1
|
Coskuner-Weber O. Structures prediction and replica exchange molecular dynamics simulations of α-synuclein: A case study for intrinsically disordered proteins. Int J Biol Macromol 2024; 276:133813. [PMID: 38996889 DOI: 10.1016/j.ijbiomac.2024.133813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
In recent years, a variety of three-dimensional structure prediction tools, including AlphaFold2, AlphaFold3, I-TASSER, C-I-TASSER, Phyre2, ESMFold, and RoseTTAFold, have been employed in the investigation of intrinsically disordered proteins. However, a comprehensive validation of these tools specifically for intrinsically disordered proteins has yet to be conducted. In this study, we utilize AlphaFold2, AlphaFold3, I-TASSER, C-I-TASSER, Phyre2, ESMFold, and RoseTTAFold to predict the structure of a model intrinsically disordered α-synuclein protein. Additionally, extensive replica exchange molecular dynamics simulations of the intrinsically disordered protein are conducted. The resulting structures from both structure prediction tools and replica exchange molecular dynamics simulations are analyzed for radius of gyration, secondary and tertiary structure properties, as well as Cα and Hα chemical shift values. A comparison of the obtained results with experimental data reveals that replica exchange molecular dynamics simulations provide results in excellent agreement with experimental observations. However, none of the structure prediction tools utilized in this study can fully capture the structural characteristics of the model intrinsically disordered protein. This study shows that a cluster of ensembles are required for intrinsically disordered proteins. Artificial-intelligence based structure prediction tools such as AlphaFold3 and C-I-TASSER could benefit from stochastic sampling or Monte Carlo simulations for generating an ensemble of structures for intrinsically disordered proteins.
Collapse
Affiliation(s)
- Orkid Coskuner-Weber
- Turkish-German University, Molecular Biotechnology, Sahinkaya Caddesi, No. 106, Beykoz, Istanbul 34820, Turkey.
| |
Collapse
|
2
|
Huang D, Guo C. E46K Mutation of α-Synuclein Preorganizes the Intramolecular Interactions Crucial for Aggregation. J Chem Inf Model 2023; 63:4803-4813. [PMID: 37489886 DOI: 10.1021/acs.jcim.3c00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Aggregation of α-synuclein is central to the pathogenesis of Parkinson's disease. The most toxic familial mutation E46K accelerates the aggregation process by an unknown mechanism. Herein, we provide a clue by investigating the influence of E46K on monomeric α-synuclein and its relation to aggregation with molecular dynamics simulations. The E46K mutation suppresses β-sheet structures in the N-terminus while promoting those at the key fibrillization region named NACore. Even though WT and E46K monomers share conserved intramolecular interactions with fibrils, E46K abolishes intramolecular contacts within the N-terminus which are present in the WT monomer but absent in fibrils. Network analysis identifies residues 36-53 as the interaction core of the WT monomer. Upon mutation, residues 36-46 are expelled to water due to aggravated electrostatic repulsion in the 43KTKK46 segment. Instead, NACore (residues 68-78) becomes the interaction hub and connects preceding residues 47-56 and the C-terminus. Consequently, residues 47-95 which belong to the fibril core form more compact β-sheets. Overall, the interaction network of E46K is more like fibrils than WT, stabilizing the fibril-like conformations. Our work provides mechanistic insights into the faster aggregation of the E46K mutant. It implies a close link between monomeric conformations and fibrils, which would spur the development of therapeutic strategies.
Collapse
Affiliation(s)
- Defa Huang
- Department of Physics and International Centre for Quantum and Molecular Structures, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Cong Guo
- Department of Physics and International Centre for Quantum and Molecular Structures, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
3
|
Menon S, Mondal J. Conformational Plasticity in α-Synuclein and How Crowded Environment Modulates It. J Phys Chem B 2023; 127:4032-4049. [PMID: 37114769 DOI: 10.1021/acs.jpcb.3c00982] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
A 140-residue intrinsically disordered protein (IDP), α-synuclein (αS), is known to adopt conformations that are vastly plastic and susceptible to environmental cues and crowders. However, the inherently heterogeneous nature of αS has precluded a clear demarcation of its monomeric precursor between aggregation-prone and functionally relevant aggregation-resistant states and how a crowded environment could modulate their mutual dynamic equilibrium. Here, we identify an optimal set of distinct metastable states of αS in aqueous media by dissecting a 73 μs-long molecular dynamics ensemble via building a comprehensive Markov state model (MSM). Notably, the most populated metastable state corroborates with the dimension obtained from PRE-NMR studies of αS monomer, and it undergoes kinetic transition at diverse time scales with a weakly populated random-coil-like ensemble and a globular protein-like state. However, subjecting αS to a crowded environment results in a nonmonotonic compaction of these metastable conformations, thereby skewing the ensemble by either introducing new tertiary contacts or by reinforcing the innate contacts. The early stage of dimerization process is found to be considerably expedited in the presence of crowders, albeit promoting nonspecific interactions. Together with this, using an extensively sampled ensemble of αS, this exposition demonstrates that crowded environments can potentially modulate the conformational preferences of IDP that can either promote or inhibit aggregation events.
Collapse
Affiliation(s)
- Sneha Menon
- Tata Institute of Fundamental Research Hyderabad, Telangana 500046, India
| | - Jagannath Mondal
- Tata Institute of Fundamental Research Hyderabad, Telangana 500046, India
| |
Collapse
|
4
|
Rodríguez LC, Foressi NN, Celej MS. Modulation of α-synuclein phase separation by biomolecules. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140885. [PMID: 36481455 DOI: 10.1016/j.bbapap.2022.140885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Liquid-liquid phase separation (LLPS) is currently recognized as a common mechanism involved in the regulation of a number of cellular functions. On the other hand, aberrant phase separation has been linked to the biogenesis of several neurodegenerative disorders since many proteins that undergo LLPS are also found in pathological aggregates. The formation of mixed protein coacervates may constitute a risk factor in overlapping neuropathologies, such as Parkinson's (PD) and Alzheimer's (AD) diseases. In this work, we evaluated the homotypic and heterotypic phase behaviour of the PD-related protein α-synuclein (AS) in the presence of the biologically relevant molecules ATP, polyamines, and the AD-related protein Tau. We found that AS exhibits a low propensity to form homotypic liquid droplets, yet phase separates into liquid-like or solid-like phases depending on the interacting biomolecule. We further demonstrated the synergistic droplet formation of AS and Tau providing support for a mechanism in which mixed condensates might contribute to the biogenesis of AS/Tau pathologies.
Collapse
Affiliation(s)
- Leandro Cruz Rodríguez
- Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Nahuel N Foressi
- Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - M Soledad Celej
- Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina.
| |
Collapse
|
5
|
Saurabh A, Prabhu NP. Concerted enhanced-sampling simulations to elucidate the helix-fibril transition pathway of intrinsically disordered α-Synuclein. Int J Biol Macromol 2022; 223:1024-1041. [PMID: 36379279 DOI: 10.1016/j.ijbiomac.2022.11.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/19/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Fibril formation of α-synuclein is linked with Parkinson's disease. The intrinsically disordered nature of α-syn provides extensive conformational plasticity and becomes difficult to characterize its transition pathway from native monomeric to disease-associated fibril form. We implemented different simulation methods such as steered dynamics-umbrella sampling, and replica-exchange and conventional MD simulations to access various conformational states of α-syn. Nineteen distinct intermediate structures were identified by free energy landscape and cluster analysis. They were then sorted based on secondary structure and solvent exposure of fibril-core residues to illustrate the fibril dissociation pathway. The analysis showed that following the initial dissociation of the polypeptide chain from the fibril, α-syn might form either compact-conformations by long-range interactions or extended-conformations stabilized by local interactions. This leads α-syn to adapt two different pathways. The secondary structure, solvation, contact distance, interaction energies and backbone dihedrals of thirty-two selected residues were analyzed for all the 19 intermediates. The results suggested that formation of β-turns, reorganization of salt bridges, and dihedral changes in the hydrophobic regions are the major driving forces for helix-fibril transition. Structural features of the intermediates also correlated with the earlier experimental and computational studies. The study provides critical information on the fibrillation pathway of α-syn.
