1
|
Billings KR, Faramarzi S, Mertz B. Long-Time Scale Simulations Reveal Key Dynamics That Drive the Onset of the N State in the Proteorhodopsin Photocycle. J Phys Chem B 2024; 128:10427-10433. [PMID: 39387601 PMCID: PMC11514016 DOI: 10.1021/acs.jpcb.4c02855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
Proteorhodopsin (PR) is a microbial proton pump that plays a significant role in phototrophy of bacteria in marine environments. Fundamental understanding of the structure-function relationship that drives proton pumping in PR has largely been elusive due to a lack of high-resolution structures of the photointermediates in the PR photocycle. Extending upon previous work, we used long-time scale molecular dynamics (MD) simulations to characterize the M state of the blue variant of PR, which represents the first proton transfer that takes place in the photocycle. Several notable structural changes occur in the M state that are hallmarks of subsequent steps in the PR photocycle, indicating that although this protein is often compared to the canonical microbial rhodopsins, such as bacteriorhodopsin, PR possesses characteristics that make it distinct among the rapidly increasing and widely variable catalog of microbial rhodopsins.
Collapse
Affiliation(s)
- Kyle R. Billings
- Food
and Drug Administration, Frederick, Maryland 21701, United States
| | - Sadegh Faramarzi
- Food
and Drug Administration, Frederick, Maryland 21701, United States
| | - Blake Mertz
- C.
Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
- Alivexis, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
2
|
Mao J, Jin X, Shi M, Heidenreich D, Brown LJ, Brown RCD, Lelli M, He X, Glaubitz C. Molecular mechanisms and evolutionary robustness of a color switch in proteorhodopsins. SCIENCE ADVANCES 2024; 10:eadj0384. [PMID: 38266078 PMCID: PMC10807816 DOI: 10.1126/sciadv.adj0384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
Proteorhodopsins are widely distributed photoreceptors from marine bacteria. Their discovery revealed a high degree of evolutionary adaptation to ambient light, resulting in blue- and green-absorbing variants that correlate with a conserved glutamine/leucine at position 105. On the basis of an integrated approach combining sensitivity-enhanced solid-state nuclear magnetic resonance (ssNMR) spectroscopy and linear-scaling quantum mechanics/molecular mechanics (QM/MM) methods, this single residue is shown to be responsible for a variety of synergistically coupled structural and electrostatic changes along the retinal polyene chain, ionone ring, and within the binding pocket. They collectively explain the observed color shift. Furthermore, analysis of the differences in chemical shift between nuclei within the same residues in green and blue proteorhodopsins also reveals a correlation with the respective degree of conservation. Our data show that the highly conserved color change mainly affects other highly conserved residues, illustrating a high degree of robustness of the color phenotype to sequence variation.
Collapse
Affiliation(s)
- Jiafei Mao
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max von Laue Straße 9, 60438 Frankfurt am Main, Germany
| | - Xinsheng Jin
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Man Shi
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - David Heidenreich
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max von Laue Straße 9, 60438 Frankfurt am Main, Germany
| | - Lynda J. Brown
- Department of Chemistry, University of Southampton, Southampton, SO17 1BJ UK
| | - Richard C. D. Brown
- Department of Chemistry, University of Southampton, Southampton, SO17 1BJ UK
| | - Moreno Lelli
- Department of Chemistry “Ugo Schiff” and Magnetic Resonance Center (CERM), University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Italy
- Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Italy
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- New York University–East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai, 200062, China
| | - Clemens Glaubitz
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max von Laue Straße 9, 60438 Frankfurt am Main, Germany
| |
Collapse
|
3
|
Chow WY, De Paëpe G, Hediger S. Biomolecular and Biological Applications of Solid-State NMR with Dynamic Nuclear Polarization Enhancement. Chem Rev 2022; 122:9795-9847. [PMID: 35446555 DOI: 10.1021/acs.chemrev.1c01043] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Solid-state NMR spectroscopy (ssNMR) with magic-angle spinning (MAS) enables the investigation of biological systems within their native context, such as lipid membranes, viral capsid assemblies, and cells. However, such ambitious investigations often suffer from low sensitivity due to the presence of significant amounts of other molecular species, which reduces the effective concentration of the biomolecule or interaction of interest. Certain investigations requiring the detection of very low concentration species remain unfeasible even with increasing experimental time for signal averaging. By applying dynamic nuclear polarization (DNP) to overcome the sensitivity challenge, the experimental time required can be reduced by orders of magnitude, broadening the feasible scope of applications for biological solid-state NMR. In this review, we outline strategies commonly adopted for biological applications of DNP, indicate ongoing challenges, and present a comprehensive overview of biological investigations where MAS-DNP has led to unique insights.
Collapse
Affiliation(s)
- Wing Ying Chow
- Univ. Grenoble Alpes, CEA, CNRS, Interdisciplinary Research Institute of Grenoble (IRIG), Modeling and Exploration of Materials Laboratory (MEM), 38054 Grenoble, France.,Univ. Grenoble Alpes, CEA, CNRS, Inst. Biol. Struct. IBS, 38044 Grenoble, France
| | - Gaël De Paëpe
- Univ. Grenoble Alpes, CEA, CNRS, Interdisciplinary Research Institute of Grenoble (IRIG), Modeling and Exploration of Materials Laboratory (MEM), 38054 Grenoble, France
| | - Sabine Hediger
- Univ. Grenoble Alpes, CEA, CNRS, Interdisciplinary Research Institute of Grenoble (IRIG), Modeling and Exploration of Materials Laboratory (MEM), 38054 Grenoble, France
| |
Collapse
|
4
|
Biedenbänder T, Aladin V, Saeidpour S, Corzilius B. Dynamic Nuclear Polarization for Sensitivity Enhancement in Biomolecular Solid-State NMR. Chem Rev 2022; 122:9738-9794. [PMID: 35099939 DOI: 10.1021/acs.chemrev.1c00776] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Solid-state NMR with magic-angle spinning (MAS) is an important method in structural biology. While NMR can provide invaluable information about local geometry on an atomic scale even for large biomolecular assemblies lacking long-range order, it is often limited by low sensitivity due to small nuclear spin polarization in thermal equilibrium. Dynamic nuclear polarization (DNP) has evolved during the last decades to become a powerful method capable of increasing this sensitivity by two to three orders of magnitude, thereby reducing the valuable experimental time from weeks or months to just hours or days; in many cases, this allows experiments that would be otherwise completely unfeasible. In this review, we give an overview of the developments that have opened the field for DNP-enhanced biomolecular solid-state NMR including state-of-the-art applications at fast MAS and high magnetic field. We present DNP mechanisms, polarizing agents, and sample constitution methods suitable for biomolecules. A wide field of biomolecular NMR applications is covered including membrane proteins, amyloid fibrils, large biomolecular assemblies, and biomaterials. Finally, we present perspectives and recent developments that may shape the field of biomolecular DNP in the future.
