1
|
Saikia B, Baruah A. Recent advances in de novo computational design and redesign of intrinsically disordered proteins and intrinsically disordered protein regions. Arch Biochem Biophys 2024; 752:109857. [PMID: 38097100 DOI: 10.1016/j.abb.2023.109857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/10/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
In the early 2000s, the concept of "unstructured biology" has emerged to be an important field in protein science by generating various new research directions. Many novel strategies and methods have been developed that are focused on effectively identifying/predicting intrinsically disordered proteins (IDPs) and intrinsically disordered protein regions (IDPRs), identifying their potential functions, disorder based drug design etc. Due to the range of functions of IDPs/IDPRs and their involvement in various debilitating diseases they are of contemporary interest to the scientific community. Recent researches are focused on designing/redesigning specific IDPs/IDPRs de novo. These de novo design/redesigns of IDPs/IDPRs are carried out by altering compositional biases and specific sequence patterning parameters. The main focus of these researches is to influence specific molecular functions, phase behavior, cellular phenotypes etc. In this review, we first provide the differences of natively folded and natively unfolded or IDPs with respect to their potential energy landscapes. Here, we provide current understandings on the different computational design strategies and methods that have been utilized in de novo design and redesigns of IDPs and IDPRs. Finally, we conclude the review by discussing the challenges that have been faced during the computational design/design attempts of IDPs/IDPRs.
Collapse
Affiliation(s)
- Bondeepa Saikia
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Anupaul Baruah
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India.
| |
Collapse
|
2
|
Wu J, Gao T, Guo H, Zhao L, Lv S, Lv J, Yao R, Yu Y, Ma F. Application of molecular dynamics simulation for exploring the roles of plant biomolecules in promoting environmental health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161871. [PMID: 36708839 DOI: 10.1016/j.scitotenv.2023.161871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Understanding the dynamic changes of plant biomolecules is vital for exploring their mechanisms in the environment. Molecular dynamics (MD) simulation has been widely used to study structural evolution and corresponding properties of plant biomolecules at the microscopic scale. Here, this review (i) outlines structural properties of plant biomolecules, and the crucial role of MD simulation in advancing studies of the biomolecules; (ii) describes the development of MD simulation in plant biomolecules, determinants of simulation, and analysis parameters; (iii) introduces the applications of MD simulation in plant biomolecules, including the response of the biomolecules to multiple stresses, their roles in corrosive environments, and their contributions in improving environmental health; (iv) reviews techniques integrated with MD simulation, such as molecular biology, quantum mechanics, molecular docking, and machine learning modeling, which bridge gaps in MD simulation. Finally, we make suggestions on determination of force field types, investigation of plant biomolecule mechanisms, and use of MD simulation in combination with other techniques. This review provides comprehensive summaries of the mechanisms of plant biomolecules in the environment revealed by MD simulation and validates it as an applicable tool for bridging gaps between macroscopic and microscopic behavior, providing insights into the wide application of MD simulation in plant biomolecules.
Collapse
Affiliation(s)
- Jieting Wu
- School of Environmental Science, Liaoning University, Shenyang 110036, People's Republic of China.
| | - Tian Gao
- School of Environmental Science, Liaoning University, Shenyang 110036, People's Republic of China
| | - Haijuan Guo
- School of Environmental Science, Liaoning University, Shenyang 110036, People's Republic of China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Sidi Lv
- School of Environmental Science, Liaoning University, Shenyang 110036, People's Republic of China
| | - Jin Lv
- School of Environmental Science, Liaoning University, Shenyang 110036, People's Republic of China
| | - Ruyi Yao
- School of Environmental Science, Liaoning University, Shenyang 110036, People's Republic of China
| | - Yanyi Yu
- School of Environmental Science, Liaoning University, Shenyang 110036, People's Republic of China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| |
Collapse
|
3
|
Montepietra D, Cecconi C, Brancolini G. Combining enhanced sampling and deep learning dimensionality reduction for the study of the heat shock protein B8 and its pathological mutant K141E. RSC Adv 2022; 12:31996-32011. [PMID: 36380940 PMCID: PMC9641792 DOI: 10.1039/d2ra04913a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/28/2022] [Indexed: 11/11/2022] Open
Abstract