Collapse
Affiliation(s)
- Archi Saurabh
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India
| | - N Prakash Prabhu
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India.
| |
Collapse
|
6
|
Zhang Y, Wang Y, Liu Y, Wei G, Ding F, Sun Y. Molecular Insights into the Misfolding and Dimerization Dynamics of the Full-Length α-Synuclein from Atomistic Discrete Molecular Dynamics Simulations. ACS Chem Neurosci 2022; 13:3126-3137. [PMID: 36278939 PMCID: PMC9797213 DOI: 10.1021/acschemneuro.2c00531] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The misfolding and pathological aggregation of α-synuclein forming insoluble amyloid deposits is associated with Parkinson's disease, the second most common neurodegenerative disease in the world population. Characterizing the self-assembly mechanism of α-synuclein is critical for discovering treatments against synucleinopathies. The intrinsically disordered property, high degrees of freedom, and macroscopic timescales of conformational conversion make its characterization extremely challenging in vitro and in silico. Here, we systematically investigated the dynamics of monomer misfolding and dimerization of the full-length α-synuclein using atomistic discrete molecular dynamics simulations. Our results suggested that both α-synuclein monomers and dimers mainly adopted unstructured formations with partial helices around the N-terminus (residues 8-32) and various β-sheets spanning the residues 35-56 (N-terminal tail) and residues 61-95 (NAC region). The C-terminus mostly assumed an unstructured formation wrapping around the lateral surface and the elongation edge of the β-sheet core formed by an N-terminal tail and NAC regions. Dimerization enhanced the β-sheet formation along with a decrease in the unstructured content. The inter-peptide β-sheets were mainly formed by the N-terminal tail and NACore (residues 68-78) regions, suggesting that these two regions played critical roles in the amyloid aggregation of α-synuclein. Interactions of the C-terminus with the N-terminal tail and the NAC region were significantly suppressed in the α-synuclein dimer, indicating that the interaction of the C-terminus with the N-terminal tail and NAC regions could prevent α-synuclein aggregation. These results on the structural ensembles and early aggregation dynamics of α-synuclein will help understand the nucleation and fibrillization of α-synuclein.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Physics, Ningbo University, Ningbo 315211, China
| | - Ying Wang
- Department of Physics, Ningbo University, Ningbo 315211, China
| | - Yuying Liu
- Department of Physics, Ningbo University, Ningbo 315211, China
| | - Guanghong Wei
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Yunxiang Sun
- Department of Physics, Ningbo University, Ningbo 315211, China
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
7
|
Galamba N. Aggregation of a Parkinson's Disease-Related Peptide: When Does Urea Weaken Hydrophobic Interactions? ACS Chem Neurosci 2022; 13:1769-1781. [PMID: 35616516 PMCID: PMC9775218 DOI: 10.1021/acschemneuro.2c00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
While the exact cause of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease is not completely understood, compelling evidence implicates the aggregation of specific proteins and peptides. Co-solvents can provide molecular insight into protein aggregation mechanisms and the chemical nature of potential aggregation inhibitors. Here, we study, through molecular simulations, the hydration and binding free energies of an amphiphilic peptide from the nonamyloid-β component (NAC), a key aggregation-prone domain of α-synuclein, in water and an 8 M aqueous urea solution. Isoleucine, glycine, and serine peptides of the same length are also studied to unravel the role of urea in the hydration and aggregation of hydrophobic and hydrophilic domains. A strong impact of urea in hindering the aggregation of the NAC subdomain is observed. A slightly weaker aggregation inhibition is observed for the Gly and Ser peptides, whereas a much lower aggregation inhibitory activity is found for the Ile peptide, seemingly contrasting with urea's protein unfolding mechanism. This behavior is shown to derive from a lower profusion of urea next to the hydrophobic side chains and the backbone of the Ile's peptide in the dimeric form. As a consequence, β-sheets, formed upon aggregation, remain nearly intact. Hydrophilic neighbor groups in the amphiphilic NAC subdomain, however, are shown to anchor enough urea to weaken hydrophobic interactions and disrupt β-sheet structures. Our results indicate that urea's activity is potentiated in amphiphilic domains and that potential drugs could disrupt hydrophobic β-sheet-rich regions while not binding primarily to hydrophobic amino acids.
Collapse
|
8
|
Jana AK, Lander CW, Chesney AD, Hansmann UHE. Effect of an Amyloidogenic SARS-COV-2 Protein Fragment on α-Synuclein Monomers and Fibrils. J Phys Chem B 2022; 126:3648-3658. [PMID: 35580331 PMCID: PMC9186263 DOI: 10.1021/acs.jpcb.2c01254] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Aggregates of α-synuclein are thought to be the disease-causing agent in Parkinson's disease. Various case studies have hinted at a correlation between COVID-19 and the onset of Parkinson's disease. For this reason, we use molecular dynamics simulations to study whether amyloidogenic regions in SARS-COV-2 proteins can initiate and modulate aggregation of α-synuclein. As an example, we choose the nine-residue fragment SFYVYSRVK (SK9), located on the C-terminal of the envelope protein of SARS-COV-2. We probe how the presence of SK9 affects the conformational ensemble of α-synuclein monomers and the stability of two resolved fibril polymorphs. We find that the viral protein fragment SK9 may alter α-synuclein amyloid formation by shifting the ensemble toward aggregation-prone and preferentially rod-like fibril seeding conformations. However, SK9 has only a small effect on the stability of pre-existing or newly formed fibrils. A potential mechanism and key residues for potential virus-induced amyloid formation are described.
Collapse
Affiliation(s)
- Asis K Jana
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Chance W Lander
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Andrew D Chesney
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Ulrich H E Hansmann
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
9
|
Jana AK, Lander CW, Chesney AD, Hansmann UHE. Effect of an amyloidogenic SARS-COV-2 protein fragment on α-synuclein monomers and fibrils. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.02.21.481360. [PMID: 35233574 PMCID: PMC8887075 DOI: 10.1101/2022.02.21.481360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Using molecular dynamic simulations we study whether amyloidogenic regions in viral proteins can initiate and modulate formation of α-synuclein aggregates, thought to be the disease-causing agent in Parkinson's Disease. As an example we choose the nine-residue fragment SFYVYSRVK (SK9), located on the C-terminal of the Envelope protein of SARS-COV-2. We probe how the presence of SK9 affects the conformational ensemble of α-synuclein monomers and the stability of two resolved fibril polymorphs. We find that the viral protein fragment SK9 may alter α-synuclein amyloid formation by shifting the ensemble toward aggregation-prone and preferentially rod-like fibril seeding conformations. However, SK9 has only little effect of the stability of pre-existing or newly-formed fibrils.
Collapse
|
10
|
Mondal S, Mondal S, Bandyopadhyay S. Importance of Solvent in Guiding the Conformational Properties of an Intrinsically Disordered Peptide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14429-14442. [PMID: 34817184 DOI: 10.1021/acs.langmuir.1c02401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Aggregated form of α-synuclein in the brain has been found to be the major component of Lewy bodies that are hallmarks of Parkinson's disease (PD), the second most devastating neurodegenerative disorder. We have carried out room-temperature all-atom molecular dynamics (MD) simulations of an ensemble of widely different α-synuclein1-95 peptide monomer conformations in aqueous solution. Attempts have been made to obtain a generic understanding of the local conformational motions of different repeat unit segments, namely R1-R7, of the peptide and the correlated properties of the solvent at the interface. The analyses revealed relatively greater rigidity of the hydrophobic R6 unit as compared to the other repeat units of the peptide. Besides, water molecules around R6 have been found to be less structured and weakly interacting with the peptide. These are important observations as the R6 unit with reduced conformational motions can act as the nucleation site for the aggregation process, while less structured weakly interacting water around it can become displaced easily, thereby facilitating the hydrophobic collapse of the peptide monomers and their association during the nucleation phase at higher concentrations. In addition, we demonstrated presence of doubly coordinated highly ordered as well as triply coordinated relatively disordered water molecules at the interface. We believe that while the ordered water molecules can favor water-mediated interactions between different peptide monomers, the randomly ordered ones on the other hand are likely to be expelled easily from the interface, thereby facilitating direct peptide-peptide interactions during the aggregation process.
