1
|
Bell MK, Rangamani P. Crosstalk between biochemical signalling network architecture and trafficking governs AMPAR dynamics in synaptic plasticity. J Physiol 2023. [PMID: 36620889 DOI: 10.1113/jp284029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/03/2023] [Indexed: 01/10/2023] Open
Abstract
Synaptic plasticity involves modification of both biochemical and structural components of neurons. Many studies have revealed that the change in the number density of the glutamatergic receptor AMPAR at the synapse is proportional to synaptic weight update; an increase in AMPAR corresponds to strengthening of synapses while a decrease in AMPAR density weakens synaptic connections. The dynamics of AMPAR are thought to be regulated by upstream signalling, primarily the calcium-CaMKII pathway, trafficking to and from the synapse, and influx from extrasynaptic sources. Previous work in the field of deterministic modelling of CaMKII dynamics has assumed bistable kinetics, while experiments and rule-based modelling have revealed that CaMKII dynamics can be either monostable or ultrasensitive. This raises the following question: how does the choice of model assumptions involving CaMKII dynamics influence AMPAR dynamics at the synapse? To answer this question, we have developed a set of models using compartmental ordinary differential equations to systematically investigate contributions of different signalling and trafficking variations, along with their coupled effects, on AMPAR dynamics at the synaptic site. We find that the properties of the model including network architecture describing different stability features of CaMKII and parameters that capture the endocytosis and exocytosis of AMPAR significantly affect the integration of fast upstream species by slower downstream species. Furthermore, we predict that the model outcome, as determined by bound AMPAR at the synaptic site, depends on (1) the choice of signalling model (bistable CaMKII or monostable CaMKII dynamics), (2) trafficking versus influx contributions and (3) frequency of stimulus. KEY POINTS: The density of AMPA receptors (AMPARs) at the postsynaptic density of the synapse provides a readout of synaptic plasticity, which involves crosstalk between complex biochemical signalling networks including CaMKII dynamics and trafficking pathways including exocytosis and endocytosis. Here we build a model that integrates CaMKII dynamics and AMPAR trafficking to explore this crosstalk. We compare different models of CaMKII that result in monostable or bistable kinetics and their impact on AMPAR dynamics. Our results show that AMPAR density depends on the coupling between aspects of biochemical signalling and trafficking. Specifically, assumptions regarding CaMKII dynamics and its stability features can alter AMPAR density at the synapse. Our model also predicts that the kinetics of trafficking versus influx of AMPAR from the extrasynaptic space can further impact AMPAR density. Thus, the contributions of both signalling and trafficking should be considered in computational models.
Collapse
Affiliation(s)
- Miriam K Bell
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
2
|
Palmelund LB, van Woerden GM, Bräuner-Osborne H, Wellendorph P. Development of a medium throughput whole-cell microtiter plate Thr286 autophosphorylation assay for CaMKIIα using ELISA. J Pharmacol Toxicol Methods 2022; 118:107226. [PMID: 36174932 DOI: 10.1016/j.vascn.2022.107226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/11/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022]
Abstract
Ca2+/calmodulin-dependent protein kinase II alpha (CaMKIIα) is a multifunctional Ser/Thr kinase involved in several neuronal signaling pathways including synaptic plasticity. CaMKIIα autonomous activity is highly dependent on Thr286 autophosphorylation (pThr286), which is widely used as a readout for its enzymatic activity. To readily characterise compounds and potential drug candidates targeting CaMKIIα, a simple, generic cell-based assay for quantification of pThr286 levels is needed. In this study, we present a cell-based assay using an adapted ELISA as a suitable and higher throughput alternative to Western blotting. In this 96-well plate-based assay, we use whole HEK293T cells recombinantly expressing CaMKIIα and apply a phospho-specific antibody to detect pThr286 levels by chemiluminescence. In parallel, total CaMKIIα expression levels are detected by fluorescence using an Alexa488-conjugated anti-myc antibody targeting a C-terminal myc-tag. By multiplexing chemiluminescence and fluorescence, phosphorylation levels are normalised to CaMKIIα total expression within each well. The specificity of the assay was confirmed using a phosphodead mutant (T286A) of CaMKIIα. By applying Ca2+ or known CaMKIIα inhibitors (KN93, tatCN21 and AS100105) and obtaining concentration-response curves, we demonstrate high sensitivity and validity of the assay. Lastly, we demonstrate the versatility of the assay by determining autophosphorylation levels in CaMKIIα patient-related mutations, known to possess altered pThr286 responses (E109D, E183V and H282R). The established assay for CaMKIIα is a reproducible, easily implemented, and facile ELISA-based assay that allows for reliable quantification of pThr286 levels.
