1
|
Kechagia Z, Eibauer M, Medalia O. Structural determinants of intermediate filament mechanics. Curr Opin Cell Biol 2024; 89:102375. [PMID: 38850681 DOI: 10.1016/j.ceb.2024.102375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/26/2024] [Accepted: 05/03/2024] [Indexed: 06/10/2024]
Abstract
Intermediate filaments (IFs) are integral to the cell cytoskeleton, supporting cellular mechanical stability. Unlike other cytoskeletal components, the detailed structure of assembled IFs has yet to be resolved. This review highlights new insights, linking the complex IF hierarchical assembly to their mechanical properties and impact on cellular functions. While we focus on vimentin IFs, we draw comparisons to keratins, showcasing the distinctive structural and mechanical features that underlie their unique mechanical responses.
Collapse
Affiliation(s)
- Zanetta Kechagia
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | - Matthias Eibauer
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
2
|
Espina JA, Cordeiro MH, Milivojevic M, Pajić-Lijaković I, Barriga EH. Response of cells and tissues to shear stress. J Cell Sci 2023; 136:jcs260985. [PMID: 37747423 PMCID: PMC10560560 DOI: 10.1242/jcs.260985] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023] Open
Abstract
Shear stress is essential for normal physiology and malignancy. Common physiological processes - such as blood flow, particle flow in the gut, or contact between migratory cell clusters and their substrate - produce shear stress that can have an impact on the behavior of different tissues. In addition, shear stress has roles in processes of biomedical interest, such as wound healing, cancer and fibrosis induced by soft implants. Thus, understanding how cells react and adapt to shear stress is important. In this Review, we discuss in vivo and in vitro data obtained from vascular and epithelial models; highlight the insights these have afforded regarding the general mechanisms through which cells sense, transduce and respond to shear stress at the cellular levels; and outline how the changes cells experience in response to shear stress impact tissue organization. Finally, we discuss the role of shear stress in collective cell migration, which is only starting to be appreciated. We review our current understanding of the effects of shear stress in the context of embryo development, cancer and fibrosis, and invite the scientific community to further investigate the role of shear stress in these scenarios.
Collapse
Affiliation(s)
- Jaime A. Espina
- Mechanisms of Morphogenesis Lab, Gulbenkian Institute of Science (IGC), 2780-156 Oeiras, Portugal
| | - Marilia H. Cordeiro
- Mechanisms of Morphogenesis Lab, Gulbenkian Institute of Science (IGC), 2780-156 Oeiras, Portugal
| | - Milan Milivojevic
- Faculty of Technology and Metallurgy, Belgrade University, 11120 Belgrade, Serbia
| | | | - Elias H. Barriga
- Mechanisms of Morphogenesis Lab, Gulbenkian Institute of Science (IGC), 2780-156 Oeiras, Portugal
| |
Collapse
|
3
|
Pensalfini M, Golde T, Trepat X, Arroyo M. Nonaffine Mechanics of Entangled Networks Inspired by Intermediate Filaments. PHYSICAL REVIEW LETTERS 2023; 131:058101. [PMID: 37595243 DOI: 10.1103/physrevlett.131.058101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 05/04/2023] [Accepted: 06/02/2023] [Indexed: 08/20/2023]
Abstract
Inspired by massive intermediate filament (IF) reorganization in superstretched epithelia, we examine computationally the principles controlling the mechanics of a set of entangled filaments whose ends slide on the cell boundary. We identify an entanglement metric and threshold beyond which random loose networks respond nonaffinely and nonlinearly to stretch by self-organizing into structurally optimal star-shaped configurations. A simple model connecting cellular and filament strains links emergent mechanics to cell geometry, network topology, and filament mechanics. We identify a safety net mechanism in IF networks and provide a framework to harness entanglement in soft fibrous materials.
Collapse
Affiliation(s)
- Marco Pensalfini
- Laboratori de Càlcul Numeric (LaCàN), Universitat Politècnica de Catalunya-BarcelonaTech, 08034 Barcelona, Spain
| | - Tom Golde
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08028 Barcelona, Spain
| | - Marino Arroyo
- Laboratori de Càlcul Numeric (LaCàN), Universitat Politècnica de Catalunya-BarcelonaTech, 08034 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), 08034 Barcelona, Spain
| |
Collapse
|
4
|
Guan G, Cannon RD, Coates DE, Mei L. Effect of the Rho-Kinase/ROCK Signaling Pathway on Cytoskeleton Components. Genes (Basel) 2023; 14:272. [PMID: 36833199 PMCID: PMC9957420 DOI: 10.3390/genes14020272] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
The mechanical properties of cells are important in tissue homeostasis and enable cell growth, division, migration and the epithelial-mesenchymal transition. Mechanical properties are determined to a large extent by the cytoskeleton. The cytoskeleton is a complex and dynamic network composed of microfilaments, intermediate filaments and microtubules. These cellular structures confer both cell shape and mechanical properties. The architecture of the networks formed by the cytoskeleton is regulated by several pathways, a key one being the Rho-kinase/ROCK signaling pathway. This review describes the role of ROCK (Rho-associated coiled-coil forming kinase) and how it mediates effects on the key components of the cytoskeleton that are critical for cell behaviour.
Collapse
Affiliation(s)
- Guangzhao Guan
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Department of Oral Diagnostic and Surgical Sciences, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin 9016, New Zealand
| | - Richard D. Cannon
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Department of Oral Sciences, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin 9016, New Zealand
| | - Dawn E. Coates
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Li Mei
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Department of Oral Sciences, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin 9016, New Zealand
| |
Collapse
|
5
|
De La Garza RG, Madsen H, Sjövall P, Osbӕck F, Zheng W, Jarenmark M, Schweitzer MH, Engdahl A, Uvdal P, Eriksson ME, Lindgren J. An ancestral hard-shelled sea turtle with a mosaic of soft skin and scutes. Sci Rep 2022; 12:22655. [PMID: 36587051 PMCID: PMC9805447 DOI: 10.1038/s41598-022-26941-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/22/2022] [Indexed: 01/01/2023] Open
Abstract
The transition from terrestrial to marine environments by secondarily aquatic tetrapods necessitates a suite of adaptive changes associated with life in the sea, e.g., the scaleless skin in adult individuals of the extant leatherback turtle. A partial, yet exceptionally preserved hard-shelled (Pan-Cheloniidae) sea turtle with extensive soft-tissue remains, including epidermal scutes and a virtually complete flipper outline, was recently recovered from the Eocene Fur Formation of Denmark. Examination of the fossilized limb tissue revealed an originally soft, wrinkly skin devoid of scales, together with organic residues that contain remnant eumelanin pigment and inferred epidermal transformation products. Notably, this stem cheloniid-unlike its scaly living descendants-combined scaleless limbs with a bony carapace covered in scutes. Our findings show that the adaptive transition to neritic waters by the ancestral pan-chelonioids was more complex than hitherto appreciated, and included at least one evolutionary lineage with a mosaic of integumental features not seen in any living turtle.
