1
|
Hirakis SP, Bartol TM, Autin L, Amaro RE, Sejnowski TJ. Electrophysical cardiac remodeling at the molecular level: Insights into ryanodine receptor activation and calcium-induced calcium release from a stochastic explicit-particle model. Biophys J 2024; 123:3812-3831. [PMID: 39369273 PMCID: PMC11560313 DOI: 10.1016/j.bpj.2024.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/03/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024] Open
Abstract
We present the first-ever, fully discrete, stochastic model of triggered cardiac Ca2+ dynamics. Using anatomically accurate subcellular cardiac myocyte geometries, we simulate the molecular players involved in Ca2+ handling using high-resolution stochastic and explicit-particle methods at the level of an individual cardiac dyadic junction. Integrating data from multiple experimental sources, the model not only replicates the findings of traditional in silico studies and complements in vitro experimental data but also reveals new insights into the molecular mechanisms driving cardiac dysfunction under stress and disease conditions. We improve upon older, nondiscrete models using the same realistic geometry by incorporating molecular mechanisms for spontaneous, as well as triggered calcium-induced calcium release (CICR). Action potentials are used to activate L-type calcium channels (LTCC), triggering CICR through ryanodine receptors (RyRs) on the surface of the sarcoplasmic reticulum. These improvements allow for the specific focus on the couplon: the structure-function relationship between LTCC and RyR. We investigate the electrophysical effects of normal and diseased action potentials on CICR and interrogate the effects of dyadic junction deformation through detubulation and orphaning of RyR. Our work demonstrates the importance of the electrophysical integrity of the calcium release unit on CICR fidelity, giving insights into the molecular basis of heart disease. Finally, we provide a unique, detailed, molecular view of the CICR process using advanced rendering techniques. This easy-to-use model comes complete with tutorials and the necessary software for use and analysis to maximize usability and reproducibility. Our work focuses on quantifying, qualifying, and visualizing the behavior of the molecular species that underlie the function and dysfunction of subcellular cardiomyocyte systems.
Collapse
Affiliation(s)
- Sophia P Hirakis
- Computational Neurobiology Lab, The Salk Institute of Biological Studies, La Jolla, California; Department of Chemistry and Biochemistry, The University of California San Diego, La Jolla, California
| | - Thomas M Bartol
- Computational Neurobiology Lab, The Salk Institute of Biological Studies, La Jolla, California
| | - Ludovic Autin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry, The University of California San Diego, La Jolla, California.
| | - Terrence J Sejnowski
- Computational Neurobiology Lab, The Salk Institute of Biological Studies, La Jolla, California; Department of Chemistry and Biochemistry, The University of California San Diego, La Jolla, California.
| |
Collapse
|
2
|
Wegener JW, Mitronova GY, ElShareif L, Quentin C, Belov V, Pochechueva T, Hasenfuss G, Ackermann L, Lehnart SE. A dual-targeted drug inhibits cardiac ryanodine receptor Ca 2+ leak but activates SERCA2a Ca 2+ uptake. Life Sci Alliance 2024; 7:e202302278. [PMID: 38012000 PMCID: PMC10681910 DOI: 10.26508/lsa.202302278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023] Open
Abstract
In the heart, genetic or acquired mishandling of diastolic [Ca2+] by ryanodine receptor type 2 (RyR2) overactivity correlates with risks of arrhythmia and sudden cardiac death. Strategies to avoid these risks include decrease of Ca2+ release by drugs modulating RyR2 activity or increase in Ca2+ uptake by drugs modulating SR Ca2+ ATPase (SERCA2a) activity. Here, we combine these strategies by developing experimental compounds that act simultaneously on both processes. Our screening efforts identified the new 1,4-benzothiazepine derivative GM1869 as a promising compound. Consequently, we comparatively studied the effects of the known RyR2 modulators Dantrolene and S36 together with GM1869 on RyR2 and SERCA2a activity in cardiomyocytes from wild type and arrhythmia-susceptible RyR2R2474S/+ mice by confocal live-cell imaging. All drugs reduced RyR2-mediated Ca2+ spark frequency but only GM1869 accelerated SERCA2a-mediated decay of Ca2+ transients in murine and human cardiomyocytes. Our data indicate that S36 and GM1869 are more suitable than dantrolene to directly modulate RyR2 activity, especially in RyR2R2474S/+ mice. Remarkably, GM1869 may represent a new dual-acting lead compound for maintenance of diastolic [Ca2+].