Collapse
Affiliation(s)
- Line B Palmelund
- University of Copenhagen, Department of Drug Design and Pharmacology, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Geeske M van Woerden
- Erasmus University Medical Center, Department of Neuroscience and Department of Clinical Genetics, 3015, CN, Rotterdam, the Netherlands
| | - Hans Bräuner-Osborne
- University of Copenhagen, Department of Drug Design and Pharmacology, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Petrine Wellendorph
- University of Copenhagen, Department of Drug Design and Pharmacology, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
3
|
Yasuda R, Hayashi Y, Hell JW. CaMKII: a central molecular organizer of synaptic plasticity, learning and memory. Nat Rev Neurosci 2022; 23:666-682. [PMID: 36056211 DOI: 10.1038/s41583-022-00624-2] [Citation(s) in RCA: 153] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 12/30/2022]
Abstract
Calcium-calmodulin (CaM)-dependent protein kinase II (CaMKII) is the most abundant protein in excitatory synapses and is central to synaptic plasticity, learning and memory. It is activated by intracellular increases in calcium ion levels and triggers molecular processes necessary for synaptic plasticity. CaMKII phosphorylates numerous synaptic proteins, thereby regulating their structure and functions. This leads to molecular events crucial for synaptic plasticity, such as receptor trafficking, localization and activity; actin cytoskeletal dynamics; translation; and even transcription through synapse-nucleus shuttling. Several new tools affording increasingly greater spatiotemporal resolution have revealed the link between CaMKII activity and downstream signalling processes in dendritic spines during synaptic and behavioural plasticity. These technologies have provided insights into the function of CaMKII in learning and memory.
Collapse
Affiliation(s)
- Ryohei Yasuda
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA.
| | - Yasunori Hayashi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Johannes W Hell
- Department of Pharmacology, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
4
|
Mohanan AG, Gunasekaran S, Jacob RS, Omkumar RV. Role of Ca2+/Calmodulin-Dependent Protein Kinase Type II in Mediating Function and Dysfunction at Glutamatergic Synapses. Front Mol Neurosci 2022; 15:855752. [PMID: 35795689 PMCID: PMC9252440 DOI: 10.3389/fnmol.2022.855752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/21/2022] [Indexed: 01/25/2023] Open
Abstract
Glutamatergic synapses harbor abundant amounts of the multifunctional Ca2+/calmodulin-dependent protein kinase type II (CaMKII). Both in the postsynaptic density as well as in the cytosolic compartment of postsynaptic terminals, CaMKII plays major roles. In addition to its Ca2+-stimulated kinase activity, it can also bind to a variety of membrane proteins at the synapse and thus exert spatially restricted activity. The abundance of CaMKII in glutamatergic synapse is akin to scaffolding proteins although its prominent function still appears to be that of a kinase. The multimeric structure of CaMKII also confers several functional capabilities on the enzyme. The versatility of the enzyme has prompted hypotheses proposing several roles for the enzyme such as Ca2+ signal transduction, memory molecule function and scaffolding. The article will review the multiple roles played by CaMKII in glutamatergic synapses and how they are affected in disease conditions.
Collapse
Affiliation(s)
- Archana G. Mohanan
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Sowmya Gunasekaran
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Research Scholar, Manipal Academy of Higher Education, Manipal, India
| | - Reena Sarah Jacob
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Research Scholar, Manipal Academy of Higher Education, Manipal, India
| | - R. V. Omkumar
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- *Correspondence: R. V. Omkumar,
| |
Collapse
|
5
|
Autoregulation of switching behavior by cellular compartment size. Proc Natl Acad Sci U S A 2022; 119:e2116054119. [PMID: 35349334 PMCID: PMC9169097 DOI: 10.1073/pnas.2116054119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Biochemical reactions often occur in small volumes within a cell, restricting the number of molecules to the hundreds or even tens. At this scale, reactions are discrete and stochastic, making reliable signaling difficult. This paper shows that the transition between discrete, stochastic reactions and macroscopic reactions can be exploited to make a self-regulating switch. This constitutes a previously unidentified kind of reaction network that may be present in small structures, such as synapses. Many kinds of cellular compartments comprise decision-making mechanisms that control growth and shrinkage of the compartment in response to external signals. Key examples include synaptic plasticity mechanisms that regulate the size and strength of synapses in the nervous system. However, when synaptic compartments and postsynaptic densities are small, such mechanisms operate in a regime where chemical reactions are discrete and stochastic due to low copy numbers of the species involved. In this regime, fluctuations are large relative to mean concentrations, and inherent discreteness leads to breakdown of mass-action kinetics. Understanding how synapses and other small compartments achieve reliable switching in the low–copy number limit thus remains a key open problem. We propose a self-regulating signaling motif that exploits the breakdown of mass-action kinetics to generate a reliable size-regulated switch. We demonstrate this in simple two- and three-species chemical reaction systems and uncover a key role for inhibitory loops among species in generating switching behavior. This provides an elementary motif that could allow size-dependent regulation in more complex reaction pathways and may explain discrepant experimental results on well-studied biochemical pathways.
