanisms of action and targeted delivery via NPs.
Collapse
Affiliation(s)
- Amjed Alabresm
- Department of Environmental Health Sciences, University of South Carolina, Columbia, South Carolina 29208, United States
- Department of Biological Development of Shatt Al-Arab & N. Arabian Gulf, Marine Science Centre, University of Basrah, Basrah, Iraq
| | - Savannah L Chandler
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Brian C Benicewicz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
- USC NanoCenter, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Alan W Decho
- Department of Environmental Health Sciences, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
13
|
Inhibitory Effect of Lipoteichoic Acid Derived from Three Lactobacilli on Flagellin-Induced IL-8 Production in Porcine Peripheral Blood Mononuclear Cells. Probiotics Antimicrob Proteins 2021; 13:72-79. [PMID: 32607729 DOI: 10.1007/s12602-020-09682-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Probiotics in livestock feed supplements are considered to be an alternative to antibiotics. However, effector molecules responsible for the beneficial roles of probiotics in pigs are in general not well known. Thus, this study demonstrated that a well-known virulence factor, flagellin of Salmonella typhimurium, significantly induced IL-8 production in porcine peripheral blood mononuclear cells, whereas lipoteichoic acid (LTA), a major cell wall component of Gram-positive bacteria Lactobacillus plantarum, L. casei, and L. rhamnosus GG, effectively inhibited flagellin-induced IL-8 production at mRNA and protein levels. However, the lipoproteins of L. plantarum, L. casei, and L. rhamnosus GG did not suppress flagellin-induced IL-8 production. While D-alanine-deficient L. plantarum LTA inhibited flagellin-induced IL-8 production, L. plantarum LTA deficient in both D-alanine and acyl chains failed to inhibit it; this suggests that the acyl moieties of L. plantarum LTA are essential for inhibiting flagellin-induced IL-8 production. Taken together, L. plantarum LTA plays an important role in improving anti-inflammatory responses of porcine peripheral blood mononuclear cells.
Collapse
|
14
|
Zhu L, Rajendram M, Huang KC. Effects of fixation on bacterial cellular dimensions and integrity. iScience 2021; 24:102348. [PMID: 33912815 PMCID: PMC8066382 DOI: 10.1016/j.isci.2021.102348] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/25/2021] [Accepted: 03/18/2021] [Indexed: 11/22/2022] Open
Abstract
Fixation facilitates imaging of subcellular localization and cell morphology, yet it remains unknown how fixation affects cellular dimensions and intracellular fluorescence patterns, particularly during long-term storage. Here, we characterized the effects of multiple fixatives on several bacterial species. Fixation generally reduced cell length by 5-15%; single-cell tracking in microfluidics revealed that the length decrease was an aggregate effect of many steps in the fixation protocol and that fluorescence of cytoplasmic GFP but not membrane-bound MreB-msfGFP was rapidly lost with formaldehyde-based fixatives. Cellular dimensions were preserved in formaldehyde-based fixatives for ≥4 days, but methanol caused length to decrease. Although methanol preserved cytoplasmic fluorescence better than formaldehyde-based fixatives, some Escherichia coli cells were able to grow directly after fixation. Moreover, methanol fixation caused lysis in a subpopulation of cells, with virtually all Bacillus subtilis cells lysing after one day. These findings highlight tradeoffs between maintenance of fluorescence and membrane integrity for future applications of fixation.
Collapse
Affiliation(s)
- Lillian Zhu
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Manohary Rajendram
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
15
|
Kim Y, Kim S, Lee S, Ha J, Lee J, Choi Y, Oh H, Lee Y, Oh NS, Yoon Y, Lee H. Antimicrobial activity of fermented Maillard reaction products, novel milk-derived material, made by whey protein and Lactobacillus rhamnosus and Lactobacillus gasseri on Clostridium perfringens. Anim Biosci 2021; 34:1525-1531. [PMID: 33677916 PMCID: PMC8495330 DOI: 10.5713/ab.20.0290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 02/02/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE The objective of this study was to evaluate the antimicrobial effects of fermented Maillard reaction products made by milk proteins (FMRPs) on Clostridium perfringens (C. perfringens), and to elucidate antimicrobial modes of FMRPs on the bacteria, using physiological and morphological analyses. METHODS Antimicrobial effects of FMRPs (whey protein plus galactose fermented by Lactobacillus rhamnosus [L. rhamnosus] 4B15 [Gal-4B15] or Lactobacillus gasseri 4M13 [Gal-4M13], and whey protein plus glucose fermented by L. rhamnosus 4B15 [Glc-4B15] or L. gasseri 4M13 [Glc-4M13]) on C. perfringens were tested by examining growth responses of the pathogen. Iron chelation activity analysis, propidium iodide uptake assay, and morphological analysis with field emission scanning electron microscope (FE-SEM) were conducted to elucidate the modes of antimicrobial activities of FMRPs. RESULTS When C. perfringens were exposed to the FMRPs, C. perfringens cell counts were decreased (p<0.05) by the all tested FMRPs; iron chelation activities by FMRPs, except for Glc-4M13. Propidium iodide uptake assay indicate that bacterial cellular damage increased in all FMRPs-treated C. perfringens, and it was observed by FE-SEM. CONCLUSION These results indicate that the FMRPs can destroy C. perfringens by iron chelation and cell membrane damage. Thus, it could be used in dairy products, and controlling intestinal C. perfringens.
Collapse
Affiliation(s)
- Yujin Kim
- Department of Food and Nutrition, Sookmyung Women's University, Seoul 04310, Korea
| | - Sejeong Kim
- Risk Analysis Research Center, Sookmyung Women's University, Seoul 04310, Korea
| | - Soomin Lee
- Risk Analysis Research Center, Sookmyung Women's University, Seoul 04310, Korea
| | - Jimyeong Ha
- Risk Analysis Research Center, Sookmyung Women's University, Seoul 04310, Korea
| | - Jeeyeon Lee
- Department of Food and Nutrition, Dong-eui University, Busan 47340, Korea
| | - Yukyung Choi
- Risk Analysis Research Center, Sookmyung Women's University, Seoul 04310, Korea
| | - Hyemin Oh
- Department of Food and Nutrition, Sookmyung Women's University, Seoul 04310, Korea
| | - Yewon Lee
- Department of Food and Nutrition, Sookmyung Women's University, Seoul 04310, Korea
| | - Nam-Su Oh
- Department of Food and Biotechnology, Korea University, Sejong 30019, Korea
| | - Yohan Yoon
- Department of Food and Nutrition, Sookmyung Women's University, Seoul 04310, Korea
| | - Heeyoung Lee
- Food Standard Research Center, Korea Food Research Institute, Wanju 55365, Korea
| |
Collapse
|
16
|
Cambré A, Aertsen A. Bacterial Vivisection: How Fluorescence-Based Imaging Techniques Shed a Light on the Inner Workings of Bacteria. Microbiol Mol Biol Rev 2020; 84:e00008-20. [PMID: 33115939 PMCID: PMC7599038 DOI: 10.1128/mmbr.00008-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The rise in fluorescence-based imaging techniques over the past 3 decades has improved the ability of researchers to scrutinize live cell biology at increased spatial and temporal resolution. In microbiology, these real-time vivisections structurally changed the view on the bacterial cell away from the "watery bag of enzymes" paradigm toward the perspective that these organisms are as complex as their eukaryotic counterparts. Capitalizing on the enormous potential of (time-lapse) fluorescence microscopy and the ever-extending pallet of corresponding probes, initial breakthroughs were made in unraveling the localization of proteins and monitoring real-time gene expression. However, later it became clear that the potential of this technique extends much further, paving the way for a focus-shift from observing single events within bacterial cells or populations to obtaining a more global picture at the intra- and intercellular level. In this review, we outline the current state of the art in fluorescence-based vivisection of bacteria and provide an overview of important case studies to exemplify how to use or combine different strategies to gain detailed information on the cell's physiology. The manuscript therefore consists of two separate (but interconnected) parts that can be read and consulted individually. The first part focuses on the fluorescent probe pallet and provides a perspective on modern methodologies for microscopy using these tools. The second section of the review takes the reader on a tour through the bacterial cell from cytoplasm to outer shell, describing strategies and methods to highlight architectural features and overall dynamics within cells.