The biological functions of proteins closely depend on their conformational dynamics. This aspect is especially relevant for intrinsically disordered proteins (IDP) for which structural ensembles often offer more useful representations than individual conformations. Here we employ extensive enhanced sampling temperature replica-exchange atomistic simulations (TREMD) and deep learning dimensionality reduction to study the conformational ensembles of the human heat shock protein B8 and its pathological mutant K141E, for which no experimental 3D structures are available. First, we combined homology modelling with TREMD to generate high-dimensional data sets of 3D structures. Then, we employed a recently developed machine learning based post-processing algorithm, EncoderMap, to project the large conformational data sets into meaningful two-dimensional maps that helped us interpret the data and extract the most significant conformations adopted by both proteins during TREMD. These studies provide the first 3D structural characterization of HSPB8 and reveal the effects of the pathogenic K141E mutation on its conformational ensembles. In particular, this missense mutation appears to increase the compactness of the protein and its structural variability, at the same time rearranging the hydrophobic patches exposed on the protein surface. These results offer the possibility of rationalizing the pathogenic effects of the K141E mutation in terms of conformational changes. The study provides the first 3D structural characterization of HSPB8 and its K141E mutant: extensive TREMD are combined with a deep learning algorithm to rationalize the disordered ensemble of structures adopted by each variant.![]()
Collapse
Affiliation(s)
- Daniele Montepietra
- Department of Physics, Computer Science and Mathematics, University of Modena and Reggio Emilia, Via Campi 213/A, 41100 Modena, Italy
- Istituto Nanoscienze – CNR-NANO, Center S3, Via G. Campi 213/A, 41100 Modena, Italy
| | - Ciro Cecconi
- Department of Physics, Computer Science and Mathematics, University of Modena and Reggio Emilia, Via Campi 213/A, 41100 Modena, Italy
- Istituto Nanoscienze – CNR-NANO, Center S3, Via G. Campi 213/A, 41100 Modena, Italy
| | - Giorgia Brancolini
- Istituto Nanoscienze – CNR-NANO, Center S3, Via G. Campi 213/A, 41100 Modena, Italy
| |
Collapse
|
4
|
Patel S, Hosur RV. Replica exchange molecular dynamics simulations reveal self-association sites in M-crystallin caused by mutations provide insights of cataract. Sci Rep 2021; 11:23270. [PMID: 34857812 PMCID: PMC8639718 DOI: 10.1038/s41598-021-02728-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/09/2021] [Indexed: 11/09/2022] Open
Abstract
Crystallins are ubiquitous, however, prevalence is seen in eye lens. Eye lens crystallins are long-lived and structural intactness is required for maintaining lens transparency and protein solubility. Mutations in crystallins often lead to cataract. In this study, we performed mutations at specific sites of M-crystallin, a close homologue of eye lens crystallin and studied by using replica exchange molecular dynamics simulation with generalized Born implicit solvent model. Mutations were made on the Ca2+ binding residues (K34D and S77D) and in the hydrophobic core (W45R) which is known to cause congenital cataract in homologous γD-crystallin. The chosen mutations caused large motion of the N-terminal Greek key, concomitantly broke the interlocking Greek keys interactions and perturbed the compact core resulting in several folded and partially unfolded states. Partially unfolded states exposed large hydrophobic patches that could act as precursors for self-aggregation. Accumulation of such aggregates is the potential cause of cataract in homologous eye lens crystallins.
Collapse
Affiliation(s)
- Sunita Patel
- UM-DAE Centre for Excellence in Basic Sciences, Mumbai University Campus, Vidyanagari, Mumbai, 400098, India.
| | - Ramakrishna V. Hosur
- grid.452882.1UM-DAE Centre for Excellence in Basic Sciences, Mumbai University Campus, Vidyanagari, Mumbai, 400098 India
| |
Collapse
|
5
|
Sun B, Fang X, Johnson C, Hauck G, Kou Y, Davis JP, Kekenes-Huskey PM. Non-Canonical Interaction between Calmodulin and Calcineurin Contributes to the Differential Regulation of Plant-Derived Calmodulins on Calcineurin. J Chem Inf Model 2021; 61:5223-5233. [PMID: 34615359 PMCID: PMC8867402 DOI: 10.1021/acs.jcim.1c00873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Calmodulin (CaM) serves as an important Ca2+ signaling hub that regulates many protein signaling pathways. Recently, it was demonstrated that plant CaM homologues can regulate mammalian targets, often in a manner that opposes the impact of the mammalian CaM (mCaM). However, the molecular basis of how CaM homologue mutations differentially impact target activation is unclear. To understand these mechanisms, we examined two CaM isoforms found in soybean plants that differentially regulate a mammalian target, calcineurin (CaN). These CaM isoforms, sCaM-1 and sCaM-4, share >90 and ∼78% identity with the mCaM, respectively, and activate CaN with comparable or reduced activity relative to mCaM. We used molecular dynamics (MD) simulations and fluorometric assays of CaN-dependent dephosphorylation of MUF-P to probe whether calcium and protein-protein binding interactions are altered by plant CaMs relative to mCaM as a basis for differential CaN regulation. In the presence of CaN, we found that the two sCaMs' Ca2+ binding properties, such as their predicted coordination of Ca2+ and experimentally measured EC50 [Ca2+] values are comparable to mCaM. Furthermore, the binding of CaM to the CaM binding region (CaMBR) in CaN is comparable among the three CaMs, as evidenced by MD-predicted binding energies and experimentally measured EC50 [CaM] values. However, mCaM and sCaM-1 exhibited binding with a secondary region of CaN's regulatory domain that is weakened for sCaM-4. We speculate that this secondary interaction affects the turnover rate (kcat) of CaN based on our modeling of enzyme activity, which is consistent with our experimental data. Together, our data describe how plant-derived CaM variants alter CaN activity through enlisting interactions other than those directly influencing Ca2+ binding and canonical CaMBR binding, which may additionally play a role in the differential regulation of other mammalian targets.