Collapse
Affiliation(s)
| | | | - Peter Sjövall
- grid.450998.90000 0004 0438 1242Materials and Production, RISE Research Institutes of Sweden, Borås, Sweden
| | - Frank Osbӕck
- grid.502431.10000 0004 4914 0813Museum Salling, Fur Museum, Skive, Denmark
| | - Wenxia Zheng
- grid.40803.3f0000 0001 2173 6074Department of Biological Sciences, North Carolina State University, Raleigh, NC USA
| | - Martin Jarenmark
- grid.4514.40000 0001 0930 2361Department of Geology, Lund University, Lund, Sweden
| | - Mary H. Schweitzer
- grid.4514.40000 0001 0930 2361Department of Geology, Lund University, Lund, Sweden ,grid.40803.3f0000 0001 2173 6074Department of Biological Sciences, North Carolina State University, Raleigh, NC USA ,grid.421582.80000 0001 2226 059XNorth Carolina Museum of Natural Sciences, Raleigh, NC USA
| | - Anders Engdahl
- grid.4514.40000 0001 0930 2361Medical Microspectroscopy, Biomedical Center, Lund University, Lund, Sweden
| | - Per Uvdal
- grid.4514.40000 0001 0930 2361Department of Chemistry, Lund University, Lund, Sweden
| | - Mats E. Eriksson
- grid.4514.40000 0001 0930 2361Department of Geology, Lund University, Lund, Sweden
| | - Johan Lindgren
- grid.4514.40000 0001 0930 2361Department of Geology, Lund University, Lund, Sweden
| |
Collapse
|
6
|
Elbalasy I, Wilharm N, Herchenhahn E, Konieczny R, Mayr SG, Schnauß J. From Strain Stiffening to Softening—Rheological Characterization of Keratins 8 and 18 Networks Crosslinked via Electron Irradiation. Polymers (Basel) 2022; 14:polym14030614. [PMID: 35160604 PMCID: PMC8838340 DOI: 10.3390/polym14030614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/21/2022] [Accepted: 01/28/2022] [Indexed: 02/01/2023] Open
Abstract
Networks of crosslinked keratin filaments are abundant in epithelial cells and tissues, providing resilience against mechanical forces and ensuring cellular integrity. Although studies of in vitro models of reconstituted keratin networks have revealed important mechanical aspects, the mechanical properties of crosslinked keratin structures remain poorly understood. Here, we exploited the power of electron beam irradiation (EBI) to crosslink in vitro networks of soft epithelial keratins 8 and 18 (k8–k18) filaments with different irradiation doses (30 kGy, 50 kGy, 80 kGy, 100 kGy, and 150 kGy). We combined bulk shear rheology with confocal microscopy to investigate the impact of crosslinking on the mechanical and structural properties of the resultant keratin gels. We found that irradiated keratin gels display higher linear elastic modulus than the unirradiated, entangled networks at all doses tested. However, at the high doses (80 kGy, 100 kGy, and 150 kGy), we observed a remarkable drop in the elastic modulus compared to 50 kGy. Intriguingly, the irradiation drastically changed the behavior for large, nonlinear deformations. While untreated keratin networks displayed a strong strain stiffening, increasing irradiation doses shifted the system to a strain softening behavior. In agreement with the rheological behavior in the linear regime, the confocal microscopy images revealed fully isotropic networks with high percolation in 30 kGy and 50 kGy-treated keratin samples, while irradiation with 100 kGy induced the formation of thick bundles and clusters. Our results demonstrate the impact of permanent crosslinking on k8–k18 mechanics and provide new insights into the potential contribution of intracellular covalent crosslinking to the loss of mechanical resilience in some human keratin diseases. These insights will also provide inspiration for the synthesis of new keratin-based biomaterials.
Collapse
Affiliation(s)
- Iman Elbalasy
- Peter-Debye Institute for Soft Matter Physics, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany;
- Faculty of Science, Cairo University, Giza 12613, Egypt
- Correspondence: (I.E.); (S.G.M.); (J.S.)
| | - Nils Wilharm
- Leibniz-Institut für Oberflächenmodifizierung e.V. (IOM), Permoserstr. 15, 04318 Leipzig, Germany; (N.W.); (R.K.)
- Division of Surface Physics, Department of Physics and Earth Sciences, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany
| | - Erik Herchenhahn
- Peter-Debye Institute for Soft Matter Physics, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany;
| | - Robert Konieczny
- Leibniz-Institut für Oberflächenmodifizierung e.V. (IOM), Permoserstr. 15, 04318 Leipzig, Germany; (N.W.); (R.K.)
| | - Stefan G. Mayr
- Leibniz-Institut für Oberflächenmodifizierung e.V. (IOM), Permoserstr. 15, 04318 Leipzig, Germany; (N.W.); (R.K.)
- Division of Surface Physics, Department of Physics and Earth Sciences, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany
- Correspondence: (I.E.); (S.G.M.); (J.S.)
| | - Jörg Schnauß
- Peter-Debye Institute for Soft Matter Physics, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany;
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, 04103 Leipzig, Germany
- Unconventional Computing Lab, Department of Computer Science and Creative Technologies, UWE, Bristol BS16 1QY, UK
- Correspondence: (I.E.); (S.G.M.); (J.S.)
| |
Collapse
|
7
|
Haimov E, Urbakh M, Kozlov MM. Negative tension controls stability and structure of intermediate filament networks. Sci Rep 2022; 12:16. [PMID: 34996899 PMCID: PMC8741771 DOI: 10.1038/s41598-021-02536-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022] Open
Abstract
Networks, whose junctions are free to move along the edges, such as two-dimensional soap froths and membrane tubular networks of endoplasmic reticulum are intrinsically unstable. This instability is a result of a positive tension applied to the network elements. A paradigm of networks exhibiting stable polygonal configurations in spite of the junction mobility, are networks formed by bundles of Keratin Intermediate Filaments (KIFs) in live cells. A unique feature of KIF networks is a, hypothetically, negative tension generated in the network bundles due to an exchange of material between the network and an effective reservoir of unbundled filaments. Here we analyze the structure and stability of two-dimensional networks with mobile three-way junctions subject to negative tension. First, we analytically examine a simplified case of hexagonal networks with symmetric junctions and demonstrate that, indeed, a negative tension is mandatory for the network stability. Another factor contributing to the network stability is the junction elastic resistance to deviations from the symmetric state. We derive an equation for the optimal density of such networks resulting from an interplay between the tension and the junction energy. We describe a configurational degeneration of the optimal energy state of the network. Further, we analyze by numerical simulations the energy of randomly generated networks with, generally, asymmetric junctions, and demonstrate that the global minimum of the network energy corresponds to the irregular configurations.
Collapse
Affiliation(s)
- Ehud Haimov
- School of Physics and Astronomy, Raymond and Beverley Sackler Faculty of Exact Sciences, Tel-Aviv University, 69978, Tel-Aviv, Israel
| | - Michael Urbakh
- School of Chemistry, Raymond and Beverley Sackler Faculty of Exact Sciences, Tel-Aviv University, 69978, Tel-Aviv, Israel.
| | - Michael M Kozlov
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, 69978, Tel-Aviv, Israel.
| |
Collapse
|
8
|
Imashiro C, Kang B, Lee Y, Hwang YH, Im S, Kim DE, Takemura K, Lee H. Propagating acoustic waves on a culture substrate regulate the directional collective cell migration. MICROSYSTEMS & NANOENGINEERING 2021; 7:90. [PMID: 34786204 PMCID: PMC8581020 DOI: 10.1038/s41378-021-00304-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/16/2021] [Accepted: 05/20/2021] [Indexed: 06/02/2023]
Abstract
Collective cell migration plays a critical role in physiological and pathological processes such as development, wound healing, and metastasis. Numerous studies have demonstrated how various types of chemical, mechanical, and electrical cues dictate the collective migratory behaviors of cells. Although an acoustic cue can be advantageous because of its noninvasiveness and biocompatibility, cell migration in response to acoustic stimulation remains poorly understood. In this study, we developed a device that is able to apply surface acoustic waves to a cell culture substrate and investigated the effect of propagating acoustic waves on collective cell migration. The migration distance estimated at various wave intensities revealed that unidirectional cell migration was enhanced at a critical wave intensity and that it was suppressed as the intensity was further increased. The increased migration might be attributable to cell orientation alignment along the direction of the propagating wave, as characterized by nucleus shape. Thicker actin bundles indicative of a high traction force were observed in cells subjected to propagating acoustic waves at the critical intensity. Our device and technique can be useful for regulating cellular functions associated with cell migration.