Collapse
Affiliation(s)
- Thomas Biedenbänder
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Victoria Aladin
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Siavash Saeidpour
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Björn Corzilius
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| |
Collapse
|
5
|
Hirschi S, Kalbermatter D, Ucurum Z, Lemmin T, Fotiadis D. Cryo-EM structure and dynamics of the green-light absorbing proteorhodopsin. Nat Commun 2021; 12:4107. [PMID: 34226545 PMCID: PMC8257665 DOI: 10.1038/s41467-021-24429-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
The green-light absorbing proteorhodopsin (GPR) is the archetype of bacterial light-driven proton pumps. Here, we present the 2.9 Å cryo-EM structure of pentameric GPR, resolving important residues of the proton translocation pathway and the oligomerization interface. Superposition with the structure of a close GPR homolog and molecular dynamics simulations reveal conformational variations, which regulate the solvent access to the intra- and extracellular half channels harbouring the primary proton donor E109 and the proposed proton release group E143. We provide a mechanism for the structural rearrangements allowing hydration of the intracellular half channel, which are triggered by changing the protonation state of E109. Functional characterization of selected mutants demonstrates the importance of the molecular organization around E109 and E143 for GPR activity. Furthermore, we present evidence that helices involved in the stabilization of the protomer interfaces serve as scaffolds for facilitating the motion of the other helices. Combined with the more constrained dynamics of the pentamer compared to the monomer, these observations illustrate the previously demonstrated functional significance of GPR oligomerization. Overall, this work provides molecular insights into the structure, dynamics and function of the proteorhodopsin family that will benefit the large scientific community employing GPR as a model protein.
Collapse
Affiliation(s)
- Stephan Hirschi
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - David Kalbermatter
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Zöhre Ucurum
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Thomas Lemmin
- DS3Lab, System Group, Department of Computer Sciences, ETH Zurich, Zürich, Switzerland.
- Trkola Group, Institute of Medical Virology, University of Zurich, Zürich, Switzerland.
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.
| |
Collapse
|
6
|
Han CT, Song J, Chan T, Pruett C, Han S. Electrostatic Environment of Proteorhodopsin Affects the pKa of Its Buried Primary Proton Acceptor. Biophys J 2020; 118:1838-1849. [PMID: 32197061 DOI: 10.1016/j.bpj.2020.02.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/27/2020] [Accepted: 02/27/2020] [Indexed: 01/18/2023] Open
Abstract
The protonation state of embedded charged residues in transmembrane proteins (TMPs) can control the onset of protein function. It is understood that interactions between an embedded charged residue and other charged or polar residues in the moiety would influence its pKa, but how the surrounding environment in which the TMP resides affects the pKa of these residues is unclear. Proteorhodopsin (PR), a light-responsive proton pump from marine bacteria, was used as a model to examine externally accessible factors that tune the pKa of its embedded charged residue, specifically its primary proton acceptor D97. The pKa of D97 was compared between PR reconstituted in liposomes with different net headgroup charges and equilibrated in buffer with different ion concentrations. For PR reconstituted in net positively charged compared to net negatively charged liposomes in low-salt buffer solutions, a drop of the apparent pKa from 7.6 to 5.6 was observed, whereas intrinsic pKa modeled with surface pH calculated from Gouy-Chapman predictions found an opposite trend for the pKa change, suggesting that surface pH does not account for the main changes observed in the apparent pKa. This difference in the pKa of D97 observed from PR reconstituted in oppositely charged liposome environments disappeared when the NaCl concentration was increased to 150 mM. We suggest that protein-intrinsic structural properties must play a role in adjusting the local microenvironment around D97 to affect its pKa, as corroborated with observations of changes in protein side-chain and hydration dynamics around the E-F loop of PR. Understanding the effect of externally controllable factors in tuning the pKa of TMP-embedded charged residues is important for bioengineering and biomedical applications relying on TMP systems, in which the onset of functions can be controlled by the protonation state of embedded residues.
Collapse
Affiliation(s)
- Chung-Ta Han
- Department of Chemical Engineering, University of California, Santa Barbara, California
| | - Jichao Song
- Department of Chemical Engineering, University of California, Santa Barbara, California
| | - Tristan Chan
- Department of Chemistry, University of California, Santa Barbara, California
| | - Christine Pruett
- Department of Chemical Engineering, University of California, Santa Barbara, California
| | - Songi Han
- Department of Chemical Engineering, University of California, Santa Barbara, California; Department of Chemistry, University of California, Santa Barbara, California.