Collapse
Affiliation(s)
- Alexander Cambré
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| | - Abram Aertsen
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| |
Collapse
|
17
|
Molecular Characterization of a Novel Lytic Enzyme LysC from Clostridium intestinale URNW and Its Antibacterial Activity Mediated by Positively Charged N-Terminal Extension. Int J Mol Sci 2020; 21:ijms21144894. [PMID: 32664473 PMCID: PMC7404271 DOI: 10.3390/ijms21144894] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 12/18/2022] Open
Abstract
Peptidoglycan hydrolytic enzymes are considered to be a promising alternative to conventional antibiotics in combating bacterial infections. To identify novel hydrolytic enzymes, we performed a database search with the sequences of two thermostable endolysins with high bactericidal activity, studied earlier in our laboratory. Both these enzymes originate from Thermus scotoductus bacteriophages MAT2119 and vB_Tsc2631. A lytic enzyme LysC from Clostridium intestinale URNW was found to have the highest amino acid sequence similarity to the bacteriophage proteins and was chosen for further analysis. The recombinant enzyme showed strong activity against its host bacteria C. intestinale, as well as against C. sporogenes, Bacillus cereus, Micrococcus luteus, and Staphylococcus aureus, on average causing a 5.12 ± 0.14 log reduction of viable S. aureus ATCC 25923 cells in a bactericidal assay. Crystallographic studies of the protein showed that the catalytic site of LysC contained a zinc atom coordinated by amino acid residues His50, His147, and Cys155, a feature characteristic for type 2 amidases. Surprisingly, neither of these residues, nor any other of the four conserved residues in the vicinity of the active site, His51, Thr52, Tyr76, and Thr153, were essential to maintain the antibacterial activity of LysC. Therefore, our attention was attracted to the intrinsically disordered and highly positively charged N-terminal region of the enzyme. Potential antibacterial activity of this part of the sequence, predicted by the Antimicrobial Sequence Scanning System, AMPA, was confirmed in our experimental studies; the truncated version of LysC (LysCΔ2–23) completely lacked antibacterial activity. Moreover, a synthetic peptide, which we termed Intestinalin, with a sequence identical to the first thirty amino acids of LysC, displayed substantial anti-staphylococcal activity with IC50 of 6 μg/mL (1.5 μM). This peptide was shown to have α-helical conformation in solution in the presence of detergents which is a common feature of amphipathic α-helical antimicrobial peptides.
Collapse
|
18
|
Synergistic effects of shear stress, moderate electric field, and nisin for the inactivation of Escherichia coli K12 and Listeria innocua in clear apple juice. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107209] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
19
|
Fan Y, Lim Y, Wyss LS, Park S, Xu C, Fu H, Fei J, Hong Y, Wang B. Mechanical expansion microscopy. Methods Cell Biol 2020; 161:125-146. [PMID: 33478686 DOI: 10.1016/bs.mcb.2020.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
This chapter describes two mechanical expansion microscopy methods with accompanying step-by-step protocols. The first method, mechanically resolved expansion microscopy, uses non-uniform expansion of partially digested samples to provide the imaging contrast that resolves local mechanical properties. Examining bacterial cell wall with this method, we are able to distinguish bacterial species in mixed populations based on their distinct cell wall rigidity and detect cell wall damage caused by various physiological and chemical perturbations. The second method is mechanically locked expansion microscopy, in which we use a mechanically stable gel network to prevent the original polyacrylate network from shrinking in ionic buffers. This method allows us to use anti-photobleaching buffers in expansion microscopy, enabling detection of novel ultra-structures under the optical diffraction limit through super-resolution single molecule localization microscopy on bacterial cells and whole-mount immunofluorescence imaging in thick animal tissues. We also discuss potential applications and assess future directions.
Collapse
Affiliation(s)
- Yuhang Fan
- Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Youngbin Lim
- Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Livia S Wyss
- Department of Biology, Stanford University, Stanford, CA, United States
| | - Seongjin Park
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, United States
| | - Cancan Xu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| | - Huikang Fu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| | - Jingyi Fei
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, United States; Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, United States
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| | - Bo Wang
- Department of Bioengineering, Stanford University, Stanford, CA, United States; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, United States.
| |
Collapse
|
20
|
Harper CE, Hernandez CJ. Cell biomechanics and mechanobiology in bacteria: Challenges and opportunities. APL Bioeng 2020; 4:021501. [PMID: 32266323 PMCID: PMC7113033 DOI: 10.1063/1.5135585] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/27/2020] [Indexed: 12/11/2022] Open
Abstract
Physical forces play a profound role in the survival and function of all known forms of life. Advances in cell biomechanics and mechanobiology have provided key insights into the physiology of eukaryotic organisms, but much less is known about the roles of physical forces in bacterial physiology. This review is an introduction to bacterial mechanics intended for persons familiar with cells and biomechanics in mammalian cells. Bacteria play a major role in human health, either as pathogens or as beneficial commensal organisms within the microbiome. Although bacteria have long been known to be sensitive to their mechanical environment, understanding the effects of physical forces on bacterial physiology has been limited by their small size (∼1 μm). However, advancements in micro- and nano-scale technologies over the past few years have increasingly made it possible to rigorously examine the mechanical stress and strain within individual bacteria. Here, we review the methods currently used to examine bacteria from a mechanical perspective, including the subcellular structures in bacteria and how they differ from those in mammalian cells, as well as micro- and nanomechanical approaches to studying bacteria, and studies showing the effects of physical forces on bacterial physiology. Recent findings indicate a large range in mechanical properties of bacteria and show that physical forces can have a profound effect on bacterial survival, growth, biofilm formation, and resistance to toxins and antibiotics. Advances in the field of bacterial biomechanics have the potential to lead to novel antibacterial strategies, biotechnology approaches, and applications in synthetic biology.
Collapse
Affiliation(s)
- Christine E. Harper
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
21
|
Pasquina-Lemonche L, Burns J, Turner RD, Kumar S, Tank R, Mullin N, Wilson JS, Chakrabarti B, Bullough PA, Foster SJ, Hobbs JK. The architecture of the Gram-positive bacterial cell wall. Nature 2020; 582:294-297. [PMID: 32523118 PMCID: PMC7308169 DOI: 10.1038/s41586-020-2236-6] [Citation(s) in RCA: 204] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/25/2020] [Indexed: 02/05/2023]
Abstract
The primary structural component of the bacterial cell wall is peptidoglycan, which is essential for viability and the synthesis of which is the target for crucial antibiotics1,2. Peptidoglycan is a single macromolecule made of glycan chains crosslinked by peptide side branches that surrounds the cell, acting as a constraint to internal turgor1,3. In Gram-positive bacteria, peptidoglycan is tens of nanometres thick, generally portrayed as a homogeneous structure that provides mechanical strength4-6. Here we applied atomic force microscopy7-12 to interrogate the morphologically distinct Staphylococcus aureus and Bacillus subtilis species, using live cells and purified peptidoglycan. The mature surface of live cells is characterized by a landscape of large (up to 60 nm in diameter), deep (up to 23 nm) pores constituting a disordered gel of peptidoglycan. The inner peptidoglycan surface, consisting of more nascent material, is much denser, with glycan strand spacing typically less than 7 nm. The inner surface architecture is location dependent; the cylinder of B. subtilis has dense circumferential orientation, while in S. aureus and division septa for both species, peptidoglycan is dense but randomly oriented. Revealing the molecular architecture of the cell envelope frames our understanding of its mechanical properties and role as the environmental interface13,14, providing information complementary to traditional structural biology approaches.