Collapse
Affiliation(s)
- Bin Sun
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, USA 60153
| | - Xuan Fang
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, USA 60153
| | - Christopher Johnson
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA 43210
- Department of Chemistry, Mississippi State University Starkville MS, 39759
| | - Garrett Hauck
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA 43210
| | - Yongjun Kou
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA 43210
| | - Jonathan P. Davis
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA 43210
| | - Peter M. Kekenes-Huskey
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, USA 60153
| |
Collapse
|
6
|
Wang W. Recent advances in atomic molecular dynamics simulation of intrinsically disordered proteins. Phys Chem Chem Phys 2021; 23:777-784. [PMID: 33355572 DOI: 10.1039/d0cp05818a] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intrinsically disordered proteins (IDPs) play important roles in cellular functions. The inherent structural heterogeneity of IDPs makes the high-resolution experimental characterization of IDPs extremely difficult. Molecular dynamics (MD) simulation could provide the atomic-level description of the structural and dynamic properties of IDPs. This perspective reviews the recent progress in atomic MD simulation studies of IDPs, including the development of force fields and sampling methods, as well as applications in IDP-involved protein-protein interactions. The employment of large-scale simulations and advanced sampling techniques allows more accurate estimation of the thermodynamics and kinetics of IDP-mediated protein interactions, and the holistic landscape of the binding process of IDPs is emerging.
Collapse
Affiliation(s)
- Wenning Wang
- Department of Chemistry, Multiscale Research Institute of Complex Systems and Institute of Biomedical Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
7
|
Waters ER, Vierling E. Plant small heat shock proteins - evolutionary and functional diversity. THE NEW PHYTOLOGIST 2020; 227:24-37. [PMID: 32297991 DOI: 10.1111/nph.16536] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/21/2020] [Indexed: 05/22/2023]
Abstract
Small heat shock proteins (sHSPs) are an ubiquitous protein family found in archaea, bacteria and eukaryotes. In plants, as in other organisms, sHSPs are upregulated by stress and are proposed to act as molecular chaperones to protect other proteins from stress-induced damage. sHSPs share an 'α-crystallin domain' with a β-sandwich structure and a diverse N-terminal domain. Although sHSPs are 12-25 kDa polypeptides, most assemble into oligomers with ≥ 12 subunits. Plant sHSPs are particularly diverse and numerous; some species have as many as 40 sHSPs. In angiosperms this diversity comprises ≥ 11 sHSP classes encoding proteins targeted to the cytosol, nucleus, endoplasmic reticulum, chloroplasts, mitochondria and peroxisomes. The sHSPs underwent a lineage-specific gene expansion, diversifying early in land plant evolution, potentially in response to stress in the terrestrial environment, and expanded again in seed plants and again in angiosperms. Understanding the structure and evolution of plant sHSPs has progressed, and a model for their chaperone activity has been proposed. However, how the chaperone model applies to diverse sHSPs and what processes sHSPs protect are far from understood. As more plant genomes and transcriptomes become available, it will be possible to explore theories of the evolutionary pressures driving sHSP diversification.
Collapse
Affiliation(s)
- Elizabeth R Waters
- Biology Department, San Diego State University, San Diego, CA, 92182, USA
| | - Elizabeth Vierling
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| |
Collapse
|
8
|
Sun B, Vaughan D, Tikunova S, Creamer TP, Davis JP, Kekenes-Huskey PM. Calmodulin-Calcineurin Interaction beyond the Calmodulin-Binding Region Contributes to Calcineurin Activation. Biochemistry 2019; 58:4070-4085. [PMID: 31483613 DOI: 10.1021/acs.biochem.9b00626] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Calcineurin (CaN) is a calcium-dependent phosphatase involved in numerous signaling pathways. Its activation is in part driven by the binding of calmodulin (CaM) to a CaM recognition region (CaMBR) within CaN's regulatory domain (RD). However, secondary interactions between CaM and the CaN RD may be necessary to fully activate CaN. Specifically, it is established that the CaN RD folds upon CaM binding and a region C-terminal to CaMBR, the "distal helix", assumes an α-helix fold and contributes to activation [Dunlap, T. B., et al. (2013) Biochemistry 52, 8643-8651]. We hypothesized in that previous study that this distal helix can bind CaM in a region distinct from the canonical CaMBR. To test this hypothesis, we utilized molecular simulations, including replica-exchange molecular dynamics, protein-protein docking, and computational mutagenesis, to determine potential distal helix-binding sites on CaM's surface. We isolated a potential binding site on CaM (site D) that facilitates moderate-affinity interprotein interactions and predicted that mutation of site D residues K30 and G40 on CaM would weaken CaN distal helix binding. We experimentally confirmed that two variants (K30E and G40D) indicate weaker binding of a phosphate substrate p-nitrophenyl phosphate to the CaN catalytic site by a phosphatase assay. This weakened substrate affinity is consistent with competitive binding of the CaN autoinhibition domain to the catalytic site, which we suggest is due to the weakened distal helix-CaM interactions. This study therefore suggests a novel mechanism for CaM regulation of CaN that may extend to other CaM targets.