| |
Collapse
|
7
|
A distinct lineage of giant viruses brings a rhodopsin photosystem to unicellular marine predators. Proc Natl Acad Sci U S A 2019; 116:20574-20583. [PMID: 31548428 PMCID: PMC6789865 DOI: 10.1073/pnas.1907517116] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Giant viruses are remarkable for their large genomes, often rivaling those of small bacteria, and for having genes thought exclusive to cellular life. Most isolated to date infect nonmarine protists, leaving their strategies and prevalence in marine environments largely unknown. Using eukaryotic single-cell metagenomics in the Pacific, we discovered a Mimiviridae lineage of giant viruses, which infects choanoflagellates, widespread protistan predators related to metazoans. The ChoanoVirus genomes are the largest yet from pelagic ecosystems, with 442 of 862 predicted proteins lacking known homologs. They are enriched in enzymes for modifying organic compounds, including degradation of chitin, an abundant polysaccharide in oceans, and they encode 3 divergent type-1 rhodopsins (VirR) with distinct evolutionary histories from those that capture sunlight in cellular organisms. One (VirRDTS) is similar to the only other putative rhodopsin from a virus (PgV) with a known host (a marine alga). Unlike the algal virus, ChoanoViruses encode the entire pigment biosynthesis pathway and cleavage enzyme for producing the required chromophore, retinal. We demonstrate that the rhodopsin shared by ChoanoViruses and PgV binds retinal and pumps protons. Moreover, our 1.65-Å resolved VirRDTS crystal structure and mutational analyses exposed differences from previously characterized type-1 rhodopsins, all of which come from cellular organisms. Multiple VirR types are present in metagenomes from across surface oceans, where they are correlated with and nearly as abundant as a canonical marker gene from Mimiviridae Our findings indicate that light-dependent energy transfer systems are likely common components of giant viruses of photosynthetic and phagotrophic unicellular marine eukaryotes.
Collapse
|
8
|
Hontani Y, Ganapathy S, Frehan S, Kloz M, de Grip WJ, Kennis JTM. Photoreaction Dynamics of Red-Shifting Retinal Analogues Reconstituted in Proteorhodopsin. J Phys Chem B 2019; 123:4242-4250. [PMID: 30998011 PMCID: PMC6526469 DOI: 10.1021/acs.jpcb.9b01136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Microbial rhodopsins
constitute a key protein family in optobiotechnological
applications such as optogenetics and voltage imaging. Spectral tuning
of rhodopsins into the deep-red and near-infrared spectral regions
is of great demand in such applications because more bathochromic
light into the near-infrared range penetrates deeper in living tissue.
Recently, retinal analogues have been successfully used in ion transporting
and fluorescent rhodopsins to achieve red-shifted absorption, activity,
and emission properties. Understanding their photochemical mechanism
is essential for further design of appropriate retinal analogues but
is yet only poorly understood for most retinal analogue pigments.
Here, we report the photoreaction dynamics of red-shifted analogue
pigments of the proton pump proteorhodopsin (PR) containing A2 (all-trans-3,4-dehydroretinal), MOA2 (all-trans-3-methoxy-3,4-dehydroretinal), or DMAR (all-trans-3-dimethylamino-16-nor-1,2,3,4-didehydroretinal), utilizing femto-
to submillisecond transient absorption spectroscopy. We found that
the A2 analogue photoisomerizes in 1.4, 3.0, and/or 13 ps upon 510
nm light illumination, which is comparable to the native retinal (A1)
in PR. On the other hand, the deprotonation of the A2 pigment Schiff
base was observed with a dominant time constant of 67 μs, which
is significantly slower than the A1 pigment. In the MOA2 pigment,
no isomerization or photoproduct formation was detected upon 520 nm
excitation, implying that all the excited molecules returned to the
initial ground state in 2.0 and 4.2 ps. The DMAR pigment showed very
slow excited state dynamics similar to the previously studied MMAR
pigment, but only very little photoproduct was formed. The low efficiency
of the photoproduct formation likely is the reason why DMAR analogue
pigments of PR showed very weak proton pumping activity.
Collapse
Affiliation(s)
- Yusaku Hontani
- Department of Physics and Astronomy , Vrije Universiteit , Amsterdam 1081 HV , The Netherlands
| | - Srividya Ganapathy
- Department of Biophysical Organic Chemistry, Leiden Institute of Chemistry, Gorlaeus Laboratories , Leiden University , Leiden 2300 RA , The Netherlands
| | - Sean Frehan
- Department of Physics and Astronomy , Vrije Universiteit , Amsterdam 1081 HV , The Netherlands
| | - Miroslav Kloz
- ELI-Beamlines , Institute of Physics , Na Slovance 2 , Praha 8 182 21 , Czech Republic
| | - Willem J de Grip
- Department of Biophysical Organic Chemistry, Leiden Institute of Chemistry, Gorlaeus Laboratories , Leiden University , Leiden 2300 RA , The Netherlands.,Department of Biochemistry , Radboud University Medical Center , Nijmegen 6500 HB , The Netherlands
| | - John T M Kennis
- Department of Physics and Astronomy , Vrije Universiteit , Amsterdam 1081 HV , The Netherlands
| |
Collapse
|
9
|
Global response of diacylglycerol kinase towards substrate binding observed by 2D and 3D MAS NMR. Sci Rep 2019; 9:3995. [PMID: 30850624 PMCID: PMC6408475 DOI: 10.1038/s41598-019-40264-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/11/2019] [Indexed: 01/01/2023] Open
Abstract
Escherichia coli diacylglycerol kinase (DGK) is an integral membrane protein, which catalyses the ATP-dependent phosphorylation of diacylglycerol (DAG) to phosphatic acid (PA). It is a unique trimeric enzyme, which does not share sequence homology with typical kinases. It exhibits a notable complexity in structure and function despite of its small size. Here, chemical shift assignment of wild-type DGK within lipid bilayers was carried out based on 3D MAS NMR, utilizing manual and automatic analysis protocols. Upon nucleotide binding, extensive chemical shift perturbations could be observed. These data provide evidence for a symmetric DGK trimer with all of its three active sites concurrently occupied. Additionally, we could detect that the nucleotide substrate induces a substantial conformational change, most likely directing DGK into its catalytic active form. Furthermore, functionally relevant interprotomer interactions are identified by DNP-enhanced MAS NMR in combination with site-directed mutagenesis and functional assays.
