1
|
Zhao D, Liu H, Xu M, Yin C, Xiao X, Dai K. Functional carbon dots-hydrogel complex for selective antibacterial and detection applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 314:124195. [PMID: 38547782 DOI: 10.1016/j.saa.2024.124195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024]
Abstract
The carbon dots (CDs) with excellent optical properties and their hydrogel complex are of great significance in biomedicine, healthcare and biochemical detection fields. This paper reports the preparation of green-emitting CDs (MA-CDs) through one-step hydrothermal route with citric acid as reducing agent, L-malic acid as carbon source and N-(2-hydroxyethyl)ethylenediamine as nitrogen source. To expand its application in biology, MA-CDs were coupled with vancomycin to obtain multifunctional CDs (VMA-CDs). The prepared VMA-CDs exhibit selective antibacterial behavior to Gram-positive bacteria, and it could be used as a fluorescent probe to selectively label Staphylococcus aureus (S. aureus). Moreover, thanks to the excellent optical properties of VMA-CDs, it has been used as a fluorescent sensor to detect Au3+ with detection range of 6.50 nM-21.93 μM and detection limit 3.98 nM. By introducing the fluorescence of CDs as the reference signal, and VMA-CDs as a response signal, the hydrogel (V-SP) was prepared and realized the detection of Au3+ in microfluidics with assistance of a smartphone to collect and analyze data.
Collapse
Affiliation(s)
- Dan Zhao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central Minzu University), Wuhan 430065, PR China.
| | - Huan Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central Minzu University), Wuhan 430065, PR China
| | - Mengyu Xu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central Minzu University), Wuhan 430065, PR China
| | - Chengxin Yin
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central Minzu University), Wuhan 430065, PR China
| | - Xincai Xiao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central Minzu University), Wuhan 430065, PR China
| | - Kang Dai
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central Minzu University), Wuhan 430065, PR China.
| |
Collapse
|
2
|
Baroi AM, Fierascu I, Ghizdareanu AI, Trica B, Fistos T, Matei (Brazdis) RI, Fierascu RC, Firinca C, Sardarescu ID, Avramescu SM. Green Approach for Synthesis of Silver Nanoparticles with Antimicrobial and Antioxidant Properties from Grapevine Waste Extracts. Int J Mol Sci 2024; 25:4212. [PMID: 38673798 PMCID: PMC11050308 DOI: 10.3390/ijms25084212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The present work aims to study the possibilities of developing silver nanoparticles using natural extracts of grape pomace wastes originating from the native variety of Fetească Neagră 6 Șt. This study focused on investigating the influence of grape pomace extract obtained by two different extraction methods (classical temperature extraction and microwave-assisted extraction) in the phytosynthesis process of metal nanoparticles. The total phenolic content of the extracts was assessed using the spectrophotometric method with the Folin-Ciocâlteu reagent, while the identification and quantification of specific components were conducted through high-performance liquid chromatography with a diode array detector (HPLC-DAD). The obtained nanoparticles were characterized by UV-Vis absorption spectroscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM), along with assessing their antioxidant and antimicrobial properties against Gram-positive bacteria. The data collected from the experiments indicated that the nanoparticles were formed in a relatively short period of time (96 h) and, for the experimental variant involving the use of a 1:1 ratio (v/v, grape pomace extract: silver nitrate) for the nanoparticle phytosynthesis, the smallest crystallite sizes (from X-ray diffraction-4.58 nm and 5.14 nm) as well as spherical or semispherical nanoparticles with the lowest average diameters were obtained (19.99-23 nm, from TEM analysis). The phytosynthesis process was shown to enhance the antioxidant properties (determined using the DPPH assay) and the antimicrobial potential (tested against Gram-positive strains) of the nanoparticles, as evidenced by comparing their properties with those of the parent extracts; at the same time, the nanoparticles exhibited a selectivity in action, being active against the Staphylococcus aureus strain while presenting no antimicrobial potential against the Enterococcus faecalis strain.
Collapse
Affiliation(s)
- Anda Maria Baroi
- National Institute for Research & Development in Chemistry and Petrochemistry–ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania; (A.M.B.); (A.-I.G.); (B.T.); (T.F.); (R.I.M.); (R.C.F.); (C.F.)
- Faculty of Horticulture, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania
| | - Irina Fierascu
- National Institute for Research & Development in Chemistry and Petrochemistry–ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania; (A.M.B.); (A.-I.G.); (B.T.); (T.F.); (R.I.M.); (R.C.F.); (C.F.)
- Faculty of Horticulture, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania
| | - Andra-Ionela Ghizdareanu
- National Institute for Research & Development in Chemistry and Petrochemistry–ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania; (A.M.B.); (A.-I.G.); (B.T.); (T.F.); (R.I.M.); (R.C.F.); (C.F.)
| | - Bogdan Trica
- National Institute for Research & Development in Chemistry and Petrochemistry–ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania; (A.M.B.); (A.-I.G.); (B.T.); (T.F.); (R.I.M.); (R.C.F.); (C.F.)
| | - Toma Fistos
- National Institute for Research & Development in Chemistry and Petrochemistry–ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania; (A.M.B.); (A.-I.G.); (B.T.); (T.F.); (R.I.M.); (R.C.F.); (C.F.)
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 1-7 Gh. Polizu Str., 011061 Bucharest, Romania;
| | - Roxana Ioana Matei (Brazdis)
- National Institute for Research & Development in Chemistry and Petrochemistry–ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania; (A.M.B.); (A.-I.G.); (B.T.); (T.F.); (R.I.M.); (R.C.F.); (C.F.)
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 1-7 Gh. Polizu Str., 011061 Bucharest, Romania;
| | - Radu Claudiu Fierascu
- National Institute for Research & Development in Chemistry and Petrochemistry–ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania; (A.M.B.); (A.-I.G.); (B.T.); (T.F.); (R.I.M.); (R.C.F.); (C.F.)
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 1-7 Gh. Polizu Str., 011061 Bucharest, Romania;
| | - Cristina Firinca
- National Institute for Research & Development in Chemistry and Petrochemistry–ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania; (A.M.B.); (A.-I.G.); (B.T.); (T.F.); (R.I.M.); (R.C.F.); (C.F.)
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 91–95 Spl. Independenței, 050095 Bucharest, Romania
| | - Ionela Daniela Sardarescu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 1-7 Gh. Polizu Str., 011061 Bucharest, Romania;
- National Research and Development Institute for Biotechnology in Horticulture, Bucharet-Pitesti Str., 117715 Stefanesti, Romania
| | - Sorin Marius Avramescu
- Department of Inorganic Chemistry, Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 030018 Bucharest, Romania;
- Research Centre for Environmental Protection and Waste Management (PROTMED), University of Bucharest, 91–95 Spl. Independenței, Sect. 5, 050107 Bucharest, Romania
| |
Collapse
|
3
|
Valiei A, Bryche JF, Canva M, Charette PG, Moraes C, Hill RJ, Tufenkji N. Effects of Surface Topography and Cellular Biomechanics on Nanopillar-Induced Bactericidal Activity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9614-9625. [PMID: 38378485 DOI: 10.1021/acsami.3c09552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Bacteria are mechanically resistant biological structures that can sustain physical stress. Experimental data, however, have shown that high-aspect-ratio nanopillars deform bacterial cells upon contact. If the deformation is sufficiently large, it lyses the bacterial cell wall, ultimately leading to cell death. This has prompted a novel strategy, known as mechano-bactericide technology, to fabricate antibacterial surfaces. Although adhesion forces were originally proposed as the driving force for mechano-bactericidal action, it has been recently shown that external forces, such as capillary forces arising from an air-water interface at bacterial surfaces, produce sufficient loads to rapidly kill bacteria on nanopillars. This discovery highlights the need to theoretically examine how bacteria respond to external loads and to ascertain the key factors. In this study, we developed a finite element model approximating bacteria as elastic shells filled with cytoplasmic fluid brought into contact with an individual nanopillar or nanopillar array. This model elucidates that bacterial killing caused by external forces on nanopillars is influenced by surface topography and cell biomechanical variables, including the density and arrangement of nanopillars, in addition to the cell wall thickness and elastic modulus. Considering that surface topography is an important design parameter, we performed experiments using nanopillar arrays with precisely controlled nanopillar diameters and spacing. Consistent with model predictions, these demonstrate that nanopillars with a larger spacing increase bacterial susceptibility to mechanical puncture. The results provide salient insights into mechano-bactericidal activity and identify key design parameters for implementing this technology.