Collapse
Affiliation(s)
- Jörg W Wegener
- Department of Cardiology and Pulmonology, Heart Research Center Göttingen, University Medical Center of Göttingen (UMG), Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Gyuzel Y Mitronova
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Lina ElShareif
- Department of Cardiology and Pulmonology, Heart Research Center Göttingen, University Medical Center of Göttingen (UMG), Göttingen, Germany
| | - Christine Quentin
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Vladimir Belov
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Tatiana Pochechueva
- Department of Cardiology and Pulmonology, Heart Research Center Göttingen, University Medical Center of Göttingen (UMG), Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Gerd Hasenfuss
- Department of Cardiology and Pulmonology, Heart Research Center Göttingen, University Medical Center of Göttingen (UMG), Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Lutz Ackermann
- Georg-August University of Göttingen, Institute of Organic and Biomolecular Chemistry, Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Stephan E Lehnart
- Department of Cardiology and Pulmonology, Heart Research Center Göttingen, University Medical Center of Göttingen (UMG), Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| |
Collapse
|
3
|
Waddell HMM, Mereacre V, Alvarado FJ, Munro ML. Clustering properties of the cardiac ryanodine receptor in health and heart failure. J Mol Cell Cardiol 2023; 185:38-49. [PMID: 37890552 PMCID: PMC10717225 DOI: 10.1016/j.yjmcc.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/09/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
The cardiac ryanodine receptor (RyR2) is an intracellular Ca2+ release channel vital for the function of the heart. Physiologically, RyR2 is triggered to release Ca2+ from the sarcoplasmic reticulum (SR) which enables cardiac contraction; however, spontaneous Ca2+ leak from RyR2 has been implicated in the pathophysiology of heart failure (HF). RyR2 channels have been well documented to assemble into clusters within the SR membrane, with the organisation of RyR2 clusters recently gaining interest as a mechanism by which the occurrence of pathological Ca2+ leak is regulated, including in HF. In this review, we explain the terminology relating to key nanoscale RyR2 clustering properties as both single clusters and functionally grouped Ca2+ release units, with a focus on the advancements in super-resolution imaging approaches which have enabled the detailed study of cluster organisation. Further, we discuss proposed mechanisms for modulating RyR2 channel organisation and the debate regarding the potential impact of cluster organisation on Ca2+ leak activity. Finally, recent experimental evidence investigating the nanoscale remodelling and functional alterations of RyR2 clusters in HF is discussed with consideration of the clinical implications.
Collapse
Affiliation(s)
- Helen M M Waddell
- Department of Physiology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Valeria Mereacre
- Department of Physiology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Francisco J Alvarado
- Department of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Michelle L Munro
- Department of Physiology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
4
|
Veron G, Maltsev VA, Stern MD, Maltsev AV. Elementary intracellular Ca signals approximated as a transition of release channel system from a metastable state. JOURNAL OF APPLIED PHYSICS 2023; 134:124701. [PMID: 37744735 PMCID: PMC10517864 DOI: 10.1063/5.0151255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/04/2023] [Indexed: 09/26/2023]
Abstract
Cardiac muscle contraction is initiated by an elementary Ca signal (called Ca spark) which is achieved by collective action of Ca release channels in a cluster. The mechanism of this synchronization remains uncertain. We approached Ca spark activation as an emergent phenomenon of an interactive system of release channels. We constructed a weakly lumped Markov chain that applies an Ising model formalism to such release channel clusters and probable open channel configurations and demonstrated that spark activation is described as a system transition from a metastable to an absorbing state, analogous to the pressure required to overcome surface tension in bubble formation. This yielded quantitative estimates of the spark generation probability as a function of various system parameters. We performed numerical simulations to find spark probabilities as a function of sarcoplasmic reticulum Ca concentration, obtaining similar values for spark activation threshold as our analytic model, as well as those reported in experimental studies. Our parametric sensitivity analyses also showed that the spark activation threshold decreased as Ca sensitivity of RyR activation and RyR cluster size increased.