Collapse
Affiliation(s)
- Bin Sun
- Department of Chemistry , University of Kentucky , Lexington , Kentucky 40506 , United States
| | - Darin Vaughan
- Department of Chemistry , University of Kentucky , Lexington , Kentucky 40506 , United States
| | - Svetlana Tikunova
- Department of Physiology and Cell Biology , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Trevor P Creamer
- Center for Structural Biology and Department of Molecular & Cellular Biochemistry , University of Kentucky , Lexington , Kentucky 40536 , United States
| | - Jonathan P Davis
- Department of Physiology and Cell Biology , The Ohio State University , Columbus , Ohio 43210 , United States
| | - P M Kekenes-Huskey
- Department of Chemical and Materials Engineering , University of Kentucky , Lexington , Kentucky 40506 , United States.,Department of Cell and Molecular Physiology , Loyola University Chicago , Maywood , Illinois 60153 , United States
| |
Collapse
|
9
|
Webster JM, Darling AL, Uversky VN, Blair LJ. Small Heat Shock Proteins, Big Impact on Protein Aggregation in Neurodegenerative Disease. Front Pharmacol 2019; 10:1047. [PMID: 31619995 PMCID: PMC6759932 DOI: 10.3389/fphar.2019.01047] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/19/2019] [Indexed: 12/15/2022] Open
Abstract
Misfolding, aggregation, and aberrant accumulation of proteins are central components in the progression of neurodegenerative disease. Cellular molecular chaperone systems modulate proteostasis, and, therefore, are primed to influence aberrant protein-induced neurotoxicity and disease progression. Molecular chaperones have a wide range of functions from facilitating proper nascent folding and refolding to degradation or sequestration of misfolded substrates. In disease states, molecular chaperones can display protective or aberrant effects, including the promotion and stabilization of toxic protein aggregates. This seems to be dependent on the aggregating protein and discrete chaperone interaction. Small heat shock proteins (sHsps) are a class of molecular chaperones that typically associate early with misfolded proteins. These interactions hold proteins in a reversible state that helps facilitate refolding or degradation by other chaperones and co-factors. These sHsp interactions require dynamic oligomerization state changes in response to diverse cellular triggers and, unlike later steps in the chaperone cascade of events, are ATP-independent. Here, we review evidence for modulation of neurodegenerative disease-relevant protein aggregation by sHsps. This includes data supporting direct physical interactions and potential roles of sHsps in the stewardship of pathological protein aggregates in brain. A greater understanding of the mechanisms of sHsp chaperone activity may help in the development of novel therapeutic strategies to modulate the aggregation of pathological, amyloidogenic proteins. sHsps-targeting strategies including modulators of expression or post-translational modification of endogenous sHsps, small molecules targeted to sHsp domains, and delivery of engineered molecular chaperones, are also discussed.
Collapse
Affiliation(s)
- Jack M Webster
- Department of Molecular Medicine, USF Byrd Institute, University of South Florida, Tampa, FL, United States
| | - April L Darling
- Department of Molecular Medicine, USF Byrd Institute, University of South Florida, Tampa, FL, United States
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Byrd Institute, University of South Florida, Tampa, FL, United States
| | - Laura J Blair
- Department of Molecular Medicine, USF Byrd Institute, University of South Florida, Tampa, FL, United States
| |
Collapse
|
10
|
Recent Advances in Computational Protocols Addressing Intrinsically Disordered Proteins. Biomolecules 2019; 9:biom9040146. [PMID: 30979035 PMCID: PMC6523529 DOI: 10.3390/biom9040146] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 01/09/2023] Open
Abstract
Intrinsically disordered proteins (IDP) are abundant in the human genome and have recently emerged as major therapeutic targets for various diseases. Unlike traditional proteins that adopt a definitive structure, IDPs in free solution are disordered and exist as an ensemble of conformations. This enables the IDPs to signal through multiple signaling pathways and serve as scaffolds for multi-protein complexes. The challenge in studying IDPs experimentally stems from their disordered nature. Nuclear magnetic resonance (NMR), circular dichroism, small angle X-ray scattering, and single molecule Förster resonance energy transfer (FRET) can give the local structural information and overall dimension of IDPs, but seldom provide a unified picture of the whole protein. To understand the conformational dynamics of IDPs and how their structural ensembles recognize multiple binding partners and small molecule inhibitors, knowledge-based and physics-based sampling techniques are utilized in-silico, guided by experimental structural data. However, efficient sampling of the IDP conformational ensemble requires traversing the numerous degrees of freedom in the IDP energy landscape, as well as force-fields that accurately model the protein and solvent interactions. In this review, we have provided an overview of the current state of computational methods for studying IDP structure and dynamics and discussed the major challenges faced in this field.