Collapse
Affiliation(s)
- Chikahiro Imashiro
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Shinjuku, Japan
- Department of Mechanical Engineering, Keio University, Yokohama, Japan
| | - Byungjun Kang
- School of Mechanical Engineering, Yonsei University, Seoul, Korea
| | - Yunam Lee
- School of Mechanical Engineering, Yonsei University, Seoul, Korea
| | - Youn-Hoo Hwang
- School of Mechanical Engineering, Yonsei University, Seoul, Korea
| | - Seonghun Im
- School of Mechanical Engineering, Yonsei University, Seoul, Korea
| | - Dae-Eun Kim
- School of Mechanical Engineering, Yonsei University, Seoul, Korea
| | - Kenjiro Takemura
- Department of Mechanical Engineering, Keio University, Yokohama, Japan
| | - Hyungsuk Lee
- School of Mechanical Engineering, Yonsei University, Seoul, Korea
| |
Collapse
|
9
|
Finite Element Simulations of Mechanical Behaviour of Endothelial Cells. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8847372. [PMID: 33681382 PMCID: PMC7904360 DOI: 10.1155/2021/8847372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/26/2021] [Accepted: 02/05/2021] [Indexed: 01/07/2023]
Abstract
Biomechanical models based on the finite element method have already shown their potential in the simulation of the mechanical behaviour of cells. For instance, development of atherosclerosis is accelerated by damage of the endothelium, a monolayer of endothelial cells on the inner surface of arteries. Finite element models enable us to investigate mechanical factors not only at the level of the arterial wall but also at the level of individual cells. To achieve this, several finite element models of endothelial cells with different shapes are presented in this paper. Implementing the recently proposed bendotensegrity concept, these models consider the flexural behaviour of microtubules and incorporate also waviness of intermediate filaments. The suspended and adherent cell models are validated by comparison of their simulated force-deformation curves with experiments from the literature. The flat and dome cell models, mimicking natural cell shapes inside the endothelial layer, are then used to simulate their response in compression and shear which represent typical loads in a vascular wall. The models enable us to analyse the role of individual cytoskeletal components in the mechanical responses, as well as to quantify the nucleus deformation which is hypothesized to be the quantity decisive for mechanotransduction.
Collapse
|
10
|
Peacock C, Lee E, Beral T, Cisek R, Tokarz D, Kreplak L. Buckling and Torsional Instabilities of a Nanoscale Biological Rope Bound to an Elastic Substrate. ACS NANO 2020; 14:12877-12884. [PMID: 32966048 DOI: 10.1021/acsnano.0c03695] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Rope-like structures are ubiquitous in Nature. They are supermolecular assemblies of macromolecules responsible for the structural and mechanical integrity of plant and animal tissues. Collagen fibrils with diameters between 50 and 500 nm and their helical supermolecular structure are good examples of such nanoscale biological ropes. Like man-made laid ropes, fibrils are typically loaded in tension, and due to their large aspect ratio, they are, in principle, prone to buckling and torsional instabilities. One way to study buckling of a rigid rod is to attach it to a stretched elastic substrate that is then returned to its original length. In the case of single collagen fibrils, the observed behavior depends on the degree of hydration. By going from buckling in ambient conditions to immersed in a buffer, fibrils go from the well-known sine wave response to a localized behavior reminiscent of the bird-caging of laid ropes. In addition, in ambient conditions, the sine wave response coexists with the formation of loops along the length of the fibrils, as observed for the torsional instability of a twisted filament when tension is decreased. This work provides direct evidence that single collagen fibrils are highly susceptible to axial compression because of their helical supermolecular structure. As a result, mammals that use collagen fibrils as their main load-bearing element in many tissues have evolved mitigating strategies that protect single fibrils from axial compression damage.
Collapse
Affiliation(s)
- Chris Peacock
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS B3H 4J5, Canada
| | - Eva Lee
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS B3H 4J5, Canada
| | - Theo Beral
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS B3H 4J5, Canada
| | - Richard Cisek
- Department of Chemistry, Saint Mary's University, Halifax, NS B3H 3C3, Canada
| | - Danielle Tokarz
- Department of Chemistry, Saint Mary's University, Halifax, NS B3H 3C3, Canada
| | - Laurent Kreplak
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS B3H 4J5, Canada
- School of Biomedical Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
11
|
Schepers AV, Lorenz C, Köster S. Tuning intermediate filament mechanics by variation of pH and ion charges. NANOSCALE 2020; 12:15236-15245. [PMID: 32642745 DOI: 10.1039/d0nr02778b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The cytoskeleton is formed by three types of filamentous proteins - microtubules, actin filaments, and intermediate filaments (IFs) - and enables cells to withstand external and internal forces. Vimentin is the most abundant IF protein in humans and assembles into 10 nm diameter filaments with remarkable mechanical properties, such as high extensibility and stability. It is, however, unclear to which extent these properties are influenced by the electrostatic environment. Here, we study the mechanical properties of single vimentin filaments by employing optical trapping combined with microfluidics. Force-strain curves, recorded at varying ion concentrations and pH values, reveal that the mechanical properties of single vimentin IFs are influenced by pH and ion concentration. By combination with Monte Carlo simulations, we relate these altered mechanics to electrostatic interactions of subunits within the filaments. We thus suggest possible mechanisms that allow cells to locally tune their stiffness without remodeling the entire cytoskeleton.
Collapse
Affiliation(s)
- Anna V Schepers
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
| | - Charlotta Lorenz
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
| | - Sarah Köster
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
| |
Collapse
|
12
|
Haimov E, Windoffer R, Leube RE, Urbakh M, Kozlov MM. Model for Bundling of Keratin Intermediate Filaments. Biophys J 2020; 119:65-74. [PMID: 32533940 PMCID: PMC7335914 DOI: 10.1016/j.bpj.2020.05.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 01/19/2023] Open
Abstract
Keratin intermediate filaments form dynamic intracellular networks, which span the entire cytoplasm and provide mechanical strength to the cell. The mechanical resilience of the keratin intermediate filament network itself is determined by filament bundling. The bundling process can be reproduced in artificial conditions in the absence of any specific cross-linking proteins, which suggests that it is driven by generic physical forces acting between filaments. Here, we suggest a detailed model for bundling of keratin intermediate filaments based on interfilament electrostatic and hydrophobic interactions. It predicts that the process is limited by an optimal bundle thickness, which is determined by the electric charge of the filaments, the number of hydrophobic residues in the constituent keratin polypeptides, and the extent to which the electrolyte ions are excluded from the bundle interior. We evaluate the kinetics of the bundling process by considering the energy barrier a filament has to overcome for joining a bundle.