Collapse
|
10
|
Munro RA, de Vlugt J, Ward ME, Kim SY, Lee KA, Jung KH, Ladizhansky V, Brown LS. Biosynthetic production of fully carbon-13 labeled retinal in E. coli for structural and functional studies of rhodopsins. JOURNAL OF BIOMOLECULAR NMR 2019; 73:49-58. [PMID: 30719609 DOI: 10.1007/s10858-019-00225-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
The isomerization of a covalently bound retinal is an integral part of both microbial and animal rhodopsin function. As such, detailed structure and conformational changes in the retinal binding pocket are of significant interest and are studied in various NMR, FTIR, and Raman spectroscopy experiments, which commonly require isotopic labeling of retinal. Unfortunately, the de novo organic synthesis of an isotopically-labeled retinal is complex and often cost-prohibitive, especially for large scale expression required for solid-state NMR. We present the novel protocol for biosynthetic production of an isotopically labeled retinal ligand concurrently with an apoprotein in E. coli as a cost-effective alternative to the de novo organic synthesis. Previously, the biosynthesis of a retinal precursor, β-carotene, has been introduced into many different organisms. We extended this system to the prototrophic E. coli expression strain BL21 in conjunction with the inducible expression of a β-dioxygenase and proteo-opsin. To demonstrate the applicability of this system, we were able to assign several new carbon resonances for proteorhodopsin-bound retinal by using fully 13C-labeled glucose as the sole carbon source. Furthermore, we demonstrated that this biosynthetically produced retinal can be extracted from E. coli cells by applying a hydrophobic solvent layer to the growth medium and reconstituted into an externally produced opsin of any desired labeling pattern.
Collapse
Affiliation(s)
- Rachel A Munro
- Departments of Physics, and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Jeffrey de Vlugt
- Departments of Physics, and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Meaghan E Ward
- Departments of Physics, and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - So Young Kim
- Deptartment of Life Science, Institute of Biological Interfaces, Sogang University, Shinsu-Dong 1, Mapo-Gu, Seoul, 121-742, Republic of Korea
- Division of Biotechnology, College of Environmental & Bioresource Sciences, Chonbuk National University, Jeonju, Republic of Korea
| | - Keon Ah Lee
- Deptartment of Life Science, Institute of Biological Interfaces, Sogang University, Shinsu-Dong 1, Mapo-Gu, Seoul, 121-742, Republic of Korea
| | - Kwang-Hwan Jung
- Deptartment of Life Science, Institute of Biological Interfaces, Sogang University, Shinsu-Dong 1, Mapo-Gu, Seoul, 121-742, Republic of Korea
| | - Vladimir Ladizhansky
- Departments of Physics, and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Leonid S Brown
- Departments of Physics, and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
11
|
Geng X, Dai G, Chao L, Wen D, Kikukawa T, Iwasa T. Two Consecutive Polar Amino Acids at the End of Helix E are Important for Fast Turnover of the Archaerhodopsin Photocycle. Photochem Photobiol 2018; 95:980-989. [PMID: 30548616 DOI: 10.1111/php.13072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/09/2018] [Indexed: 11/27/2022]
Abstract
Archaerhodopsins (ARs) is one of the members of microbial rhodopsins. Threonine 164 (T164) and serine 165 (S165) residues of the AR from Halorubrum sp. ejinoor (HeAR) are fully conserved in ARs, although they are far from the proton transfer channel and the retinal Schiff base, and are likely involved in a hydrogen-bonding network at the end of the Helix E where most microbial rhodopsins assume a "bent structure". In the present work, T164 and/or S165 were replaced with an alanine (A), and the photocycles of the mutants were analyzed with flash photolysis. The amino acid replacements caused profound changes to the photocycle of HeAR including prolonged photocycle, accelerated decay of M intermediate and appearance of additional two intermediates which were evident in T164A- and T164A/S165A-HeAR photocyles. These results suggest that although T164 and S165 are located at the far end of the photoactive center, these two amino acid residues are important for maintaining the fast turnover of the HeAR photocycle. The underlying molecular mechanisms are discussed in relation to hydrogen-bonding networks involving these two amino acids. Present study may arouse our interests to explore the functional role of the well-conserved "bent structure" in different types of microbial rhodopsin.
Collapse
Affiliation(s)
- Xiong Geng
- Division of Engineering, Muroran Institute of Technology, Muroran, Japan
| | - Gang Dai
- College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot, China
| | - Luomeng Chao
- College of Animal Science and Technology, Inner Mongolia University for The Nationalities, Tong Liao, China
| | - Durige Wen
- Division of Engineering, Muroran Institute of Technology, Muroran, Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Tatsuo Iwasa
- Division of Engineering, Muroran Institute of Technology, Muroran, Japan
| |
Collapse
|
12
|
Faramarzi S, Feng J, Mertz B. Allosteric Effects of the Proton Donor on the Microbial Proton Pump Proteorhodopsin. Biophys J 2018; 115:1240-1250. [PMID: 30219284 DOI: 10.1016/j.bpj.2018.08.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 11/17/2022] Open
Abstract
Proteorhodopsin (PR) is a microbial proton pump that is ubiquitous in marine environments and may play an important role in the oceanic carbon cycle. Photoisomerization of the retinal chromophore in PR leads to a series of proton transfers between specific acidic amino acid residues and the Schiff base of retinal, culminating in a proton motive force to facilitate ATP synthesis. The proton donor in a similar retinal protein, bacteriorhodopsin, acts as a latch to allow the influx of bulk water. However, it is unclear if the proton donor in PR, E108, utilizes the same latch mechanism to become internally hydrated. Here, we used molecular dynamics simulations to model the changes in internal hydration of the blue variant of PR during photoactivation with the proton donor in protonated and deprotonated states. We find that there is a stark contrast in the levels of internal hydration of the cytoplasmic half of PR based on the protonation state of E108. Instead of a latch mechanism, deprotonation of E108 acts as a gate, taking advantage of a nearby polar residue (S61) to promote the formation of a stable water wire from bulk cytoplasm to the retinal-binding pocket over hundreds of nanoseconds. No large-scale conformational changes occur in PR over the microsecond timescale. This subtle yet clear difference in the effect of deprotonation of the proton donor in PR may help explain why the photointermediates that involve the proton donor (i.e., M and N states) have timescales that are orders of magnitude different from the archaeal proton pump, bacteriorhodopsin. In general, our study highlights the importance of understanding how structural fluctuations lead to differences in the way that retinal proteins accomplish the same task.