Collapse
|
11
|
Röder K, Joseph JA, Husic BE, Wales DJ. Energy Landscapes for Proteins: From Single Funnels to Multifunctional Systems. ADVANCED THEORY AND SIMULATIONS 2019. [DOI: 10.1002/adts.201800175] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Konstantin Röder
- Department of ChemistryUniversity of CambridgeLensfield Road CB2 1EW Cambridge UK
| | - Jerelle A. Joseph
- Department of ChemistryUniversity of CambridgeLensfield Road CB2 1EW Cambridge UK
| | - Brooke E. Husic
- Department of ChemistryUniversity of CambridgeLensfield Road CB2 1EW Cambridge UK
| | - David J. Wales
- Department of ChemistryUniversity of CambridgeLensfield Road CB2 1EW Cambridge UK
| |
Collapse
|
12
|
Santhanagopalan I, Degiacomi MT, Shepherd DA, Hochberg GKA, Benesch JLP, Vierling E. It takes a dimer to tango: Oligomeric small heat shock proteins dissociate to capture substrate. J Biol Chem 2018; 293:19511-19521. [PMID: 30348902 DOI: 10.1074/jbc.ra118.005421] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/12/2018] [Indexed: 12/23/2022] Open
Abstract
Small heat-shock proteins (sHsps) are ubiquitous molecular chaperones, and sHsp mutations or altered expression are linked to multiple human disease states. sHsp monomers assemble into large oligomers with dimeric substructure, and the dynamics of sHsp oligomers has led to major questions about the form that captures substrate, a critical aspect of their mechanism of action. We show here that substructural dimers of two plant dodecameric sHsps, Ta16.9 and homologous Ps18.1, are functional units in the initial encounter with unfolding substrate. We introduced inter-polypeptide disulfide bonds at the two dodecameric interfaces, dimeric and nondimeric, to restrict how their assemblies can dissociate. When disulfide-bonded at the nondimeric interface, mutants of Ta16.9 and Ps18.1 (TaCT-ACD and PsCT-ACD) were inactive but, when reduced, had WT-like chaperone activity, demonstrating that dissociation at nondimeric interfaces is essential for sHsp activity. Moreover, the size of the TaCT-ACD and PsCT-ACD covalent unit defined a new tetrahedral geometry for these sHsps, different from that observed in the Ta16.9 X-ray structure. Importantly, oxidized Tadimer (disulfide bonded at the dimeric interface) exhibited greatly enhanced ability to protect substrate, indicating that strengthening the dimeric interface increases chaperone efficiency. Temperature-induced size and secondary structure changes revealed that folded sHsp dimers interact with substrate and that dimer stability affects chaperone efficiency. These results yield a model in which sHsp dimers capture substrate before assembly into larger, heterogeneous sHsp-substrate complexes for substrate refolding or degradation, and suggest that tuning the strength of the dimer interface can be used to engineer sHsp chaperone efficiency.
Collapse
Affiliation(s)
- Indu Santhanagopalan
- From the Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Matteo T Degiacomi
- Department of Chemistry, Physical & Theoretical Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom, and.,Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, United Kingdom
| | - Dale A Shepherd
- Department of Chemistry, Physical & Theoretical Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom, and
| | - Georg K A Hochberg
- Department of Chemistry, Physical & Theoretical Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom, and
| | - Justin L P Benesch
- Department of Chemistry, Physical & Theoretical Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom, and
| | - Elizabeth Vierling
- From the Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003,
| |
Collapse
|
13
|
Tarakanova A, Yeo GC, Baldock C, Weiss AS, Buehler MJ. Tropoelastin is a Flexible Molecule that Retains its Canonical Shape. Macromol Biosci 2018; 19:e1800250. [DOI: 10.1002/mabi.201800250] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/03/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Anna Tarakanova
- Laboratory for Atomistic and Molecular Mechanics Department of Civil and Environmental Engineering Massachusetts Institute of Technology 02139 Cambridge MA USA
| | - Giselle C. Yeo
- School of Life and Environmental Sciences The University of Sydney 2006 Sydney NSW Australia
- Charles Perkins Centre The University of Sydney 2006 Sydney NSW Australia
| | - Clair Baldock
- Wellcome Trust Centre for Cell‐Matrix Research Division of Cell Matrix Biology and Regenerative Medicine School of Biological Sciences Manchester Academic Health Science Centre The University of Manchester M13 9PL Manchester UK