Collapse
Affiliation(s)
- Ehud Haimov
- School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Reinhard Windoffer
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Michael Urbakh
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv, Israel.
| | - Michael M Kozlov
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
13
|
Wong SK, Chin KY, Ima-Nirwana S. The Osteoprotective Effects Of Kaempferol: The Evidence From In Vivo And In Vitro Studies. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:3497-3514. [PMID: 31631974 PMCID: PMC6789172 DOI: 10.2147/dddt.s227738] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 09/12/2019] [Indexed: 01/06/2023]
Abstract
Kaempferol is a dietary bioflavonoid ubiquitously found in various types of plant. It possesses a wide range of medicinal properties suggesting its potential clinical utility that requires further investigation. The present review intends to highlight the efficacy of kaempferol and its molecular mechanisms of action in regulating bone metabolism. Many reports have acknowledged the bone-protecting property of kaempferol and kaempferol-containing plants using in vitro and in vivo experimental models. Kaempferol supplementation showed bone-sparing effects in newborn rats, glucocorticoid-induced and ovariectomy-induced osteoporotic models as well as bone fracture models. It achieves the bone-protective effects by inhibiting adipogenesis, inflammation, oxidative stress, osteoclastic autophagy and osteoblastic apoptosis while activating osteoblastic autophagy. The anti-osteoporotic effects of kaempferol are mediated through regulation of estrogen receptor, bone morphogenetic protein-2 (BMP-2), nuclear factor-kappa B (NF-κB), mitogen-activated protein kinase (MAPK) and mammalian target of rapamycin (mTOR) signaling pathways. In summary, kaempferol exhibits beneficial effects on skeleton, thus is potentially effective for the prophylaxis and treatment of osteoporosis.
Collapse
Affiliation(s)
- Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Soelaiman Ima-Nirwana
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
14
|
Modelling Cell Origami via a Tensegrity Model of the Cytoskeleton in Adherent Cells. Appl Bionics Biomech 2019; 2019:8541303. [PMID: 31485268 PMCID: PMC6710780 DOI: 10.1155/2019/8541303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/29/2019] [Accepted: 07/30/2019] [Indexed: 11/28/2022] Open
Abstract
Cell origami has been widely used in the field of three-dimensional (3D) cell-populated microstructures due to their multiple advantages, including high biocompatibility, the lack of special requirements for substrate materials, and the lack of damage to cells. A 3D finite element method (FEM) model of an adherent cell based on the tensegrity structure is constructed to describe cell origami by using the principle of the origami folding technique and cell traction forces. Adherent cell models contain a cytoskeleton (CSK), which is primarily composed of microtubules (MTs), microfilaments (MFs), intermediate filaments (IFs), and a nucleoskeleton (NSK), which is mainly made up of the nuclear lamina and chromatin. The microplate is assumed to be an isotropic linear-elastic solid material with a flexible joint that is connected to the cell tensegrity structure model by spring elements representing focal adhesion complexes (FACs). To investigate the effects of the degree of complexity of the tensegrity structure and NSK on the folding angle of the microplate, four models are established in the study. The results demonstrate that the inclusion of the NSK can increase the folding angle of the microplate, indicating that the cell is closer to its physiological environment, while increased complexity can reduce the folding angle of the microplate since the folding angle is depended on the cell types. The proposed adherent cell FEM models are validated by comparisons with reported results. These findings can provide theoretical guidance for the application of biotechnology and the analysis of 3D structures of cells and have profound implications for the self-assembly of cell-based microscale medical devices.
Collapse
|
15
|
Lee S, Eyer J, Letournel F, Boumil E, Hall G, Shea TB. Neurofilaments form flexible bundles during neuritogenesis in culture and in mature axons in situ. J Neurosci Res 2019; 97:1306-1318. [PMID: 31304612 DOI: 10.1002/jnr.24482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 11/07/2022]
Abstract
Neurofilaments (NFs) undergo cation-dependent phospho-mediated associations with each other and other cytoskeletal elements that support axonal outgrowth. Progressive NF-NF associations generate a resident, bundled population that undergoes exchange with transporting NFs. We examined the properties of bundled NFs. Bundles did not always display a fully linear profile but curved and twisted at various points along the neurite length. Bundles retracted faster than neurites and retracted bundles did not expand following extraction with Triton, indicating that they coiled passively rather than due to pressure from the cell. Bundles consisted of helically wound NFs, which may provide flexibility necessary for turning of growing axons during pathfinding. Interactions between NFs and other cytoskeletal elements may be disrupted en masse during neurite retraction or regionally during remodeling. It is suggested that bundles within long axons that cannot be fully retracted into the soma could provide maintain proximal support yet still allow more distal flexibility for remodeling and changing direction during pathfinding.
Collapse
Affiliation(s)
- Sangmook Lee
- Laboratory for Neuroscience, Department of Biology Science, UMass Lowell, Lowell, Massachusetts
| | - Joel Eyer
- Institut de Biologie en Santé PBH-IRIS, Universitaire d'Angers, Angers, France
| | | | - Edward Boumil
- Center for Vision Research, SUNY Upstate, Syracuse, New York
| | - Garth Hall
- Laboratory for Neuroscience, Department of Biology Science, UMass Lowell, Lowell, Massachusetts
| | - Thomas B Shea
- Laboratory for Neuroscience, Department of Biology Science, UMass Lowell, Lowell, Massachusetts
| |
Collapse
|
16
|
Al-Agele R, Paul E, Taylor S, Watson C, Sturrock C, Drakopoulos M, Atwood RC, Rutland CS, Menzies-Gow N, Knowles E, Elliott J, Harris P, Rauch C. Physics of animal health: on the mechano-biology of hoof growth and form. J R Soc Interface 2019; 16:20190214. [PMID: 31238833 PMCID: PMC6597769 DOI: 10.1098/rsif.2019.0214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/22/2019] [Indexed: 12/11/2022] Open
Abstract
Global inequalities in economic access and agriculture productivity imply that a large number of developing countries rely on working equids for transport/agriculture/mining. Therefore, the understanding of hoof conditions/shape variations affecting equids' ability to work is still a persistent concern. To bridge this gap, using a multi-scale interdisciplinary approach, we provide a bio-physical model predicting the shape of equids' hooves as a function of physical and biological parameters. In particular, we show (i) where the hoof growth stress originates from, (ii) why the hoof growth rate is one order of magnitude higher than the proliferation rate of epithelial cells and (iii) how the soft-to-hard transformation of the epithelium is possible allowing the hoof to fulfil its function as a weight-bearing element. Finally (iv), we demonstrate that the reason for hoof misshaping is linked to the asymmetrical design of equids' feet (shorter quarters/long toe) together with the inability of the biological growth stress to compensate for such an asymmetry. Consequently, the hoof can adopt a dorsal curvature and become 'dished' overtime, which is a function of the animal's mass and the hoof growth rate. This approach allows us to discuss the potential occurrence of this multifaceted pathology in equids.
Collapse
Affiliation(s)
- Ramzi Al-Agele
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington LE12 5RD, UK
- Department of Anatomy, College of Veterinary Medicine, University of Diyala, Baqubah, Iraq
| | - Emily Paul
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington LE12 5RD, UK
| | - Sophie Taylor
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington LE12 5RD, UK
| | - Charlotte Watson
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington LE12 5RD, UK
| | - Craig Sturrock
- CIPB, Hounsfield Building, University of Nottingham, College Road, Sutton Bonington LE12 5RD, UK
| | - Michael Drakopoulos
- BL12, Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Robert C. Atwood
- BL12, Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Catrin S. Rutland
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington LE12 5RD, UK
| | - Nicola Menzies-Gow
- The Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire AL97TA, UK
| | - Edd Knowles
- The Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire AL97TA, UK
| | - Jonathan Elliott
- The Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire AL97TA, UK
| | - Patricia Harris
- Equine Studies Group, WALTHAM Centre for Pet Nutrition, Melton Mowbray, Leicester LE14 4RT, UK
| | - Cyril Rauch
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington LE12 5RD, UK
| |
Collapse
|
17
|
Portet S, Leduc C, Etienne-Manneville S, Dallon J. Deciphering the transport of elastic filaments by antagonistic motor proteins. Phys Rev E 2019; 99:042414. [PMID: 31108720 DOI: 10.1103/physreve.99.042414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Indexed: 06/09/2023]
Abstract
Intermediate filaments are long elastic fibers that are transported by the microtubule-associated motor proteins kinesin and dynein inside the cell. How elastic filaments are efficiently transported by antagonistic motors is not well understood and is difficult to measure with current experimental techniques. Adapting the tug-of-war paradigm for vesiclelike cargos, we develop a mathematical model to describe the motion of an elastic filament punctually bound to antagonistic motors. As observed in cells, up to three modes of transport are obtained; dynein-driven retrograde, kinesin-driven anterograde fast motions, and a slow motion. Motor properties and initial conditions that depend on intracellular context regulate the transport of filaments. Filament elasticity is found to affect both the mode and the efficiency of transport. We further show that the coordination of motors along the filament emerges from the interplay between intracellular context and elastic properties of filaments.