Collapse
Affiliation(s)
- Souvik Mondal
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Sandip Mondal
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Sanjoy Bandyopadhyay
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|
11
|
Antonschmidt L, Dervişoğlu R, Sant V, Tekwani Movellan K, Mey I, Riedel D, Steinem C, Becker S, Andreas LB, Griesinger C. Insights into the molecular mechanism of amyloid filament formation: Segmental folding of α-synuclein on lipid membranes. SCIENCE ADVANCES 2021; 7:7/20/eabg2174. [PMID: 33990334 PMCID: PMC8121418 DOI: 10.1126/sciadv.abg2174] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/25/2021] [Indexed: 05/15/2023]
Abstract
Recent advances in the structural biology of disease-relevant α-synuclein fibrils have revealed a variety of structures, yet little is known about the process of fibril aggregate formation. Characterization of intermediate species that form during aggregation is crucial; however, this has proven very challenging because of their transient nature, heterogeneity, and low population. Here, we investigate the aggregation of α-synuclein bound to negatively charged phospholipid small unilamellar vesicles. Through a combination of kinetic and structural studies, we identify key time points in the aggregation process that enable targeted isolation of prefibrillar and early fibrillar intermediates. By using solid-state nuclear magnetic resonance, we show the gradual buildup of structural features in an α-synuclein fibril filament, revealing a segmental folding process. We identify distinct membrane-binding domains in α-synuclein aggregates, and the combined data are used to present a comprehensive mechanism of the folding of α-synuclein on lipid membranes.
Collapse
Affiliation(s)
- Leif Antonschmidt
- Department of NMR-Based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Rıza Dervişoğlu
- Department of NMR-Based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Vrinda Sant
- Department of NMR-Based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
- Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, CA, USA
| | - Kumar Tekwani Movellan
- Department of NMR-Based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ingo Mey
- Institute of Organic and Biomolecular Chemistry, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Dietmar Riedel
- Laboratory of Electron Microscopy, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Claudia Steinem
- Institute of Organic and Biomolecular Chemistry, Georg-August-Universität Göttingen, Göttingen, Germany
- Biomolecular Chemistry Group, Max-Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077 Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Stefan Becker
- Department of NMR-Based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Loren B Andreas
- Department of NMR-Based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.
| | - Christian Griesinger
- Department of NMR-Based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
12
|
Ahmed R, Huang J, Akimoto M, Shi T, Melacini G. Atomic Resolution Map of Hierarchical Self-Assembly for an Amyloidogenic Protein Probed through Thermal 15N-R 2 Correlation Matrices. J Am Chem Soc 2021; 143:4668-4679. [PMID: 33733753 DOI: 10.1021/jacs.0c13289] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Soluble oligomers formed by amyloidogenic intrinsically disordered proteins are some of the most cytotoxic species linked to neurodegeneration. Due to the transient and heterogeneous nature of such oligomeric intermediates, the underlying self-association events often remain elusive. NMR relaxation measurements sensitive to zero-frequency spectral densities (J(0)), such as the 15N - R2 rates, are ideally suited to map sites of self-association at atomic resolution without the need of exogenous labels. Such experiments exploit the dynamic exchange between NMR visible monomers and slowly tumbling oligomers. However,15N - R2 rates are also sensitive to intrinsic monomer dynamics, and it is often difficult to discern these contributions from those arising from exchange with oligomers. Another challenge pertains to defining a hierarchy of self-association. Here, using the archetypical amyloidogenic protein alpha synuclein (αS), we show that the temperature-dependence of 15N - R2 effectively identifies self-association sites with reduced bias from internal dynamics. The key signature of the residues involved in self-association is a nonlinear temperature-dependence of 15N - R2 with a positive ΔR2/ΔT slope. These two hallmarks are systematically probed through a thermal R2 correlation matrix, from which the network of residues involved in self-association as well as the hierarchy of αS self-association sites is extracted through agglomerative clustering. We find that aggregation is initiated by residues within the NAC region that is solvent inaccessible in αS fibrils and eventually extends to the N-terminal segment harboring familial PD mutations. These hierarchical self-association maps help dissect the essential drivers of oligomerization and reveal how amyloid inhibitors affect oligomer formation.
Collapse
Affiliation(s)
- Rashik Ahmed
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton ON L8S4M1, Canada
| | - Jinfeng Huang
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton ON L8S4M1, Canada
| | - Madoka Akimoto
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton ON L8S4M1, Canada
| | - Tongyu Shi
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton ON L8S4M1, Canada
| | - Giuseppe Melacini
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton ON L8S4M1, Canada.,Department of Chemistry and Chemical Biology, McMaster University, Hamilton ON L8S4M1, Canada
| |
Collapse
|
13
|
Agerschou ED, Schützmann MP, Reppert N, Wördehoff MM, Shaykhalishahi H, Buell AK, Hoyer W. β-Turn exchanges in the α-synuclein segment 44-TKEG-47 reveal high sequence fidelity requirements of amyloid fibril elongation. Biophys Chem 2021; 269:106519. [PMID: 33333378 DOI: 10.1016/j.bpc.2020.106519] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 11/28/2022]
Abstract
The folding of turns and β-hairpins has been implicated in amyloid formation, with diverse potential consequences such as promotion or inhibition of fibril nucleation, fibril elongation, or off-pathway oligomer formation. In the Parkinson's disease-associated protein α-synuclein (αS), a β-hairpin comprised of residues 36-56 was detected in complex with an engineered binding protein, with a turn formed by the αS sequence segment 44-TKEG-47. Molecular dynamics simulations revealed extensive populations of transient β-hairpin conformations in this region in free, monomeric αS. Here, we investigated potential effects of turn formation on αS fibril formation by studying the aggregation kinetics of an extensive set of αS variants with between two and four amino acid exchanges in the 44-TKEG-47 segment. The exchanges were chosen to specifically promote formation of β1-, β1'-, or β2'-turns. All variants assembled into amyloid fibrils, with increased β1'- or β2'-turn propensity associated with faster aggregation and increased β1-turn propensity with slower aggregation compared to wild-type (WT) αS. Atomic force microscopy demonstrated that β-turn exchanges altered fibril morphology. In cross-elongation experiments, the turn variants showed a low ability to elongate WT fibril seeds, and, vice versa, WT monomer did not efficiently elongate turn variant fibril seeds. This demonstrates that sequence identity in the turn region is crucial for efficient αS fibril elongation. Elongation experiments of WT fibril seeds in the presence of both WT and turn variant monomers suggest that the turn variants can bind and block WT fibril ends to different degrees, but cannot efficiently convert into the WT fibril structure. Our results indicate that modifications in the 44-TKEG-47 segment strongly affect amyloid assembly by driving αS into alternative fibril morphologies, whose elongation requires high sequence fidelity.
Collapse
Affiliation(s)
- Emil Dandanell Agerschou
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany
| | - Marie P Schützmann
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany
| | - Nikolas Reppert
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany
| | - Michael M Wördehoff
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany
| | - Hamed Shaykhalishahi
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany
| | - Alexander K Buell
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany; Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Wolfgang Hoyer
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany; Institute of Biological Information Processing (IBI-7) and JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany.
| |
Collapse
|
14
|
Caminati G, Procacci P. Mounting evidence of FKBP12 implication in neurodegeneration. Neural Regen Res 2020; 15:2195-2202. [PMID: 32594030 PMCID: PMC7749462 DOI: 10.4103/1673-5374.284980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/18/2020] [Accepted: 03/24/2020] [Indexed: 12/25/2022] Open
Abstract
Intrinsically disordered proteins, such as tau or α-synuclein, have long been associated with a dysfunctional role in neurodegenerative diseases. In Alzheimer's and Parkinson's' diseases, these proteins, sharing a common chemical-physical pattern with alternating hydrophobic and hydrophilic domains rich in prolines, abnormally aggregate in tangles in the brain leading to progressive loss of neurons. In this review, we present an overview linking the studies on the implication of the peptidyl-prolyl isomerase domain of immunophilins, and notably FKBP12, to a variety of neurodegenerative diseases, focusing on the molecular origin of such a role. The involvement of FKBP12 dysregulation in the aberrant aggregation of disordered proteins pinpoints this protein as a possible therapeutic target and, at the same time, as a predictive biomarker for early diagnosis in neurodegeneration, calling for the development of reliable, fast and cost-effective detection methods in body fluids for community-based screening campaigns.