Collapse
Affiliation(s)
- Amin Valiei
- Department of Chemical Engineering, McGill University, Montreal, Québec H3A 0C5, Canada
| | - Jean-François Bryche
- Laboratoire Nanotechnologies Nanosystèmes (LN2)-IRL3463, CNRS, Université de Sherbrooke, Universitè Grenoble Alpes, École Centrale de Lyon, INSA Lyon, Sherbrooke, Québec J1K 0A5, Canada
- Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard de l'Université, Sherbrooke, Québec J1K OA5, Canada
| | - Michael Canva
- Laboratoire Nanotechnologies Nanosystèmes (LN2)-IRL3463, CNRS, Université de Sherbrooke, Universitè Grenoble Alpes, École Centrale de Lyon, INSA Lyon, Sherbrooke, Québec J1K 0A5, Canada
- Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard de l'Université, Sherbrooke, Québec J1K OA5, Canada
| | - Paul G Charette
- Laboratoire Nanotechnologies Nanosystèmes (LN2)-IRL3463, CNRS, Université de Sherbrooke, Universitè Grenoble Alpes, École Centrale de Lyon, INSA Lyon, Sherbrooke, Québec J1K 0A5, Canada
- Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard de l'Université, Sherbrooke, Québec J1K OA5, Canada
| | - Christopher Moraes
- Department of Chemical Engineering, McGill University, Montreal, Québec H3A 0C5, Canada
- Department of Biomedical Engineering, McGill University, Montreal, Québec H3A 0C5, Canada
- Goodman Cancer Research Center, McGill University, Montreal, Québec H3A 0G4, Canada
| | - Reghan J Hill
- Department of Chemical Engineering, McGill University, Montreal, Québec H3A 0C5, Canada
| | - Nathalie Tufenkji
- Department of Chemical Engineering, McGill University, Montreal, Québec H3A 0C5, Canada
| |
Collapse
|
4
|
Torkhov NA, Buchelnikova VA, Mosunov AA, Ivonin IV. AFM methods for studying the morphology and micromechanical properties of the membrane of human buccal epithelium cell. Sci Rep 2023; 13:10917. [PMID: 37407618 DOI: 10.1038/s41598-023-33881-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/20/2023] [Indexed: 07/07/2023] Open
Abstract
Using AFM methods in air under normal conditions in a wide range of local force effects ([Formula: see text]< 40 μN) the relief, functional micromechanical properties (elasticity coefficient [Formula: see text], Young's modulus [Formula: see text], elastic [Formula: see text] and plastic [Formula: see text] deformations) and adhesive properties (work [Formula: see text] of adhesive forces [Formula: see text]) of the membranes of living adult cells of human buccal epithelium were studied in the presence of a protective layer < 100 nm of buffer solution that prevented the cells from drying. Almost all geometric and functional characteristics of the membrane in the local approximation at the micro- and nanolevels are affected by size effects and obey the laws of fractal geometry. The Brownian multifractal relief of the membrane is characterized by dimension [Formula: see text] < 2.56 and irregularities < 500 nm vertically and < 2 μm horizontally. Its response to elastic (≤ 6 nN), active (6-21 nN), or passive (> 21 nN) stimulation ([Formula: see text]) is a non-trivial selective process and exhibits a correspondingly elastic ([Formula: see text] 67.4 N/m), active ([Formula: see text] 80.2 N/m) and passive ([Formula: see text] 84.5 N/m) responses. [Formula: see text] and [Formula: see text] depend on [Formula: see text]. Having undergone slight plastic deformations [Formula: see text] < 300 nm, the membrane is capable of restoring its shape. We mapped ([Formula: see text], [Formula: see text] = 2.56; [Formula: see text], [Formula: see text] = 2.68; [Formula: see text], [Formula: see text] = 2.42, [Formula: see text] and [Formula: see text]) indicating its complex cavernous structure.
Collapse
Affiliation(s)
- N A Torkhov
- Sevastopol State University, Sevastopol, Russia.
- Tomsk State University, Tomsk, Russia.
| | | | - A A Mosunov
- Sevastopol State University, Sevastopol, Russia
| | | |
Collapse
|
5
|
Han R, Feng XQ, Vollmer W, Stoodley P, Chen J. Deciphering the adaption of bacterial cell wall mechanical integrity and turgor to different chemical or mechanical environments. J Colloid Interface Sci 2023; 640:510-520. [PMID: 36878069 DOI: 10.1016/j.jcis.2023.02.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023]
Abstract
Bacteria adapt the mechanical properties of their cell envelope, including cell wall stiffness, turgor, and cell wall tension and deformation, to grow and survive in harsh environments. However, it remains a technical challenge to simultaneously determine these mechanical properties at a single cell level. Here we combined theoretical modelling with an experimental approach to quantify the mechanical properties and turgor of Staphylococcus epidermidis. It was found that high osmolarity leads to a decrease in both cell wall stiffness and turgor. We also demonstrated that the turgor change is associated with a change in the viscosity of the bacterial cell. We predicted that the cell wall tension is much higher in deionized (DI) water and it decreases with an increase in osmolality. We also found that an external force increases the cell wall deformation to reinforce its adherence to a surface and this effect can be more significant in lower osmolarity. Overall, our work highlights how bacterial mechanics supports survival in harsh environments and uncovers the adaption of bacterial cell wall mechanical integrity and turgor to osmotic and mechanical challenges.
Collapse
Affiliation(s)
- Rui Han
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4AX, UK
| | - Paul Stoodley
- Department of Microbial Infection and Immunity and the Department of Orthopaedics, The Ohio State University, Columbus, OH 43210, United States; National Centre for Advanced Tribology at Southampton (nCATS), National Biofilm Innovation Centre (NBIC), Mechanical Engineering, University of Southampton, Southampton S017 1BJ, UK
| | - Jinju Chen
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
| |
Collapse
|
6
|
Owen DS. Toward a better modulus at shallow indentations-Enhanced tip and sample characterization for quantitative atomic force microscopy. Microsc Res Tech 2023; 86:84-96. [PMID: 36398794 PMCID: PMC10099859 DOI: 10.1002/jemt.24261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/20/2022] [Accepted: 11/05/2022] [Indexed: 11/19/2022]
Abstract
Approximations of the geometry of indenting probes, particularly when using shallow indentations on soft materials, can lead to the erroneous reporting of mechanical data in atomic force microscopy (AFM). Scanning electron microscopy (SEM) identified a marked change in geometry toward the tip apex where the conical probe assumes a near linear flat-punch geometry. Polydimethylsiloxane (PDMS) is a ubiquitous elastomer within the materials and biological sciences. Its elastic modulus is widely characterized but the data are dispersed and can display orders of magnitude disparity. Herein, we compare the moduli gathered from a range of analytical techniques and relate these to the molecular architecture identified with AFM. We present a simple method that considers sub-100 nm indentations of PDMS using the Hertz and Sneddon contact mechanics models, and how this could be used to improve the output of shallow indentations on similarly soft materials, such as polymers or cells.
Collapse
Affiliation(s)
- David S Owen
- Department of Physics and Astronomy, University of Sheffield, Sheffield, South Yorkshire, UK
| |
Collapse
|
7
|
Kumbhar GS, Patil SV, Sarvalkar PD, Vadanagekar AS, Karvekar OS, Patil SS, Rane MR, Sharma KKK, Kurhe DN, Prasad NR. Synthesis of a Ag/rGO nanocomposite using Bos taurus indicus urine for nitroarene reduction and biological activity. RSC Adv 2022; 12:35598-35612. [PMID: 36545061 PMCID: PMC9746299 DOI: 10.1039/d2ra06280a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
The present study develops a unique in situ synthesis of a catalytically and biologically active Ag/reduced graphene oxide (rGO) nanocomposite. Herein, we employed Bos taurus indicus urine to synthesize a Ag/rGO nanocomposite in an environmentally benign, facile, economical, and sustainable manner. The elemental composition analysis reveals the presence of Ag, O and C elements. The scanning electron micrograph shows the formation of spherical silver in nanoform whereas rGO is found to be flake shaped with a wrinkled nature. The synthesized nanomaterial and its composite shows a positive catalytic effect in simple organic transformation for the reduction of nitroarene compounds. Investigations were conducted into the catalytic effectiveness of the prepared nanomaterials for diverse nitroarene reduction. Then, using NaBH4 at 25 °C, the catalytic roles of Ag and the Ag/rGO nano-catalyst were assessed towards the catalytic reduction of several environmental pollutants such as 2-, 3- and 4-nitroaniline and 4-nitrophenol into their respective amino compounds. To test their catalytic performance, bio-mimetically synthesized Ag NPs were thermally treated at 200 °C and compared with the Ag/rGO nanocomposite. Furthermore, biomedical applications such as the antibacterial and antioxidant properties of the as-prepared nanomaterials were investigated in this study.