Collapse
Affiliation(s)
- Stéphanie Portet
- Department of Mathematics, University of Manitoba, Winnipeg, R3T 2N2 Manitoba, Canada
| | - Cécile Leduc
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Equipe Labellisée Ligue Contre le Cancer, F-75015, Paris, France
| | - Sandrine Etienne-Manneville
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Equipe Labellisée Ligue Contre le Cancer, F-75015, Paris, France
| | - John Dallon
- Department of Mathematics, Brigham Young University, Provo, UT 84602 Utah, USA
| |
Collapse
|
18
|
Kurzthaler C. Elastic behavior of a semiflexible polymer in 3D subject to compression and stretching forces. SOFT MATTER 2018; 14:7634-7644. [PMID: 30168558 DOI: 10.1039/c8sm01403e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We elucidate the elastic behavior of a wormlike chain in 3D under compression and provide exact solutions for the experimentally accessible force-extension relation in terms of generalized spheroidal wave functions. In striking contrast to the classical Euler buckling instability, the force-extension relation of a clamped semiflexible polymer exhibits a smooth crossover from an almost stretched to a buckled configuration. In particular, the associated susceptibility, which measures the strength of the response of the polymer to the applied force, displays a prominent peak in the vicinity of the critical Euler buckling force. For increasing persistence length, the force-extension relation and the susceptibility of semiflexible polymers approach the behavior of a classical rod, whereas thermal fluctuations permit more flexible polymers to resist the applied force. Furthermore, we find that semiflexible polymers confined to 2D can oppose the applied force more strongly than in 3D.
Collapse
Affiliation(s)
- Christina Kurzthaler
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria.
| |
Collapse
|
19
|
Mathieu S, Manneville JB. Intracellular mechanics: connecting rheology and mechanotransduction. Curr Opin Cell Biol 2018; 56:34-44. [PMID: 30253328 DOI: 10.1016/j.ceb.2018.08.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/21/2018] [Accepted: 08/27/2018] [Indexed: 12/30/2022]
Abstract
Cell mechanics is crucial for a wide range of cell functions, including proliferation, polarity, migration and differentiation. Cells sense external physical cues and translate them into a cellular response. While force sensing occurs in the vicinity of the plasma membrane, forces can reach deep in the cell interior and to the nucleus. We review here the recent developments in the field of intracellular mechanics. We focus first on intracellular rheology, the study of the mechanical properties of the cell interior, and recapitulate the contribution of active mechanisms, the cytoskeleton and intracellular organelles to cell rheology. We then discuss how forces are transmitted inside the cell during mechanotransduction events, through direct force transmission and biochemical signaling, and how intracellular rheology and mechanotransduction are connected.
Collapse
Affiliation(s)
- Samuel Mathieu
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, F-75005, Paris, France; Sorbonne Université, UPMC University Paris 06, CNRS, UMR 144, 26 rue d'Ulm, F-75005, Paris, France
| | - Jean-Baptiste Manneville
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, F-75005, Paris, France; Sorbonne Université, UPMC University Paris 06, CNRS, UMR 144, 26 rue d'Ulm, F-75005, Paris, France.
| |
Collapse
|
20
|
Baddam SR, Arsenovic PT, Narayanan V, Duggan NR, Mayer CR, Newman ST, Abutaleb DA, Mohan A, Kowalczyk AP, Conway DE. The Desmosomal Cadherin Desmoglein-2 Experiences Mechanical Tension as Demonstrated by a FRET-Based Tension Biosensor Expressed in Living Cells. Cells 2018; 7:cells7070066. [PMID: 29949915 PMCID: PMC6070948 DOI: 10.3390/cells7070066] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 11/16/2022] Open
Abstract
Cell-cell junctions are critical structures in a number of tissues for mechanically coupling cells together, cell-to-cell signaling, and establishing a barrier. In many tissues, desmosomes are an important component of cell-cell junctions. Loss or impairment of desmosomes presents with clinical phenotypes in the heart and skin as cardiac arrhythmias and skin blistering, respectively. Because heart and skin are tissues that are subject to large mechanical stresses, we hypothesized that desmosomes, similar to adherens junctions, would also experience significant tensile loading. To directly measure mechanical forces across desmosomes, we developed and validated a desmoglein-2 (DSG-2) force sensor, using the existing TSmod Förster resonance energy transfer (FRET) force biosensor. When expressed in human cardiomyocytes, the force sensor reported high tensile loading of DSG-2 during contraction. Additionally, when expressed in Madin-Darby canine kidney (MDCK) epithelial or epidermal (A431) monolayers, the sensor also reported tensile loading. Finally, we observed higher DSG-2 forces in 3D MDCK acini when compared to 2D monolayers. Taken together, our results show that desmosomes experience low levels of mechanical tension in resting cells, with significantly higher forces during active loading.
Collapse
Affiliation(s)
- Sindora R Baddam
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.
| | - Paul T Arsenovic
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.
| | - Vani Narayanan
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.
| | - Nicole R Duggan
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.
| | - Carl R Mayer
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.
| | - Shaston T Newman
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.
| | - Dahlia A Abutaleb
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.
| | - Abhinav Mohan
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.
| | | | - Daniel E Conway
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.
| |
Collapse
|
21
|
Quinlan RA, Schwarz N, Windoffer R, Richardson C, Hawkins T, Broussard JA, Green KJ, Leube RE. A rim-and-spoke hypothesis to explain the biomechanical roles for cytoplasmic intermediate filament networks. J Cell Sci 2018; 130:3437-3445. [PMID: 29032358 DOI: 10.1242/jcs.202168] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 08/02/2017] [Indexed: 12/17/2022] Open
Abstract
Textbook images of keratin intermediate filament (IF) networks in epithelial cells and the functional compromization of the epidermis by keratin mutations promulgate a mechanical role for this important cytoskeletal component. In stratified epithelia, keratin filaments form prominent radial spokes that are focused onto cell-cell contact sites, i.e. the desmosomes. In this Hypothesis, we draw attention to a subset of keratin filaments that are apposed to the plasma membrane. They form a rim of filaments interconnecting the desmosomes in a circumferential network. We hypothesize that they are part of a rim-and-spoke arrangement of IFs in epithelia. From our review of the literature, we extend this functional role for the subplasmalemmal rim of IFs to any cell, in which plasma membrane support is required, provided these filaments connect directly or indirectly to the plasma membrane. Furthermore, cytoplasmic IF networks physically link the outer nuclear and plasma membranes, but their participation in mechanotransduction processes remain largely unconsidered. Therefore, we also discuss the potential biomechanical and mechanosensory role(s) of the cytoplasmic IF network in terms of such a rim (i.e. subplasmalemmal)-and-spoke arrangement for cytoplasmic IF networks.