Collapse
|
6
|
Rombouts J, Gelens L. Dynamic bistable switches enhance robustness and accuracy of cell cycle transitions. PLoS Comput Biol 2021; 17:e1008231. [PMID: 33411761 PMCID: PMC7817062 DOI: 10.1371/journal.pcbi.1008231] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/20/2021] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
Bistability is a common mechanism to ensure robust and irreversible cell cycle transitions. Whenever biological parameters or external conditions change such that a threshold is crossed, the system abruptly switches between different cell cycle states. Experimental studies have uncovered mechanisms that can make the shape of the bistable response curve change dynamically in time. Here, we show how such a dynamically changing bistable switch can provide a cell with better control over the timing of cell cycle transitions. Moreover, cell cycle oscillations built on bistable switches are more robust when the bistability is modulated in time. Our results are not specific to cell cycle models and may apply to other bistable systems in which the bistable response curve is time-dependent. Many systems in nature show bistability, which means they can evolve to one of two stable steady states under exactly the same conditions. Which state they evolve to depends on where the system comes from. Such bistability underlies the switching behavior that is essential for cells to progress in the cell division cycle. A quick switch happens when the cell jumps from one steady state to another steady state. Typical of this switching behavior is its robustness and irreversibility. In this paper, we expand this viewpoint of the dynamics of the cell cycle by considering bistable switches which themselves are changing in time. This gives the cell an extra layer of control over transitions both in time and in space, and can make those transitions more robust. Such dynamically changing bistability can appear very naturally. We show this in a model of mitotic entry, in which we include a nuclear and cytoplasmic compartment. The activity of a crucial cell cycle protein follows a bistable switch in each compartment, but the shape of its response is changing in time as proteins are imported into and exported from the nucleus.
Collapse
Affiliation(s)
- Jan Rombouts
- Laboratory of Dynamics in Biological Systems, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven), B-3000 Leuven, Belgium
- * E-mail: (J.R.); (L.G.)
| | - Lendert Gelens
- Laboratory of Dynamics in Biological Systems, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven), B-3000 Leuven, Belgium
- * E-mail: (J.R.); (L.G.)
| |
Collapse
|
7
|
Ordyan M, Bartol T, Kennedy M, Rangamani P, Sejnowski T. Interactions between calmodulin and neurogranin govern the dynamics of CaMKII as a leaky integrator. PLoS Comput Biol 2020; 16:e1008015. [PMID: 32678848 PMCID: PMC7390456 DOI: 10.1371/journal.pcbi.1008015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 07/29/2020] [Accepted: 06/04/2020] [Indexed: 01/10/2023] Open
Abstract
Calmodulin-dependent kinase II (CaMKII) has long been known to play an important role in learning and memory as well as long term potentiation (LTP). More recently it has been suggested that it might be involved in the time averaging of synaptic signals, which can then lead to the high precision of information stored at a single synapse. However, the role of the scaffolding molecule, neurogranin (Ng), in governing the dynamics of CaMKII is not yet fully understood. In this work, we adopt a rule-based modeling approach through the Monte Carlo method to study the effect of Ca2+ signals on the dynamics of CaMKII phosphorylation in the postsynaptic density (PSD). Calcium surges are observed in synaptic spines during an EPSP and back-propagating action potential due to the opening of NMDA receptors and voltage dependent calcium channels. Using agent-based models, we computationally investigate the dynamics of phosphorylation of CaMKII monomers and dodecameric holoenzymes. The scaffolding molecule, Ng, when present in significant concentration, limits the availability of free calmodulin (CaM), the protein which activates CaMKII in the presence of calcium. We show that Ng plays an important modulatory role in CaMKII phosphorylation following a surge of high calcium concentration. We find a non-intuitive dependence of this effect on CaM concentration that results from the different affinities of CaM for CaMKII depending on the number of calcium ions bound to the former. It has been shown previously that in the absence of phosphatase, CaMKII monomers integrate over Ca2+ signals of certain frequencies through autophosphorylation (Pepke et al, Plos Comp. Bio., 2010). We also study the effect of multiple calcium spikes on CaMKII holoenzyme autophosphorylation, and show that in the presence of phosphatase, CaMKII behaves as a leaky integrator of calcium signals, a result that has been recently observed in vivo. Our models predict that the parameters of this leaky integrator are finely tuned through the interactions of Ng, CaM, CaMKII, and PP1, providing a mechanism to precisely control the sensitivity of synapses to calcium signals. Author Summary not valid for PLOS ONE submissions.