Collapse
Affiliation(s)
- Sadegh Faramarzi
- C. Eugene Department of Chemistry, West Virginia University, Morgantown, West Virginia
| | - Jun Feng
- C. Eugene Department of Chemistry, West Virginia University, Morgantown, West Virginia
| | - Blake Mertz
- C. Eugene Department of Chemistry, West Virginia University, Morgantown, West Virginia.
| |
Collapse
|
13
|
Jawurek M, Dröden J, Peter B, Glaubitz C, Hauser K. Lipid-induced dynamics of photoreceptors monitored by time-resolved step-scan FTIR spectroscopy. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Shigeta A, Ito S, Kaneko R, Tomida S, Inoue K, Kandori H, Kawamura I. Long-distance perturbation on Schiff base-counterion interactions by His30 and the extracellular Na +-binding site in Krokinobacter rhodopsin 2. Phys Chem Chem Phys 2018. [PMID: 29537054 DOI: 10.1039/c8cp00626a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Krokinobacter rhodopsin 2 (KR2), a light-driven Na+ pump, is a dual-functional protein, pumping protons in the absence of Na+ when K+ or larger alkali metal ions are present. A specific mutation in helix A near the extracellular Na+ binding site, H30A, eliminates its proton pumping ability. We induced structural changes in H30A by altering the alkali metal ion bound at the extracellular binding site, and observed a strong electrostatic interaction between the Schiff base and counterion and torsion around the Schiff base as revealed by solid-state nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectroscopies. The strong interaction when His30 was absent and no ion bound at the extracellular binding site disabled retinal reisomerization, as was shown with flash-photolysis, forming a small amount of only a K-like intermediate. This revealed why H30A lacks the proton pumping function. Long-distance perturbation of the binding site and Schiff base revealed that a non-transported ion binding at the extracellular site is essential for pumping.
Collapse
Affiliation(s)
- Arisu Shigeta
- Graduate School of Engineering, Yokohama National University, Hodogaya-ku, Yokohama 240-8501, Japan.
| | | | | | | | | | | | | |
Collapse
|
15
|
Leeder AJ, Brown LJ, Becker-Baldus J, Mehler M, Glaubitz C, Brown RCD. Synthesis of isotopically labeled all-trans retinals for DNP-enhanced solid-state NMR studies of retinylidene proteins. J Labelled Comp Radiopharm 2018; 61:922-933. [PMID: 29080288 DOI: 10.1002/jlcr.3576] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/17/2017] [Indexed: 12/28/2022]
Abstract
Three all-trans retinals containing multiple 13 C labels have been synthesized to enable dynamic nuclear polarization enhanced solid-state magic angle spinning NMR studies of novel microbial retinylidene membrane proteins including proteorhodpsin and channelrhodopsin. The synthetic approaches allowed specific introduction of 13 C labels in ring substituents and at different positions in the polyene chain to probe structural features such as ring orientation and interaction of the chromophore with the protein in the ground state and in photointermediates. [10-18-13 C9 ]-All-trans-retinal (1b), [12,15-13 C2 ]-all-trans-retinal (1c), and [14,15-13 C2 ]-all-trans-retinal (1d) were synthesized in in 12, 8, and 7 linear steps from ethyl 2-oxocyclohexanecarboxylate (5) or β-ionone (4), respectively.
Collapse
Affiliation(s)
| | - Lynda J Brown
- Department of Chemistry, University of Southampton, Southampton, UK
| | - Johanna Becker-Baldus
- Institute of Biophysical Chemistry, Goethe University Frankfurt, Frankfurt, Germany.,Centre for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Frankfurt, Germany
| | - Michaela Mehler
- Institute of Biophysical Chemistry, Goethe University Frankfurt, Frankfurt, Germany.,Centre for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Frankfurt, Germany
| | - Clemens Glaubitz
- Institute of Biophysical Chemistry, Goethe University Frankfurt, Frankfurt, Germany.,Centre for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Frankfurt, Germany
| | | |
Collapse
|
16
|
Mehler M, Eckert CE, Leeder AJ, Kaur J, Fischer T, Kubatova N, Brown LJ, Brown RCD, Becker-Baldus J, Wachtveitl J, Glaubitz C. Chromophore Distortions in Photointermediates of Proteorhodopsin Visualized by Dynamic Nuclear Polarization-Enhanced Solid-State NMR. J Am Chem Soc 2017; 139:16143-16153. [PMID: 29027800 DOI: 10.1021/jacs.7b05061] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Proteorhodopsin (PR) is the most abundant retinal protein on earth and functions as a light-driven proton pump. Despite extensive efforts, structural data for PR photointermediate states have not been obtained. On the basis of dynamic nuclear polarization (DNP)-enhanced solid-state NMR, we were able to analyze the retinal polyene chain between positions C10 and C15 as well as the Schiff base nitrogen in the ground state in comparison to light-induced, cryotrapped K- and M-states. A high M-state population could be achieved by preventing reprotonation of the Schiff base through a mutation of the primary proton donor (E108Q). Our data reveal unexpected large and alternating 13C chemical shift changes in the K-state propagating away from the Schiff base along the polyene chain. Furthermore, two different M-states have been observed reflecting the Schiff base reorientation after the deprotonation step. Our study provides novel insight into the photocycle of PR and also demonstrates the power of DNP-enhanced solid-state NMR to bridge the gap between functional and structural data and models.
