1
|
Sengar A, Cervantes M, Bondalapati ST, Hess T, Kasson PM. Single-Virus Fusion Measurements Reveal Multiple Mechanistically Equivalent Pathways for SARS-CoV-2 Entry. J Virol 2023; 97:e0199222. [PMID: 37133381 PMCID: PMC10231210 DOI: 10.1128/jvi.01992-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/11/2023] [Indexed: 05/04/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds to cell surface receptors and is activated for membrane fusion and cell entry via proteolytic cleavage. Phenomenological data have shown that SARS-CoV-2 can be activated for entry at either the cell surface or in endosomes, but the relative roles in different cell types and mechanisms of entry have been debated. Here, we used single-virus fusion experiments and exogenously controlled proteases to probe activation directly. We found that plasma membrane and an appropriate protease are sufficient to support SARS-CoV-2 pseudovirus fusion. Furthermore, fusion kinetics of SARS-CoV-2 pseudoviruses are indistinguishable no matter which of a broad range of proteases is used to activate the virus. This suggests that the fusion mechanism is insensitive to protease identity or even whether activation occurs before or after receptor binding. These data support a model for opportunistic fusion by SARS-CoV-2 in which the subcellular location of entry likely depends on the differential activity of airway, cellsurface, and endosomal proteases, but all support infection. Inhibition of any single host protease may thus reduce infection in some cells but may be less clinically robust. IMPORTANCE SARS-CoV-2 can use multiple pathways to infect cells, as demonstrated recently when new viral variants switched dominant infection pathways. Here, we used single-virus fusion experiments together with biochemical reconstitution to show that these multiple pathways coexist simultaneously and specifically that the virus can be activated by different proteases in different cellular compartments with mechanistically identical effects. The consequences of this are that the virus is evolutionarily plastic and that therapies targeting viral entry should address multiple pathways at once to achieve optimal clinical effects.
Collapse
Affiliation(s)
- Anjali Sengar
- Department of Molecular Physiology, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
- Department of Biomedical Engineering, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
| | - Marcos Cervantes
- Department of Molecular Physiology, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
- Department of Biomedical Engineering, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
| | - Sai T. Bondalapati
- Department of Molecular Physiology, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
- Department of Biomedical Engineering, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
| | - Tobin Hess
- Department of Molecular Physiology, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
- Department of Biomedical Engineering, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
| | - Peter M. Kasson
- Department of Molecular Physiology, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
- Department of Biomedical Engineering, Global Infectious Diseases Institute, University of Virginia, Charlottesville, Virginia, USA
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Tuerkova A, Kasson PM. Computational methods to study enveloped viral entry. Biochem Soc Trans 2021; 49:2527-2537. [PMID: 34783344 PMCID: PMC10184508 DOI: 10.1042/bst20210190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022]
Abstract
The protein-membrane interactions that mediate viral infection occur via loosely ordered, transient assemblies, creating challenges for high-resolution structure determination. Computational methods and in particular molecular dynamics simulation have thus become important adjuncts for integrating experimental data, developing mechanistic models, and suggesting testable hypotheses regarding viral function. However, the large molecular scales of virus-host interaction also create challenges for detailed molecular simulation. For this reason, continuum membrane models have played a large historical role, although they have become less favored for high-resolution models of protein assemblies and lipid organization. Here, we review recent progress in the field, with an emphasis on the insight that has been gained using a mixture of coarse-grained and atomic-resolution molecular dynamics simulations. Based on successes and challenges to date, we suggest a multiresolution strategy that should yield the best mixture of computational efficiency and physical fidelity. This strategy may facilitate further simulations of viral entry by a broader range of viruses, helping illuminate the diversity of viral entry strategies and the essential common elements that can be targeted for antiviral therapies.