Collapse
Affiliation(s)
- Gouri S Kumbhar
- School of Nanoscience and Technology, Shivaji University Kolhapur-416004 MH India
| | - Shubham V Patil
- School of Nanoscience and Technology, Shivaji University Kolhapur-416004 MH India
| | - Prashant D Sarvalkar
- School of Nanoscience and Technology, Shivaji University Kolhapur-416004 MH India
| | - Apurva S Vadanagekar
- School of Nanoscience and Technology, Shivaji University Kolhapur-416004 MH India
| | - Omkar S Karvekar
- School of Nanoscience and Technology, Shivaji University Kolhapur-416004 MH India
| | | | - Manali R Rane
- Department of Biotechnology, Shivaji University Kolhapur-416004 MH India
| | - Kiran Kumar K Sharma
- School of Nanoscience and Technology, Shivaji University Kolhapur-416004 MH India
| | - Deepti N Kurhe
- Department of Biochemistry, Shivaji University Kolhapur-416004 MH India
| | - Neeraj R Prasad
- School of Nanoscience and Technology, Shivaji University Kolhapur-416004 MH India
- Jaysingpur College, Jaysingpur, Affiliated to Shivaji University Kolhapur 416234 MH India
| |
Collapse
|
8
|
The Staphylococcus aureus cell division protein, DivIC, interacts with the cell wall and controls its biosynthesis. Commun Biol 2022; 5:1228. [DOI: 10.1038/s42003-022-04161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022] Open
Abstract
AbstractBacterial cell division is a complex, dynamic process that requires multiple protein components to orchestrate its progression. Many division proteins are highly conserved across bacterial species alluding to a common, basic mechanism. Central to division is a transmembrane trimeric complex involving DivIB, DivIC and FtsL in Gram-positives. Here, we show a distinct, essential role for DivIC in division and survival of Staphylococcus aureus. DivIC spatially regulates peptidoglycan synthesis, and consequently cell wall architecture, by influencing the recruitment to the division septum of the major peptidoglycan synthetases PBP2 and FtsW. Both the function of DivIC and its recruitment to the division site depend on its extracellular domain, which interacts with the cell wall via binding to wall teichoic acids. DivIC facilitates the spatial and temporal coordination of peptidoglycan synthesis with the developing architecture of the septum during cell division. A better understanding of the cell division mechanisms in S. aureus and other pathogenic microorganisms can provide possibilities for the development of new, more effective treatments for bacterial infections.
Collapse
|
9
|
Han R, Vollmer W, Perry JD, Stoodley P, Chen J. Simultaneous determination of the mechanical properties and turgor of a single bacterial cell using atomic force microscopy. NANOSCALE 2022; 14:12060-12068. [PMID: 35946610 DOI: 10.1039/d2nr02577a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Bacterial mechanical properties (cell wall stiffness and turgor) are important factors for bacterial survival in harsh environments. For an individual bacterial cell, it is challenging to determine the cell wall stiffness and turgor simultaneously. In this study, we adopted a combined finite element modelling and mathematical modelling approach to simultaneously determine bacterial cell wall stiffness and turgor of an individual bacterial cell based on atomic force microscopy (AFM) nanoindentation. The mechanical properties and turgor of Staphylococcus epidermidis, determined by our method are consistent with other independent studies. For a given aqueous environment, bacterial cell wall stiffness increased linearly with an increase in turgor. Higher osmolarity leads to a decrease in both cell wall stiffness and turgor. We also demonstrated that the change of turgor is associated with a change in viscosity of the bacterial cell.
Collapse
Affiliation(s)
- Rui Han
- School of Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK.
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| | - John D Perry
- Microbiology Department, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN, UK
| | - Paul Stoodley
- Department of Microbial Infection and Immunity and the Department of Orthopaedics, The Ohio State University, Columbus, OH, 43210, USA
- National Centre for Advanced Tribology at Southampton (nCATS), National Biofilm Innovation Centre (NBIC), Mechanical Engineering, University of Southampton, Southampton, S017 1BJ, UK
| | - Jinju Chen
- School of Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK.
| |
Collapse
|
10
|
Study of tribological properties of human buccal epithelium cell membranes using probe microscopy. Sci Rep 2022; 12:11302. [PMID: 35787653 PMCID: PMC9252996 DOI: 10.1038/s41598-022-14807-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/13/2022] [Indexed: 11/22/2022] Open
Abstract
In this work demostrates a unique method for determining the absolute value of the friction force of a nanoobject on the surface of a cell membrane using atomic force microscopy. The tribological properties of membranes of adult human buccal epithelium cells in the presence of a protective adsorption buffer layer of ~ 100 nm on their surface were studied using atomic force microscopy in the contact scanning mode. Local mapping of the tribological characteristics of the surface was carried out, viz. friction FL = FL(x, y) and adhesion Fadh = Fadh(x, y) forces were measured. Studies of the friction force Ffr on the membrane surface at the nanolevel showed that its value varies discretely with an interval equal to lLF ≈ 100 nm. It was shown that such discreteness is determined by the interval lLF of the action of adhesive forces Fadh and indicates the fractal nature of the functional dependence of the friction force on the coordinate Ffr = Ffr(x). Thus, for nano-objects with dimensions ≤ lLF, the absolute value of Ffr decreases according to a power law with an increase in the size of the object, which contradicts the similar dependence of the friction force for macro-objects in the global approximation.
Collapse
|
11
|
Abstract
Bacterial communities in water, soil, and humans play an essential role in environmental ecology and human health. PCR-based amplicon analysis, such as 16S rRNA sequencing, is a fundamental tool for quantifying and studying microbial composition, dynamics, and interactions. However, given the complexity of microbial communities, a substantial number of samples becomes necessary for analyses that parse the factors that determine microbial composition. A common bottleneck in performing these kinds of experiments is genomic DNA (gDNA) extraction, which is time-consuming, expensive, and often biased based on the types of species present. Direct PCR method is a potentially simpler and more accurate alternative to gDNA extraction methods that do not require the intervening purification step. In this study, we evaluated three variations of direct PCR methods using diverse heterogeneous bacterial cultures, including both Gram-positive and Gram-negative species, ZymoBIOMICS microbial community standards, and groundwater. By comparing direct PCR methods with DNeasy Blood and Tissue Kits for microbial isolates and DNeasy PowerSoil Kits for microbial communities, we found that a specific variant of the direct PCR method exhibits an overall efficiency comparable to that of the conventional DNeasy PowerSoil protocol in the circumstances we tested. We also found that the method showed higher efficiency for extracting gDNA from the Gram-negative strains compared to DNeasy Blood and Tissue protocol. This direct PCR method is 1,600 times less expensive ($0.34 for 96 samples) and 10 times simpler (15 min hands-on time for 96 samples) than the DNeasy PowerSoil protocol. The direct PCR method can also be fully automated and is compatible with small-volume samples, thereby permitting scaling of samples and replicates needed to support high-throughput large-scale bacterial community analysis. IMPORTANCE Understanding bacterial interactions and assembly in complex microbial communities using 16S rRNA sequencing normally requires a large experimental load. However, the current DNA extraction methods, including cell disruption and genomic DNA purification, are normally biased, costly, time-consuming, labor-intensive, and not amenable to miniaturization by droplets or 1,536-well plates due to the significant DNA loss during the purification step for tiny-volume and low-cell-density samples. A direct PCR method could potentially solve these problems. In this study, we developed a direct PCR method which exhibits similar efficiency as the widely used method, the DNeasy PowerSoil protocol, while being 1,600 times less expensive and 10 times faster to execute. This simple, cost-effective, and automation-friendly direct-PCR-based 16S rRNA sequencing method allows us to study the dynamics, microbial interaction, and assembly of various microbial communities in a high-throughput fashion.