Collapse
Affiliation(s)
- Michaela Mehler
- Institute for Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance, Goethe-University Frankfurt , Frankfurt 60438, Germany
| | - Carl Elias Eckert
- Institute for Physical and Theoretical Chemistry, Goethe-University Frankfurt , Frankfurt 60438, Germany
| | - Alexander J Leeder
- Department of Chemistry, University of Southampton , Southampton SO17 1BJ, United Kingdom
| | - Jagdeep Kaur
- Institute for Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance, Goethe-University Frankfurt , Frankfurt 60438, Germany
| | - Tobias Fischer
- Institute for Physical and Theoretical Chemistry, Goethe-University Frankfurt , Frankfurt 60438, Germany
| | - Nina Kubatova
- Institute for Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance, Goethe-University Frankfurt , Frankfurt 60438, Germany
| | - Lynda J Brown
- Department of Chemistry, University of Southampton , Southampton SO17 1BJ, United Kingdom
| | - Richard C D Brown
- Department of Chemistry, University of Southampton , Southampton SO17 1BJ, United Kingdom
| | - Johanna Becker-Baldus
- Institute for Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance, Goethe-University Frankfurt , Frankfurt 60438, Germany
| | - Josef Wachtveitl
- Institute for Physical and Theoretical Chemistry, Goethe-University Frankfurt , Frankfurt 60438, Germany
| | - Clemens Glaubitz
- Institute for Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance, Goethe-University Frankfurt , Frankfurt 60438, Germany
| |
Collapse
|
17
|
Lilly Thankamony AS, Wittmann JJ, Kaushik M, Corzilius B. Dynamic nuclear polarization for sensitivity enhancement in modern solid-state NMR. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2017; 102-103:120-195. [PMID: 29157490 DOI: 10.1016/j.pnmrs.2017.06.002] [Citation(s) in RCA: 278] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/03/2017] [Accepted: 06/08/2017] [Indexed: 05/03/2023]
Abstract
The field of dynamic nuclear polarization has undergone tremendous developments and diversification since its inception more than 6 decades ago. In this review we provide an in-depth overview of the relevant topics involved in DNP-enhanced MAS NMR spectroscopy. This includes the theoretical description of DNP mechanisms as well as of the polarization transfer pathways that can lead to a uniform or selective spreading of polarization between nuclear spins. Furthermore, we cover historical and state-of-the art aspects of dedicated instrumentation, polarizing agents, and optimization techniques for efficient MAS DNP. Finally, we present an extensive overview on applications in the fields of structural biology and materials science, which underlines that MAS DNP has moved far beyond the proof-of-concept stage and has become an important tool for research in these fields.
Collapse
Affiliation(s)
- Aany Sofia Lilly Thankamony
- Institute of Physical and Theoretical Chemistry, Institute of Biophysical Chemistry, and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
| | - Johannes J Wittmann
- Institute of Physical and Theoretical Chemistry, Institute of Biophysical Chemistry, and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
| | - Monu Kaushik
- Institute of Physical and Theoretical Chemistry, Institute of Biophysical Chemistry, and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
| | - Björn Corzilius
- Institute of Physical and Theoretical Chemistry, Institute of Biophysical Chemistry, and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany.
| |
Collapse
|
18
|
Mehler M, Eckert CE, Busche A, Kulhei J, Michaelis J, Becker-Baldus J, Wachtveitl J, Dötsch V, Glaubitz C. Assembling a Correctly Folded and Functional Heptahelical Membrane Protein by Protein Trans-splicing. J Biol Chem 2015; 290:27712-22. [PMID: 26405032 DOI: 10.1074/jbc.m115.681205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Indexed: 01/27/2023] Open
Abstract
Protein trans-splicing using split inteins is well established as a useful tool for protein engineering. Here we show, for the first time, that this method can be applied to a membrane protein under native conditions. We provide compelling evidence that the heptahelical proteorhodopsin can be assembled from two separate fragments consisting of helical bundles A and B and C, D, E, F, and G via a splicing site located in the BC loop. The procedure presented here is on the basis of dual expression and ligation in vivo. Global fold, stability, and photodynamics were analyzed in detergent by CD, stationary, as well as time-resolved optical spectroscopy. The fold within lipid bilayers has been probed by high field and dynamic nuclear polarization-enhanced solid-state NMR utilizing a (13)C-labeled retinal cofactor and extensively (13)C-(15)N-labeled protein. Our data show unambiguously that the ligation product is identical to its non-ligated counterpart. Furthermore, our data highlight the effects of BC loop modifications onto the photocycle kinetics of proteorhodopsin. Our data demonstrate that a correctly folded and functionally intact protein can be produced in this artificial way. Our findings are of high relevance for a general understanding of the assembly of membrane proteins for elucidating intramolecular interactions, and they offer the possibility of developing novel labeling schemes for spectroscopic applications.