Collapse
Affiliation(s)
- L Pasquina-Lemonche
- Krebs Institute, University of Sheffield, Sheffield, UK
- Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
- The Florey Institute, University of Sheffield, Sheffield, UK
| | - J Burns
- Krebs Institute, University of Sheffield, Sheffield, UK
- Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
| | - R D Turner
- Krebs Institute, University of Sheffield, Sheffield, UK
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
- Department of Computer Science, University of Sheffield, Sheffield, UK
| | - S Kumar
- Krebs Institute, University of Sheffield, Sheffield, UK
- Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - R Tank
- Krebs Institute, University of Sheffield, Sheffield, UK
- Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
| | - N Mullin
- Krebs Institute, University of Sheffield, Sheffield, UK
- Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
| | - J S Wilson
- Krebs Institute, University of Sheffield, Sheffield, UK
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - B Chakrabarti
- Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
| | - P A Bullough
- Krebs Institute, University of Sheffield, Sheffield, UK
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - S J Foster
- Krebs Institute, University of Sheffield, Sheffield, UK.
- The Florey Institute, University of Sheffield, Sheffield, UK.
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK.
| | - J K Hobbs
- Krebs Institute, University of Sheffield, Sheffield, UK.
- Department of Physics and Astronomy, University of Sheffield, Sheffield, UK.
- The Florey Institute, University of Sheffield, Sheffield, UK.
| |
Collapse
|
22
|
Lim Y, Shiver AL, Khariton M, Lane KM, Ng KM, Bray SR, Qin J, Huang KC, Wang B. Mechanically resolved imaging of bacteria using expansion microscopy. PLoS Biol 2019; 17:e3000268. [PMID: 31622337 PMCID: PMC6797083 DOI: 10.1371/journal.pbio.3000268] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/05/2019] [Indexed: 11/19/2022] Open
Abstract
Imaging dense and diverse microbial communities has broad applications in basic microbiology and medicine, but remains a grand challenge due to the fact that many species adopt similar morphologies. While prior studies have relied on techniques involving spectral labeling, we have developed an expansion microscopy method (μExM) in which bacterial cells are physically expanded prior to imaging. We find that expansion patterns depend on the structural and mechanical properties of the cell wall, which vary across species and conditions. We use this phenomenon as a quantitative and sensitive phenotypic imaging contrast orthogonal to spectral separation to resolve bacterial cells of different species or in distinct physiological states. Focusing on host-microbe interactions that are difficult to quantify through fluorescence alone, we demonstrate the ability of μExM to distinguish species through an in vitro defined community of human gut commensals and in vivo imaging of a model gut microbiota, and to sensitively detect cell-envelope damage caused by antibiotics or previously unrecognized cell-to-cell phenotypic heterogeneity among pathogenic bacteria as they infect macrophages.
Collapse
Affiliation(s)
- Youngbin Lim
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Anthony L. Shiver
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Margarita Khariton
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Keara M. Lane
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Katharine M. Ng
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Samuel R. Bray
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Jian Qin
- Department of Chemical Engineering, Stanford University, Stanford, California, United States of America
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Chan Zuckerberg Biohub, San Francisco, California, United States of America
| | - Bo Wang
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
23
|
Crawford MA, Margulieux KR, Singh A, Nakamoto RK, Hughes MA. Mechanistic insights and therapeutic opportunities of antimicrobial chemokines. Semin Cell Dev Biol 2019; 88:119-128. [PMID: 29432954 PMCID: PMC6613794 DOI: 10.1016/j.semcdb.2018.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/06/2018] [Indexed: 12/27/2022]
Abstract
Chemokines are a family of small proteins best known for their ability to orchestrate immune cell trafficking and recruitment to sites of infection. Their role in promoting host defense is multiplied by a number of additional receptor-dependent biological activities, and most, but not all, chemokines have been found to mediate direct antimicrobial effects against a broad range of microorganisms. The molecular mechanism(s) by which antimicrobial chemokines kill bacteria remains unknown; however, recent observations have expanded our fundamental understanding of chemokine-mediated bactericidal activity to reveal increasingly diverse and complex actions. In the current review, we present and consider mechanistic insights of chemokine-mediated antimicrobial activity against bacteria. We also discuss how contemporary advances are reshaping traditional paradigms and opening up new and innovative avenues of research with translational implications. Towards this end, we highlight a developing framework for leveraging chemokine-mediated bactericidal and immunomodulatory effects to advance pioneering therapeutic approaches for treating bacterial infections, including those caused by multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Matthew A Crawford
- Division of Infectious Diseases & International Health, Department of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Katie R Margulieux
- Department of Enteric Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | - Arpita Singh
- Division of Infectious Diseases & International Health, Department of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Robert K Nakamoto
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Molly A Hughes
- Division of Infectious Diseases & International Health, Department of Medicine, University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
24
|
van Teeffelen S, Renner LD. Recent advances in understanding how rod-like bacteria stably maintain their cell shapes. F1000Res 2018; 7:241. [PMID: 29560261 PMCID: PMC5832919 DOI: 10.12688/f1000research.12663.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/22/2018] [Indexed: 01/14/2023] Open
Abstract
Cell shape and cell volume are important for many bacterial functions. In recent years, we have seen a range of experimental and theoretical work that led to a better understanding of the determinants of cell shape and size. The roles of different molecular machineries for cell-wall expansion have been detailed and partially redefined, mechanical forces have been shown to influence cell shape, and new connections between metabolism and cell shape have been proposed. Yet the fundamental determinants of the different cellular dimensions remain to be identified. Here, we highlight some of the recent developments and focus on the determinants of rod-like cell shape and size in the well-studied model organisms
Escherichia coli and
Bacillus subtilis.
Collapse
Affiliation(s)
- Sven van Teeffelen
- Department of Microbiology, Institut Pasteur, 75724 Paris Cedex 15, France
| | - Lars D Renner
- Leibniz Institute of Polymer Research and the Max Bergmann Center of Biomaterials, 01069 Dresden, Germany
| |
Collapse
|
25
|
Rojas ER, Huang KC, Theriot JA. Homeostatic Cell Growth Is Accomplished Mechanically through Membrane Tension Inhibition of Cell-Wall Synthesis. Cell Syst 2017; 5:578-590.e6. [PMID: 29203279 PMCID: PMC5985661 DOI: 10.1016/j.cels.2017.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 10/27/2017] [Accepted: 11/06/2017] [Indexed: 12/22/2022]
Abstract
Feedback mechanisms are required to coordinate balanced synthesis of subcellular components during cell growth. However, these coordination mechanisms are not apparent at steady state. Here, we elucidate the interdependence of cell growth, membrane tension, and cell-wall synthesis by observing their rapid re-coordination after osmotic shocks in Gram-positive bacteria. Single-cell experiments and mathematical modeling demonstrate that mechanical forces dually regulate cell growth: while turgor pressure produces mechanical stress within the cell wall that promotes its expansion through wall synthesis, membrane tension induces growth arrest by inhibiting wall synthesis. Tension inhibition occurs concurrently with membrane depolarization, and depolarization arrested growth independently of shock, indicating that electrical signals implement the negative feedback characteristic of homeostasis. Thus, competing influences of membrane tension and cell-wall mechanical stress on growth allow cells to rapidly correct for mismatches between membrane and wall synthesis rates, ensuring balanced growth.