Collapse
Affiliation(s)
- Mariam Ordyan
- Institute for Neural Computation, University of California San Diego, La Jolla, California, United States of America
- Computational Neurobiology Laboratory, Salk Institute for Biological Sciences, La Jolla, California, United States of America
| | - Tom Bartol
- Computational Neurobiology Laboratory, Salk Institute for Biological Sciences, La Jolla, California, United States of America
| | - Mary Kennedy
- The Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, United States of America
- * E-mail: (PR), (TS)
| | - Terrence Sejnowski
- Institute for Neural Computation, University of California San Diego, La Jolla, California, United States of America
- Computational Neurobiology Laboratory, Salk Institute for Biological Sciences, La Jolla, California, United States of America
- * E-mail: (PR), (TS)
| |
Collapse
|
8
|
Glu 60 of α-Calcium/calmodulin dependent protein kinase II mediates crosstalk between the regulatory T-site and protein substrate binding region of the active site. Arch Biochem Biophys 2020; 685:108348. [PMID: 32198047 DOI: 10.1016/j.abb.2020.108348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 11/20/2022]
Abstract
Memory formation transpires to be by activation and persistent modification of synapses. A chain of biochemical events accompany synaptic activation and culminate in memory formation. These biochemical events are steered by interplay and modulation of various synaptic proteins, achieved by conformational changes and phosphorylation/dephosphorylation of these proteins. Calcium/calmodulin dependent protein kinase II (CaMKII) and N-methyl-d-aspartate receptors (NMDARs) are synaptic proteins whose interactions play a pivotal role in learning and memory process. Catalytic activity of CaMKII is modulated upon its interaction with the GluN2B subunit of NMDAR. The structural basis of this interaction is not clearly understood. We have investigated the role of Glu60 of α-CaMKII, a conserved residue present in the ATP binding region of kinases, in the regulation of catalysis of CaMKII by GluN2B. Mutation of Glu60 to Gly exerts different effects on the kinetic parameters of phosphorylation of GluN2B and GluN2A, of which only GluN2B binds to the T-site of CaMKII. GluN2B induced modulation of the kinetic parameters of peptide substrate was altered in the E60G mutant. The mutation almost abolished the modulation of the apparent Km value for protein substrate. However, although kinetic parameters for ATP were altered by mutating Glu60, modulation of the apparent Km value for ATP by GluN2B seen in WT was exhibited by the E60G mutant of α-CaMKII. Hence our results posit that the communication of the T-site of CaMKII with protein substrate binding region of active site is mediated through Glu60 while the communication of the T-site with the ATP binding region is not entirely dependent on Glu60.