Collapse
Affiliation(s)
- Roy A Quinlan
- Department of Biosciences, University of Durham, Upper Mountjoy, Stockton Road, Durham DH1 3LE, UK .,Biophysical Sciences Institute, University of Durham, Upper Mountjoy, Stockton Road, Durham DH1 3LE, UK
| | - Nicole Schwarz
- RWTH Aachen University, Institute of Molecular and Cellular Anatomy, Wendlingweg 2, 52074 Aachen, Germany
| | - Reinhard Windoffer
- RWTH Aachen University, Institute of Molecular and Cellular Anatomy, Wendlingweg 2, 52074 Aachen, Germany
| | - Christine Richardson
- Department of Biosciences, University of Durham, Upper Mountjoy, Stockton Road, Durham DH1 3LE, UK
| | - Tim Hawkins
- Department of Biosciences, University of Durham, Upper Mountjoy, Stockton Road, Durham DH1 3LE, UK
| | - Joshua A Broussard
- Dept. of Pathology W127, Tarry Bldg, Room 3-735, Northwestern University, Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | - Kathleen J Green
- Dept. of Pathology W127, Tarry Bldg, Room 3-735, Northwestern University, Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | - Rudolf E Leube
- RWTH Aachen University, Institute of Molecular and Cellular Anatomy, Wendlingweg 2, 52074 Aachen, Germany
| |
Collapse
|
22
|
Kurzthaler C, Franosch T. Bimodal probability density characterizes the elastic behavior of a semiflexible polymer in 2D under compression. SOFT MATTER 2018; 14:2682-2693. [PMID: 29564466 DOI: 10.1039/c8sm00366a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We explore the elastic behavior of a wormlike chain under compression in terms of exact solutions for the associated probability densities. Strikingly, the probability density for the end-to-end distance projected along the applied force exhibits a bimodal shape in the vicinity of the critical Euler buckling force of an elastic rod, reminiscent of the smeared discontinuous phase transition of a finite system. These two modes reflect the almost stretched and the S-shaped configuration of a clamped polymer induced by the compression. Moreover, we find a bimodal shape of the probability density for the transverse fluctuations of the free end of a cantilevered polymer as fingerprint of its semiflexibility. In contrast to clamped polymers, free polymers display a circularly symmetric probability density and their distributions are identical for compression and stretching forces.
Collapse
Affiliation(s)
- Christina Kurzthaler
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria.
| | - Thomas Franosch
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria.
| |
Collapse
|
23
|
Deek J, Maan R, Loiseau E, Bausch AR. Reconstitution of composite actin and keratin networks in vesicles. SOFT MATTER 2018; 14:1897-1902. [PMID: 29464258 DOI: 10.1039/c7sm00819h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Although cytoskeletal networks are interpenetrating and interacting in living cells, very little is understood as to the effect their interaction has on their properties. Here, as a step towards elucidating the synergistic cellular role of these structural proteins, we investigate isolated keratin and actin composites and show how the in vitro network formation of keratin influences the properties of actin networks and vice versa. By encapsulating purified composite networks into vesicles and separating the time scales of network formation we are able to demonstrate that the actin network stabilizes keratin networks by providing an elastic resistance to their collapse in vitro.
Collapse
Affiliation(s)
- J Deek
- Lehrstuhl für Zellbiophysik E27, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany.
| | | | | | | |
Collapse
|
24
|
Hagiyama M, Yabuta N, Okuzaki D, Inoue T, Takashima Y, Kimura R, Ri A, Ito A. Modest Static Pressure Suppresses Columnar Epithelial Cell Growth in Association with Cell Shape and Cytoskeletal Modifications. Front Physiol 2017; 8:997. [PMID: 29259558 PMCID: PMC5723396 DOI: 10.3389/fphys.2017.00997] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/20/2017] [Indexed: 01/15/2023] Open
Abstract
Intraluminal pressure elevation can cause degenerative disorders, such as ileus and hydronephrosis, and the threshold is fairly low and constant, 20–30 cm H2O. We previously devised a novel two-chamber culture system subjecting cells cultured on a semipermeable membrane to increased culture medium height (water pressure up to 60 cm H2O). Here, we sought to determine how a continuous pressure load of ~30 cm H2O affects proliferating epithelial cells with special interest in the link with cell morphology. We cultured several different cell lines using the low static pressure-loadable two-chamber system, and examined cell growth, cell cycle, and cell morphology. Madin–Darby canine kidney (MDCK) columnar epithelial cells were growth-suppressed in a manner dependent on static water pressure ranging from 2 to 50 cm H2O, without cell cycle arrest at any specific phase. Two other types of columnar epithelial cells exhibited similar phenotypes. By contrast, spherical epithelial and mesenchymal cells were not growth-suppressed, even at 50 cm H2O. Phalloidin staining revealed that 50 cm H2O pressure load vertically flattened and laterally widened columnar epithelial cells and made actin fiber distribution sparse, without affecting total phalloidin intensity per cell. When the mucosal protectant irsogladine maleate (100 nM) was added to 50-cm-high culture medium, MDCK cells were reduced in volume and their doubling time shortened. Cell proliferation and morphology are known to be regulated by the Hippo signaling pathway. A pressure load of 50 cm H2O enhanced serine-127 phosphorylation and cytoplasmic retention of YAP, the major constituent of this pathway, suggesting that Hippo pathway was involved in the pressure-induced cell growth suppression. RNA sequencing of MDCK cells showed that a 50 cm H2O pressure load upregulated keratin 14, an intermediate filament, 12-fold. This upregulation was confirmed at the protein level by immunofluorescence, suggesting a role in cytoskeletal reinforcement. These results provide evidence that cell morphology and the cytoskeleton are closely linked to cell growth. Pathological intraluminal pressure elevation may cause mucosal degeneration by acting directly on this linkage and the Hippo pathway.
Collapse
Affiliation(s)
- Man Hagiyama
- Department of Pathology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Norikazu Yabuta
- Department of Oncogene Research, Osaka University, Suita, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Takao Inoue
- Department of Pathology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Yasutoshi Takashima
- Department of Pathology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Ryuichiro Kimura
- Department of Pathology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Aritoshi Ri
- Department of Pathology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Akihiko Ito
- Department of Pathology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| |
Collapse
|
25
|
Sanghvi-Shah R, Weber GF. Intermediate Filaments at the Junction of Mechanotransduction, Migration, and Development. Front Cell Dev Biol 2017; 5:81. [PMID: 28959689 PMCID: PMC5603733 DOI: 10.3389/fcell.2017.00081] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/30/2017] [Indexed: 01/04/2023] Open
Abstract
Mechanically induced signal transduction has an essential role in development. Cells actively transduce and respond to mechanical signals and their internal architecture must manage the associated forces while also being dynamically responsive. With unique assembly-disassembly dynamics and physical properties, cytoplasmic intermediate filaments play an important role in regulating cell shape and mechanical integrity. While this function has been recognized and appreciated for more than 30 years, continually emerging data also demonstrate important roles of intermediate filaments in cell signal transduction. In this review, with a particular focus on keratins and vimentin, the relationship between the physical state of intermediate filaments and their role in mechanotransduction signaling is illustrated through a survey of current literature. Association with adhesion receptors such as cadherins and integrins provides a critical interface through which intermediate filaments are exposed to forces from a cell's environment. As a consequence, these cytoskeletal networks are posttranslationally modified, remodeled and reorganized with direct impacts on local signal transduction events and cell migratory behaviors important to development. We propose that intermediate filaments provide an opportune platform for cells to both cope with mechanical forces and modulate signal transduction.