Collapse
Affiliation(s)
- Michaela Mehler
- From the Institute for Biophysical Chemistry and Centre for Biomolecular Magnetic Resonance and
| | - Carl Elias Eckert
- Institute for Physical and Theoretical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Alena Busche
- From the Institute for Biophysical Chemistry and Centre for Biomolecular Magnetic Resonance and
| | - Jennifer Kulhei
- From the Institute for Biophysical Chemistry and Centre for Biomolecular Magnetic Resonance and
| | - Jonas Michaelis
- From the Institute for Biophysical Chemistry and Centre for Biomolecular Magnetic Resonance and
| | - Johanna Becker-Baldus
- From the Institute for Biophysical Chemistry and Centre for Biomolecular Magnetic Resonance and
| | - Josef Wachtveitl
- Institute for Physical and Theoretical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Volker Dötsch
- From the Institute for Biophysical Chemistry and Centre for Biomolecular Magnetic Resonance and
| | - Clemens Glaubitz
- From the Institute for Biophysical Chemistry and Centre for Biomolecular Magnetic Resonance and
| |
Collapse
|
19
|
Enlightening the photoactive site of channelrhodopsin-2 by DNP-enhanced solid-state NMR spectroscopy. Proc Natl Acad Sci U S A 2015. [PMID: 26216996 DOI: 10.1073/pnas.1507713112] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Channelrhodopsin-2 from Chlamydomonas reinhardtii is a light-gated ion channel. Over recent years, this ion channel has attracted considerable interest because of its unparalleled role in optogenetic applications. However, despite considerable efforts, an understanding of how molecular events during the photocycle, including the retinal trans-cis isomerization and the deprotonation/reprotonation of the Schiff base, are coupled to the channel-opening mechanism remains elusive. To elucidate this question, changes of conformation and configuration of several photocycle and conducting/nonconducting states need to be determined at atomic resolution. Here, we show that such data can be obtained by solid-state NMR enhanced by dynamic nuclear polarization applied to (15)N-labeled channelrhodopsin-2 carrying 14,15-(13)C2 retinal reconstituted into lipid bilayers. In its dark state, a pure all-trans retinal conformation with a stretched C14-C15 bond and a significant out-of-plane twist of the H-C14-C15-H dihedral angle could be observed. Using a combination of illumination, freezing, and thermal relaxation procedures, a number of intermediate states was generated and analyzed by DNP-enhanced solid-state NMR. Three distinct intermediates could be analyzed with high structural resolution: the early [Formula: see text] K-like state, the slowly decaying late intermediate [Formula: see text], and a third intermediate populated only under continuous illumination conditions. Our data provide novel insight into the photoactive site of channelrhodopsin-2 during the photocycle. They further show that DNP-enhanced solid-state NMR fills the gap for challenging membrane proteins between functional studies and X-ray-based structure analysis, which is required for resolving molecular mechanisms.
Collapse
|
20
|
Maciejko J, Mehler M, Kaur J, Lieblein T, Morgner N, Ouari O, Tordo P, Becker-Baldus J, Glaubitz C. Visualizing Specific Cross-Protomer Interactions in the Homo-Oligomeric Membrane Protein Proteorhodopsin by Dynamic-Nuclear-Polarization-Enhanced Solid-State NMR. J Am Chem Soc 2015; 137:9032-43. [DOI: 10.1021/jacs.5b03606] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | | | | | | | | | - Olivier Ouari
- Aix-Marseille Université,
CNRS, ICR, UMR 7273, 13013 Marseille, France
| | - Paul Tordo
- Aix-Marseille Université,
CNRS, ICR, UMR 7273, 13013 Marseille, France
| | | | | |
Collapse
|
21
|
Functional consequences of the oligomeric assembly of proteorhodopsin. J Mol Biol 2015; 427:1278-1290. [PMID: 25597999 PMCID: PMC4374980 DOI: 10.1016/j.jmb.2015.01.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/21/2014] [Accepted: 01/08/2015] [Indexed: 11/24/2022]
Abstract
The plasma membrane is the crucial interface between the cell and its exterior, packed with embedded proteins experiencing simultaneous protein-protein and protein-membrane interactions. A prominent example of cell membrane complexity is the assembly of transmembrane proteins into oligomeric structures, with potential functional consequences that are not well understood. From the study of proteorhodopsin (PR), a prototypical seven-transmembrane light-driven bacterial proton pump, we find evidence that the inter-protein interaction modulated by self-association yields functional changes observable from the protein interior. We also demonstrate that the oligomer is likely a physiologically relevant form of PR, as crosslinking of recombinantly expressed PR reveals an oligomeric population within the Escherichia coli membrane (putatively hexameric). Upon chromatographic isolation of oligomeric and monomeric PR in surfactant micelles, the oligomer exhibits distinctly different optical absorption properties from monomeric PR, as reflected in a prominent decrease in the pKa of the primary proton acceptor residue (D97) and slowing of the light-driven conformational change. These functional effects are predominantly determined by specific PR-PR contacts over nonspecific surfactant interactions. Interestingly, varying the surfactant type alters the population of oligomeric states and the proximity of proteins within an oligomer, as determined by sparse electron paramagnetic resonance distance measurements. Nevertheless, the dynamic surfactant environment retains the key function-tuning property exerted by oligomeric contacts. A potentially general design principle for transmembrane protein function emerges from this work, one that hinges on specific oligomeric contacts that can be modulated by protein expression or membrane composition.
Collapse
|
22
|
Mao J, Do NN, Scholz F, Reggie L, Mehler M, Lakatos A, Ong YS, Ullrich SJ, Brown LJ, Brown RCD, Becker-Baldus J, Wachtveitl J, Glaubitz C. Structural basis of the green-blue color switching in proteorhodopsin as determined by NMR spectroscopy. J Am Chem Soc 2014; 136:17578-90. [PMID: 25415762 DOI: 10.1021/ja5097946] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Proteorhodopsins (PRs) found in marine microbes are the most abundant retinal-based photoreceptors on this planet. PR variants show high levels of environmental adaptation, as their colors are tuned to the optimal wavelength of available light. The two major green and blue subfamilies can be interconverted through a L/Q point mutation at position 105. Here we reveal the structural basis behind this intriguing color-tuning effect. High-field solid-state NMR spectroscopy was used to visualize structural changes within green PR directly within the lipid bilayer upon introduction of the green-blue L105Q mutation. The observed effects are localized within the binding pocket and close to retinal carbons C14 and C15. Subsequently, magic-angle spinning (MAS) NMR spectroscopy with sensitivity enhancement by dynamic nuclear polarization (DNP) was applied to determine precisely the retinal structure around C14-C15. Upon mutation, a significantly stretched C14-C15 bond, deshielding of C15, and a slight alteration of the retinal chain's out-of-plane twist was observed. The L105Q blue switch therefore acts locally on the retinal itself and induces a conjugation defect between the isomerization region and the imine linkage. Consequently, the S0-S1 energy gap increases, resulting in the observed blue shift. The distortion of the chromophore structure also offers an explanation for the elongated primary reaction detected by pump-probe spectroscopy, while chemical shift perturbations within the protein can be linked to the elongation of late-photocycle intermediates studied by flash photolysis. Besides resolving a long-standing problem, this study also demonstrates that the combination of data obtained from high-field and DNP-enhanced MAS NMR spectroscopy together with time-resolved optical spectroscopy enables powerful synergies for in-depth functional studies of membrane proteins.