Collapse
Affiliation(s)
- Gabriella Caminati
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
- Center for Colloid and Surface Science (CSGI), University of Florence, Sesto Fiorentino, Italy
| | - Piero Procacci
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
15
|
Stephens AD, Zacharopoulou M, Moons R, Fusco G, Seetaloo N, Chiki A, Woodhams PJ, Mela I, Lashuel HA, Phillips JJ, De Simone A, Sobott F, Schierle GSK. Extent of N-terminus exposure of monomeric alpha-synuclein determines its aggregation propensity. Nat Commun 2020; 11:2820. [PMID: 32499486 PMCID: PMC7272411 DOI: 10.1038/s41467-020-16564-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 04/01/2020] [Indexed: 02/02/2023] Open
Abstract
As an intrinsically disordered protein, monomeric alpha-synuclein (aSyn) occupies a large conformational space. Certain conformations lead to aggregation prone and non-aggregation prone intermediates, but identifying these within the dynamic ensemble of monomeric conformations is difficult. Herein, we used the biologically relevant calcium ion to investigate the conformation of monomeric aSyn in relation to its aggregation propensity. We observe that the more exposed the N-terminus and the beginning of the NAC region of aSyn are, the more aggregation prone monomeric aSyn conformations become. Solvent exposure of the N-terminus of aSyn occurs upon release of C-terminus interactions when calcium binds, but the level of exposure and aSyn's aggregation propensity is sequence and post translational modification dependent. Identifying aggregation prone conformations of monomeric aSyn and the environmental conditions they form under will allow us to design new therapeutics targeted to the monomeric protein.
Collapse
Affiliation(s)
- Amberley D Stephens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, UK
| | - Maria Zacharopoulou
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, UK
| | - Rani Moons
- Department of Chemistry, University of Antwerp, Antwerp, Belgium
| | - Giuliana Fusco
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Neeleema Seetaloo
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK
| | - Anass Chiki
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Philippa J Woodhams
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, UK
| | - Ioanna Mela
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, UK
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | | | | | - Frank Sobott
- Department of Chemistry, University of Antwerp, Antwerp, Belgium
- School of Molecular and Cellular Biology and The Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, UK
| | - Gabriele S Kaminski Schierle
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, UK.
| |
Collapse
|
16
|
Doherty CPA, Ulamec SM, Maya-Martinez R, Good SC, Makepeace J, Khan GN, van Oosten-Hawle P, Radford SE, Brockwell DJ. A short motif in the N-terminal region of α-synuclein is critical for both aggregation and function. Nat Struct Mol Biol 2020; 27:249-259. [PMID: 32157247 PMCID: PMC7100612 DOI: 10.1038/s41594-020-0384-x] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/22/2020] [Indexed: 02/04/2023]
Abstract
Aggregation of human α-synuclein (αSyn) is linked to Parkinson’s disease (PD) pathology. The central region of the αSyn sequence contains the non-amyloid β-component (NAC) crucial for aggregation. However, how NAC flanking regions modulate αSyn aggregation remains unclear. Using bioinformatics, mutation, and NMR we identify a 7-residue sequence, named P1 (residues 36-42), that controls αSyn aggregation. Deletion or substitution of this ‘master-controller’ prevents aggregation at pH 7.5 in vitro. At lower pH, P1 synergises with a sequence containing the PreNAC region (P2, residues 45-57) to prevent aggregation. Deleting P1 (ΔP1) or both P1 and P2 (ΔΔ) also prevents age-dependent αSyn aggregation and toxicity in C. elegans models and prevents αSyn-mediated vesicle fusion by altering the conformational properties of the protein when lipid-bound. The results highlight the importance of a master-controller sequence motif that controls both αSyn aggregation and function- a region that could be targeted to prevent aggregation in disease.
Collapse
Affiliation(s)
- Ciaran P A Doherty
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Sabine M Ulamec
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Roberto Maya-Martinez
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Sarah C Good
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Jemma Makepeace
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - G Nasir Khan
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Patricija van Oosten-Hawle
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| |
Collapse
|
17
|
Caminati G, Martina MR, Menichetti S, Procacci P. Blocking the FKBP12 induced dendrimeric burst in aberrant aggregation of α-synuclein by using the ElteN378 synthetic inhibitor. J Enzyme Inhib Med Chem 2019; 34:1711-1715. [PMID: 31547734 PMCID: PMC6764402 DOI: 10.1080/14756366.2019.1667342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
α-Synuclein (α-syn), a disordered cytoplasmatic protein, plays a fundamental role in the pathogenesis of Parkinson’s disease (PD). Here, we have shown, using photophysical measurements, that addition of FKBP12 to α-syn solutions, dramatically accelerates protein aggregation, leading to an explosion of dendritic structures revealed by fluorescence and phase-contrast microscopy. We have further demonstrated that this aberrant α-syn aggregation can be blocked using a recently discovered non-immunosuppressive synthetic inhibitor of FKBP12, ElteN378. The role of FKBP12 and of ElteN378 in the α-syn aggregation mechanism has been elucidated using molecular dynamics simulations based on an effective coarse-grained model. The reported data not only reveal a new potent synthetic drug as a candidate for early stage treatment of α-syn dependent neurodegenerations but also pave the way to a deeper understanding of the mechanism of action of FKBP12 on α-syn oligomeric aggregation, a topic which is still controversial.
Collapse
Affiliation(s)
- Gabriella Caminati
- Department of Chemistry "Ugo Schiff", University of Florence , Sesto Fiorentino , Italy.,Center for Colloid and Surface Science (CSGI), University of Florence , Sesto Fiorentino , Italy
| | - Maria Raffaella Martina
- Department of Chemistry "Ugo Schiff", University of Florence , Sesto Fiorentino , Italy.,Center for Colloid and Surface Science (CSGI), University of Florence , Sesto Fiorentino , Italy
| | - Stefano Menichetti
- Center for Colloid and Surface Science (CSGI), University of Florence , Sesto Fiorentino , Italy
| | - Piero Procacci
- Center for Colloid and Surface Science (CSGI), University of Florence , Sesto Fiorentino , Italy
| |
Collapse
|
18
|
Bhattacharya S, Xu L, Thompson D. Molecular Simulations Reveal Terminal Group Mediated Stabilization of Helical Conformers in Both Amyloid-β42 and α-Synuclein. ACS Chem Neurosci 2019; 10:2830-2842. [PMID: 30917651 DOI: 10.1021/acschemneuro.9b00053] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The presence of partially structured helices in natively unfolded amyloid-β42 (Aβ42) and α-synuclein (αS) has been shown to accelerate fibrillation in the onset of Alzheimer's and Parkinson's disease, respectively. At the other extreme, folded stable helical conformers have also been reported to resist amyloid formation. Recent studies indicate that amyloidogenic aggregation can be impeded using small molecules that stabilize the α-helical monomers and switch off the neurotoxic pathway. We predict a common intrapeptide route to stabilization based on the plasticity of helical conformations of Aβ42 and αS as assessed through extensive atomistic molecular dynamics (MD) computer simulations (∼36 μs) across ten distinct protein force field and water model combinations. Computed free energies and interaction maps (not obtainable from experiments alone) show that flexible terminal groups (N-terminus of Aβ42 and C-terminus of αS) show a tendency to stabilize folded helical conformations in both peptides via primary hydrophobic interactions with central hydrophobic domains, and secondary salt bridges with other domains. These interactions confer aggregation resistance by decreasing the population of partially structured helices and are absent in control simulations of complete unfolding. Computed helical stability is also significantly reduced in terminal-deleted variants. The models suggest new strategies to tackle neurodegeneration by rationally re-engineering terminal groups to optimize their predicted ability to deactivate helical monomers.