Collapse
Affiliation(s)
- Guillermo Veron
- Cellular Biophysics Section, Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, Maryland 21224, USA
| | - Victor A. Maltsev
- Cellular Biophysics Section, Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, Maryland 21224, USA
| | - Michael D. Stern
- Cellular Biophysics Section, Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, Maryland 21224, USA
| | - Anna V. Maltsev
- School of Mathematical Sciences, Queen Mary University of London, London E14NS, United Kingdom
| |
Collapse
|
5
|
Dridi H, Santulli G, Bahlouli L, Miotto MC, Weninger G, Marks AR. Mitochondrial Calcium Overload Plays a Causal Role in Oxidative Stress in the Failing Heart. Biomolecules 2023; 13:1409. [PMID: 37759809 PMCID: PMC10527470 DOI: 10.3390/biom13091409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
Heart failure is a serious global health challenge, affecting more than 6.2 million people in the United States and is projected to reach over 8 million by 2030. Independent of etiology, failing hearts share common features, including defective calcium (Ca2+) handling, mitochondrial Ca2+ overload, and oxidative stress. In cardiomyocytes, Ca2+ not only regulates excitation-contraction coupling, but also mitochondrial metabolism and oxidative stress signaling, thereby controlling the function and actual destiny of the cell. Understanding the mechanisms of mitochondrial Ca2+ uptake and the molecular pathways involved in the regulation of increased mitochondrial Ca2+ influx is an ongoing challenge in order to identify novel therapeutic targets to alleviate the burden of heart failure. In this review, we discuss the mechanisms underlying altered mitochondrial Ca2+ handling in heart failure and the potential therapeutic strategies.
Collapse
Affiliation(s)
- Haikel Dridi
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY 10032, USA; (L.B.); (M.C.M.); (G.W.); (A.R.M.)
| | - Gaetano Santulli
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY 10461, USA;
| | - Laith Bahlouli
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY 10032, USA; (L.B.); (M.C.M.); (G.W.); (A.R.M.)
| | - Marco C. Miotto
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY 10032, USA; (L.B.); (M.C.M.); (G.W.); (A.R.M.)
| | - Gunnar Weninger
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY 10032, USA; (L.B.); (M.C.M.); (G.W.); (A.R.M.)
| | - Andrew R. Marks
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY 10032, USA; (L.B.); (M.C.M.); (G.W.); (A.R.M.)
| |
Collapse
|
6
|
Jin X, Meletiou A, Chung J, Tilunaite A, Demydenko K, Dries E, Puertas RD, Amoni M, Tomar A, Claus P, Soeller C, Rajagopal V, Sipido K, Roderick HL. InsP 3R-RyR channel crosstalk augments sarcoplasmic reticulum Ca 2+ release and arrhythmogenic activity in post-MI pig cardiomyocytes. J Mol Cell Cardiol 2023; 179:47-59. [PMID: 37003353 DOI: 10.1016/j.yjmcc.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/08/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Ca2+ transients (CaT) underlying cardiomyocyte (CM) contraction require efficient Ca2+ coupling between sarcolemmal Ca2+ channels and sarcoplasmic reticulum (SR) ryanodine receptor Ca2+ channels (RyR) for their generation; reduced coupling in disease contributes to diminished CaT and arrhythmogenic Ca2+ events. SR Ca2+ release also occurs via inositol 1,4,5-trisphosphate receptors (InsP3R) in CM. While this pathway contributes negligeably to Ca2+ handling in healthy CM, rodent studies support a role in altered Ca2+ dynamics and arrhythmogenic Ca2+ release involving InsP3R crosstalk with RyRs in disease. Whether this mechanism persists in larger mammals with lower T-tubular density and coupling of RyRs is not fully resolved. We have recently shown an arrhythmogenic action of InsP3-induced Ca2+ release (IICR) in end stage human heart failure, often associated with underlying ischemic heart disease (IHD). How IICR contributes to early stages of disease is however not determined but highly relevant. To access this stage, we chose a porcine model of IHD, which shows substantial remodelling of the area adjacent to the infarct. In cells from this region, IICR preferentially augmented Ca2+ release from non-coupled RyR clusters that otherwise showed delayed activation during the CaT. IICR in turn synchronised Ca2+ release during the CaT but also induced arrhythmogenic delayed afterdepolarizations and action potentials. Nanoscale imaging identified co-clustering of InsP3Rs and RyRs, thereby allowing Ca2+-mediated channel crosstalk. Mathematical modelling supported and further delineated this mechanism of enhanced InsP3R-RyRs coupling in MI. Our findings highlight the role of InsP3R-RyR channel crosstalk in Ca2+ release and arrhythmia during post-MI remodelling.