Collapse
|
9
|
Pharris MC, Patel NM, VanDyk TG, Bartol TM, Sejnowski TJ, Kennedy MB, Stefan MI, Kinzer-Ursem TL. A multi-state model of the CaMKII dodecamer suggests a role for calmodulin in maintenance of autophosphorylation. PLoS Comput Biol 2019; 15:e1006941. [PMID: 31869343 PMCID: PMC6957207 DOI: 10.1371/journal.pcbi.1006941] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 01/13/2020] [Accepted: 11/25/2019] [Indexed: 02/06/2023] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) accounts for up to 2 percent of all brain protein and is essential to memory function. CaMKII activity is known to regulate dynamic shifts in the size and signaling strength of neuronal connections, a process known as synaptic plasticity. Increasingly, computational models are used to explore synaptic plasticity and the mechanisms regulating CaMKII activity. Conventional modeling approaches may exclude biophysical detail due to the impractical number of state combinations that arise when explicitly monitoring the conformational changes, ligand binding, and phosphorylation events that occur on each of the CaMKII holoenzyme's subunits. To manage the combinatorial explosion without necessitating bias or loss in biological accuracy, we use a specialized syntax in the software MCell to create a rule-based model of a twelve-subunit CaMKII holoenzyme. Here we validate the rule-based model against previous experimental measures of CaMKII activity and investigate molecular mechanisms of CaMKII regulation. Specifically, we explore how Ca2+/CaM-binding may both stabilize CaMKII subunit activation and regulate maintenance of CaMKII autophosphorylation. Noting that Ca2+/CaM and protein phosphatases bind CaMKII at nearby or overlapping sites, we compare model scenarios in which Ca2+/CaM and protein phosphatase do or do not structurally exclude each other's binding to CaMKII. Our results suggest a functional mechanism for the so-called "CaM trapping" phenomenon, wherein Ca2+/CaM may structurally exclude phosphatase binding and thereby prolong CaMKII autophosphorylation. We conclude that structural protection of autophosphorylated CaMKII by Ca2+/CaM may be an important mechanism for regulation of synaptic plasticity.
Collapse
Affiliation(s)
- Matthew C. Pharris
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Neal M. Patel
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Tyler G. VanDyk
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Thomas M. Bartol
- Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Terrence J. Sejnowski
- Salk Institute for Biological Studies, La Jolla, California, United States of America
- Institute for Neural Computation, University of California San Diego, La Jolla, California, United States of America
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Mary B. Kennedy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Melanie I. Stefan
- Salk Institute for Biological Studies, La Jolla, California, United States of America
- EMBL-European Bioinformatics Institute, Hinxton, United Kingdom
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
- ZJU-UoE Institute, Zhejiang University, Haining, China
- * E-mail: (MIS); (TLKU)
| | - Tamara L. Kinzer-Ursem
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail: (MIS); (TLKU)
| |
Collapse
|
10
|
Saneyoshi T, Matsuno H, Suzuki A, Murakoshi H, Hedrick NG, Agnello E, O'Connell R, Stratton MM, Yasuda R, Hayashi Y. Reciprocal Activation within a Kinase-Effector Complex Underlying Persistence of Structural LTP. Neuron 2019; 102:1199-1210.e6. [PMID: 31078368 DOI: 10.1016/j.neuron.2019.04.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/07/2018] [Accepted: 04/03/2019] [Indexed: 10/26/2022]
Abstract
Long-term synaptic plasticity requires a mechanism that converts short Ca2+ pulses into persistent biochemical signaling to maintain changes in the synaptic structure and function. Here, we present a novel mechanism of a positive feedback loop, formed by a reciprocally activating kinase-effector complex (RAKEC) in dendritic spines, enabling the persistence and confinement of a molecular memory. We found that stimulation of a single spine causes the rapid formation of a RAKEC consisting of CaMKII and Tiam1, a Rac-GEF. This interaction is mediated by a pseudo-autoinhibitory domain on Tiam1, which is homologous to the CaMKII autoinhibitory domain itself. Therefore, Tiam1 binding results in constitutive CaMKII activation, which in turn persistently phosphorylates Tiam1. Phosphorylated Tiam1 promotes stable actin-polymerization through Rac1, thereby maintaining the structure of the spine during LTP. The RAKEC can store biochemical information in small subcellular compartments, thus potentially serving as a general mechanism for prolonged and compartmentalized signaling.
Collapse
Affiliation(s)
- Takeo Saneyoshi
- Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan; Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan.