Collapse
Affiliation(s)
- Shayon Bhattacharya
- Department of Physics, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Liang Xu
- Department of Physics, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Damien Thompson
- Department of Physics, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| |
Collapse
|
19
|
Ghosh S, Mahapatra A, Chattopadhyay K. Modulation of α-Synuclein Aggregation by Cytochrome c Binding and Hetero-dityrosine Adduct Formation. ACS Chem Neurosci 2019; 10:1300-1310. [PMID: 30620180 DOI: 10.1021/acschemneuro.8b00393] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The aggregation of α-synuclein (α-Syn) has been implicated strongly in Parkinson's disease (PD). The intrinsically disordered nature of α-Syn makes this protein prone to self-association or heteroassociation with another protein or lipid. While conformational fluctuation and free radical chemistry have been shown to play important roles in its ability toward self- and heteroassociation, any systematic understanding of their contributions is missing. Here, we report an in vitro investigation of the interaction between α-Syn and cytochrome c in the oxidized (cyt c III) and reduced forms (cyt c II), in which cyt c III was found to induce a large compaction of α-Syn and inhibit the aggregation by favoring a hetero-dityrosine bond formation. In contrast, the presence of cyt c II did not result in any compaction and its presence was found to facilitate α-Syn aggregation. The variation in the charge distribution of the surface residues of cyt c III and cyt c II is expected to play a decisive role in their interaction with α-Syn.
Collapse
Affiliation(s)
- Sumanta Ghosh
- Protein Folding and Dynamics Laboratory, Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Anindita Mahapatra
- Protein Folding and Dynamics Laboratory, Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Krishnananda Chattopadhyay
- Protein Folding and Dynamics Laboratory, Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| |
Collapse
|
20
|
The Cellular Environment Affects Monomeric α-Synuclein Structure. Trends Biochem Sci 2018; 44:453-466. [PMID: 30527975 DOI: 10.1016/j.tibs.2018.11.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 12/19/2022]
Abstract
The presynaptic protein α-synuclein (aSyn) is an 'intrinsically disordered protein' that is highly dynamic in conformation. Transient intramolecular interactions between its charged N and C termini, and between its hydrophobic region and the C terminus, prevent self-association. These interactions inhibit the formation of insoluble inclusions, which are the pathological hallmark of Parkinson's disease and many other synucleinopathies. This review discusses how these intramolecular interactions are influenced by the specific environment aSyn is in. We discuss how charge, pH, calcium, and salt affect the physiological structure of monomeric aSyn, and how they may favour the formation of toxic structures. The more we understand the dynamic conformations of aSyn, the better we can design desperately needed therapeutics to prevent disease progression.
Collapse
|
21
|
Graen T, Klement R, Grupi A, Haas E, Grubmüller H. Transient Secondary and Tertiary Structure Formation Kinetics in the Intrinsically Disordered State ofα-Synuclein from Atomistic Simulations. Chemphyschem 2018; 19:2507-2511. [DOI: 10.1002/cphc.201800504] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Timo Graen
- Theoretical and Computational Biophysics Department; Max Planck Institute for Biophysical Chemistry; 37077 Göttingen Germany
| | - Reinhard Klement
- Theoretical and Computational Biophysics Department; Max Planck Institute for Biophysical Chemistry; 37077 Göttingen Germany
| | - Asaf Grupi
- Physics Department; Bar-Ilan University; Ramat Gan 52900 Israel
| | - Elisha Haas
- The Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat Gan 52900 Israel
| | - Helmut Grubmüller
- Theoretical and Computational Biophysics Department; Max Planck Institute for Biophysical Chemistry; 37077 Göttingen Germany
| |
Collapse
|
22
|
Oleuropein aglycone stabilizes the monomeric α-synuclein and favours the growth of non-toxic aggregates. Sci Rep 2018; 8:8337. [PMID: 29844450 PMCID: PMC5974307 DOI: 10.1038/s41598-018-26645-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/15/2018] [Indexed: 01/03/2023] Open
Abstract
α-synuclein plays a key role in the pathogenesis of Parkinson’s disease (PD); its deposits are found as amyloid fibrils in Lewy bodies and Lewy neurites, the histopathological hallmarks of PD. Amyloid fibrillation is a progressive polymerization path starting from peptide/protein misfolding and proceeding through the transient growth of oligomeric intermediates widely considered as the most toxic species. Consequently, a promising approach of intervention against PD might be preventing α-synuclein build-up, misfolding and aggregation. A possible strategy involves the use of small molecules able to slow down the aggregation process or to alter oligomer conformation favouring the growth of non-pathogenic species. Here, we show that oleuropein aglycone (OleA), the main olive oil polyphenol, exhibits anti-amyloidogenic power in vitro by interacting with, and stabilizing, α-synuclein monomers thus hampering the growth of on-pathway oligomers and favouring the growth of stable and harmless aggregates with no tendency to evolve into other cytotoxic amyloids. We investigated the molecular basis of such interference by both biophysical techniques and limited proteolysis; aggregate morphology was monitored by electron microscopy. We also found that OleA reduces the cytotoxicity of α-synuclein aggregates by hindering their binding to cell membrane components and preventing the resulting oxidative damage to cells.
Collapse
|
23
|
Bhattacharya S, Xu L, Thompson D. Revisiting the earliest signatures of amyloidogenesis: Roadmaps emerging from computational modeling and experiment. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018. [DOI: 10.1002/wcms.1359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Shayon Bhattacharya
- Department of Physics, Bernal InstituteUniversity of LimerickLimerickIreland
| | - Liang Xu
- Department of Physics, Bernal InstituteUniversity of LimerickLimerickIreland
| | - Damien Thompson
- Department of Physics, Bernal InstituteUniversity of LimerickLimerickIreland
| |
Collapse
|
24
|
Ranjan P, Kumar A. Perturbation in Long-Range Contacts Modulates the Kinetics of Amyloid Formation in α-Synuclein Familial Mutants. ACS Chem Neurosci 2017; 8:2235-2246. [PMID: 28759722 DOI: 10.1021/acschemneuro.7b00149] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The characteristic cross-β-sheet-rich amyloid fibril formation by intrinsically disordered α-synuclein proteins is one of the pathological hallmarks of Parkinson's disease. Although unstructured in solution, the presence of autoinhibitory long-range contacts in monomeric form prevents protein aggregation. Out of the various factors that affect the rate of amyloid formation, familial mutations play an important role in α-synuclein aggregation. Even though these mutations are believed to form an aggregation-prone intermediate by perturbing these contacts, the correlation between perturbation and rate of fibril formation is not very straightforward. A combination of solution and solid-state NMR in conjunction with other biophysical methods has been used to identify the underlying mechanism behind the anomaly in the rate of aggregation for the novel mutants H50Q (fast aggregating) and G51D (slow aggregating). Perturbation of long-range contacts at the mutation sites and C-termini in all of the six familial mutants of α-synuclein during the diseased condition (acidic pH) was observed. These contacts get rearranged at physiological pH resulting in the shielding of mutation sites. Additional contacts at the mutation site in a slow aggregating mutant could be the reason for slower aggregation. Indeed, these contacts provide more rigidity to the monomeric G51D. Nonetheless, these mutations did not alter the overall secondary structure. The differential pattern of the long-range contacts at the monomeric level resulted in the perturbation of the fibrillar-core region, which was evident in the solid-state NMR spectra. Our results provide valuable insights in understanding the effect of long-range contacts on the aggregation of α-synuclein and its mutants.
Collapse
Affiliation(s)
- Priyatosh Ranjan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Ashutosh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
25
|
Emperador A, Orozco M. Discrete Molecular Dynamics Approach to the Study of Disordered and Aggregating Proteins. J Chem Theory Comput 2017; 13:1454-1461. [PMID: 28157327 DOI: 10.1021/acs.jctc.6b01153] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present a refinement of the Coarse Grained PACSAB force field for Discrete Molecular Dynamics (DMD) simulations of proteins in aqueous conditions. As the original version, the refined method provides good representation of the structure and dynamics of folded proteins but provides much better representations of a variety of unfolded proteins, including some very large, impossible to analyze by atomistic simulation methods. The PACSAB/DMD method also reproduces accurately aggregation properties, providing good pictures of the structural ensembles of proteins showing a folded core and an intrinsically disordered region. The combination of accuracy and speed makes the method presented here a good alternative for the exploration of unstructured protein systems.