Collapse
Affiliation(s)
- Xin Jin
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium
| | - Anna Meletiou
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Joshua Chung
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium; Cell Structure and Mechanobiology Group, Department of Biomedical Engineering, Melbourne School of Engineering, University of Melbourne, Australia
| | - Agne Tilunaite
- Cell Structure and Mechanobiology Group, Department of Biomedical Engineering, Melbourne School of Engineering, University of Melbourne, Australia; Systems Biology Laboratory, School of Mathematics and Statistics, and Department of Biomedical Engineering, University of Melbourne, Australia
| | - Kateryna Demydenko
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium
| | - Eef Dries
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium
| | - Rosa Doñate Puertas
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium
| | - Matthew Amoni
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium
| | - Ashutosh Tomar
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium
| | - Piet Claus
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium
| | | | - Vijay Rajagopal
- Cell Structure and Mechanobiology Group, Department of Biomedical Engineering, Melbourne School of Engineering, University of Melbourne, Australia
| | - Karin Sipido
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium
| | - H Llewelyn Roderick
- KU Leuven, Department of Cardiovascular Sciences, Laboratory of Experimental Cardiology, B-3000 Leuven, Belgium.
| |
Collapse
|
7
|
Hou Y, Laasmaa M, Li J, Shen X, Manfra O, Norden ES, Le C, Zhang L, Sjaastad I, Jones PP, Soeller C, Louch WE. Live-cell photo-activated localization microscopy correlates nanoscale ryanodine receptor configuration to calcium sparks in cardiomyocytes. NATURE CARDIOVASCULAR RESEARCH 2023; 2:251-267. [PMID: 38803363 PMCID: PMC7616007 DOI: 10.1038/s44161-022-00199-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/24/2022] [Indexed: 05/29/2024]
Abstract
Ca2+ sparks constitute the fundamental units of Ca2+ release in cardiomyocytes. Here we investigate how ryanodine receptors (RyRs) collectively generate these events by employing a transgenic mouse with a photo-activated label on RyR2. This allowed correlative imaging of RyR localization, by super-resolution Photo-Activated Localization Microscopy, and Ca2+ sparks, by high-speed imaging. Two populations of Ca2+ sparks were observed: stationary events and "travelling" events that spread between neighbouring RyR clusters. Travelling sparks exhibited up to 8 distinct releases, sourced from local or distal junctional sarcoplasmic reticulum. Quantitative analyses showed that sparks may be triggered by any number of RyRs within a cluster, and that acute β-adrenergic stimulation augments intra-cluster RyR recruitment to generate larger events. In contrast, RyR "dispersion" during heart failure facilitates the generation of travelling sparks. Thus, RyRs cooperatively generate Ca2+ sparks in a complex, malleable fashion, and channel organization regulates the propensity for local propagation of Ca2+ release.