Collapse
Affiliation(s)
- Enrique R Rojas
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| | - Julie A Theriot
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
26
|
Hou Z, Shankar YV, Liu Y, Ding F, Subramanion JL, Ravikumar V, Zamudio-Vázquez R, Keogh D, Lim H, Tay MYF, Bhattacharjya S, Rice SA, Shi J, Duan H, Liu XW, Mu Y, Tan NS, Tam KC, Pethe K, Chan-Park MB. Nanoparticles of Short Cationic Peptidopolysaccharide Self-Assembled by Hydrogen Bonding with Antibacterial Effect against Multidrug-Resistant Bacteria. ACS APPLIED MATERIALS & INTERFACES 2017; 9:38288-38303. [PMID: 29028315 DOI: 10.1021/acsami.7b12120] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Cationic antimicrobial peptides (AMPs) and polymers are active against many multidrug-resistant (MDR) bacteria, but only a limited number of these compounds are in clinical use due to their unselective toxicity. The typical strategy for achieving selective antibacterial efficacy with low mammalian cell toxicity is through balancing the ratio of cationicity to hydrophobicity. Herein, we report a cationic nanoparticle self-assembled from chitosan-graft-oligolysine (CSM5-K5) chains with ultralow molecular weight (1450 Da) that selectively kills bacteria. Further, hydrogen bonding rather than the typical hydrophobic interaction causes the polymer chains to be aggregated together in water into small nanoparticles (with about 37 nm hydrodynamic radius) to concentrate the cationic charge of the lysine. When complexed with bacterial membrane, these cationic nanoparticles synergistically cluster anionic membrane lipids and produce a greater membrane perturbation and antibacterial effect than would be achievable by the same quantity of charge if dispersed in individual copolymer molecules in solution. The small zeta potential (+15 mV) and lack of hydrophobicity of the nanoparticles impedes the insertion of the copolymer into the cell bilayer to improve biocompatibility. In vivo study (using a murine excisional wound model) shows that CSM5-K5 suppresses the growth of methicillin-resistant Staphylococcus aureus (MRSA) bacteria by 4.0 orders of magnitude, an efficacy comparable to that of the last resort MRSA antibiotic vancomycin; it is also noninflammatory with little/no activation of neutrophils (CD11b and Ly6G immune cells). This study demonstrates a promising new class of cationic polymers-short cationic peptidopolysaccharides-that effectively attack MDR bacteria due to the synergistic clustering of, rather than insertion into, bacterial anionic lipids by the concentrated polymers in the resulting hydrogen-bonding-stabilized cationic nanoparticles.
Collapse
Affiliation(s)
| | | | - Yang Liu
- School of Biological Sciences, Nanyang Technological University , 62 Nanyang Drive, Singapore 637551, Singapore
| | | | | | - Vikashini Ravikumar
- Singapore Center for Environmental and Life Sciences (SCELSE) , 60 Nanyang Drive, Singapore 637551, Singapore
| | | | | | - Huiwen Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University , 11 Mandalay Road, Singapore 308232, Singapore
| | - Moon Yue Feng Tay
- Nanyang Technological University Food Technology Centre (NAFTEC), Nanyang Technological University , 62 Nanyang Drive, Singapore 637459, Singapore
| | - Surajit Bhattacharjya
- School of Biological Sciences, Nanyang Technological University , 62 Nanyang Drive, Singapore 637551, Singapore
| | - Scott A Rice
- School of Biological Sciences, Nanyang Technological University , 62 Nanyang Drive, Singapore 637551, Singapore
- Singapore Center for Environmental and Life Sciences (SCELSE) , 60 Nanyang Drive, Singapore 637551, Singapore
| | - Jian Shi
- NUS Centre for Bioimaging Sciences, National University of Singapore , 14 Science Drive 4, Singapore 117557, Singapore
| | | | - Xue-Wei Liu
- Division of Chemistry and Biological Chemistry, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University , 62 Nanyang Drive, Singapore 637551, Singapore
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University , 62 Nanyang Drive, Singapore 637551, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University , 11 Mandalay Road, Singapore 308232, Singapore
| | - Kam C Tam
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo , 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Kevin Pethe
- Lee Kong Chian School of Medicine, Nanyang Technological University , 11 Mandalay Road, Singapore 308232, Singapore
| | - Mary B Chan-Park
- School of Biological Sciences, Nanyang Technological University , 62 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
27
|
Rojas ER, Huang KC. Regulation of microbial growth by turgor pressure. Curr Opin Microbiol 2017; 42:62-70. [PMID: 29125939 DOI: 10.1016/j.mib.2017.10.015] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/19/2017] [Accepted: 10/22/2017] [Indexed: 12/24/2022]
Abstract
Rapid changes in environmental osmolarity are a natural aspect of microbial lifestyles. The change in turgor pressure resulting from an osmotic shock alters the mechanical forces within the cell envelope, and can impact cell growth across a range of timescales, through a variety of mechanical mechanisms. Here, we first summarize measurements of turgor pressure in various organisms. We then review how the combination of microfluidic flow cells and quantitative image analysis has driven discovery of the diverse ways in which turgor pressure mechanically regulates bacterial growth, independent of the effect of cytoplasmic crowding. In Gram-positive, rod-shaped bacteria, reductions in turgor pressure cause decreased growth rate. Moreover, a hypoosmotic shock, which increases turgor pressure and membrane tension, leads to transient inhibition of cell-wall growth via electrical depolarization. By contrast, Gram-negative Escherichia coli is remarkably insensitive to changes in turgor. We discuss the extent to which turgor pressure impacts processes such as cell division that alter cell shape, in particular that turgor facilitates millisecond-scale daughter-cell separation in many Actinobacteria and eukaryotic fission yeast. This diverse set of responses showcases the potential for using osmotic shocks to interrogate how mechanical perturbations affect cellular processes.
Collapse
Affiliation(s)
- Enrique R Rojas
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
28
|
Nayyab S, O’Connor M, Brewster J, Gravier J, Jamieson M, Magno E, Miller RD, Phelan D, Roohani K, Williard P, Basu A, Reid CW. Diamide Inhibitors of the Bacillus subtilis N-Acetylglucosaminidase LytG That Exhibit Antibacterial Activity. ACS Infect Dis 2017; 3:421-427. [PMID: 28448118 DOI: 10.1021/acsinfecdis.7b00005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
N-Acetylglucosaminidases (GlcNAcases) play an important role in the remodeling and recycling of bacterial peptidoglycan by degrading the polysaccharide backbone. Genetic deletions of autolysins can impair cell division and growth, suggesting an opportunity for using small molecule autolysin inhibitors both as tools for studying the chemical biology of autolysins and also as antibacterial agents. We report here the synthesis and evaluation of a panel of diamides that inhibit the growth of Bacillus subtilis. Two compounds, fgkc (21) and fgka (5), were found to be potent inhibitors (MIC 3.8 ± 1.0 and 21.3 ± 0.1 μM, respectively). These compounds inhibit the B. subtilis family 73 glycosyl hydrolase LytG, an exo GlcNAcase. Phenotypic analysis of fgkc (21)-treated cells demonstrates a propensity for cells to form linked chains, suggesting impaired cell growth and division.