Collapse
|
12
|
Fisher JF, Mobashery S. β-Lactams against the Fortress of the Gram-Positive Staphylococcus aureus Bacterium. Chem Rev 2021; 121:3412-3463. [PMID: 33373523 PMCID: PMC8653850 DOI: 10.1021/acs.chemrev.0c01010] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The biological diversity of the unicellular bacteria-whether assessed by shape, food, metabolism, or ecological niche-surely rivals (if not exceeds) that of the multicellular eukaryotes. The relationship between bacteria whose ecological niche is the eukaryote, and the eukaryote, is often symbiosis or stasis. Some bacteria, however, seek advantage in this relationship. One of the most successful-to the disadvantage of the eukaryote-is the small (less than 1 μm diameter) and nearly spherical Staphylococcus aureus bacterium. For decades, successful clinical control of its infection has been accomplished using β-lactam antibiotics such as the penicillins and the cephalosporins. Over these same decades S. aureus has perfected resistance mechanisms against these antibiotics, which are then countered by new generations of β-lactam structure. This review addresses the current breadth of biochemical and microbiological efforts to preserve the future of the β-lactam antibiotics through a better understanding of how S. aureus protects the enzyme targets of the β-lactams, the penicillin-binding proteins. The penicillin-binding proteins are essential enzyme catalysts for the biosynthesis of the cell wall, and understanding how this cell wall is integrated into the protective cell envelope of the bacterium may identify new antibacterials and new adjuvants that preserve the efficacy of the β-lactams.
Collapse
Affiliation(s)
- Jed F Fisher
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame Indiana 46556, United States
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame Indiana 46556, United States
| |
Collapse
|
13
|
Kasas S, Malovichko A, Villalba MI, Vela ME, Yantorno O, Willaert RG. Nanomotion Detection-Based Rapid Antibiotic Susceptibility Testing. Antibiotics (Basel) 2021; 10:287. [PMID: 33801939 PMCID: PMC7999052 DOI: 10.3390/antibiotics10030287] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 02/26/2021] [Accepted: 03/07/2021] [Indexed: 01/04/2023] Open
Abstract
Rapid antibiotic susceptibility testing (AST) could play a major role in fighting multidrug-resistant bacteria. Recently, it was discovered that all living organisms oscillate in the range of nanometers and that these oscillations, referred to as nanomotion, stop as soon the organism dies. This finding led to the development of rapid AST techniques based on the monitoring of these oscillations upon exposure to antibiotics. In this review, we explain the working principle of this novel technique, compare the method with current ASTs, explore its application and give some advice about its implementation. As an illustrative example, we present the application of the technique to the slowly growing and pathogenic Bordetella pertussis bacteria.
Collapse
Affiliation(s)
- Sandor Kasas
- Laboratory of Biological Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; (A.M.); (M.I.V.)
- Unité Facultaire d’Anatomie et de Morphologie (UFAM), CUMRL, University of Lausanne, 1005 Lausanne, Switzerland
- International Joint Research Group VUB-EPFL NanoBiotechnology and NanoMedicine (NANO), Vrije Universiteit Brussel, 1050 Brussels, Belgium;
| | - Anton Malovichko
- Laboratory of Biological Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; (A.M.); (M.I.V.)
- International Joint Research Group VUB-EPFL NanoBiotechnology and NanoMedicine (NANO), Vrije Universiteit Brussel, 1050 Brussels, Belgium;
| | - Maria Ines Villalba
- Laboratory of Biological Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; (A.M.); (M.I.V.)
- International Joint Research Group VUB-EPFL NanoBiotechnology and NanoMedicine (NANO), Vrije Universiteit Brussel, 1050 Brussels, Belgium;
| | - María Elena Vela
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, and CONICET, Diagonal 113 y 64, 1900 La Plata, Argentina;
| | - Osvaldo Yantorno
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI-CONICET-CCT La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata, Argentina;
| | - Ronnie G. Willaert
- International Joint Research Group VUB-EPFL NanoBiotechnology and NanoMedicine (NANO), Vrije Universiteit Brussel, 1050 Brussels, Belgium;
- Research Group Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| |
Collapse
|
14
|
Molecular dynamics model for the antibactericity of textured surfaces. Colloids Surf B Biointerfaces 2021; 199:111504. [PMID: 33418209 DOI: 10.1016/j.colsurfb.2020.111504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/30/2020] [Indexed: 11/20/2022]
Abstract
An original model has been developed for the initial stage of bacterial adhesion on textured surfaces. Based on molecular dynamics, the model describes contact between individual bacterial cells in a planktonic state and a surface, accounting for both the mechanical properties of the cells and the physico-chemical mechanisms governing interaction with the substrate. Feasibility of the model is assessed via comparison with experimental results of bacterial growth on stainless steel substrates textured with ultrashort laser pulses. Simulations are performed for two different bacterial species, Staphylococcus aureus and Escherichia coli, on two distinct surface types characterised by elongated ripples and isolated nanopillars, respectively. Calculated results are in agreement with experiment outcomes and highlight the role of mechanical stresses within the cell wall due to deformation upon interaction with the substrate, creating unfavourable conditions for bacteria during the initial phases of adhesion. Furthermore, the flexibility of the model provides insight into the intricate interplay between topography and the physico-chemical properties of the substrate, pointing to a unified picture of the mechanisms underlying bacterial affinity to a textured surface.
Collapse
|
15
|
New insights in the coordinated amidase and glucosaminidase activity of the major autolysin (Atl) in Staphylococcus aureus. Commun Biol 2020; 3:695. [PMID: 33219282 PMCID: PMC7679415 DOI: 10.1038/s42003-020-01405-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 10/15/2020] [Indexed: 11/17/2022] Open
Abstract
After bacterial cell division, the daughter cells are still covalently interlinked by the peptidoglycan network which is resolved by specific hydrolases (autolysins) to release the daughter cells. In staphylococci, the major autolysin (Atl) with its two domain enzymes, N-acetylmuramyl-L-alanine amidase (AmiA) and β-N-acetylglucosaminidase (GlcA), resolves the peptidoglycan to release the daughter cells. Internal deletions in each of the enzyme domains revealed defined morphological alterations such as cell cluster formation in ΔamiA, ΔglcA and Δatl, and asymmetric cell division in the ΔglcA. A most important finding was that GlcA activity requires the prior removal of the stem peptide by AmiA for its activity thus the naked glycan strand is its substrate. Furthermore, GlcA is not an endo-β-N-acetylglucosaminidase but an exo-enzyme that cuts the glycan backbone to disaccharides independent of its O-acetylation modification. Our results shed new light into the sequential peptidoglycan hydrolysis by AmiA and GlcA during cell division in staphylococci. Nega et al. shed light on the interplay of the two domain enzymes of the major autolysin, AmiA and GlcA, in S. aureus for peptidoglycan hydrolysis during bacterial cell division. They show that GlcA requires the prior removal of the stem peptide by AmiA for its activity and that GlcA is not an endo-enzyme as previously thought, but an exo-enzyme that chops down the glycan backbone to disaccharides independent of its O-acetylation modification.
Collapse
|
16
|
Su HN, Li K, Zhao LS, Yuan XX, Zhang MY, Liu SM, Chen XL, Liu LN, Zhang YZ. Structural Visualization of Septum Formation in Staphylococcus warneri Using Atomic Force Microscopy. J Bacteriol 2020; 202:e00294-20. [PMID: 32900866 PMCID: PMC7484183 DOI: 10.1128/jb.00294-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/17/2020] [Indexed: 12/16/2022] Open
Abstract
Cell division of Staphylococcus adopts a "popping" mechanism that mediates extremely rapid separation of the septum. Elucidating the structure of the septum is crucial for understanding this exceptional bacterial cell division mechanism. Here, the septum structure of Staphylococcus warneri was extensively characterized using high-speed time-lapse confocal microscopy, atomic force microscopy, and electron microscopy. The cells of S. warneri divide in a fast popping manner on a millisecond timescale. Our results show that the septum is composed of two separable layers, providing a structural basis for the ultrafast daughter cell separation. The septum is formed progressively toward the center with nonuniform thickness of the septal disk in radial directions. The peptidoglycan on the inner surface of double-layered septa is organized into concentric rings, which are generated along with septum formation. Moreover, this study signifies the importance of new septum formation in initiating new cell cycles. This work unravels the structural basis underlying the popping mechanism that drives S. warneri cell division and reveals a generic structure of the bacterial cell.IMPORTANCE This work shows that the septum of Staphylococcus warneri is composed of two layers and that the peptidoglycan on the inner surface of the double-layered septum is organized into concentric rings. Moreover, new cell cycles of S. warneri can be initiated before the previous cell cycle is complete. This work advances our knowledge about a basic structure of bacterial cell and provides information on the double-layered structure of the septum for bacteria that divide with the "popping" mechanism.