| | - Hitomi Matsuno
- Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan
| | - Akio Suzuki
- Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan
| | - Hideji Murakoshi
- National Institute of Physiological Science, Okazaki, Aichi 444-8585, Japan; Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA; Duke University Medical Center, Durham, NC 27703, USA
| | - Nathan G Hedrick
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA; Duke University Medical Center, Durham, NC 27703, USA
| | - Emily Agnello
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Rory O'Connell
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Margaret M Stratton
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Ryohei Yasuda
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Yasunori Hayashi
- Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan; Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan; Brain and Body System Science Institute, Saitama University, Saitama 338-8570, Japan; School of Life Science, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
11
|
Clarke SE. Analog Signaling With the "Digital" Molecular Switch CaMKII. Front Comput Neurosci 2018; 12:92. [PMID: 30524260 PMCID: PMC6262075 DOI: 10.3389/fncom.2018.00092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/31/2018] [Indexed: 11/13/2022] Open
Abstract
Molecular switches, such as the protein kinase CaMKII, play a fundamental role in cell signaling by decoding inputs into either high or low states of activity; because the high activation state can be turned on and persist after the input ceases, these switches have earned a reputation as "digital." Although this on/off, binary perspective has been valuable for understanding long timescale synaptic plasticity, accumulating experimental evidence suggests that the CaMKII switch can also control plasticity on short timescales. To investigate this idea further, a non-autonomous, nonlinear ordinary differential equation, representative of a general bistable molecular switch, is analyzed. The results suggest that switch activity in regions surrounding either the high- or low-stable states of activation could act as a reliable analog signal, whose short timescale fluctuations relative to equilibrium track instantaneous input frequency. The model makes intriguing predictions and is validated against previous work demonstrating its suitability as a minimal representation of switch dynamics; in combination with existing experimental evidence, the theory suggests a multiplexed encoding of instantaneous frequency information over short timescales, with integration of total activity over longer timescales.
Collapse
Affiliation(s)
- Stephen E Clarke
- Department of Bioengineering, Department of Neurosurgery, Stanford University, Stanford, CA, United States
| |
Collapse
|
12
|
Singh D, Bhalla US. Subunit exchange enhances information retention by CaMKII in dendritic spines. eLife 2018; 7:e41412. [PMID: 30418153 PMCID: PMC6286124 DOI: 10.7554/elife.41412] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 11/09/2018] [Indexed: 12/15/2022] Open
Abstract
Molecular bistables are strong candidates for long-term information storage, for example, in synaptic plasticity. Calcium/calmodulin-dependent protein Kinase II (CaMKII) is a highly expressed synaptic protein which has been proposed to form a molecular bistable switch capable of maintaining its state for years despite protein turnover and stochastic noise. It has recently been shown that CaMKII holoenzymes exchange subunits among themselves. Here, we used computational methods to analyze the effect of subunit exchange on the CaMKII pathway in the presence of diffusion in two different micro-environments, the post synaptic density (PSD) and spine cytosol. We show that CaMKII exhibits multiple timescales of activity due to subunit exchange. Further, subunit exchange enhances information retention by CaMKII both by improving the stability of its switching in the PSD, and by slowing the decay of its activity in the spine cytosol. The existence of diverse timescales in the synapse has important theoretical implications for memory storage in networks.
Collapse
Affiliation(s)
- Dilawar Singh
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBangaloreIndia
| | - Upinder Singh Bhalla
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBangaloreIndia
| |
Collapse
|
13
|
The Interaction between the Drosophila EAG Potassium Channel and the Protein Kinase CaMKII Involves an Extensive Interface at the Active Site of the Kinase. J Mol Biol 2018; 430:5029-5049. [PMID: 30381148 DOI: 10.1016/j.jmb.2018.10.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022]
Abstract
The Drosophila EAG (dEAG) potassium channel is the founding member of the superfamily of KNCH channels, which are involved in cardiac repolarization, neuronal excitability and cellular proliferation. In flies, dEAG is involved in regulation of neuron firing and assembles with CaMKII to form a complex implicated in memory formation. We have characterized the interaction between the kinase domain of CaMKII and a 53-residue fragment of the dEAG channel that includes a canonical CaMKII recognition sequence. Crystal structures together with biochemical/biophysical analysis show a substrate-kinase complex with an unusually tight and extensive interface that appears to be strengthened by phosphorylation of the channel fragment. Electrophysiological recordings show that catalytically active CaMKII is required to observe active dEAG channels. A previously identified phosphorylation site in the recognition sequence is not the substrate for this crucial kinase activity, but rather contributes importantly to the tight interaction of the kinase with the channel. The available data suggest that the dEAG channel is a docking platform for the kinase and that phosphorylation of the channel's kinase recognition sequence modulates the strength of the interaction between the channel and the kinase.