Collapse
Affiliation(s)
- Agustí Emperador
- Institute for Research in Biomedicine (IRB) Barcelona, The Barcelona Institute of Science and Technology, Parc Científic de Barcelona , Josep Samitier 1-5, Barcelona 08028, Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB) Barcelona, The Barcelona Institute of Science and Technology, Parc Científic de Barcelona , Josep Samitier 1-5, Barcelona 08028, Spain.,Joint IRB-BSC Program on Computational Biology , Barcelona 08028, Spain.,Departament de Bioquímica i Biomedicina, Facultat de Biología, Universitat de Barcelona , Avgda Diagonal 647, Barcelona 08028, Spain
| |
Collapse
|
26
|
Ranjan P, Ghosh D, Yarramala DS, Das S, Maji SK, Kumar A. Differential copper binding to alpha-synuclein and its disease-associated mutants affect the aggregation and amyloid formation. Biochim Biophys Acta Gen Subj 2017; 1861:365-374. [DOI: 10.1016/j.bbagen.2016.11.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/27/2016] [Accepted: 11/28/2016] [Indexed: 01/02/2023]
|
27
|
Structural Characteristics of α-Synuclein Oligomers. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 329:79-143. [DOI: 10.1016/bs.ircmb.2016.08.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
28
|
Ma MR, Hu ZW, Zhao YF, Chen YX, Li YM. Phosphorylation induces distinct alpha-synuclein strain formation. Sci Rep 2016; 6:37130. [PMID: 27853185 PMCID: PMC5112567 DOI: 10.1038/srep37130] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/24/2016] [Indexed: 12/26/2022] Open
Abstract
Synucleinopathies are a group of neurodegenerative diseases associated with alpha-synuclein (α-Syn) aggregation. Recently, increasing evidence has demonstrated the existence of different structural characteristics or 'strains' of α-Syn, supporting the concept that synucleinopathies share several common features with prion diseases and possibly explaining how a single protein results in different clinical phenotypes within synucleinopathies. In earlier studies, the different strains were generated through the regulation of solution conditions, temperature, or repetitive seeded fibrillization in vitro. Here, we synthesize homogeneous α-Syn phosphorylated at serine 129 (pS129 α-Syn), which is highly associated with the pathological changes, and demonstrate that phosphorylation at Ser129 induces α-Syn to form a distinct strain with different structures, propagation properties, and higher cytotoxicity compared with the wild-type α-Syn. The results are the first demonstration that post-translational modification of α-Syn can induce different strain formation, offering a new mechanism for strain formation.
Collapse
Affiliation(s)
- Meng-Rong Ma
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| | - Zhi-Wen Hu
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| | - Yu-Fen Zhao
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| | - Yong-Xiang Chen
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| | - Yan-Mei Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China.,Beijing Institute for Brain Disorders, Beijing 100069, P. R. China
| |
Collapse
|
29
|
The neural chaperone proSAAS blocks α-synuclein fibrillation and neurotoxicity. Proc Natl Acad Sci U S A 2016; 113:E4708-15. [PMID: 27457957 DOI: 10.1073/pnas.1601091113] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Emerging evidence strongly suggests that chaperone proteins are cytoprotective in neurodegenerative proteinopathies involving protein aggregation; for example, in the accumulation of aggregated α-synuclein into the Lewy bodies present in Parkinson's disease. Of the various chaperones known to be associated with neurodegenerative disease, the small secretory chaperone known as proSAAS (named after four residues in the amino terminal region) has many attractive properties. We show here that proSAAS, widely expressed in neurons throughout the brain, is associated with aggregated synuclein deposits in the substantia nigra of patients with Parkinson's disease. Recombinant proSAAS potently inhibits the fibrillation of α-synuclein in an in vitro assay; residues 158-180, containing a largely conserved element, are critical to this bioactivity. ProSAAS also exhibits a neuroprotective function; proSAAS-encoding lentivirus blocks α-synuclein-induced cytotoxicity in primary cultures of nigral dopaminergic neurons, and recombinant proSAAS blocks α-synuclein-induced cytotoxicity in SH-SY5Y cells. Four independent proteomics studies have previously identified proSAAS as a potential cerebrospinal fluid biomarker in various neurodegenerative diseases. Coupled with prior work showing that proSAAS blocks β-amyloid aggregation into fibrils, this study supports the idea that neuronal proSAAS plays an important role in proteostatic processes. ProSAAS thus represents a possible therapeutic target in neurodegenerative disease.
Collapse
|
30
|
Gallea JI, Sarroukh R, Yunes-Quartino P, Ruysschaert JM, Raussens V, Celej MS. Structural remodeling during amyloidogenesis of physiological Nα-acetylated α-synuclein. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:501-10. [DOI: 10.1016/j.bbapap.2016.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/25/2016] [Accepted: 01/27/2016] [Indexed: 12/24/2022]
|
31
|
Salveson PJ, Spencer RK, Nowick JS. X-ray Crystallographic Structure of Oligomers Formed by a Toxic β-Hairpin Derived from α-Synuclein: Trimers and Higher-Order Oligomers. J Am Chem Soc 2016; 138:4458-67. [PMID: 26926877 PMCID: PMC4825732 DOI: 10.1021/jacs.5b13261] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
Oligomeric
assemblies of the protein α-synuclein are thought
to cause neurodegeneration in Parkinson’s disease and related
synucleinopathies. Characterization of α-synuclein oligomers
at high resolution is an outstanding challenge in the field of structural
biology. The absence of high-resolution structures of oligomers formed
by α-synuclein impedes understanding the synucleinopathies at
the molecular level. This paper reports the X-ray crystallographic
structure of oligomers formed by a peptide derived from residues 36–55
of α-synuclein. The peptide 1a adopts a β-hairpin
structure, which assembles in a hierarchical fashion. Three β-hairpins
assemble to form a triangular trimer. Three copies of the triangular
trimer assemble to form a basket-shaped nonamer. Two nonamers pack
to form an octadecamer. Molecular modeling suggests that full-length
α-synuclein may also be able to assemble in this fashion. Circular
dichroism spectroscopy demonstrates that peptide 1a interacts
with anionic lipid bilayer membranes, like oligomers of full-length
α-synuclein. LDH and MTT assays demonstrate that peptide 1a is toxic toward SH-SY5Y cells. Comparison of peptide 1a to homologues suggests that this toxicity results from
nonspecific interactions with the cell membrane. The oligomers formed
by peptide 1a are fundamentally different than the proposed
models of the fibrils formed by α-synuclein and suggest that
α-Syn36–55, rather than the NAC, may nucleate
oligomer formation.
Collapse
Affiliation(s)
- Patrick J Salveson
- Department of Chemistry, University of California Irvine , Irvine, California 92697-2025, United States
| | - Ryan K Spencer
- Department of Chemistry, University of California Irvine , Irvine, California 92697-2025, United States
| | - James S Nowick
- Department of Chemistry, University of California Irvine , Irvine, California 92697-2025, United States
| |
Collapse
|
32
|
Yu H, Han W, Ma W, Schulten K. Transient β-hairpin formation in α-synuclein monomer revealed by coarse-grained molecular dynamics simulation. J Chem Phys 2015; 143:243142. [PMID: 26723627 PMCID: PMC4684271 DOI: 10.1063/1.4936910] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/18/2015] [Indexed: 12/18/2022] Open
Abstract
Parkinson's disease, originating from the intrinsically disordered peptide α-synuclein, is a common neurodegenerative disorder that affects more than 5% of the population above age 85. It remains unclear how α-synuclein monomers undergo conformational changes leading to aggregation and formation of fibrils characteristic for the disease. In the present study, we perform molecular dynamics simulations (over 180 μs in aggregated time) using a hybrid-resolution model, Proteins with Atomic details in Coarse-grained Environment (PACE), to characterize in atomic detail structural ensembles of wild type and mutant monomeric α-synuclein in aqueous solution. The simulations reproduce structural properties of α-synuclein characterized in experiments, such as secondary structure content, long-range contacts, chemical shifts, and (3)J(HNHCα )-coupling constants. Most notably, the simulations reveal that a short fragment encompassing region 38-53, adjacent to the non-amyloid-β component region, exhibits a high probability of forming a β-hairpin; this fragment, when isolated from the remainder of α-synuclein, fluctuates frequently into its β-hairpin conformation. Two disease-prone mutations, namely, A30P and A53T, significantly accelerate the formation of a β-hairpin in the stated fragment. We conclude that the formation of a β-hairpin in region 38-53 is a key event during α-synuclein aggregation. We predict further that the G47V mutation impedes the formation of a turn in the β-hairpin and slows down β-hairpin formation, thereby retarding α-synuclein aggregation.