Collapse
Affiliation(s)
- Alzbeta Tuerkova
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden
| | - Peter M Kasson
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden
- Departments of Molecular Physiology and Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, U.S.A
| |
Collapse
|
3
|
Nathan L, Daniel S. Single Virion Tracking Microscopy for the Study of Virus Entry Processes in Live Cells and Biomimetic Platforms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1215:13-43. [PMID: 31317494 PMCID: PMC7122913 DOI: 10.1007/978-3-030-14741-9_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The most widely-used assays for studying viral entry, including infectivity, cofloatation, and cell-cell fusion assays, yield functional information but provide low resolution of individual entry steps. Structural characterization provides high-resolution conformational information, but on its own is unable to address the functional significance of these conformations. Single virion tracking microscopy techniques provide more detail on the intermediate entry steps than infection assays and more functional information than structural methods, bridging the gap between these methods. In addition, single virion approaches also provide dynamic information about the kinetics of entry processes. This chapter reviews single virion tracking techniques and describes how they can be applied to study specific virus entry steps. These techniques provide information complementary to traditional ensemble approaches. Single virion techniques may either probe virion behavior in live cells or in biomimetic platforms. Synthesizing information from ensemble, structural, and single virion techniques ultimately yields a more complete understanding of the viral entry process than can be achieved by any single method alone.
Collapse
Affiliation(s)
- Lakshmi Nathan
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA.
| | - Susan Daniel
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
4
|
Ripoll DR, Khavrutskii I, Wallqvist A, Chaudhury S. Modeling the Role of Epitope Arrangement on Antibody Binding Stoichiometry in Flaviviruses. Biophys J 2016; 111:1641-1654. [PMID: 27760352 DOI: 10.1016/j.bpj.2016.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 02/03/2023] Open
Abstract
Cryo-electron-microscopy (cryo-EM) structures of flaviviruses reveal significant variation in epitope occupancy across different monoclonal antibodies that have largely been attributed to epitope-level differences in conformation or accessibility that affect antibody binding. The consequences of these variations for macroscopic properties such as antibody binding and neutralization are the results of the law of mass action-a stochastic process of innumerable binding and unbinding events between antibodies and the multiple binding sites on the flavivirus in equilibrium-that cannot be directly imputed from structure alone. We carried out coarse-grained spatial stochastic binding simulations for nine flavivirus antibodies with epitopes defined by cryo-EM or x-ray crystallography to assess the role of epitope spatial arrangement on antibody-binding stoichiometry, occupancy, and neutralization. In our simulations, all epitopes were equally competent for binding, representing the upper limit of binding stoichiometry that results from epitope spatial arrangement alone. Surprisingly, our simulations closely reproduced the relative occupancy and binding stoichiometry observed in cryo-EM, without having to account for differences in epitope accessibility or conformation, suggesting that epitope spatial arrangement alone may be sufficient to explain differences in binding occupancy and stoichiometry between antibodies. Furthermore, we found that there was significant heterogeneity in binding configurations even at saturating antibody concentrations, and that bivalent antibody binding may be more common than previously thought. Finally, we propose a structure-based explanation for the stoichiometric threshold model of neutralization.
Collapse
Affiliation(s)
- Daniel R Ripoll
- DoD Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland
| | - Ilja Khavrutskii
- DoD Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland
| | - Anders Wallqvist
- DoD Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland
| | - Sidhartha Chaudhury
- DoD Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland.