Collapse
|
14
|
Rossetti T, Banerjee S, Kim C, Leubner M, Lamar C, Gupta P, Lee B, Neve R, Lisman J. Memory Erasure Experiments Indicate a Critical Role of CaMKII in Memory Storage. Neuron 2017; 96:207-216.e2. [PMID: 28957669 DOI: 10.1016/j.neuron.2017.09.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/24/2017] [Accepted: 09/11/2017] [Indexed: 12/29/2022]
Abstract
The abundant synaptic protein CaMKII is necessary for long-term potentiation (LTP) and memory. However, whether CaMKII is required only during initial processes or whether it also mediates memory storage remains unclear. The most direct test of a storage role is the erasure test. In this test, a putative memory molecule is inhibited after learning. The key prediction is that this should produce persistent memory erasure even after the inhibitory agent is removed. We conducted this test using transient viral (HSV) expression of dominant-negative CaMKII-alpha (K42M) in the hippocampus. This produced persistent erasure of conditioned place avoidance. As an additional test, we found that expression of activated CaMKII (T286D/T305A/T306A) impaired place avoidance, a result not expected if a process other than CaMKII stores memory. Our behavioral results, taken together with prior experiments on LTP, strongly support a critical role of CaMKII in LTP maintenance and memory storage.
Collapse
Affiliation(s)
- Tom Rossetti
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Somdeb Banerjee
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Chris Kim
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Megan Leubner
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Casey Lamar
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Pooja Gupta
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Bomsol Lee
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Rachael Neve
- Gene Delivery Technology Core, Department of Neurology, MGH, 65 Landsdowne Street, Cambridge, MA 02139, USA
| | - John Lisman
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02453, USA.
| |
Collapse
|
15
|
Naoki H, Nishiyama M, Togashi K, Igarashi Y, Hong K, Ishii S. Multi-phasic bi-directional chemotactic responses of the growth cone. Sci Rep 2016; 6:36256. [PMID: 27808115 PMCID: PMC5093620 DOI: 10.1038/srep36256] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 10/12/2016] [Indexed: 11/23/2022] Open
Abstract
The nerve growth cone is bi-directionally attracted and repelled by the same cue molecules depending on the situations, while other non-neural chemotactic cells usually show uni-directional attraction or repulsion toward their specific cue molecules. However, how the growth cone differs from other non-neural cells remains unclear. Toward this question, we developed a theory for describing chemotactic response based on a mathematical model of intracellular signaling of activator and inhibitor. Our theory was first able to clarify the conditions of attraction and repulsion, which are determined by balance between activator and inhibitor, and the conditions of uni- and bi-directional responses, which are determined by dose-response profiles of activator and inhibitor to the guidance cue. With biologically realistic sigmoidal dose-responses, our model predicted tri-phasic turning response depending on intracellular Ca2+ level, which was then experimentally confirmed by growth cone turning assays and Ca2+ imaging. Furthermore, we took a reverse-engineering analysis to identify balanced regulation between CaMKII (activator) and PP1 (inhibitor) and then the model performance was validated by reproducing turning assays with inhibitions of CaMKII and PP1. Thus, our study implies that the balance between activator and inhibitor underlies the multi-phasic bi-directional turning response of the growth cone.
Collapse
Affiliation(s)
- Honda Naoki
- Graduate School of Medicine, Kyoto University, Sakyo, Kyoto, Japan.,Imaging Platform for Spatio-temporal Information, Kyoto University, Sakyo, Kyoto, Japan
| | - Makoto Nishiyama
- Department of Biochemistry, New York University School of Medicine, New York, USA.,Kasah Technology Inc. New York, New York, USA
| | - Kazunobu Togashi
- Department of Biochemistry, New York University School of Medicine, New York, USA
| | | | - Kyonsoo Hong
- Department of Biochemistry, New York University School of Medicine, New York, USA.,Kasah Technology Inc. New York, New York, USA
| | - Shin Ishii
- Imaging Platform for Spatio-temporal Information, Kyoto University, Sakyo, Kyoto, Japan.,Graduate School of Informatics, Kyoto University, Sakyo, Kyoto, Japan
| |
Collapse
|
16
|
Protection of α-CaMKII from Dephosphorylation by GluN2B Subunit of NMDA Receptor Is Abolished by Mutation of Glu96 or His282 of α-CaMKII. PLoS One 2016; 11:e0162011. [PMID: 27610621 PMCID: PMC5017783 DOI: 10.1371/journal.pone.0162011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 08/16/2016] [Indexed: 02/07/2023] Open
Abstract
Interaction of CaMKII and the GluN2B subunit of NMDA receptor is essential for synaptic plasticity events such as LTP. Synaptic targeting of CaMKII and regulation of its biochemical functions result from this interaction. GluN2B binding to the T-site of CaMKII leads to changes in substrate binding and catalytic parameters and inhibition of its own dephosphorylation. We find that CaMKIINα, a natural inhibitor that binds to the T-site of CaMKII, also causes inhibition of dephosphorylation of CaMKII similar to GluN2B. Two residues on α-CaMKII, Glu96 and His282, are involved in the inhibition of CaMKII dephosphorylation exerted by binding of GluN2B. E96A-α-CaMKII is known to be defective in GluN2B-induced catalytic modulation. Data presented here show that, in both E96A and H282A mutants of α-CaMKII, GluN2B-induced inhibition of dephosphorylation is impaired.