Collapse
Affiliation(s)
- Hang Yu
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Wei Han
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Wen Ma
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Klaus Schulten
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
33
|
Emperador A, Sfriso P, Villarreal MA, Gelpí JL, Orozco M. PACSAB: Coarse-Grained Force Field for the Study of Protein–Protein Interactions and Conformational Sampling in Multiprotein Systems. J Chem Theory Comput 2015; 11:5929-38. [DOI: 10.1021/acs.jctc.5b00660] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Agustí Emperador
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri
i Reixac 10, Barcelona 08028, Spain
- Joint BSC-IRB Research Program in Computational Biology, IRB Barcelona, Barcelona 08028, Spain
| | - Pedro Sfriso
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri
i Reixac 10, Barcelona 08028, Spain
- Joint BSC-IRB Research Program in Computational Biology, IRB Barcelona, Barcelona 08028, Spain
| | - Marcos Ariel Villarreal
- Instituto de Investigaciones en Fisicoquímica de Córdoba
- Departamento de Matemática y Física, CONICET-Universidad Nacional de Córdoba, University City, Córdoba 5000, Argentina
| | - Josep Lluis Gelpí
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri
i Reixac 10, Barcelona 08028, Spain
- Joint BSC-IRB Research Program in Computational Biology, IRB Barcelona, Barcelona 08028, Spain
- Barcelona Supercomputing Center, Jordi Girona
29, Barcelona 08034, Spain
- Departament de Bioquímica, Facultat de Biologia, Avgda Diagonal 645, Barcelona 08028, Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri
i Reixac 10, Barcelona 08028, Spain
- Joint BSC-IRB Research Program in Computational Biology, IRB Barcelona, Barcelona 08028, Spain
- Barcelona Supercomputing Center, Jordi Girona
29, Barcelona 08034, Spain
- Departament de Bioquímica, Facultat de Biologia, Avgda Diagonal 645, Barcelona 08028, Spain
| |
Collapse
|
34
|
Shaykhalishahi H, Gauhar A, Wördehoff MM, Grüning CSR, Klein AN, Bannach O, Stoldt M, Willbold D, Härd T, Hoyer W. Contact between the β1 and β2 Segments of α-Synuclein that Inhibits Amyloid Formation. Angew Chem Int Ed Engl 2015; 54:8837-40. [DOI: 10.1002/anie.201503018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Indexed: 11/09/2022]
|
35
|
Shaykhalishahi H, Gauhar A, Wördehoff MM, Grüning CSR, Klein AN, Bannach O, Stoldt M, Willbold D, Härd T, Hoyer W. Kontakt zwischen den β1- und β2-Segmenten von α-Synuclein inhibiert die Amyloidbildung. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201503018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Pastor N, Amero C. Information flow and protein dynamics: the interplay between nuclear magnetic resonance spectroscopy and molecular dynamics simulations. FRONTIERS IN PLANT SCIENCE 2015; 6:306. [PMID: 25999971 PMCID: PMC4419604 DOI: 10.3389/fpls.2015.00306] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/17/2015] [Indexed: 06/04/2023]
Abstract
Proteins participate in information pathways in cells, both as links in the chain of signals, and as the ultimate effectors. Upon ligand binding, proteins undergo conformation and motion changes, which can be sensed by the following link in the chain of information. Nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations represent powerful tools for examining the time-dependent function of biological molecules. The recent advances in NMR and the availability of faster computers have opened the door to more detailed analyses of structure, dynamics, and interactions. Here we briefly describe the recent applications that allow NMR spectroscopy and MD simulations to offer unique insight into the basic motions that underlie information transfer within and between cells.
Collapse
Affiliation(s)
- Nina Pastor
- Laboratorio de Dinámica de Proteínas y Ácidos Nucleicos, Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Carlos Amero
- Laboratorio de Bioquímica y Resonancia Magnética Nuclear, Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| |
Collapse
|
37
|
Piana S, Donchev AG, Robustelli P, Shaw DE. Water dispersion interactions strongly influence simulated structural properties of disordered protein states. J Phys Chem B 2015; 119:5113-23. [PMID: 25764013 DOI: 10.1021/jp508971m] [Citation(s) in RCA: 579] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Many proteins can be partially or completely disordered under physiological conditions. Structural characterization of these disordered states using experimental methods can be challenging, since they are composed of a structurally heterogeneous ensemble of conformations rather than a single dominant conformation. Molecular dynamics (MD) simulations should in principle provide an ideal tool for elucidating the composition and behavior of disordered states at an atomic level of detail. Unfortunately, MD simulations using current physics-based models tend to produce disordered-state ensembles that are structurally too compact relative to experiments. We find that the water models typically used in MD simulations significantly underestimate London dispersion interactions, and speculate that this may be a possible reason for these erroneous results. To test this hypothesis, we create a new water model, TIP4P-D, that approximately corrects for these deficiencies in modeling water dispersion interactions while maintaining compatibility with existing physics-based models. We show that simulations of solvated proteins using this new water model typically result in disordered states that are substantially more expanded and in better agreement with experiment. These results represent a significant step toward extending the range of applicability of MD simulations to include the study of (partially or fully) disordered protein states.
Collapse
Affiliation(s)
- Stefano Piana
- †D. E. Shaw Research, New York, New York 10036, United States
| | | | - Paul Robustelli
- †D. E. Shaw Research, New York, New York 10036, United States
| | - David E Shaw
- †D. E. Shaw Research, New York, New York 10036, United States.,‡Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, United States
| |
Collapse
|
38
|
Jiang Z, Hess SK, Heinrich F, Lee JC. Molecular details of α-synuclein membrane association revealed by neutrons and photons. J Phys Chem B 2015; 119:4812-23. [PMID: 25790164 DOI: 10.1021/jp512499r] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
α-Synuclein (α-syn) is an abundant neuronal protein associated with Parkinson's disease that is disordered in solution, but it exists in equilibrium between a bent-helix and an elongated-helix on negatively charged membranes. Here, neutron reflectometry (NR) and fluorescence spectroscopy were employed to uncover molecular details of the interaction between α-syn and two anionic lipids, phosphatidic acid (PA) and phosphatidylserine (PS). Both NR and site-specific Trp measurements indicate that penetration depth of α-syn is similar for either PA- or PS-containing membranes (∼9-11 Å from bilayer center) even though there is a preference for α-syn binding to PA. However, closer examination of the individual Trp quenching profiles by brominated lipids reveals differences into local membrane interactions especially at position 39 where conformational heterogeneity was observed. The data also indicate that while W94 penetrates the bilayer as deeply as W4, W94 resides in a more polar surrounding. Taken together, we suggest the N- and C-terminal regions near positions 4 and 94 are anchored to the membrane, while the putative linker spanning residue 39 samples multiple conformations, which are sensitive to the chemical nature of the membrane surface. This flexibility may enable α-syn to bind diverse biomembranes in vivo.