Collapse
Affiliation(s)
- Hai-Nan Su
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Kang Li
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Long-Sheng Zhao
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Xiao-Xue Yuan
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Meng-Yao Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Si-Min Liu
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Lu-Ning Liu
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
17
|
Juma A, Lemoine P, Simpson ABJ, Murray J, O'Hagan BMG, Naughton PJ, Dooley JG, Banat IM. Microscopic Investigation of the Combined Use of Antibiotics and Biosurfactants on Methicillin Resistant Staphylococcus aureus. Front Microbiol 2020; 11:1477. [PMID: 32733412 PMCID: PMC7358407 DOI: 10.3389/fmicb.2020.01477] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/05/2020] [Indexed: 12/13/2022] Open
Abstract
One current strategy to deal with the serious issue of antibiotic resistance is to use biosurfactants, weak antimicrobials in their own right, with antibiotics in order to extend the efficacy of antibiotics. Although an adjuvant effect has been observed, the underlying mechanisms are poorly understood. To investigate the nature of the antibiotic and biosurfactant interaction, we undertook a scanning electron microscopy (SEM) and atomic force microscopy (AFM) microscopic study of the effects of the tetracycline antibiotic, combined with sophorolipid and rhamnolipid biosurfactants, on Methicillin-resistant Staphylococcus aureus using tetracycline concentrations below and above the minimum inhibitory concentration (MIC). Control and treated bacterial samples were prepared with an immersion technique by adsorbing the bacteria onto glass substrates grafted with the poly-cationic polymer polyethyleneimine. Bacterial surface morphology, hydrophobic and hydrophilic surface characters as well as the local bacterial cell stiffness were measured following combined antibiotic and biosurfactant treatment. The sophorolipid biosurfactant stands alone insofar as, when used with the antibiotic at sub-MIC concentration, it resulted in bacterial morphological changes, larger diameters (from 758 ± 75 to 1276 ± 220 nm, p-value = 10-4) as well as increased bacterial core stiffness (from 205 ± 46 to 396 ± 66 mN/m, p-value = 5 × 10-5). This investigation demonstrates that such combination of microscopic analysis can give useful information which could complement biological assays to understand the mechanisms of synergy between antibiotics and bioactive molecules such as biosurfactants.
Collapse
Affiliation(s)
- Abulaziz Juma
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - Patrick Lemoine
- School of Engineering, Nanotechnology and Integrated Bioengineering Centre (NIBEC), Ulster University, Newtownabbey, United Kingdom
| | - Alistair B J Simpson
- School of Engineering, Nanotechnology and Integrated Bioengineering Centre (NIBEC), Ulster University, Newtownabbey, United Kingdom
| | - Jason Murray
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - Barry M G O'Hagan
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - Patrick J Naughton
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - James G Dooley
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - Ibrahim M Banat
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| |
Collapse
|
18
|
Pasquina-Lemonche L, Burns J, Turner RD, Kumar S, Tank R, Mullin N, Wilson JS, Chakrabarti B, Bullough PA, Foster SJ, Hobbs JK. The architecture of the Gram-positive bacterial cell wall. Nature 2020; 582:294-297. [PMID: 32523118 PMCID: PMC7308169 DOI: 10.1038/s41586-020-2236-6] [Citation(s) in RCA: 204] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/25/2020] [Indexed: 02/05/2023]
Abstract
The primary structural component of the bacterial cell wall is peptidoglycan, which is essential for viability and the synthesis of which is the target for crucial antibiotics1,2. Peptidoglycan is a single macromolecule made of glycan chains crosslinked by peptide side branches that surrounds the cell, acting as a constraint to internal turgor1,3. In Gram-positive bacteria, peptidoglycan is tens of nanometres thick, generally portrayed as a homogeneous structure that provides mechanical strength4-6. Here we applied atomic force microscopy7-12 to interrogate the morphologically distinct Staphylococcus aureus and Bacillus subtilis species, using live cells and purified peptidoglycan. The mature surface of live cells is characterized by a landscape of large (up to 60 nm in diameter), deep (up to 23 nm) pores constituting a disordered gel of peptidoglycan. The inner peptidoglycan surface, consisting of more nascent material, is much denser, with glycan strand spacing typically less than 7 nm. The inner surface architecture is location dependent; the cylinder of B. subtilis has dense circumferential orientation, while in S. aureus and division septa for both species, peptidoglycan is dense but randomly oriented. Revealing the molecular architecture of the cell envelope frames our understanding of its mechanical properties and role as the environmental interface13,14, providing information complementary to traditional structural biology approaches.
Collapse
Affiliation(s)
- L Pasquina-Lemonche
- Krebs Institute, University of Sheffield, Sheffield, UK
- Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
- The Florey Institute, University of Sheffield, Sheffield, UK
| | - J Burns
- Krebs Institute, University of Sheffield, Sheffield, UK
- Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
| | - R D Turner
- Krebs Institute, University of Sheffield, Sheffield, UK
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
- Department of Computer Science, University of Sheffield, Sheffield, UK
| | - S Kumar
- Krebs Institute, University of Sheffield, Sheffield, UK
- Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - R Tank
- Krebs Institute, University of Sheffield, Sheffield, UK
- Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
| | - N Mullin
- Krebs Institute, University of Sheffield, Sheffield, UK
- Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
| | - J S Wilson
- Krebs Institute, University of Sheffield, Sheffield, UK
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - B Chakrabarti
- Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
| | - P A Bullough
- Krebs Institute, University of Sheffield, Sheffield, UK
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - S J Foster
- Krebs Institute, University of Sheffield, Sheffield, UK.
- The Florey Institute, University of Sheffield, Sheffield, UK.
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK.
| | - J K Hobbs
- Krebs Institute, University of Sheffield, Sheffield, UK.
- Department of Physics and Astronomy, University of Sheffield, Sheffield, UK.
- The Florey Institute, University of Sheffield, Sheffield, UK.
| |
Collapse
|
19
|
Krce L, Šprung M, Rončević T, Maravić A, Čikeš Čulić V, Blažeka D, Krstulović N, Aviani I. Probing the Mode of Antibacterial Action of Silver Nanoparticles Synthesized by Laser Ablation in Water: What Fluorescence and AFM Data Tell Us. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1040. [PMID: 32485869 PMCID: PMC7352602 DOI: 10.3390/nano10061040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/17/2022]
Abstract
We aim to elucidate the mode of antibacterial action of the laser-synthesized silver colloid against Escherichia coli. Membrane integrity was studied by flow cytometry, while the strain viability of the treated culture was determined by plating. The spectrofluorometry was used to obtain the time development of the reactive oxygen species (ROS) inside the nanoparticle-treated bacterial cells. An integrated atomic force and bright-field/fluorescence microscopy system enabled the study of the cell morphology, Young modulus, viability, and integrity before and during the treatment. Upon lethal treatment, not all bacterial cells were shown to be permeabilized and have mostly kept their morphology with an indication of cell lysis. Young modulus of untreated cells was shown to be distinctly bimodal, with randomly distributed softer parts, while treated cells exhibited exponential softening of the stiffer parts in time. Silver nanoparticles and bacteria have shown a masking effect on the raw fluorescence signal through absorbance and scattering. The contribution of cellular ROS in the total fluorescence signal was resolved and it was proven that the ROS level inside the lethally treated cells is not significant. It was found that the laser-synthesized silver nanoparticles mode of antibacterial action includes reduction of the cell's Young modulus in time and subsequently the cell leakage.
Collapse
Affiliation(s)
- Lucija Krce
- Department of Physics, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia;
| | - Matilda Šprung
- Department of Chemistry, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia;
| | - Tomislav Rončević
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia; (T.R.); (A.M.)
| | - Ana Maravić
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia; (T.R.); (A.M.)
| | - Vedrana Čikeš Čulić
- Department of Medical Chemistry and Biochemistry, School of Medicine, University of Split, Šoltanska ulica 2, 21000 Split, Croatia;
| | - Damjan Blažeka
- Institute of Physics, Bijenička cesta 46, 10000 Zagreb, Croatia; (D.B.); (N.K.)
| | - Nikša Krstulović
- Institute of Physics, Bijenička cesta 46, 10000 Zagreb, Croatia; (D.B.); (N.K.)
| | - Ivica Aviani
- Department of Physics, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia;
| |
Collapse
|
20
|
Domain sliding of two Staphylococcus aureus N-acetylglucosaminidases enables their substrate-binding prior to its catalysis. Commun Biol 2020; 3:178. [PMID: 32313083 PMCID: PMC7170848 DOI: 10.1038/s42003-020-0911-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/23/2020] [Indexed: 12/22/2022] Open
Abstract
To achieve productive binding, enzymes and substrates must align their geometries to complement each other along an entire substrate binding site, which may require enzyme flexibility. In pursuit of novel drug targets for the human pathogen S. aureus, we studied peptidoglycan N-acetylglucosaminidases, whose structures are composed of two domains forming a V-shaped active site cleft. Combined insights from crystal structures supported by site-directed mutagenesis, modeling, and molecular dynamics enabled us to elucidate the substrate binding mechanism of SagB and AtlA-gl. This mechanism requires domain sliding from the open form observed in their crystal structures, leading to polysaccharide substrate binding in the closed form, which can enzymatically process the bound substrate. We suggest that these two hydrolases must exhibit unusual extents of flexibility to cleave the rigid structure of a bacterial cell wall.