| |
Collapse
|
5
|
Hsu HL, Millet JK, Costello DA, Whittaker GR, Daniel S. Viral fusion efficacy of specific H3N2 influenza virus reassortant combinations at single-particle level. Sci Rep 2016; 6:35537. [PMID: 27752100 PMCID: PMC5067655 DOI: 10.1038/srep35537] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/29/2016] [Indexed: 11/22/2022] Open
Abstract
Virus pseudotyping is a useful and safe technique for studying entry of emerging strains of influenza virus. However, few studies have compared different reassortant combinations in pseudoparticle systems, or compared entry kinetics of native viruses and their pseudotyped analogs. Here, vesicular stomatitis virus (VSV)-based pseudovirions displaying distinct influenza virus envelope proteins were tested for fusion activity. We produced VSV pseudotypes containing the prototypical X-31 (H3) HA, either alone or with strain-matched or mismatched N2 NAs. We performed single-particle fusion assays using total internal reflection fluorescence microscopy to compare hemifusion kinetics among these pairings. Results illustrate that matching pseudoparticles behaved very similarly to native virus. Pseudoparticles harboring mismatched HA-NA pairings fuse at significantly slower rates than native virus, and NA-lacking pseudoparticles exhibiting the slowest fusion rates. Relative viral membrane HA density of matching pseudoparticles was higher than in mismatching or NA-lacking pseudoparticles. An equivalent trend of HA expression level on cell membranes of HA/NA co-transfected cells was observed and intracellular trafficking of HA was affected by NA co-expression. Overall, we show that specific influenza HA-NA combinations can profoundly affect the critical role played by HA during entry, which may factor into viral fitness and the emergence of new pandemic influenza viruses.
Collapse
Affiliation(s)
- Hung-Lun Hsu
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Jean K. Millet
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Deirdre A. Costello
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Gary R. Whittaker
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Susan Daniel
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
6
|
Lee DW, Hsu HL, Bacon KB, Daniel S. Image Restoration and Analysis of Influenza Virions Binding to Membrane Receptors Reveal Adhesion-Strengthening Kinetics. PLoS One 2016; 11:e0163437. [PMID: 27695072 PMCID: PMC5047597 DOI: 10.1371/journal.pone.0163437] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/08/2016] [Indexed: 11/19/2022] Open
Abstract
With the development of single-particle tracking (SPT) microscopy and host membrane mimics called supported lipid bilayers (SLBs), stochastic virus-membrane binding interactions can be studied in depth while maintaining control over host receptor type and concentration. However, several experimental design challenges and quantitative image analysis limitations prevent the widespread use of this approach. One main challenge of SPT studies is the low signal-to-noise ratio of SPT videos, which is sometimes inevitable due to small particle sizes, low quantum yield of fluorescent dyes, and photobleaching. These situations could render current particle tracking software to yield biased binding kinetic data caused by intermittent tracking error. Hence, we developed an effective image restoration algorithm for SPT applications called STAWASP that reveals particles with a signal-to-noise ratio of 2.2 while preserving particle features. We tested our improvements to the SPT binding assay experiment and imaging procedures by monitoring X31 influenza virus binding to α2,3 sialic acid glycolipids. Our interests lie in how slight changes to the peripheral oligosaccharide structures can affect the binding rate and residence times of viruses. We were able to detect viruses binding weakly to a glycolipid called GM3, which was undetected via assays such as surface plasmon resonance. The binding rate was around 28 folds higher when the virus bound to a different glycolipid called GD1a, which has a sialic acid group extending further away from the bilayer surface than GM3. The improved imaging allowed us to obtain binding residence time distributions that reflect an adhesion-strengthening mechanism via multivalent bonds. We empirically fitted these distributions using a time-dependent unbinding rate parameter, koff, which diverges from standard treatment of koff as a constant. We further explain how to convert these models to fit ensemble-averaged binding data obtained by assays such as surface plasmon resonance.
Collapse
Affiliation(s)
- Donald W. Lee
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
| | - Hung-Lun Hsu
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
| | - Kaitlyn B. Bacon
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
| | - Susan Daniel
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
7
|
Lee DW, Allison AB, Bacon KB, Parrish CR, Daniel S. Single-Particle Tracking Shows that a Point Mutation in the Carnivore Parvovirus Capsid Switches Binding between Host-Specific Transferrin Receptors. J Virol 2016; 90:4849-53. [PMID: 26889026 PMCID: PMC4836364 DOI: 10.1128/jvi.03204-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/10/2016] [Indexed: 11/20/2022] Open
Abstract
Determining how viruses infect new hosts via receptor-binding mechanisms is important for understanding virus emergence. We studied the binding kinetics of canine parvovirus (CPV) variants isolated from raccoons-a newly recognized CPV host-to different carnivore transferrin receptors (TfRs) using single-particle tracking. Our data suggest that CPV may utilize adhesion-strengthening mechanisms during TfR binding and that a single mutation in the viral capsid at VP2 position 300 can profoundly alter receptor binding and infectivity.