Collapse
Affiliation(s)
- Saman Nayyab
- Department
of Science and Technology, Bryant University, Smithfield, Rhode Island 02917, United States
| | - Mary O’Connor
- Department of Chemistry, Box H, Brown University, Providence, Rhode Island 02912, United States
| | - Jennifer Brewster
- Department
of Science and Technology, Bryant University, Smithfield, Rhode Island 02917, United States
| | - James Gravier
- Department
of Science and Technology, Bryant University, Smithfield, Rhode Island 02917, United States
| | - Mitchell Jamieson
- Department of Chemistry, Box H, Brown University, Providence, Rhode Island 02912, United States
| | - Ethan Magno
- Department of Chemistry, Box H, Brown University, Providence, Rhode Island 02912, United States
| | - Ryan D. Miller
- Department
of Science and Technology, Bryant University, Smithfield, Rhode Island 02917, United States
| | - Drew Phelan
- Department
of Science and Technology, Bryant University, Smithfield, Rhode Island 02917, United States
| | - Keyana Roohani
- Department
of Science and Technology, Bryant University, Smithfield, Rhode Island 02917, United States
| | - Paul Williard
- Department of Chemistry, Box H, Brown University, Providence, Rhode Island 02912, United States
| | - Amit Basu
- Department of Chemistry, Box H, Brown University, Providence, Rhode Island 02912, United States
| | - Christopher W. Reid
- Department
of Science and Technology, Bryant University, Smithfield, Rhode Island 02917, United States
| |
Collapse
|
29
|
Cell-Biological Studies of Osmotic Shock Response in Streptomyces spp. J Bacteriol 2016; 199:JB.00465-16. [PMID: 27795320 DOI: 10.1128/jb.00465-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/05/2016] [Indexed: 02/03/2023] Open
Abstract
Most bacteria are likely to face osmotic challenges, but there is yet much to learn about how such environmental changes affect the architecture of bacterial cells. Here, we report a cell-biological study in model organisms of the genus Streptomyces, which are actinobacteria that grow in a highly polarized fashion to form branching hyphae. The characteristic apical growth of Streptomyces hyphae is orchestrated by protein assemblies, called polarisomes, which contain coiled-coil proteins DivIVA and Scy, and recruit cell wall synthesis complexes and the stress-bearing cytoskeleton of FilP to the tip regions of the hyphae. We monitored cell growth and cell-architectural changes by time-lapse microscopy in osmotic upshift experiments. Hyperosmotic shock caused arrest of growth, loss of turgor, and hypercondensation of chromosomes. The recovery period was protracted, presumably due to the dehydrated state of the cytoplasm, before hyphae could restore their turgor and start to grow again. In most hyphae, this regrowth did not take place at the original hyphal tips. Instead, cell polarity was reprogrammed, and polarisomes were redistributed to new sites, leading to the emergence of multiple lateral branches from which growth occurred. Factors known to regulate the branching pattern of Streptomyces hyphae, such as the serine/threonine kinase AfsK and Scy, were not involved in reprogramming of cell polarity, indicating that different mechanisms may act under different environmental conditions to control hyphal branching. Our observations of hyphal morphology during the stress response indicate that turgor and sufficient hydration of cytoplasm are required for Streptomyces tip growth. IMPORTANCE Polar growth is an intricate manner of growth for accomplishing a complicated morphology, employed by a wide range of organisms across the kingdoms of life. The tip extension of Streptomyces hyphae is one of the most pronounced examples of polar growth among bacteria. The expansion of the cell wall by tip extension is thought to be facilitated by the turgor pressure, but it was unknown how external osmotic change influences Streptomyces tip growth. We report here that severe hyperosmotic stress causes cessation of growth, followed by reprogramming of cell polarity and rearrangement of growth zones to promote lateral hyphal branching. This phenomenon may represent a strategy of hyphal organisms to avoid osmotic stress encountered by the growing hyphal tip.
Collapse
|
30
|
Ojkic N, López-Garrido J, Pogliano K, Endres RG. Cell-wall remodeling drives engulfment during Bacillus subtilis sporulation. eLife 2016; 5. [PMID: 27852437 PMCID: PMC5158138 DOI: 10.7554/elife.18657] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 11/14/2016] [Indexed: 12/30/2022] Open
Abstract
When starved, the Gram-positive bacterium Bacillus subtilis forms durable spores for survival. Sporulation initiates with an asymmetric cell division, creating a large mother cell and a small forespore. Subsequently, the mother cell membrane engulfs the forespore in a phagocytosis-like process. However, the force generation mechanism for forward membrane movement remains unknown. Here, we show that membrane migration is driven by cell wall remodeling at the leading edge of the engulfing membrane, with peptidoglycan synthesis and degradation mediated by penicillin binding proteins in the forespore and a cell wall degradation protein complex in the mother cell. We propose a simple model for engulfment in which the junction between the septum and the lateral cell wall moves around the forespore by a mechanism resembling the ‘template model’. Hence, we establish a biophysical mechanism for the creation of a force for engulfment based on the coordination between cell wall synthesis and degradation. DOI:http://dx.doi.org/10.7554/eLife.18657.001 Some bacteria, such as Bacillus subtilis, form spores when starved of food, which enables them to lie dormant for years and wait for conditions to improve. To make a spore, the bacterial cell divides to make a larger mother cell and a smaller forespore cell. Then the membrane that surrounds the mother cell moves to surround the forespore and engulf it. For this process to take place, a rigid mesh-like layer called the cell wall, which lies outside the cell membrane, needs to be remodelled. This happens once a partition in the cell wall, called a septum, has formed, separating mother and daughter cells. However, it is not clear how the mother cell can generate the physical force required to engulf the forespore under the cramped conditions imposed by the cell wall. To address this question, Ojkic, López-Garrido et al. used microscopy to investigate how B. subtilis makes spores. The experiments show that, in order to engulf the forespore, the mother cell must produce new cell wall and destroy cell wall that is no longer needed. Running a simple biophysical model on a computer showed that coordinating these two processes could generate enough force for a mother cell to engulf a forespore. Ojkic, López-Garrido et al. propose that the junction between the septum and the cell wall moves around the forespore to make room for the mother cell’s membrane for expansion. Other spore-forming bacteria that threaten human health – such as Clostridium difficile, which causes bowel infections, and Bacillus anthracis, which causes anthrax – might form their spores in the same way, but this remains to be tested. More work will also be needed to understand exactly how bacterial cells coordinate the cell wall synthesis and cell wall degradation. DOI:http://dx.doi.org/10.7554/eLife.18657.002
Collapse
Affiliation(s)
- Nikola Ojkic
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Centre for Integrative Systems Biology and Bioinformatics, Imperial College London, London, United Kingdom
| | - Javier López-Garrido
- Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Kit Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Robert G Endres
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Centre for Integrative Systems Biology and Bioinformatics, Imperial College London, London, United Kingdom
| |
Collapse
|
31
|
Polydiglycosylphosphate Transferase PdtA (SCO2578) of Streptomyces coelicolor A3(2) Is Crucial for Proper Sporulation and Apical Tip Extension under Stress Conditions. Appl Environ Microbiol 2016; 82:5661-72. [PMID: 27422828 DOI: 10.1128/aem.01425-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/06/2016] [Indexed: 01/02/2023] Open
Abstract
UNLABELLED Although anionic glycopolymers are crucial components of the Gram-positive cell envelope, the relevance of anionic glycopolymers for vegetative growth and morphological differentiation of Streptomyces coelicolor A3(2) is unknown. Here, we show that the LytR-CpsA-Psr (LCP) protein PdtA (SCO2578), a TagV-like glycopolymer transferase, has a dual function in the S. coelicolor A3(2) life cycle. Despite the presence of 10 additional LCP homologs, PdtA is crucial for proper sporulation. The integrity of the spore envelope was severely affected in a pdtA deletion mutant, resulting in 34% nonviable spores. pdtA deletion caused a significant reduction in the polydiglycosylphosphate content of the spore envelope. Beyond that, apical tip extension and normal branching of vegetative mycelium were severely impaired on high-salt medium. This growth defect coincided with the mislocalization of peptidoglycan synthesis. Thus, PdtA itself or the polydiglycosylphosphate attached to the peptidoglycan by the glycopolymer transferase PdtA also has a crucial function in apical tip extension of vegetative hyphae under stress conditions. IMPORTANCE Anionic glycopolymers are underappreciated components of the Gram-positive cell envelope. They provide rigidity to the cell wall and position extracellular enzymes involved in peptidoglycan remodeling. Although Streptomyces coelicolor A3(2), the model organism for bacterial antibiotic production, is known to produce two distinct cell wall-linked glycopolymers, teichulosonic acid and polydiglycosylphosphate, the role of these glycopolymers in the S. coelicolor A3(2) life cycle has not been addressed so far. This study reveals a crucial function of the anionic glycopolymer polydiglycosylphosphate for the growth and morphological differentiation of S. coelicolor A3(2). Polydiglycosylphosphate is attached to the spore wall by the LytR-CpsA-Psr protein PdtA (SCO2578), a component of the Streptomyces spore wall-synthesizing complex (SSSC), to ensure the integrity of the spore envelope. Surprisingly, PdtA also has a crucial role in vegetative growth under stress conditions and is required for proper peptidoglycan incorporation during apical tip extension.