Collapse
|
17
|
Kim K, Saneyoshi T, Hosokawa T, Okamoto K, Hayashi Y. Interplay of enzymatic and structural functions of CaMKII in long-term potentiation. J Neurochem 2016; 139:959-972. [DOI: 10.1111/jnc.13672] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Karam Kim
- Brain Science Institute; RIKEN; Wako Saitama Japan
| | | | | | - Kenichi Okamoto
- Lunenfeld-Tanenbaum Research Institute; Mount Sinai Hospital; Toronto ON Canada
- Department of Molecular Genetics; Faculty of Medicine; University of Toronto; Toronto ON Canada
| | - Yasunori Hayashi
- Brain Science Institute; RIKEN; Wako Saitama Japan
- Saitama University Brain Science Institute; Saitama University; Saitama Japan
- School of Life Science; South China Normal University; Guangzhou China
| |
Collapse
|
18
|
Lisman J, Raghavachari S. Biochemical principles underlying the stable maintenance of LTP by the CaMKII/NMDAR complex. Brain Res 2014; 1621:51-61. [PMID: 25511992 DOI: 10.1016/j.brainres.2014.12.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 12/01/2014] [Accepted: 12/03/2014] [Indexed: 11/17/2022]
Abstract
Memory involves the storage of information at synapses by an LTP-like process. This information storage is synapse specific and can endure for years despite the turnover of all synaptic proteins. There must, therefore, be special principles that underlie the stability of LTP. Recent experimental results suggest that LTP is maintained by the complex of CaMKII with the NMDAR. Here we consider the specifics of the CaMKII/NMDAR molecular switch, with the goal of understanding the biochemical principles that underlie stable information storage by synapses. Consideration of a variety of experimental results suggests that multiple principles are involved. One switch requirement is to prevent spontaneous transitions from the off to the on state. The highly cooperative nature of CaMKII autophosphorylation by Ca(2+) (Hill coefficient of 8) and the fact that formation of the CaMKII/NMDAR complex requires release of CaMKII from actin are mechanisms that stabilize the off state. The stability of the on state depends critically on intersubunit autophosphorylation, a process that restores any loss of pT286 due to phosphatase activity. Intersubunit autophosphorylation is also important in explaining why on state stability is not compromised by protein turnover. Recent evidence suggests that turnover occurs by subunit exchange. Thus, stability could be achieved if a newly inserted unphosphorylated subunit was autophosphorylated by a neighboring subunit. Based on other recent work, we posit a novel mechanism that enhances the stability of the on state by protection of pT286 from phosphatases. We posit that the binding of the NMNDAR to CaMKII forces pT286 into the catalytic site of a neighboring subunit, thereby protecting pT286 from phosphatases. A final principle concerns the role of structural changes. The binding of CaMKII to the NMDAR may act as a tag to organize the binding of further proteins that produce the synapse enlargement that underlies late LTP. We argue that these structural changes not only enhance transmission, but also enhance the stability of the CaMKII/NMDAR complex. Together, these principles provide a mechanistic framework for understanding how individual synapses produce stable information storage. This article is part of a Special Issue entitled SI: Brain and Memory.
Collapse
Affiliation(s)
- John Lisman
- Brandeis University, Department of Biology and Volen Center for Complex Systems, 415 South Street-MS008, Waltham, MA 02454, United States Minor Outlying Islands.
| | - Sridhar Raghavachari
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, United States
| |
Collapse
|
19
|
Michalski PJ. First demonstration of bistability in CaMKII, a memory-related kinase. Biophys J 2014; 106:1233-5. [PMID: 24655498 DOI: 10.1016/j.bpj.2014.01.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 01/29/2014] [Indexed: 11/28/2022] Open
Affiliation(s)
- Paul J Michalski
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, Connecticut.
| |
Collapse
|