Collapse
|
21
|
Novickij V, Stanevičienė R, Staigvila G, Gruškienė R, Sereikaitė J, Girkontaitė I, Novickij J, Servienė E. Effects of pulsed electric fields and mild thermal treatment on antimicrobial efficacy of nisin-loaded pectin nanoparticles for food preservation. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108915] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Odermatt PD, Hannebelle MTM, Eskandarian HA, Nievergelt AP, McKinney JD, Fantner GE. Overlapping and essential roles for molecular and mechanical mechanisms in mycobacterial cell division. NATURE PHYSICS 2020; 16:57-62. [PMID: 31921326 PMCID: PMC6952280 DOI: 10.1038/s41567-019-0679-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/04/2019] [Indexed: 05/30/2023]
Abstract
Mechanisms to control cell division are essential for cell proliferation and survival 1. Bacterial cell growth and division require the coordinated activity of peptidoglycan synthases and hydrolytic enzymes 2-4 to maintain mechanical integrity of the cell wall 5. Recent studies suggest that cell separation is governed by mechanical forces 6,7. How mechanical forces interact with molecular mechanisms to control bacterial cell division in space and time is poorly understood. Here, we use a combination of atomic force microscope (AFM) imaging, nanomechanical mapping, and nanomanipulation to show that enzymatic activity and mechanical forces serve overlapping and essential roles in mycobacterial cell division. We find that mechanical stress gradually accumulates in the cell wall concentrated at the future division site, culminating in rapid (millisecond) cleavage of nascent sibling cells. Inhibiting cell wall hydrolysis delays cleavage; conversely, locally increasing cell wall stress causes instantaneous and premature cleavage. Cells deficient in peptidoglycan hydrolytic activity fail to locally decrease their cell wall strength and undergo natural cleavage, instead forming chains of non-growing cells. Cleavage of these cells can be mechanically induced by local application of stress with AFM. These findings establish a direct link between actively controlled molecular mechanisms and passively controlled mechanical forces in bacterial cell division.
Collapse
Affiliation(s)
- Pascal D. Odermatt
- Laboratory for Bio- and Nano-Instrumentation, School of Engineering, Swiss Federal Institute of Technology in Lausanne (EPFL), Switzerland
| | - Mélanie T. M. Hannebelle
- Laboratory for Bio- and Nano-Instrumentation, School of Engineering, Swiss Federal Institute of Technology in Lausanne (EPFL), Switzerland
- Laboratory of Microbiology and Microtechnology, School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Switzerland
| | - Haig A. Eskandarian
- Laboratory for Bio- and Nano-Instrumentation, School of Engineering, Swiss Federal Institute of Technology in Lausanne (EPFL), Switzerland
- Laboratory of Microbiology and Microtechnology, School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Switzerland
| | - Adrian P. Nievergelt
- Laboratory for Bio- and Nano-Instrumentation, School of Engineering, Swiss Federal Institute of Technology in Lausanne (EPFL), Switzerland
| | - John D. McKinney
- Laboratory of Microbiology and Microtechnology, School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Switzerland
| | - Georg E. Fantner
- Laboratory for Bio- and Nano-Instrumentation, School of Engineering, Swiss Federal Institute of Technology in Lausanne (EPFL), Switzerland
| |
Collapse
|
23
|
Sautrot-Ba P, Razza N, Breloy L, Andaloussi SA, Chiappone A, Sangermano M, Hélary C, Belbekhouche S, Coradin T, Versace DL. Photoinduced chitosan–PEG hydrogels with long-term antibacterial properties. J Mater Chem B 2019; 7:6526-6538. [DOI: 10.1039/c9tb01170f] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The photo-induced synthesis of chitosan–PEG hydrogels with tremendous antibacterial and anti-adhesive properties even after 6 months’ storage.
Collapse
|
24
|
Abstract
The peptidoglycan sacculus is a net-like polymer that surrounds the cytoplasmic membrane in most bacteria. It is essential to maintain the bacterial cell shape and protect from turgor. The peptidoglycan has a basic composition, common to all bacteria, with species-specific variations that can modify its biophysical properties or the pathogenicity of the bacteria. The synthesis of peptidoglycan starts in the cytoplasm and the precursor lipid II is flipped across the cytoplasmic membrane. The new peptidoglycan strands are synthesised and incorporated into the pre-existing sacculus by the coordinated activities of peptidoglycan synthases and hydrolases. In the model organism Escherichia coli there are two complexes required for the elongation and division. Each of them is regulated by different proteins from both the cytoplasmic and periplasmic sides that ensure the well-coordinated synthesis of new peptidoglycan.
Collapse
|
25
|
Mirzaali MJ, van Dongen ICP, Tümer N, Weinans H, Yavari SA, Zadpoor AA. In-silico quest for bactericidal but non-cytotoxic nanopatterns. NANOTECHNOLOGY 2018; 29:43LT02. [PMID: 30152409 DOI: 10.1088/1361-6528/aad9bf] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Nanopillar arrays that are bactericidal but not cytotoxic against the host cells could be used in implantable medical devices to prevent implant-associated infections. It is, however, unclear what heights, widths, interspacing, and shape should be used for the nanopillars to achieve the desired antibacterial effects while not hampering the integration of the device in the body. Here, we present an in-silico approach based on finite element modeling of the interactions between Staphylococcus aureus and nanopatterns on the one hand and osteoblasts and nanopatterns on the other hand to find the best design parameters. We found that while the height of the nanopillars seems to have little impact on the bactericidal behavior, shorter widths and larger interspacings substantially increase the bactericidal effects. The same combination of parameters could, however, also cause cytotoxicity. Our results suggest that a specific combination of height (120 nm), width (50 nm), and interspacing (300 nm) offers the bactericidal effects without cytotoxicity.
Collapse
Affiliation(s)
- M J Mirzaali
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands
| | | | | | | | | | | |
Collapse
|
26
|
AFM contribution to unveil pro- and eukaryotic cell mechanical properties. Semin Cell Dev Biol 2018; 73:177-187. [DOI: 10.1016/j.semcdb.2017.08.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/28/2017] [Accepted: 08/14/2017] [Indexed: 02/06/2023]
|
27
|
Spengler C, Thewes N, Jung P, Bischoff M, Jacobs K. Determination of the nano-scaled contact area of staphylococcal cells. NANOSCALE 2017; 9:10084-10093. [PMID: 28695218 DOI: 10.1039/c7nr02297b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Bacterial adhesion is a crucial step during the development of infections as well as the formation of biofilms. Hence, fundamental research of bacterial adhesion mechanisms is of utmost importance. So far, less is known about the size of the contact area between bacterial cells and a surface. This gap will be filled by this study using a single-cell force spectroscopy-based method to investigate the contact area between a single bacterial cell of Staphylococcus aureus and a solid substrate. The technique relies on the strong influence of the hydrophobic interaction on bacterial adhesion: by incrementally crossing a very sharp hydrophobic/hydrophilic interface while performing force-distance curves with a single bacterial probe, the bacterial contact area can be determined. Assuming circular contact areas, their radii - determined in our experiments - are in the range from tens of nanometers to a few hundred nanometers. The contact area can be slightly enlarged by a larger load force, yet does not resemble a Hertzian contact, rather, the enlargement is a property of the individual bacterial cell. Additionally, Staphylococcus carnosus has been probed, which is less adherent than S. aureus, yet both bacteria exhibit a similar contact area size. This corroborates the notion that the adhesive strength of bacteria is not a matter of contact area, but rather a matter of which and how many molecules of the bacterial species' cell wall form the contact. Moreover, our method of determining the contact area can be applied to other microorganisms and the results might also be useful for studies using nanoparticles covered with soft, macromolecular coatings.