Collapse
|
32
|
Lunov O, Zablotskii V, Churpita O, Jäger A, Polívka L, Syková E, Dejneka A, Kubinová Š. The interplay between biological and physical scenarios of bacterial death induced by non-thermal plasma. Biomaterials 2015; 82:71-83. [PMID: 26761777 DOI: 10.1016/j.biomaterials.2015.12.027] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 12/19/2015] [Indexed: 02/06/2023]
Abstract
Direct interactions of plasma matter with living cells and tissues can dramatically affect their functionality, initiating many important effects from cancer elimination to bacteria deactivation. However, the physical mechanisms and biochemical pathways underlying the effects of non-thermal plasma on bacteria and cell fate have still not been fully explored. Here, we report on the molecular mechanisms of non-thermal plasma-induced bacteria inactivation in both Gram-positive and Gram-negative strains. We demonstrate that depending on the exposure time plasma induces either direct physical destruction of bacteria or triggers programmed cell death (PCD) that exhibits characteristic features of apoptosis. The interplay between physical disruption and PCD is on the one hand driven by physical plasma parameters, and on the other hand by biological and physical properties of bacteria. The explored possibilities of the tuneable bacteria deactivation provide a basis for the development of advanced plasma-based therapies. To a great extent, our study opens new possibilities for controlled non-thermal plasma interactions with living systems.
Collapse
Affiliation(s)
- Oleg Lunov
- Institute of Physics AS CR, Prague, Czech Republic.
| | | | | | - Ales Jäger
- Institute of Physics AS CR, Prague, Czech Republic
| | - Leoš Polívka
- Institute of Physics AS CR, Prague, Czech Republic
| | - Eva Syková
- Institute of Experimental Medicine AS CR, Prague, Czech Republic
| | | | - Šárka Kubinová
- Institute of Physics AS CR, Prague, Czech Republic; Institute of Experimental Medicine AS CR, Prague, Czech Republic
| |
Collapse
|
33
|
Mechanics and morphogenesis of fission yeast cells. Curr Opin Microbiol 2015; 28:36-45. [PMID: 26291501 DOI: 10.1016/j.mib.2015.07.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/15/2015] [Accepted: 07/17/2015] [Indexed: 12/11/2022]
Abstract
The integration of biochemical and biomechanical elements is at the heart of morphogenesis. While animal cells are relatively soft objects which shape and mechanics is mostly regulated by cytoskeletal networks, walled cells including those of plants, fungi and bacteria are encased in a rigid cell wall which resist high internal turgor pressure. How these particular mechanical properties may influence basic cellular processes, such as growth, shape and division remains poorly understood. Recent work using the model fungal cell fission yeast, Schizosaccharomyces pombe, highlights important contribution of cell mechanics to various morphogenesis processes. We envision this genetically tractable system to serve as a novel standard for the mechanobiology of walled cell.
Collapse
|
34
|
Self-organised nanoarchitecture of titanium surfaces influences the attachment of Staphylococcus aureus and Pseudomonas aeruginosa bacteria. Appl Microbiol Biotechnol 2015; 99:6831-40. [DOI: 10.1007/s00253-015-6572-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/22/2015] [Accepted: 03/24/2015] [Indexed: 10/23/2022]
|
35
|
Vilsinski BH, Gerola AP, Enumo JA, Campanholi KDSS, Pereira PCDS, Braga G, Hioka N, Kimura E, Tessaro AL, Caetano W. Formulation of Aluminum Chloride Phthalocyanine in Pluronic™P-123 and F-127 Block Copolymer Micelles: Photophysical properties and Photodynamic Inactivation of Microorganisms. Photochem Photobiol 2015; 91:518-25. [DOI: 10.1111/php.12421] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 01/10/2015] [Indexed: 01/11/2023]
Affiliation(s)
| | | | | | | | | | - Gustavo Braga
- Chemistry Department; State University of Maringá; Maringá Paraná Brazil
| | - Noboru Hioka
- Chemistry Department; State University of Maringá; Maringá Paraná Brazil
| | - Elza Kimura
- Department of Pharmacy and Pharmacology; State University of Maringá; Maringá Paraná Brazil
| | - André Luiz Tessaro
- Chemistry Departament; The Federal University of Technology; Maringá Paraná Brazil
| | - Wilker Caetano
- Chemistry Department; State University of Maringá; Maringá Paraná Brazil
| |
Collapse
|
36
|
Vela Gurovic MS, Dello Staffolo M, Montero M, Debbaudt A, Albertengo L, Rodríguez MS. Chitooligosaccharides as novel ingredients of fermented foods. Food Funct 2015; 6:3437-43. [DOI: 10.1039/c5fo00546a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chitooligosaccharides can be added to yoghurt at low concentrations without affecting its nutritional composition and sensory acceptance.