| | - Anthony S. Weiss
- School of Life and Environmental Sciences The University of Sydney 2006 Sydney NSW Australia
- Charles Perkins Centre The University of Sydney 2006 Sydney NSW Australia
- Bosch Institute The University of Sydney 2006 Sydney NSW Australia
| | - Markus J. Buehler
- Laboratory for Atomistic and Molecular Mechanics Department of Civil and Environmental Engineering Massachusetts Institute of Technology 02139 Cambridge MA USA
| |
Collapse
|
14
|
Rutsdottir G, I Rasmussen M, Hojrup P, Bernfur K, Emanuelsson C, Söderberg CAG. Chaperone-client interactions between Hsp21 and client proteins monitored in solution by small angle X-ray scattering and captured by crosslinking mass spectrometry. Proteins 2017; 86:110-123. [PMID: 29082555 DOI: 10.1002/prot.25413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 10/13/2017] [Accepted: 10/27/2017] [Indexed: 11/07/2022]
Abstract
The small heat shock protein (sHsp) chaperones are important for stress survival, yet the molecular details of how they interact with client proteins are not understood. All sHsps share a folded middle domain to which is appended flexible N- and C-terminal regions varying in length and sequence between different sHsps which, in different ways for different sHsps, mediate recognition of client proteins. In plants there is a chloroplast-localized sHsp, Hsp21, and a structural model suggests that Hsp21 has a dodecameric arrangement with six N-terminal arms located on the outside of the dodecamer and six inwardly-facing. Here, we investigated the interactions between Hsp21 and thermosensitive model substrate client proteins in solution, by small-angle X-ray scattering (SAXS) and crosslinking mass spectrometry. The chaperone-client complexes were monitored and the Rg -values were found to increase continuously during 20 min at 45°, which could reflect binding of partially unfolded clients to the flexible N-terminal arms of the Hsp21 dodecamer. No such increase in Rg -values was observed with a mutational variant of Hsp21, which is mainly dimeric and has reduced chaperone activity. Crosslinking data suggest that the chaperone-client interactions involve the N-terminal region in Hsp21 and only certain parts in the client proteins. These parts are peripheral structural elements presumably the first to unfold under destabilizing conditions. We propose that the flexible and hydrophobic N-terminal arms of Hsp21 can trap and refold early-unfolding intermediates with or without dodecamer dissociation.
Collapse
Affiliation(s)
- Gudrun Rutsdottir
- Department of Biochemistry and Structural Biology, Lund University, Sweden
| | - Morten I Rasmussen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Peter Hojrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Katja Bernfur
- Department of Biochemistry and Structural Biology, Lund University, Sweden
| | | | | |
Collapse
|
15
|
Moutaoufik MT, Morrow G, Finet S, Tanguay RM. Effect of N-terminal region of nuclear Drosophila melanogaster small heat shock protein DmHsp27 on function and quaternary structure. PLoS One 2017; 12:e0177821. [PMID: 28520783 PMCID: PMC5433770 DOI: 10.1371/journal.pone.0177821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/03/2017] [Indexed: 01/12/2023] Open
Abstract
The importance of the N-terminal region (NTR) in the oligomerization and chaperone-like activity of the Drosophila melanogaster small nuclear heat shock protein DmHsp27 was investigated by mutagenesis using size exclusion chromatography and native gel electrophoresis. Mutation of two sites of phosphorylation in the N-terminal region, S58 and S75, did not affect the oligomerization equilibrium or the intracellular localization of DmHsp27 when transfected into mammalian cells. Deletion or mutation of specific residues within the NTR region delineated a motif (FGFG) important for the oligomeric structure and chaperone-like activity of this sHsp. While deletion of the full N-terminal region, resulted in total loss of chaperone-like activity, removal of the (FGFG) at position 29 to 32 or single mutation of F29A/Y, G30R and G32R enhanced oligomerization and chaperoning capacity under non-heat shock conditions in the insulin assay suggesting the importance of this site for chaperone activity. Unlike mammalian sHsps DmHsp27 heat activation leads to enhanced association of oligomers to form large structures of approximately 1100 kDa. A new mechanism of thermal activation for DmHsp27 is presented.