Collapse
Affiliation(s)
- Christian Spengler
- Department of Experimental Physics, Saarland University, 66041 Saarbrücken, Germany.
| | | | | | | | | |
Collapse
|
28
|
Nelson SL, Proctor DT, Ghasemloonia A, Lama S, Zareinia K, Ahn Y, Al-Saiedy MR, Green FHY, Amrein MW, Sutherland GR. Vibrational Profiling of Brain Tumors and Cells. Theranostics 2017; 7:2417-2430. [PMID: 28744324 PMCID: PMC5525746 DOI: 10.7150/thno.19172] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/31/2017] [Indexed: 12/20/2022] Open
Abstract
This study reports vibration profiles of neuronal cells and tissues as well as brain tumor and neocortical specimens. A contact-free method and analysis protocol was designed to convert an atomic force microscope into an ultra-sensitive microphone with capacity to record and listen to live biological samples. A frequency of 3.4 Hz was observed for both cultured rat hippocampal neurons and tissues and vibration could be modulated pharmacologically. Malignant astrocytoma tissue samples obtained from operating room, transported in artificial cerebrospinal fluid, and tested within an hour, vibrated with a much different frequency profile and amplitude, compared to meningioma or lateral temporal cortex providing a quantifiable measurement to accurately distinguish the three tissues in real-time. Vibration signals were converted to audible sound waves by frequency modulation, thus demonstrating, acoustic patterns unique to meningioma, malignant astrocytoma and neocortex.
Collapse
Affiliation(s)
- Sultan L Nelson
- Department of Cell Biology and Anatomy, University of Calgary, 3280 Hospital Dr. NW, Calgary, AB, T2N 4Z6, Canada
| | - Dustin T Proctor
- Project neuroArm, Department of Clinical Neuroscience and the Hotchkiss Brain Institute, University of Calgary, 3280 Hospital Dr. NW, Calgary, AB, T2N 4Z6, Canada
| | - Ahmad Ghasemloonia
- Project neuroArm, Department of Clinical Neuroscience and the Hotchkiss Brain Institute, University of Calgary, 3280 Hospital Dr. NW, Calgary, AB, T2N 4Z6, Canada
| | - Sanju Lama
- Project neuroArm, Department of Clinical Neuroscience and the Hotchkiss Brain Institute, University of Calgary, 3280 Hospital Dr. NW, Calgary, AB, T2N 4Z6, Canada
| | - Kourosh Zareinia
- Project neuroArm, Department of Clinical Neuroscience and the Hotchkiss Brain Institute, University of Calgary, 3280 Hospital Dr. NW, Calgary, AB, T2N 4Z6, Canada
| | - Younghee Ahn
- Department of Pediatrics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Mustafa R Al-Saiedy
- Department of Cell Biology and Anatomy, University of Calgary, 3280 Hospital Dr. NW, Calgary, AB, T2N 4Z6, Canada
| | - Francis HY Green
- Department of Pathology and Laboratory Medicine, University of Calgary, 3280 Hospital Dr. NW, Calgary, AB, T2N 4Z6, Canada
| | - Matthias W Amrein
- Department of Cell Biology and Anatomy, University of Calgary, 3280 Hospital Dr. NW, Calgary, AB, T2N 4Z6, Canada
| | - Garnette R Sutherland
- Project neuroArm, Department of Clinical Neuroscience and the Hotchkiss Brain Institute, University of Calgary, 3280 Hospital Dr. NW, Calgary, AB, T2N 4Z6, Canada
| |
Collapse
|
29
|
Woźniak-Budych MJ, Przysiecka Ł, Langer K, Peplińska B, Jarek M, Wiesner M, Nowaczyk G, Jurga S. Green synthesis of rifampicin-loaded copper nanoparticles with enhanced antimicrobial activity. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:42. [PMID: 28150115 DOI: 10.1007/s10856-017-5857-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/19/2017] [Indexed: 06/06/2023]
Abstract
The antimicrobial properties of copper and rifampicin-loaded copper nanoparticles were investigated using four strains: Staphylococcus aureus, Escherichia coli, Bacillus pumilis and Pseudomonas fluorescens. Spherical-shaped copper nanoparticles were synthesized via green reduction method from the peppermint extract. It was found that adsorption of rifampicin on the copper nanosurface enhances its biological activity and prevents the development of resistance. The interactions between rifampicin-copper nanoparticles and bacteria cells were monitored using atomic force microscopy (AFM) and confocal laser scanning microscopy (CLSM). It was proven that loaded with rifampicin copper nanoparticles were able to damage the S. aureus cell membrane and facilitate the bacteria biofilm matrix disintegration. Moreover, the DNA decomposition of S. aureus treated with copper and rifampicin-copper nanoparticles was confirmed by agarose gel electrophoresis. The results obtained indicate that adsorption of rifampicin on the copper nanoparticles surface might provide the reduction of antibiotic dosage and prevent its adverse side effects.
Collapse
Affiliation(s)
- Marta J Woźniak-Budych
- NanoBiomedical Centre, Adam Mickiewicz University in Poznań, Umultowska 85, Poznań, Poland.
| | - Łucja Przysiecka
- NanoBiomedical Centre, Adam Mickiewicz University in Poznań, Umultowska 85, Poznań, Poland
| | - Krzysztof Langer
- NanoBiomedical Centre, Adam Mickiewicz University in Poznań, Umultowska 85, Poznań, Poland
| | - Barbara Peplińska
- NanoBiomedical Centre, Adam Mickiewicz University in Poznań, Umultowska 85, Poznań, Poland
| | - Marcin Jarek
- NanoBiomedical Centre, Adam Mickiewicz University in Poznań, Umultowska 85, Poznań, Poland
| | - Maciej Wiesner
- NanoBiomedical Centre, Adam Mickiewicz University in Poznań, Umultowska 85, Poznań, Poland
| | - Grzegorz Nowaczyk
- NanoBiomedical Centre, Adam Mickiewicz University in Poznań, Umultowska 85, Poznań, Poland
| | - Stefan Jurga
- NanoBiomedical Centre, Adam Mickiewicz University in Poznań, Umultowska 85, Poznań, Poland
| |
Collapse
|
30
|
Kumar S, Cartron ML, Mullin N, Qian P, Leggett GJ, Hunter CN, Hobbs JK. Direct Imaging of Protein Organization in an Intact Bacterial Organelle Using High-Resolution Atomic Force Microscopy. ACS NANO 2017; 11:126-133. [PMID: 28114766 PMCID: PMC5269641 DOI: 10.1021/acsnano.6b05647] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The function of bioenergetic membranes is strongly influenced by the spatial arrangement of their constituent membrane proteins. Atomic force microscopy (AFM) can be used to probe protein organization at high resolution, allowing individual proteins to be identified. However, previous AFM studies of biological membranes have typically required that curved membranes are ruptured and flattened during sample preparation, with the possibility of disruption of the native protein arrangement or loss of proteins. Imaging native, curved membranes requires minimal tip-sample interaction in both lateral and vertical directions. Here, long-range tip-sample interactions are reduced by optimizing the imaging buffer. Tapping mode AFM with high-resonance-frequency small and soft cantilevers, in combination with a high-speed AFM, reduces the forces due to feedback error and enables application of an average imaging force of tens of piconewtons. Using this approach, we have imaged the membrane organization of intact vesicular bacterial photosynthetic "organelles", chromatophores. Despite the highly curved nature of the chromatophore membrane and lack of direct support, the resolution was sufficient to identify the photosystem complexes and quantify their arrangement in the native state. Successive imaging showed the proteins remain surprisingly static, with minimal rotation or translation over several-minute time scales. High-order assemblies of RC-LH1-PufX complexes are observed, and intact ATPases are successfully imaged. The methods developed here are likely to be applicable to a broad range of protein-rich vesicles or curved membrane systems, which are an almost ubiquitous feature of native organelles.