Collapse
Affiliation(s)
- Yufeng Hou
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, NO-0424 Oslo, Norway
| | - Martin Laasmaa
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, NO-0424 Oslo, Norway
| | - Jia Li
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, NO-0424 Oslo, Norway
| | - Xin Shen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, NO-0424 Oslo, Norway
| | - Ornella Manfra
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, NO-0424 Oslo, Norway
| | - Einar S. Norden
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, NO-0424 Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo Norway
| | - Christopher Le
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, NO-0424 Oslo, Norway
| | - Lili Zhang
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, NO-0424 Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo Norway
| | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, NO-0424 Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo Norway
| | - Peter P. Jones
- Department of Physiology, School of Biomedical Sciences and HeartOtago, University of Otago, Dunedin, New Zealand
| | | | - William E. Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, NO-0424 Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo Norway
| |
Collapse
|
8
|
Gao ZX, Li TT, Jiang HY, He J. Calcium oscillation on homogeneous and heterogeneous networks of ryanodine receptor. Phys Rev E 2023; 107:024402. [PMID: 36932487 DOI: 10.1103/physreve.107.024402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Calcium oscillation is an important calcium homeostasis, imbalance of which is the key mechanism of initiation and progression of many major diseases. The formation and maintenance of calcium homeostasis are closely related to the spatial distribution of calcium channels on endoplasmic reticulum, whose complex structure was unveiled by recent observations with superresolution imaging techniques. In the current paper, a theoretical framework is established by abstracting the spatial distribution of the calcium channels as a nonlinear biological complex network with calcium channels as nodes and Ca^{2+} as edges. A dynamical model for a ryanodine receptor (RyR) is adopted to investigate the effect of spatial distribution on calcium oscillation. The mean-field model can be well reproduced from the complete graph and dense Erdös-Rényi network. The synchronization of RyRs is found important to generate a global calcium oscillation. Below a critical density of the Erdös-Rényi or BaraBási-Albert network, the amplitude and interspike interval decrease rapidly with the end of disappearance of oscillation due to the desynchronization. The clique graph with a cluster structure cannot produce a global oscillation due to the failure of synchronization between clusters. A more realistic geometric network is constructed in a two-dimensional plane based on the experimental information about the RyR arrangement of clusters and the frequency distribution of cluster sizes. Different from the clique graph, the global oscillation can be generated with reasonable parameters on the geometric network. The simulation also suggests that existence of small clusters and rogue RyRs plays an important role in the maintenance of global calcium oscillation through keeping synchronization between large clusters. Such results support the heterogeneous distribution of RyRs with different-size clusters, which is helpful to understand recent observations with superresolution nanoscale imaging techniques. The current theoretical framework can also be extent to investigate other phenomena in calcium signal transduction.
Collapse
Affiliation(s)
- Zhong-Xue Gao
- School of Physics and Technology, Nanjing Normal University, Nanjing 210097, China
| | - Tian-Tian Li
- School of Physics and Technology, Nanjing Normal University, Nanjing 210097, China
| | - Han-Yu Jiang
- School of Physics and Technology, Nanjing Normal University, Nanjing 210097, China
| | - Jun He
- School of Physics and Technology, Nanjing Normal University, Nanjing 210097, China
| |
Collapse
|
9
|
Chung J, Tilūnaitė A, Ladd D, Hunt H, Soeller C, Crampin EJ, Johnston ST, Roderick HL, Rajagopal V. IP 3R activity increases propensity of RyR-mediated sparks by elevating dyadic [Ca 2+]. Math Biosci 2023; 355:108923. [PMID: 36395827 DOI: 10.1016/j.mbs.2022.108923] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/15/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022]
Abstract
Calcium (Ca2+) plays a critical role in the excitation contraction coupling (ECC) process that mediates the contraction of cardiomyocytes during each heartbeat. While ryanodine receptors (RyRs) are the primary Ca2+ channels responsible for generating the cell-wide Ca2+ transients during ECC, Ca2+ release, via inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) are also reported in cardiomyocytes to elicit ECC-modulating effects. Recent studies suggest that the localization of IP3Rs at dyads grant their ability to modify the occurrence of Ca2+ sparks (elementary Ca2+ release events that constitute cell wide Ca2+ releases associated with ECC) which may underlie their modulatory influence on ECC. Here, we aim to uncover the mechanism by which dyad-localized IP3Rs influence Ca2+ spark dynamics. To this end, we developed a mathematical model of the dyad that incorporates the behaviour of IP3Rs, in addition to RyRs, to reveal the impact of their activity on local Ca2+ handling and consequent Ca2+ spark occurrence and its properties. Consistent with published experimental data, our model predicts that the propensity for Ca2+ spark formation increases in the presence of IP3R activity. Our simulations support the hypothesis that IP3Rs elevate Ca2+ in the dyad, sensitizing proximal RyRs towards activation and hence Ca2+ spark formation. The stochasticity of IP3R gating is an important aspect of this mechanism. However, dyadic IP3R activity lowers the Ca2+ available in the junctional sarcoplasmic reticulum (JSR) for release, thus resulting in Ca2+ sparks with similar durations but lower amplitudes.