Collapse
Affiliation(s)
- Rucha Sanghvi-Shah
- Department of Biological Sciences, Rutgers University-NewarkNewark, NJ, United States
| | - Gregory F Weber
- Department of Biological Sciences, Rutgers University-NewarkNewark, NJ, United States
| |
Collapse
|
26
|
Hatzfeld M, Keil R, Magin TM. Desmosomes and Intermediate Filaments: Their Consequences for Tissue Mechanics. Cold Spring Harb Perspect Biol 2017; 9:a029157. [PMID: 28096266 PMCID: PMC5453391 DOI: 10.1101/cshperspect.a029157] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Adherens junctions (AJs) and desmosomes connect the actin and keratin filament networks of adjacent cells into a mechanical unit. Whereas AJs function in mechanosensing and in transducing mechanical forces between the plasma membrane and the actomyosin cytoskeleton, desmosomes and intermediate filaments (IFs) provide mechanical stability required to maintain tissue architecture and integrity when the tissues are exposed to mechanical stress. Desmosomes are essential for stable intercellular cohesion, whereas keratins determine cell mechanics but are not involved in generating tension. Here, we summarize the current knowledge of the role of IFs and desmosomes in tissue mechanics and discuss whether the desmosome-keratin scaffold might be actively involved in mechanosensing and in the conversion of chemical signals into mechanical strength.
Collapse
Affiliation(s)
- Mechthild Hatzfeld
- Institute of Molecular Medicine, Division of Pathobiochemistry, Martin-Luther-University Halle-Wittenberg, 06114 Halle, Germany
| | - René Keil
- Institute of Molecular Medicine, Division of Pathobiochemistry, Martin-Luther-University Halle-Wittenberg, 06114 Halle, Germany
| | - Thomas M Magin
- Institute of Biology, Division of Cell and Developmental Biology and Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
27
|
Broussard JA, Yang R, Huang C, Nathamgari SSP, Beese AM, Godsel LM, Hegazy MH, Lee S, Zhou F, Sniadecki NJ, Green KJ, Espinosa HD. The desmoplakin-intermediate filament linkage regulates cell mechanics. Mol Biol Cell 2017; 28:3156-3164. [PMID: 28495795 PMCID: PMC5687018 DOI: 10.1091/mbc.e16-07-0520] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 03/16/2017] [Accepted: 05/02/2017] [Indexed: 02/06/2023] Open
Abstract
Desmoplakin connects desmosomal core components to intermediate filaments at sites of cell–cell adhesion. Modulating the strength of this linkage using desmoplakin mutants led to alterations in cell–substrate and cell–cell forces and cell stiffness as assessed by micropillar arrays and atomic force microscopy. Perturbation of the actin cytoskeleton leads to abrogation of these effects. The translation of mechanical forces into biochemical signals plays a central role in guiding normal physiological processes during tissue development and homeostasis. Interfering with this process contributes to cardiovascular disease, cancer progression, and inherited disorders. The actin-based cytoskeleton and its associated adherens junctions are well-established contributors to mechanosensing and transduction machinery; however, the role of the desmosome–intermediate filament (DSM–IF) network is poorly understood in this context. Because a force balance among different cytoskeletal systems is important to maintain normal tissue function, knowing the relative contributions of these structurally integrated systems to cell mechanics is critical. Here we modulated the interaction between DSMs and IFs using mutant forms of desmoplakin, the protein bridging these structures. Using micropillar arrays and atomic force microscopy, we demonstrate that strengthening the DSM–IF interaction increases cell–substrate and cell–cell forces and cell stiffness both in cell pairs and sheets of cells. In contrast, disrupting the interaction leads to a decrease in these forces. These alterations in cell mechanics are abrogated when the actin cytoskeleton is dismantled. These data suggest that the tissue-specific variability in DSM–IF network composition provides an opportunity to differentially regulate tissue mechanics by balancing and tuning forces among cytoskeletal systems.
Collapse
Affiliation(s)
- Joshua A Broussard
- Department of Pathology, Northwestern University, Chicago, IL 60611.,Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Ruiguo Yang
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208
| | - Changjin Huang
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208
| | - S Shiva P Nathamgari
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208
| | - Allison M Beese
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208
| | - Lisa M Godsel
- Department of Pathology, Northwestern University, Chicago, IL 60611.,Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Marihan H Hegazy
- Department of Pathology, Northwestern University, Chicago, IL 60611
| | - Sherry Lee
- Department of Pathology, Northwestern University, Chicago, IL 60611
| | - Fan Zhou
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208
| | - Nathan J Sniadecki
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195.,Department of Bioengineering, University of Washington, Seattle, WA 98195.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195
| | - Kathleen J Green
- Department of Pathology, Northwestern University, Chicago, IL 60611 .,Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Horacio D Espinosa
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208 .,Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL 60208
| |
Collapse
|
28
|
Kurzthaler C, Franosch T. Exact solution for the force-extension relation of a semiflexible polymer under compression. Phys Rev E 2017; 95:052501. [PMID: 28618478 DOI: 10.1103/physreve.95.052501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Indexed: 11/07/2022]
Abstract
Exact solutions for the elastic and thermodynamic properties for the wormlike chain model are elaborated in terms of Mathieu functions. The smearing of the classical Euler buckling instability for clamped polymers is analyzed for the force-extension relation. Interestingly, at strong compression forces the thermal fluctuations lead to larger elongations than for the elastic rod. The susceptibility defined as the derivative of the force-extension relation displays a prominent maximum at a force that approaches the critical Euler buckling force as the persistence length is increased. We also evaluate the excess entropy and heat capacity induced by the compression and find that they vary nonmonotonically with the load. These findings are corroborated by pseudo-Brownian simulations.
Collapse
Affiliation(s)
- Christina Kurzthaler
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Thomas Franosch
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| |
Collapse
|
29
|
Deek J, Hecht F, Rossetti L, Wißmiller K, Bausch AR. Mechanics of soft epithelial keratin networks depend on modular filament assembly kinetics. Acta Biomater 2016; 43:218-229. [PMID: 27403885 DOI: 10.1016/j.actbio.2016.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/04/2016] [Accepted: 07/09/2016] [Indexed: 11/15/2022]
Abstract
UNLABELLED Structural adaptability is a pivotal requirement of cytoskeletal structures, enabling their reorganization to meet the cellular needs. Shear stress, for instance, results in large morphological network changes of the human soft epithelial keratin pair K8:K18, and is accompanied by an increase in keratin phosphorylation levels. Yet the mechanisms responsible for the disruption of the network structure in vivo remain poorly understood. To understand the effect of the stress-related site-specific phosphorylation of the K8:K18 pair, we created phosphomimicry mutants - K8(S431E), K8(S73E), K18(S52E) - in vitro, and investigated the various steps of keratin assembly from monomer to network structure using fluorescence and electron microscopy, and using rheology characterized their network mechanical properties. We find that the addition of a charged group produces networks with depleted intra-connectivity, which translates to a mechanically weaker and more deformable network. This large variation in network structure is achieved by the formation of shorter mutant filaments, which exhibit differing assembly kinetics and a manifestly reduced capacity to form the extended structures characteristic of the wild-type system. The similarity in outcome for all the phosphomimicry mutants explored points to a more general mechanism of structural modulation of intermediate filaments via phosphorylation. Understanding the role of kinetic effects in the construction of these cytoskeletal biopolymer networks is critical to elucidating their structure-function properties, providing new insight for the design of keratin-inspired biomaterials. STATEMENT OF SIGNIFICANCE Structural remodeling of cytoskeletal networks accompanies many cellular processes. Interestingly, levels of phosphorylation of the human soft epithelial keratin pair K8:K18 increase during their stress-related structural remodeling. Our multi-scale study sheds light on the poorly understood mechanism with which site-specific phosphorylation induces disruption of the keratin network structure in vivo. We show how phosphorylation reduces keratin filament length, an effect that propagates through to the mesoscopic structure, resulting in the formation of connectivity-depleted and mechanically weaker networks. We determine that the intrinsically-set filament-to-filament attractions that drive bundle assembly give rise to the structural variability by enabling the formation of kinetically-arrested structures. Overall, our results shed light on how self-assembled intermediate filament structures can be tailored to exhibit different structural functionalities.