Collapse
Affiliation(s)
- M. S. Vela Gurovic
- INQUISUR-UNS-CONICET
- Departamento de Química
- Universidad Nacional del Sur
- Bahía Blanca
- Argentina
| | | | - M. Montero
- INQUISUR-UNS-CONICET
- Departamento de Química
- Universidad Nacional del Sur
- Bahía Blanca
- Argentina
| | - A. Debbaudt
- INQUISUR-UNS-CONICET
- Departamento de Química
- Universidad Nacional del Sur
- Bahía Blanca
- Argentina
| | - L. Albertengo
- INQUISUR-UNS-CONICET
- Departamento de Química
- Universidad Nacional del Sur
- Bahía Blanca
- Argentina
| | - M. S. Rodríguez
- INQUISUR-UNS-CONICET
- Departamento de Química
- Universidad Nacional del Sur
- Bahía Blanca
- Argentina
| |
Collapse
|
37
|
Ojkic N, López-Garrido J, Pogliano K, Endres RG. Bistable forespore engulfment in Bacillus subtilis by a zipper mechanism in absence of the cell wall. PLoS Comput Biol 2014; 10:e1003912. [PMID: 25356555 PMCID: PMC4214620 DOI: 10.1371/journal.pcbi.1003912] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 09/16/2014] [Indexed: 12/22/2022] Open
Abstract
To survive starvation, the bacterium Bacillus subtilis forms durable spores. The initial step of sporulation is asymmetric cell division, leading to a large mother-cell and a small forespore compartment. After division is completed and the dividing septum is thinned, the mother cell engulfs the forespore in a slow process based on cell-wall degradation and synthesis. However, recently a new cell-wall independent mechanism was shown to significantly contribute, which can even lead to fast engulfment in 60 of the cases when the cell wall is completely removed. In this backup mechanism, strong ligand-receptor binding between mother-cell protein SpoIIIAH and forespore-protein SpoIIQ leads to zipper-like engulfment, but quantitative understanding is missing. In our work, we combined fluorescence image analysis and stochastic Langevin simulations of the fluctuating membrane to investigate the origin of fast bistable engulfment in absence of the cell wall. Our cell morphologies compare favorably with experimental time-lapse microscopy, with engulfment sensitive to the number of SpoIIQ-SpoIIIAH bonds in a threshold-like manner. By systematic exploration of model parameters, we predict regions of osmotic pressure and membrane-surface tension that produce successful engulfment. Indeed, decreasing the medium osmolarity in experiments prevents engulfment in line with our predictions. Forespore engulfment may thus not only be an ideal model system to study decision-making in single cells, but its biophysical principles are likely applicable to engulfment in other cell types, e.g. during phagocytosis in eukaryotes. When the bacterium B. subtilis runs out of food, it undergoes a fundamental development process by which it forms durable spores. Sporulation is initiated by asymmetric cell division after which the larger mother cell engulfs the smaller forespore, followed by spore maturation and release. This survival strategy is so robust that engulfment even proceeds when cells are deprived of their protective cell wall. Under these severe perturbations, 60 of the mother cells still engulf their forespores in only 10 of the normal engulfment time, while the remaining 40 of mother cells withdraw from engulfment. This all-or-none outcome of engulfment suggests decision-making, which was recently also identified in other types of engulfment, e.g. during phagocytosis when immune cells engulf and destroy pathogens. Here, we developed a biophysical model to explain fast bistable forespore engulfment in absence of the cell wall and energy sources. Our discovered principles may prove very general, thus predicting key ingredients of successful engulfment across all kingdoms of life.
Collapse
Affiliation(s)
- Nikola Ojkic
- Department of Life Sciences, Imperial College, London, United Kingdom
- Centre for Integrative Systems Biology and Bioinformatics, Imperial College, London, United Kingdom
- * E-mail:
| | - Javier López-Garrido
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Kit Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Robert G. Endres
- Department of Life Sciences, Imperial College, London, United Kingdom
- Centre for Integrative Systems Biology and Bioinformatics, Imperial College, London, United Kingdom
| |
Collapse
|
38
|
Abstract
The rod is a ubiquitous shape adopted by walled cells from diverse organisms ranging from bacteria to fungi to plants. Although rod-like shapes are found in cells of vastly different sizes and are constructed by diverse mechanisms, the geometric similarities among these shapes across kingdoms suggest that there are common evolutionary advantages, which may result from simple physical principles in combination with chemical and physiological constraints. Here, we review mechanisms of constructing rod-shaped cells and the bases of different biophysical models of morphogenesis, comparing and contrasting model organisms in different kingdoms. We then speculate on possible advantages of the rod shape, and suggest strategies for elucidating the relative importance of each of these advantages.
Collapse
|
39
|
Sun X, Weinlandt WD, Patel H, Wu M, Hernandez CJ. A microfluidic platform for profiling biomechanical properties of bacteria. LAB ON A CHIP 2014; 14:2491-8. [PMID: 24855656 PMCID: PMC4104068 DOI: 10.1039/c3lc51428e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The ability to resist mechanical forces is necessary for the survival and division of bacteria and has traditionally been probed using specialized, low-throughput techniques such as atomic force microscopy and optical tweezers. Here we demonstrate a microfluidic technique to profile the stiffness of individual bacteria and populations of bacteria. The approach is similar to micropipette aspiration used to characterize the biomechanical performance of eukaryotic cells. However, the small size and greater stiffness of bacteria relative to eukaryotic cells prevents the use of micropipettes. Here we present devices with sub-micron features capable of applying loads to bacteria in a controlled fashion. Inside the device, individual bacteria are flowed and trapped in tapered channels. Less stiff bacteria undergo greater deformation and therefore travel further into the tapered channel. Hence, the distance traversed by bacteria into a tapered channel is inversely related to cell stiffness. We demonstrate the ability of the device to characterize hundreds of bacteria at a time, measuring stiffness at 12 different applied loads at a time. The device is shown to differentiate between two bacterial species, E. coli (less stiff) and B. subtilis (more stiff), and detect differences between E. coli submitted to antibiotic treatment from untreated cells of the same species/strain. The microfluidic device is advantageous in that it requires only minimal sample preparation, no permanent cell immobilization, no staining/labeling and maintains cell viability. Our device adds detection of biomechanical phenotypes of bacteria to the list of other bacterial phenotypes currently detectable using microchip-based methods and suggests the feasibility of separating/selecting bacteria based on differences in cell stiffness.
Collapse
Affiliation(s)
- Xuanhao Sun
- Sibley School of Mechanical and Aerospace Engineering, Biomedical Engineering, Cornell University, 219 Upson Hall, Ithaca, NY 14853, USA.
| | | | | | | | | |
Collapse
|
40
|
Symmetry breaking in spore germination relies on an interplay between polar cap stability and spore wall mechanics. Dev Cell 2014; 28:534-46. [PMID: 24636258 DOI: 10.1016/j.devcel.2014.01.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 01/06/2014] [Accepted: 01/23/2014] [Indexed: 11/23/2022]
Abstract
The morphogenesis of single cells depends on their ability to coordinate surface mechanics and polarity. During germination, spores of many species develop a polar tube that hatches out of a rigid outer spore wall (OSW) in a process termed outgrowth. However, how these awakening cells reorganize to stabilize this first growth axis remains unknown. Here, using quantitative experiments and modeling, we reveal the mechanisms underlying outgrowth in fission yeast. We find that, following an isotropic growth phase during which a single polarity cap wanders around the surface, outgrowth occurs when spores have doubled their volume, concomitantly with the stabilization of the cap and a singular rupture in the OSW. This rupture happens when OSW mechanical stress exceeds a threshold, releases the constraints of the OSW on growth, and stabilizes polarity. Thus, outgrowth exemplifies a self-organizing morphogenetic process in which reinforcements between growth and polarity coordinate mechanics and internal organization.
Collapse
|
41
|
Abstract
It has long been proposed that turgor pressure plays an essential role during bacterial growth by driving mechanical expansion of the cell wall. This hypothesis is based on analogy to plant cells, for which this mechanism has been established, and on experiments in which the growth rate of bacterial cultures was observed to decrease as the osmolarity of the growth medium was increased. To distinguish the effect of turgor pressure from pressure-independent effects that osmolarity might have on cell growth, we monitored the elongation of single Escherichia coli cells while rapidly changing the osmolarity of their media. By plasmolyzing cells, we found that cell-wall elastic strain did not scale with growth rate, suggesting that pressure does not drive cell-wall expansion. Furthermore, in response to hyper- and hypoosmotic shock, E. coli cells resumed their preshock growth rate and relaxed to their steady-state rate after several minutes, demonstrating that osmolarity modulates growth rate slowly, independently of pressure. Oscillatory hyperosmotic shock revealed that although plasmolysis slowed cell elongation, the cells nevertheless "stored" growth such that once turgor was reestablished the cells elongated to the length that they would have attained had they never been plasmolyzed. Finally, MreB dynamics were unaffected by osmotic shock. These results reveal the simple nature of E. coli cell-wall expansion: that the rate of expansion is determined by the rate of peptidoglycan insertion and insertion is not directly dependent on turgor pressure, but that pressure does play a basic role whereby it enables full extension of recently inserted peptidoglycan.