Collapse
Affiliation(s)
- Jiafei Mao
- Institute of Biophysical Chemistry and Centre for Biomolecular Magnetic Resonance, Goethe University Frankfurt , 60438 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ullrich SJ, Hölper S, Glaubitz C. Paramagnetic doping of a 7TM membrane protein in lipid bilayers by Gd³⁺-complexes for solid-state NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2014; 58:27-35. [PMID: 24306181 DOI: 10.1007/s10858-013-9800-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 11/26/2013] [Indexed: 06/02/2023]
Abstract
A considerable limitation of NMR spectroscopy is its inherent low sensitivity. Approximately 90 % of the measuring time is used by the spin system to return to its Boltzmann equilibrium after excitation, which is determined by (1)H-T1 in cross-polarized solid-state NMR experiments. It has been shown that sample doping by paramagnetic relaxation agents such as Cu(2+)-EDTA accelerates this process considerably resulting in enhanced sensitivity. Here, we extend this concept to Gd(3+)-complexes. Their effect on (1)H-T1 has been assessed on the membrane protein proteorhodopsin, a 7TM light-driven proton pump. A comparison between Gd(3+)-DOTA, Gd(3+)-TTAHA, covalently attached Cu(2+)-EDTA-tags and Cu(2+)-EDTA reveals a 3.2-, 2.6-, 2.4- and 2-fold improved signal-to-noise ratio per unit time due to longitudinal paramagnetic relaxation enhancement. Furthermore, Gd(3+)-DOTA shows a remarkably high relaxivity, which is 77-times higher than that of Cu(2+)-EDTA. Therefore, an order of magnitude lower dopant concentration can be used. In addition, no line-broadening effects or peak shifts have been observed on proteorhodopsin in the presence of Gd(3+)-DOTA. These favourable properties make it very useful for solid-state NMR experiments on membrane proteins.
Collapse
Affiliation(s)
- Sandra J Ullrich
- Institute for Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, Goethe-University Frankfurt, Max von Laue Str. 9, 60438, Frankfurt am Main, Germany
| | | | | |
Collapse
|
24
|
Mao J, Akhmetzyanov D, Ouari O, Denysenkov V, Corzilius B, Plackmeyer J, Tordo P, Prisner TF, Glaubitz C. Host-guest complexes as water-soluble high-performance DNP polarizing agents. J Am Chem Soc 2013; 135:19275-81. [PMID: 24279469 DOI: 10.1021/ja409840y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dynamic nuclear polarization (DNP) enhances the sensitivity of solid-state NMR (SSNMR) spectroscopy by orders of magnitude and, therefore, opens possibilities for novel applications from biology to materials science. This multitude of opportunities implicates a need for high-performance polarizing agents, which integrate specific physical and chemical features tailored for various applications. Here, we demonstrate that for the biradical bTbK in complex with captisol (CAP), a β-cyclodextrin derivative, host-guest assembling offers a new and easily accessible approach for the development of new polarizing agents. In contrast to bTbK, the CAP-bTbK complex is water-soluble and shows significantly improved DNP performance compared to the commonly used DNP agent TOTAPOL. Furthermore, NMR and EPR data reveal improved electron and nuclear spin relaxation properties for bTbK within the host molecule. The numerous possibilities to functionalize host molecules will permit designing novel radical complexes targeting diverse applications.
Collapse
Affiliation(s)
- Jiafei Mao
- Institutes of Biophysical Chemistry, ‡Physical and Theoretical Chemistry and §Center for Biomolecular Magnetic Resonance BMRZ, Goethe University Frankfurt , 60438 Frankfurt/M., Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Bamann C, Bamberg E, Wachtveitl J, Glaubitz C. Proteorhodopsin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:614-25. [PMID: 24060527 DOI: 10.1016/j.bbabio.2013.09.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/11/2013] [Accepted: 09/13/2013] [Indexed: 10/26/2022]
Abstract
Proteorhodopsins are the most abundant retinal based photoreceptors and their phototrophic function might be relevant in marine ecosystems. Here, we describe their remarkable molecular properties with a special focus on the green absorbing variant. Its distinct features include a high pKa value of the primary proton acceptor stabilized through an interaction with a conserved histidine, a long-range interaction between the cytoplasmic EF loop and the chromophore entailing a particular mode of color tuning and a variable proton pumping vectoriality with complex voltage-dependence. The proteorhodopsin family represents a profound example for structure-function relationships. Especially the development of a biophysical understanding of green proteorhodopsin is an excellent example for the unique opportunities offered by a combined approach of advanced spectroscopic and electrophysiological methods. This article is part of a Special Issue entitled: Retinal Proteins-You can teach an old dog new tricks.
Collapse
Affiliation(s)
- Christian Bamann
- Max Planck Institute of Biophysics, Max-von-Laue Straße 3, 60438 Frankfurt am Main, Germany.
| | - Ernst Bamberg
- Max Planck Institute of Biophysics, Max-von-Laue Straße 3, 60438 Frankfurt am Main, Germany
| | - Josef Wachtveitl
- Johann Wolfgang Goethe University, Institute for Physical and Theoretical Chemistry, Max-von-Laue Straße 7, 60438 Frankfurt am Main, Germany
| | - Clemens Glaubitz
- Johann Wolfgang Goethe University, Institute for Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance, Max-von-Laue Straße 9, 60438 Frankfurt am Main, Germany
| |
Collapse
|