Collapse
Affiliation(s)
- Joanna Deek
- Lehrstuhl für Zellbiophysik E27, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Fabian Hecht
- Lehrstuhl für Zellbiophysik E27, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Leone Rossetti
- Lehrstuhl für Zellbiophysik E27, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Katharina Wißmiller
- Lehrstuhl für Zellbiophysik E27, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Andreas R Bausch
- Lehrstuhl für Zellbiophysik E27, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany.
| |
Collapse
|
30
|
Schnauß J, Händler T, Käs JA. Semiflexible Biopolymers in Bundled Arrangements. Polymers (Basel) 2016; 8:polym8080274. [PMID: 30974551 PMCID: PMC6432226 DOI: 10.3390/polym8080274] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 12/15/2022] Open
Abstract
Bundles and networks of semiflexible biopolymers are key elements in cells, lending them mechanical integrity while also enabling dynamic functions. Networks have been the subject of many studies, revealing a variety of fundamental characteristics often determined via bulk measurements. Although bundles are equally important in biological systems, they have garnered much less scientific attention since they have to be probed on the mesoscopic scale. Here, we review theoretical as well as experimental approaches, which mainly employ the naturally occurring biopolymer actin, to highlight the principles behind these structures on the single bundle level.
Collapse
Affiliation(s)
- Jörg Schnauß
- Institute for Experimental Physics I, Universität Leipzig, Linnéstraße 5, Leipzig 04103, Germany.
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, Leipzig 04103, Germany.
| | - Tina Händler
- Institute for Experimental Physics I, Universität Leipzig, Linnéstraße 5, Leipzig 04103, Germany.
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, Leipzig 04103, Germany.
| | - Josef A Käs
- Institute for Experimental Physics I, Universität Leipzig, Linnéstraße 5, Leipzig 04103, Germany.
| |
Collapse
|
31
|
Hémonnot CYJ, Reinhardt J, Saldanha O, Patommel J, Graceffa R, Weinhausen B, Burghammer M, Schroer CG, Köster S. X-rays Reveal the Internal Structure of Keratin Bundles in Whole Cells. ACS NANO 2016; 10:3553-3561. [PMID: 26905642 DOI: 10.1021/acsnano.5b07871] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In recent years, X-ray imaging of biological cells has emerged as a complementary alternative to fluorescence and electron microscopy. Different techniques were established and successfully applied to macromolecular assemblies and structures in cells. However, while the resolution is reaching the nanometer scale, the dose is increasing. It is essential to develop strategies to overcome or reduce radiation damage. Here we approach this intrinsic problem by combing two different X-ray techniques, namely ptychography and nanodiffraction, in one experiment and on the same sample. We acquire low dose ptychography overview images of whole cells at a resolution of 65 nm. We subsequently record high-resolution nanodiffraction data from regions of interest. By comparing images from the two modalities, we can exclude strong effects of radiation damage on the specimen. From the diffraction data we retrieve quantitative structural information from intracellular bundles of keratin intermediate filaments such as a filament radius of 5 nm, hexagonal geometric arrangement with an interfilament distance of 14 nm and bundle diameters on the order of 70 nm. Thus, we present an appealing combined approach to answer a broad range of questions in soft-matter physics, biophysics and biology.
Collapse
Affiliation(s)
- Clément Y J Hémonnot
- Institute for X-ray Physics, University of Göttingen , Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Juliane Reinhardt
- Deutsches Elektronen-Synchrotron , Notkestrasse 85, 22607 Hamburg, Germany
| | - Oliva Saldanha
- Institute for X-ray Physics, University of Göttingen , Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Jens Patommel
- Institute of Structural Physics, Technische Universität Dresden , Zellescher Weg 16, 01069 Dresden, Germany
| | - Rita Graceffa
- Institute for X-ray Physics, University of Göttingen , Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Britta Weinhausen
- European Synchrotron Radiation Facility , 71, Avenue des Martyrs, 38043 Grenoble, France
| | - Manfred Burghammer
- European Synchrotron Radiation Facility , 71, Avenue des Martyrs, 38043 Grenoble, France
- Department of Analytical Chemistry, Ghent University , Krijgslaan 281, 9000 Ghent, Belgium
| | - Christian G Schroer
- Deutsches Elektronen-Synchrotron , Notkestrasse 85, 22607 Hamburg, Germany
- Institute for Nanostructure and Solid State Physics, Department of Physics, University of Hamburg , Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Sarah Köster
- Institute for X-ray Physics, University of Göttingen , Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
32
|
Piechocka IK, Jansen KA, Broedersz CP, Kurniawan NA, MacKintosh FC, Koenderink GH. Multi-scale strain-stiffening of semiflexible bundle networks. SOFT MATTER 2016; 12:2145-56. [PMID: 26761718 DOI: 10.1039/c5sm01992c] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Bundles of polymer filaments are responsible for the rich and unique mechanical behaviors of many biomaterials, including cells and extracellular matrices. In fibrin biopolymers, whose nonlinear elastic properties are crucial for normal blood clotting, protofibrils self-assemble and bundle to form networks of semiflexible fibers. Here we show that the extraordinary strain-stiffening response of fibrin networks is a direct reflection of the hierarchical architecture of the fibrin fibers. We measure the rheology of networks of unbundled protofibrils and find excellent agreement with an affine model of extensible wormlike polymers. By direct comparison with these data, we show that physiological fibrin networks composed of thick fibers can be modeled as networks of tight protofibril bundles. We demonstrate that the tightness of coupling between protofibrils in the fibers can be tuned by the degree of enzymatic intermolecular crosslinking by the coagulation factor XIII. Furthermore, at high stress, the protofibrils contribute independently to the network elasticity, which may reflect a decoupling of the tight bundle structure. The hierarchical architecture of fibrin fibers can thus account for the nonlinearity and enormous elastic resilience characteristic of blood clots.
Collapse
|
33
|
Intermediate filament mechanics in vitro and in the cell: from coiled coils to filaments, fibers and networks. Curr Opin Cell Biol 2015; 32:82-91. [PMID: 25621895 DOI: 10.1016/j.ceb.2015.01.001] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/05/2015] [Accepted: 01/06/2015] [Indexed: 01/19/2023]
Abstract
Intermediate filament proteins form filaments, fibers and networks both in the cytoplasm and the nucleus of metazoan cells. Their general structural building plan accommodates highly varying amino acid sequences to yield extended dimeric α-helical coiled coils of highly conserved design. These 'rod' particles are the basic building blocks of intrinsically flexible, filamentous structures that are able to resist high mechanical stresses, that is, bending and stretching to a considerable degree, both in vitro and in the cell. Biophysical and computer modeling studies are beginning to unfold detailed structural and mechanical insights into these major supramolecular assemblies of cell architecture, not only in the 'test tube' but also in the cellular and tissue context.
Collapse
|