Collapse
Affiliation(s)
- Sandip Kumar
- Department
of Physics and Astronomy, Department of Molecular Biology
and Biotechnology, Department of Chemistry, and Krebs Institute, University of Sheffield, Sheffield, South Yorkshire S10 2TN, U.K.
| | - Michaël L. Cartron
- Department
of Physics and Astronomy, Department of Molecular Biology
and Biotechnology, Department of Chemistry, and Krebs Institute, University of Sheffield, Sheffield, South Yorkshire S10 2TN, U.K.
| | - Nic Mullin
- Department
of Physics and Astronomy, Department of Molecular Biology
and Biotechnology, Department of Chemistry, and Krebs Institute, University of Sheffield, Sheffield, South Yorkshire S10 2TN, U.K.
| | - Pu Qian
- Department
of Physics and Astronomy, Department of Molecular Biology
and Biotechnology, Department of Chemistry, and Krebs Institute, University of Sheffield, Sheffield, South Yorkshire S10 2TN, U.K.
| | - Graham J. Leggett
- Department
of Physics and Astronomy, Department of Molecular Biology
and Biotechnology, Department of Chemistry, and Krebs Institute, University of Sheffield, Sheffield, South Yorkshire S10 2TN, U.K.
| | - C. Neil Hunter
- Department
of Physics and Astronomy, Department of Molecular Biology
and Biotechnology, Department of Chemistry, and Krebs Institute, University of Sheffield, Sheffield, South Yorkshire S10 2TN, U.K.
| | - Jamie K. Hobbs
- Department
of Physics and Astronomy, Department of Molecular Biology
and Biotechnology, Department of Chemistry, and Krebs Institute, University of Sheffield, Sheffield, South Yorkshire S10 2TN, U.K.
- E-mail:
| |
Collapse
|
31
|
Wollman AJM, Miller H, Foster S, Leake MC. An automated image analysis framework for segmentation and division plane detection of single liveStaphylococcus aureuscells which can operate at millisecond sampling time scales using bespoke Slimfield microscopy. Phys Biol 2016; 13:055002. [DOI: 10.1088/1478-3975/13/5/055002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
Fisher JF, Mobashery S. β-Lactam Resistance Mechanisms: Gram-Positive Bacteria and Mycobacterium tuberculosis. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a025221. [PMID: 27091943 DOI: 10.1101/cshperspect.a025221] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The value of the β-lactam antibiotics for the control of bacterial infection has eroded with time. Three Gram-positive human pathogens that were once routinely susceptible to β-lactam chemotherapy-Streptococcus pneumoniae, Enterococcus faecium, and Staphylococcus aureus-now are not. Although a fourth bacterium, the acid-fast (but not Gram-positive-staining) Mycobacterium tuberculosis, has intrinsic resistance to earlier β-lactams, the emergence of strains of this bacterium resistant to virtually all other antibiotics has compelled the evaluation of newer β-lactam combinations as possible contributors to the multidrug chemotherapy required to control tubercular infection. The emerging molecular-level understanding of these resistance mechanisms used by these four bacteria provides the conceptual framework for bringing forward new β-lactams, and new β-lactam strategies, for the future control of their infections.
Collapse
Affiliation(s)
- Jed F Fisher
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670
| |
Collapse
|
33
|
Monteiro JM, Fernandes PB, Vaz F, Pereira AR, Tavares AC, Ferreira MT, Pereira PM, Veiga H, Kuru E, VanNieuwenhze MS, Brun YV, Filipe SR, Pinho MG. Cell shape dynamics during the staphylococcal cell cycle. Nat Commun 2015; 6:8055. [PMID: 26278781 PMCID: PMC4557339 DOI: 10.1038/ncomms9055] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 07/13/2015] [Indexed: 12/04/2022] Open
Abstract
Staphylococcus aureus is an aggressive pathogen and a model organism to study cell division in sequential orthogonal planes in spherical bacteria. However, the small size of staphylococcal cells has impaired analysis of changes in morphology during the cell cycle. Here we use super-resolution microscopy and determine that S. aureus cells are not spherical throughout the cell cycle, but elongate during specific time windows, through peptidoglycan synthesis and remodelling. Both peptidoglycan hydrolysis and turgor pressure are required during division for reshaping the flat division septum into a curved surface. In this process, the septum generates less than one hemisphere of each daughter cell, a trait we show is common to other cocci. Therefore, cell surface scars of previous divisions do not divide the cells in quadrants, generating asymmetry in the daughter cells. Our results introduce a need to reassess the models for division plane selection in cocci. Staphylococci are spherical bacteria that divide in sequential orthogonal planes. Here, the authors use super-resolution microscopy to show that staphylococcal cells elongate before dividing, and that the division septum generates less than one hemisphere of each daughter cell, generating asymmetry.
Collapse
Affiliation(s)
- João M Monteiro
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Pedro B Fernandes
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Filipa Vaz
- Laboratory of Bacterial Cell Surfaces and Pathogenesis, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Ana R Pereira
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Andreia C Tavares
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Maria T Ferreira
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Pedro M Pereira
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Helena Veiga
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Erkin Kuru
- 1] Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana 47405, USA [2] Department of Biology, Indiana University Bloomington, Bloomington, Indiana 47405, USA
| | | | - Yves V Brun
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana 47405, USA
| | - Sérgio R Filipe
- Laboratory of Bacterial Cell Surfaces and Pathogenesis, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Mariana G Pinho
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| |
Collapse
|
34
|
Abstract
UNLABELLED Most bacterial cells are enclosed in a single macromolecule of the cell wall polymer, peptidoglycan, which is required for shape determination and maintenance of viability, while peptidoglycan biosynthesis is an important antibiotic target. It is hypothesized that cellular enlargement requires regional expansion of the cell wall through coordinated insertion and hydrolysis of peptidoglycan. Here, a group of (apparent glucosaminidase) peptidoglycan hydrolases are identified that are together required for cell enlargement and correct cellular morphology of Staphylococcus aureus, demonstrating the overall importance of this enzyme activity. These are Atl, SagA, ScaH, and SagB. The major advance here is the explanation of the observed morphological defects in terms of the mechanical and biochemical properties of peptidoglycan. It was shown that cells lacking groups of these hydrolases have increased surface stiffness and, in the absence of SagB, substantially increased glycan chain length. This indicates that, beyond their established roles (for example in cell separation), some hydrolases enable cellular enlargement by making peptidoglycan easier to stretch, providing the first direct evidence demonstrating that cellular enlargement occurs via modulation of the mechanical properties of peptidoglycan. IMPORTANCE Understanding bacterial growth and division is a fundamental problem, and knowledge in this area underlies the treatment of many infectious diseases. Almost all bacteria are surrounded by a macromolecule of peptidoglycan that encloses the cell and maintains shape, and bacterial cells must increase the size of this molecule in order to enlarge themselves. This requires not only the insertion of new peptidoglycan monomers, a process targeted by antibiotics, including penicillin, but also breakage of existing bonds, a potentially hazardous activity for the cell. Using Staphylococcus aureus, we have identified a set of enzymes that are critical for cellular enlargement. We show that these enzymes are required for normal growth and define the mechanism through which cellular enlargement is accomplished, i.e., by breaking bonds in the peptidoglycan, which reduces the stiffness of the cell wall, enabling it to stretch and expand, a process that is likely to be fundamental to many bacteria.
Collapse
|
35
|
Dover RS, Bitler A, Shimoni E, Trieu-Cuot P, Shai Y. Multiparametric AFM reveals turgor-responsive net-like peptidoglycan architecture in live streptococci. Nat Commun 2015; 6:7193. [PMID: 26018339 PMCID: PMC4458890 DOI: 10.1038/ncomms8193] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 04/16/2015] [Indexed: 12/13/2022] Open
Abstract
Cell-wall peptidoglycan (PG) of Gram-positive bacteria is a strong and elastic multi-layer designed to resist turgor pressure and determine the cell shape and growth. Despite its crucial role, its architecture remains largely unknown. Here using high-resolution multiparametric atomic force microscopy (AFM), we studied how the structure and elasticity of PG change when subjected to increasing turgor pressure in live Group B Streptococcus. We show a new net-like arrangement of PG, which stretches and stiffens following osmotic challenge. The same structure also exists in isogenic mutants lacking surface appendages. Cell aging does not alter the elasticity of the cell wall, yet destroys the net architecture and exposes single segmented strands with the same circumferential orientation as predicted for intact glycans. Together, we show a new functional PG architecture in live Gram-positive bacteria. The peptidoglycan (PG) layer of the Gram-positive bacteria cell wall resists turgor pressure, but the architecture of this layer is largely unknown. Here the authors use high resolution atomic force microscopy to image the PG layer from live Streptococcus to reveal a net-like arrangement that resists osmotic challenge by stretching and stiffening.
Collapse
Affiliation(s)
- Ron Saar Dover
- Department of Biological Chemistry, 8 Ulman Building, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Arkady Bitler
- Department of Chemical Research Support, Surface Analysis Unit, Goldwurm Building, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eyal Shimoni
- Department of Chemical Research Support, Electron Microscopy Unit, Issac Wolfson Building, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Patrick Trieu-Cuot
- Department of Microbiology, Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram-Positif, CNRS ERL3526, Paris 75015, France
| | - Yechiel Shai
- Department of Biological Chemistry, 8 Ulman Building, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|