Collapse
Affiliation(s)
- Donald W Lee
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA
| | - Andrew B Allison
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Kaitlyn B Bacon
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA
| | - Colin R Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Susan Daniel
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
8
|
Smrt ST, Lorieau JL. Membrane Fusion and Infection of the Influenza Hemagglutinin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 966:37-54. [PMID: 27966108 DOI: 10.1007/5584_2016_174] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The influenza virus is a major health concern associated with an estimated 5000 to 30,000 deaths every year (Reed et al. 2015) and a significant economic impact with the development of treatments, vaccinations and research (Molinari et al. 2007). The entirety of the influenza genome is comprised of only eleven coding genes. An enormous degree of variation in non-conserved regions leads to significant challenges in the development of inclusive inhibitors for treatment. The fusion peptide domain of the influenza A hemagglutinin (HA) is a promising candidate for treatment since it is one of the most highly conserved sequences in the influenza genome (Heiny et al. 2007), and it is vital to the viral life cycle. Hemagglutinin is a class I viral fusion protein that catalyzes the membrane fusion process during cellular entry and infection. Impediment of the hemagglutinin's function, either through incomplete post-translational processing (Klenk et al. 1975; Lazarowitz and Choppin 1975) or through mutations (Cross et al. 2001), leads to non-infective virus particles. This review will investigate current research on the role of hemagglutinin in the virus life cycle, its structural biology and mechanism as well as the central role of the hemagglutinin fusion peptide (HAfp) to influenza membrane fusion and infection.
Collapse
Affiliation(s)
- Sean T Smrt
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Justin L Lorieau
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
9
|
Fontana J, Steven AC. Influenza virus-mediated membrane fusion: Structural insights from electron microscopy. Arch Biochem Biophys 2015; 581:86-97. [PMID: 25958107 DOI: 10.1016/j.abb.2015.04.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 04/21/2015] [Accepted: 04/27/2015] [Indexed: 12/26/2022]
Abstract
Influenza virus, the causative agent of flu, enters the host cell by endocytosis. The low pH encountered inside endosomes triggers conformational changes in the viral glycoprotein hemagglutinin (HA), that mediate fusion of the viral and cellular membranes. This releases the viral genome into the cytoplasm of the infected cell, establishing the onset of the replication cycle. To investigate the structural basis of HA-mediated membrane fusion, a number of techniques have been employed. These include X-ray crystallography, which has provided atomic models of the HA ectodomain in its initial (pre-fusion) state and of part of HA in its final (post-fusion) state. However, this left an information deficit concerning many other aspects of the fusion process. Electron microscopy (EM) approaches are helping to fill this void. For example, influenza virions at neutral pH have been imaged by cryo-EM and cryo-electron tomography (cryo-ET); thin section EM has shown that influenza viruses enter the cell by endocytosis; the large-scale structural changes in HA when virions are exposed to low pH (pre-fusion to post-fusion states) have been visualized by negative staining and cryo-EM; acidification also induces structural changes in the M1 matrix layer and its separation from the viral envelope; intermediate HA conformations between its pre- and post-fusion states have been detected by cryo-ET supplemented with subtomogram averaging; and fusion of influenza virions with liposomes has been visualized by cryo-ET. In this review, we survey EM-based contributions towards the characterization of influenza virus-mediated membrane fusion and anticipate the potential for future developments.
Collapse
Affiliation(s)
- Juan Fontana
- Laboratory of Structural Biology Research, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Alasdair C Steven
- Laboratory of Structural Biology Research, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|