Collapse
Affiliation(s)
- Mohamed Taha Moutaoufik
- Laboratoire de génétique cellulaire et développementale, Département de biologie moléculaire, biochimie médicale et pathologie, Institut de biologie intégrative et des systèmes (IBIS) and PROTEO, Université Laval, Québec, Canada
| | - Geneviève Morrow
- Laboratoire de génétique cellulaire et développementale, Département de biologie moléculaire, biochimie médicale et pathologie, Institut de biologie intégrative et des systèmes (IBIS) and PROTEO, Université Laval, Québec, Canada
| | - Stéphanie Finet
- IMPMC UMR7590, CNRS, UPMC Paris 6, 4 place Jussieu, Paris, France
| | - Robert M. Tanguay
- Laboratoire de génétique cellulaire et développementale, Département de biologie moléculaire, biochimie médicale et pathologie, Institut de biologie intégrative et des systèmes (IBIS) and PROTEO, Université Laval, Québec, Canada
- * E-mail:
| |
Collapse
|
16
|
Parks C, Huang L, Wang Y, Ramkrishna D. Accelerating multiple replica molecular dynamics simulations using the Intel® Xeon Phi™ coprocessor. MOLECULAR SIMULATION 2017. [DOI: 10.1080/08927022.2017.1301666] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Conor Parks
- School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Lei Huang
- Texas Advanced Computing Center, The University of Texas at Austin, Austin, TX, USA
| | - Yang Wang
- Texas Advanced Computing Center, The University of Texas at Austin, Austin, TX, USA
| | | |
Collapse
|
17
|
Rutsdottir G, Härmark J, Weide Y, Hebert H, Rasmussen MI, Wernersson S, Respondek M, Akke M, Højrup P, Koeck PJB, Söderberg CAG, Emanuelsson C. Structural model of dodecameric heat-shock protein Hsp21: Flexible N-terminal arms interact with client proteins while C-terminal tails maintain the dodecamer and chaperone activity. J Biol Chem 2017; 292:8103-8121. [PMID: 28325834 PMCID: PMC5427286 DOI: 10.1074/jbc.m116.766816] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/16/2017] [Indexed: 01/14/2023] Open
Abstract
Small heat-shock proteins (sHsps) prevent aggregation of thermosensitive client proteins in a first line of defense against cellular stress. The mechanisms by which they perform this function have been hard to define due to limited structural information; currently, there is only one high-resolution structure of a plant sHsp published, that of the cytosolic Hsp16.9. We took interest in Hsp21, a chloroplast-localized sHsp crucial for plant stress resistance, which has even longer N-terminal arms than Hsp16.9, with a functionally important and conserved methionine-rich motif. To provide a framework for investigating structure-function relationships of Hsp21 and understanding these sequence variations, we developed a structural model of Hsp21 based on homology modeling, cryo-EM, cross-linking mass spectrometry, NMR, and small-angle X-ray scattering. Our data suggest a dodecameric arrangement of two trimer-of-dimer discs stabilized by the C-terminal tails, possibly through tail-to-tail interactions between the discs, mediated through extended IXVXI motifs. Our model further suggests that six N-terminal arms are located on the outside of the dodecamer, accessible for interaction with client proteins, and distinct from previous undefined or inwardly facing arms. To test the importance of the IXVXI motif, we created the point mutant V181A, which, as expected, disrupts the Hsp21 dodecamer and decreases chaperone activity. Finally, our data emphasize that sHsp chaperone efficiency depends on oligomerization and that client interactions can occur both with and without oligomer dissociation. These results provide a generalizable workflow to explore sHsps, expand our understanding of sHsp structural motifs, and provide a testable Hsp21 structure model to inform future investigations.
Collapse
Affiliation(s)
| | - Johan Härmark
- the School of Technology and Health, KTH/Royal Institute of Technology and Department of Biosciences and Nutrition, Karolinska Institutet, SE-171 77 Stockholm, Sweden, and
| | - Yoran Weide
- From the Departments of Biochemistry and Structural Biology and
| | - Hans Hebert
- the School of Technology and Health, KTH/Royal Institute of Technology and Department of Biosciences and Nutrition, Karolinska Institutet, SE-171 77 Stockholm, Sweden, and
| | - Morten I Rasmussen
- the Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | | | | | | | - Peter Højrup
- the Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Philip J B Koeck
- the School of Technology and Health, KTH/Royal Institute of Technology and Department of Biosciences and Nutrition, Karolinska Institutet, SE-171 77 Stockholm, Sweden, and
| | | | | |
Collapse
|
18
|
DeForte S, Uversky VN. Quarterly intrinsic disorder digest (April-May-June, 2014). INTRINSICALLY DISORDERED PROTEINS 2017; 5:e1287505. [PMID: 28321370 DOI: 10.1080/21690707.2017.1287505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This is the 6th issue of the Digested Disorder series that continues to use only 2 criteria for inclusion of a paper to this digest: The publication date (a paper should be published within the covered time frame) and the topic (a paper should be dedicated to any aspect of protein intrinsic disorder). The current digest issue covers papers published during the second quarter of 2014; i.e., during the period of April, May, and June of 2014. Similar to previous issues, the papers are grouped hierarchically by topics they cover, and for each of the included papers a short description is given on its major findings.