Collapse
Affiliation(s)
- Zhiping Jiang
- †Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Sara K Hess
- †Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Frank Heinrich
- ‡Physics Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.,§Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Jennifer C Lee
- †Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
39
|
Gibbs EB, Showalter SA. Quantitative biophysical characterization of intrinsically disordered proteins. Biochemistry 2015; 54:1314-26. [PMID: 25631161 DOI: 10.1021/bi501460a] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Intrinsically disordered proteins (IDPs) are broadly defined as protein regions that do not cooperatively fold into a spatially or temporally stable structure. Recent research strongly supports the hypothesis that a conserved functional role for structural disorder renders IDPs uniquely capable of functioning in biological processes such as cellular signaling and transcription. Recently, the frequency of application of rigorous mechanistic biochemistry and quantitative biophysics to disordered systems has increased dramatically. For example, the launch of the Protein Ensemble Database (pE-DB) demonstrates that the potential now exists to refine models for the native state structure of IDPs using experimental data. However, rigorous assessment of which observables place the strongest and least biased constraints on those ensembles is now needed. Most importantly, the past few years have seen strong growth in the number of biochemical and biophysical studies attempting to connect structural disorder with function. From the perspective of equilibrium thermodynamics, there is a clear need to assess the relative significance of hydrophobic versus electrostatic forces in IDP interactions, if it is possible to generalize at all. Finally, kinetic mechanisms that invoke conformational selection and/or induced fit are often used to characterize coupled IDP folding and binding, although application of these models is typically built upon thermodynamic observations. Recently, the reaction rates and kinetic mechanisms of more intrinsically disordered systems have been tested through rigorous kinetic experiments. Motivated by these exciting advances, here we provide a review and prospectus for the quantitative study of IDP structure, thermodynamics, and kinetics.
Collapse
Affiliation(s)
- Eric B Gibbs
- Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | | |
Collapse
|
40
|
Elazari-Shalom H, Shaked H, Esteban-Martin S, Salvatella X, Barda-Saad M, Chill JH. New insights into the role of the disordered WIP N-terminal domain revealed by NMR structural characterization. FEBS J 2015; 282:700-14. [DOI: 10.1111/febs.13174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 12/04/2014] [Accepted: 12/09/2014] [Indexed: 02/06/2023]
Affiliation(s)
| | - Hadassa Shaked
- Department of Chemistry; Bar Ilan University; Ramat Gan Israel
| | - Santiago Esteban-Martin
- Joint BSC-CRG-IRB Research Programme in Computational Biology; Barcelona Supercomputing Center; Spain
| | - Xavier Salvatella
- Joint BSC-CRG-IRB Research Programme in Computational Biology; Institute for Research in Biomedicine IRB Barcelona; Spain
- ICREA; Barcelona Spain
| | - Mira Barda-Saad
- Mina and Everard Goodman Faculty of Life Sciences; Bar Ilan University; Ramat Gan Israel
| | - Jordan H. Chill
- Department of Chemistry; Bar Ilan University; Ramat Gan Israel
| |
Collapse
|
41
|
Gallea JI, Celej MS. Structural insights into amyloid oligomers of the Parkinson disease-related protein α-synuclein. J Biol Chem 2014; 289:26733-26742. [PMID: 25143382 DOI: 10.1074/jbc.m114.566695] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The presence of intraneuronal deposits mainly formed by amyloid fibrils of the presynaptic protein α-synuclein (AS) is a hallmark of Parkinson disease. Currently, neurotoxicity is attributed to prefibrillar oligomeric species rather than the insoluble aggregates, although their mechanisms of toxicity remain elusive. Structural details of the supramolecular organization of AS oligomers are critically needed to decipher the structure-toxicity relationship underlying their pathogenicity. In this study, we employed site-specific fluorescence to get a deeper insight into the internal architecture of AS oligomeric intermediates. We demonstrate that AS oligomers are ordered assemblies possessing a well defined pattern of intermolecular contacts. Some of these contacts involve regions that form the β-sheet core in the fibrillar state, although their spatial arrangement may differ in the two aggregated forms. However, even though the two termini are excluded from the fibrillar core, they are engaged in a number of intermolecular interactions within the oligomer. Therefore, substantial structural remodeling of early oligomeric interactions is essential for fibril growth. The intermolecular contacts identified in AS oligomers can serve as targets for the rational design of anti-amyloid compounds directed at preventing oligomeric interactions/reorganizations.
Collapse
Affiliation(s)
- J Ignacio Gallea
- Departamento de Química Biológica, Centro de Investigaciones en Química Biológica de Córdoba (Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - M Soledad Celej
- Departamento de Química Biológica, Centro de Investigaciones en Química Biológica de Córdoba (Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina.
| |
Collapse
|
42
|
Mantsyzov AB, Maltsev AS, Ying J, Shen Y, Hummer G, Bax A. A maximum entropy approach to the study of residue-specific backbone angle distributions in α-synuclein, an intrinsically disordered protein. Protein Sci 2014; 23:1275-90. [PMID: 24976112 DOI: 10.1002/pro.2511] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/16/2014] [Indexed: 01/16/2023]
Abstract
α-Synuclein is an intrinsically disordered protein of 140 residues that switches to an α-helical conformation upon binding phospholipid membranes. We characterize its residue-specific backbone structure in free solution with a novel maximum entropy procedure that integrates an extensive set of NMR data. These data include intraresidue and sequential H(N) − H(α) and H(N) − H(N) NOEs, values for (3) JHNHα, (1) JHαCα, (2) JCαN, and (1) JCαN, as well as chemical shifts of (15)N, (13)C(α), and (13)C' nuclei, which are sensitive to backbone torsion angles. Distributions of these torsion angles were identified that yield best agreement to the experimental data, while using an entropy term to minimize the deviation from statistical distributions seen in a large protein coil library. Results indicate that although at the individual residue level considerable deviations from the coil library distribution are seen, on average the fitted distributions agree fairly well with this library, yielding a moderate population (20-30%) of the PPII region and a somewhat higher population of the potentially aggregation-prone β region (20-40%) than seen in the database. A generally lower population of the αR region (10-20%) is found. Analysis of (1)H − (1)H NOE data required consideration of the considerable backbone diffusion anisotropy of a disordered protein.
Collapse
Affiliation(s)
- Alexey B Mantsyzov
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | | | | | | | | | | |
Collapse
|
43
|
Reddy KD, DeForte S, Uversky VN. Digested disorder: Quarterly intrinsic disorder digest (July-August-September, 2013). INTRINSICALLY DISORDERED PROTEINS 2014; 2:e27833. [PMID: 28232877 PMCID: PMC5314876 DOI: 10.4161/idp.27833] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 01/13/2014] [Indexed: 12/26/2022]
Abstract
The current literature on intrinsically disordered proteins grows fast. To keep interested readers up to speed with this literature, we continue a "Digested Disorder" project and represent a new issue of reader's digest of the research papers and reviews on intrinsically disordered proteins. The only 2 criteria for inclusion in this digest are the publication date (a paper should be published within the covered time frame) and topic (a paper should be dedicated to any aspect of protein intrinsic disorder). The current digest issue covers papers published during the third quarter of 2013; i.e., during the period of June, July, and September of 2013. Similar to previous issues, the papers are grouped hierarchically by topics they cover, and for each of the included paper a short description is given on its major findings.
Collapse
Affiliation(s)
- Krishna D Reddy
- Department of Molecular Medicine; Morsani College of Medicine; University of South Florida; Tampa, FL USA
| | - Shelly DeForte
- Department of Molecular Medicine; Morsani College of Medicine; University of South Florida; Tampa, FL USA
| | - Vladimir N Uversky
- Department of Molecular Medicine; Morsani College of Medicine; University of South Florida; Tampa, FL USA; USF Health Byrd Alzheimer's Research Institute; Morsani College of Medicine; University of South Florida; Tampa, FL USA; Department of Biological Sciences; Faculty of Science; King Abdulaziz University; Jeddah, Saudi Arabia; Institute for Biological Instrumentation; Russian Academy of Sciences; Pushchino, Moscow Region, Russia
| |
Collapse
|
44
|
Mirecka EA, Shaykhalishahi H, Gauhar A, Akgül Ş, Lecher J, Willbold D, Stoldt M, Hoyer W. Sequestration of a β-Hairpin for Control of α-Synuclein Aggregation. Angew Chem Int Ed Engl 2014; 53:4227-30. [DOI: 10.1002/anie.201309001] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/02/2013] [Indexed: 11/07/2022]
|
45
|
Mirecka EA, Shaykhalishahi H, Gauhar A, Akgül Ş, Lecher J, Willbold D, Stoldt M, Hoyer W. Steuerung der α-Synuclein-Aggregation durch Bindung einer β-Haarnadel. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201309001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|