Collapse
|
42
|
Amir A, van Teeffelen S. Getting into shape: How do rod-like bacteria control their geometry? SYSTEMS AND SYNTHETIC BIOLOGY 2014; 8:227-35. [PMID: 25136385 DOI: 10.1007/s11693-014-9143-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 11/29/2022]
Abstract
Rod-like bacteria maintain their cylindrical shapes with remarkable precision during growth. However, they are also capable to adapt their shapes to external forces and constraints, for example by growing into narrow or curved confinements. Despite being one of the simplest morphologies, we are still far from a full understanding of how shape is robustly regulated, and how bacteria obtain their near-perfect cylindrical shapes with excellent precision. However, recent experimental and theoretical findings suggest that cell-wall geometry and mechanical stress play important roles in regulating cell shape in rod-like bacteria. We review our current understanding of the cell wall architecture and the growth dynamics, and discuss possible candidates for regulatory cues of shape regulation in the absence or presence of external constraints. Finally, we suggest further future experimental and theoretical directions which may help to shed light on this fundamental problem.
Collapse
Affiliation(s)
- Ariel Amir
- Department of Physics, Harvard University, Cambridge, MA 02138 USA
| | - Sven van Teeffelen
- Groupe Croissance et Morphogénése Microbienne, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
43
|
Ursell TS, Nguyen J, Monds RD, Colavin A, Billings G, Ouzounov N, Gitai Z, Shaevitz JW, Huang KC. Rod-like bacterial shape is maintained by feedback between cell curvature and cytoskeletal localization. Proc Natl Acad Sci U S A 2014; 111:E1025-34. [PMID: 24550515 PMCID: PMC3964057 DOI: 10.1073/pnas.1317174111] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cells typically maintain characteristic shapes, but the mechanisms of self-organization for robust morphological maintenance remain unclear in most systems. Precise regulation of rod-like shape in Escherichia coli cells requires the MreB actin-like cytoskeleton, but the mechanism by which MreB maintains rod-like shape is unknown. Here, we use time-lapse and 3D imaging coupled with computational analysis to map the growth, geometry, and cytoskeletal organization of single bacterial cells at subcellular resolution. Our results demonstrate that feedback between cell geometry and MreB localization maintains rod-like cell shape by targeting cell wall growth to regions of negative cell wall curvature. Pulse-chase labeling indicates that growth is heterogeneous and correlates spatially and temporally with MreB localization, whereas MreB inhibition results in more homogeneous growth, including growth in polar regions previously thought to be inert. Biophysical simulations establish that curvature feedback on the localization of cell wall growth is an effective mechanism for cell straightening and suggest that surface deformations caused by cell wall insertion could direct circumferential motion of MreB. Our work shows that MreB orchestrates persistent, heterogeneous growth at the subcellular scale, enabling robust, uniform growth at the cellular scale without requiring global organization.
Collapse
Affiliation(s)
- Tristan S. Ursell
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | - Jeffrey Nguyen
- Department of Physics, Princeton University, Princeton, NJ 08544
| | - Russell D. Monds
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | | | | | - Nikolay Ouzounov
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Joshua W. Shaevitz
- Department of Physics, Princeton University, Princeton, NJ 08544
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544; and
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA 94305
- Biophysics Program, Stanford University, Stanford, CA 94305
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
44
|
Model of fission yeast cell shape driven by membrane-bound growth factors and the cytoskeleton. PLoS Comput Biol 2013; 9:e1003287. [PMID: 24146607 PMCID: PMC3798282 DOI: 10.1371/journal.pcbi.1003287] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 09/02/2013] [Indexed: 11/19/2022] Open
Abstract
Fission yeast serves as a model for how cellular polarization machinery consisting of signaling molecules and the actin and microtubule cytoskeleton regulates cell shape. In this work, we develop mathematical models to investigate how these cells maintain a tubular shape of approximately constant diameter. Many studies identify active Cdc42, found in a cap at the inner membrane of growing cell tips, as an important regulator of local cell wall remodeling, likely through control of exocyst tethering and the targeting of other polarity-enhancing structures. First, we show that a computational model with Cdc42-dependent local cell wall remodeling under turgor pressure predicts a relationship between spatial extent of growth signal and cell diameter that is in agreement with prior experiments. Second, we model the consequences of feedback between cell shape and distribution of Cdc42 growth signal at cell tips. We show that stability of cell diameter over successive cell divisions places restrictions on their mutual dependence. We argue that simple models where the spatial extent of the tip growth signal relies solely on geometrical alignment of confined microtubules might lead to unstable width regulation. Third, we study a computational model that combines a growth signal distributed over a characteristic length scale (as, for example, by a reaction-diffusion mechanism) with an axis-sensing microtubules system that places landmarks at positions where microtubule tips touch the cortex. A two-dimensional implementation of this model leads to stable cell diameter for a wide range of parameters. Changes to the parameters of this model reproduce straight, bent, and bulged cell shapes, and we discuss how this model is consistent with other observed cell shapes in mutants. Our work provides an initial quantitative framework for understanding the regulation of cell shape in fission yeast, and a scaffold for understanding this process on a more molecular level in the future. Fission yeast is a rod-shaped organism that is studied, in part, as a model for how cells develop and regulate their shape. Despite extensive work identifying effects of genetic mutations and pharmacological treatments on the shape of these cells, there is a lack of mathematical and computational models examining how internal cell signals and the cytoskeleton organize to remodel the cell wall, direct growth at cell tips, and maintain tubular shape. In this work we describe how the spatial distribution of regulatory protein signal at growing cell tips relates to cell diameter. Further, we describe the consequences of this signal depending on the shape of the cell, namely its length and diameter. Finally, we propose a computational model for understanding growth and shape that includes an axis-sensing microtubule system, landmarks delivered to cell tips along those microtubules, and a growth zone signal that moves around but is attracted to the landmarks. This picture explains a large number of reported abnormal shapes in terms of only a few modular components.
Collapse
|
45
|
Lee TK, Huang KC. The role of hydrolases in bacterial cell-wall growth. Curr Opin Microbiol 2013; 16:760-6. [PMID: 24035761 DOI: 10.1016/j.mib.2013.08.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 08/18/2013] [Indexed: 01/18/2023]
Abstract
Although hydrolysis is known to be as important as synthesis in the growth and development of the bacterial cell wall, the coupling between these processes is not well understood. Bond cleavage can generate deleterious pores, but may also be required for the incorporation of new material and for the expansion of the wall, highlighting the importance of mechanical forces in interpreting the consequences of hydrolysis in models of growth. Critically, minimal essential subsets of hydrolases have now been identified in several model organisms, enabling the reduction of genetic complexity. Recent studies in Bacillus subtilis have provided evidence for both the presence and absence of coupling between synthesis and hydrolysis during sporulation and elongation, respectively. In this review, we discuss strategies for dissecting the relationship between synthesis and hydrolysis using time-lapse imaging, biophysical measurements of cell-wall architecture, and computational modeling.
Collapse
Affiliation(s)
- Timothy K Lee
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
46
|
Shaevitz JW. Combining modeling and experiment to understand bacterial growth. Biophys J 2013; 104:2573. [PMID: 23790364 DOI: 10.1016/j.bpj.2013.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 05/01/2013] [Indexed: 11/26/2022] Open
Affiliation(s)
- Joshua W Shaevitz
- Department of Physics and the Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA.
| |
Collapse
|