Collapse
Affiliation(s)
- Shelly DeForte
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Département De Biochimie and Centre Robert-Cedergren, Bio-Informatique et Génomique, Université de Montréal, Succursale Centre-Ville, Montreal, Quebec, Canada
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Laboratory of New Methods in Biology, Institute of Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russia; Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
19
|
Mymrikov EV, Daake M, Richter B, Haslbeck M, Buchner J. The Chaperone Activity and Substrate Spectrum of Human Small Heat Shock Proteins. J Biol Chem 2016; 292:672-684. [PMID: 27909051 DOI: 10.1074/jbc.m116.760413] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 11/12/2016] [Indexed: 11/06/2022] Open
Abstract
Small heat shock proteins (sHsps) are a ubiquitous family of molecular chaperones that suppress the unspecific aggregation of miscellaneous proteins. Multicellular organisms contain a large number of different sHsps, raising questions as to whether they function redundantly or are specialized in terms of substrates and mechanism. To gain insight into this issue, we undertook a comparative analysis of the eight major human sHsps on the aggregation of both model proteins and cytosolic lysates under standardized conditions. We discovered that sHsps, which form large oligomers (HspB1/Hsp27, HspB3, HspB4/αA-crystallin, and HspB5/αB-crystallin) are promiscuous chaperones, whereas the chaperone activity of the other sHsps is more substrate-dependent. However, all human sHsps analyzed except HspB7 suppressed the aggregation of cytosolic proteins of HEK293 cells. We identified ∼1100 heat-sensitive HEK293 proteins, 12% of which could be isolated in complexes with sHsps. Analysis of their biochemical properties revealed that most of the sHsp substrates have a molecular mass from 50 to 100 kDa and a slightly acidic pI (5.4-6.8). The potency of the sHsps to suppress aggregation of model substrates is correlated with their ability to form stable substrate complexes; especially HspB1 and HspB5, but also B3, bind tightly to a variety of proteins, whereas fewer substrates were detected in complex with the other sHsps, although these were also efficient in preventing the aggregation of cytosolic proteins.
Collapse
Affiliation(s)
- Evgeny V Mymrikov
- From the Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Marina Daake
- From the Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Bettina Richter
- From the Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Martin Haslbeck
- From the Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Johannes Buchner
- From the Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| |
Collapse
|
20
|
Small Heat Shock Proteins, a Key Player in Grass Plant Thermotolerance. HEAT SHOCK PROTEINS AND PLANTS 2016. [DOI: 10.1007/978-3-319-46340-7_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Mani N, Ramakrishna K, Suguna K. Characterization of rice small heat shock proteins targeted to different cellular organelles. Cell Stress Chaperones 2015; 20:451-60. [PMID: 25624002 PMCID: PMC4406937 DOI: 10.1007/s12192-015-0570-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/02/2015] [Accepted: 01/06/2015] [Indexed: 12/11/2022] Open
Abstract
Small heat shock proteins (sHSPs) are a family of ATP-independent molecular chaperones which prevent cellular protein aggregation by binding to misfolded proteins. sHSPs form large oligomers that undergo drastic rearrangement/dissociation in order to execute their chaperone activity in protecting substrates from stress. Substrate-binding sites on sHSPs have been predominantly mapped on their intrinsically disordered N-terminal arms. This region is highly variable in sequence and length across species, and has been implicated in both oligomer formation and in mediating chaperone activity. Here, we present our results on the functional and structural characterization of five sHSPs in rice, each differing in their subcellular localisation, viz., cytoplasm, nucleus, chloroplast, mitochondria and peroxisome. We performed activity assays and dynamic light scattering studies to highlight differences in the chaperone activity and quaternary assembly of sHSPs targeted to various organelles. By cloning constructs that differ in the length and sequence of the tag in the N-terminal region, we have probed the sensitivity of sHSP oligomer assembly and chaperone activity to the length and amino acid composition of the N-terminus. In particular, we have shown that the incorporation of an N-terminal tag has significant consequences on sHSP quaternary structure.
Collapse
Affiliation(s)
- Nandini Mani
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012 India
| | | | - Kaza Suguna
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012 India
| |
Collapse
|
22
|
Haslbeck M, Vierling E. A first line of stress defense: small heat shock proteins and their function in protein homeostasis. J Mol Biol 2015; 427:1537-48. [PMID: 25681016 DOI: 10.1016/j.jmb.2015.02.002] [Citation(s) in RCA: 380] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 10/24/2022]
Abstract
Small heat shock proteins (sHsps) are virtually ubiquitous molecular chaperones that can prevent the irreversible aggregation of denaturing proteins. sHsps complex with a variety of non-native proteins in an ATP-independent manner and, in the context of the stress response, form a first line of defense against protein aggregation in order to maintain protein homeostasis. In vertebrates, they act to maintain the clarity of the eye lens, and in humans, sHsp mutations are linked to myopathies and neuropathies. Although found in all domains of life, sHsps are quite diverse and have evolved independently in metazoans, plants and fungi. sHsp monomers range in size from approximately 12 to 42kDa and are defined by a conserved β-sandwich α-crystallin domain, flanked by variable N- and C-terminal sequences. Most sHsps form large oligomeric ensembles with a broad distribution of different, sphere- or barrel-like oligomers, with the size and structure of the oligomers dictated by features of the N- and C-termini. The activity of sHsps is regulated by mechanisms that change the equilibrium distribution in tertiary features and/or quaternary structure of the sHsp ensembles. Cooperation and/or co-assembly between different sHsps in the same cellular compartment add an underexplored level of complexity to sHsp structure and function.
Collapse
Affiliation(s)
- Martin Haslbeck
- Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85 748 Garching, Germany.
| | - Elizabeth Vierling
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Life Science Laboratories, N329 240 Thatcher Road, Amherst, MA 01003-9364, USA.
| |
Collapse
|
23
|
|