Collapse
Affiliation(s)
- Joshua Chung
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia; Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Agnė Tilūnaitė
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia; School of Mathematics and Statistics, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - David Ladd
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia; School of Mathematics and Statistics, The University of Melbourne, Melbourne, VIC 3010, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, School of Chemical and Biomedical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Hilary Hunt
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, VIC 3010, Australia
| | | | - Edmund J Crampin
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia; School of Mathematics and Statistics, The University of Melbourne, Melbourne, VIC 3010, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, School of Chemical and Biomedical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Stuart T Johnston
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, VIC 3010, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, School of Chemical and Biomedical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - H Llewelyn Roderick
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium.
| | - Vijay Rajagopal
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia; Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC 3010, Australia.
| |
Collapse
|
10
|
Qu Z, Yan D, Song Z. Modeling Calcium Cycling in the Heart: Progress, Pitfalls, and Challenges. Biomolecules 2022; 12:1686. [PMID: 36421700 PMCID: PMC9687412 DOI: 10.3390/biom12111686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Intracellular calcium (Ca) cycling in the heart plays key roles in excitation-contraction coupling and arrhythmogenesis. In cardiac myocytes, the Ca release channels, i.e., the ryanodine receptors (RyRs), are clustered in the sarcoplasmic reticulum membrane, forming Ca release units (CRUs). The RyRs in a CRU act collectively to give rise to discrete Ca release events, called Ca sparks. A cell contains hundreds to thousands of CRUs, diffusively coupled via Ca to form a CRU network. A rich spectrum of spatiotemporal Ca dynamics is observed in cardiac myocytes, including Ca sparks, spark clusters, mini-waves, persistent whole-cell waves, and oscillations. Models of different temporal and spatial scales have been developed to investigate these dynamics. Due to the complexities of the CRU network and the spatiotemporal Ca dynamics, it is challenging to model the Ca cycling dynamics in the cardiac system, particularly at the tissue sales. In this article, we review the progress of modeling of Ca cycling in cardiac systems from single RyRs to the tissue scale, the pros and cons of the current models and different modeling approaches, and the challenges to be tackled in the future.
Collapse
Affiliation(s)
- Zhilin Qu
- Department of Medicine, David Geffen School of Medicine, University of California, A2-237 CHS, 650 Charles E. Young Drive South, Los Angeles, CA 90095, USA
- Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Dasen Yan
- Peng Cheng Laboratory, Shenzhen 518066, China
| | - Zhen Song
- Peng Cheng Laboratory, Shenzhen 518066, China
| |
Collapse
|
11
|
Shen X, van den Brink J, Bergan-Dahl A, Kolstad TR, Norden ES, Hou Y, Laasmaa M, Aguilar-Sanchez Y, Quick AP, Espe EKS, Sjaastad I, Wehrens XHT, Edwards AG, Soeller C, Louch WE. Prolonged β-adrenergic stimulation disperses ryanodine receptor clusters in cardiomyocytes. eLife 2022; 11:77725. [PMID: 35913125 PMCID: PMC9410709 DOI: 10.7554/elife.77725] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/31/2022] [Indexed: 11/17/2022] Open
Abstract
Ryanodine receptors (RyRs) exhibit dynamic arrangements in cardiomyocytes, and we previously showed that ‘dispersion’ of RyR clusters disrupts Ca2+ homeostasis during heart failure (HF) (Kolstad et al., eLife, 2018). Here, we investigated whether prolonged β-adrenergic stimulation, a hallmark of HF, promotes RyR cluster dispersion and examined the underlying mechanisms. We observed that treatment of healthy rat cardiomyocytes with isoproterenol for 1 hr triggered progressive fragmentation of RyR clusters. Pharmacological inhibition of Ca2+/calmodulin-dependent protein kinase II (CaMKII) reversed these effects, while cluster dispersion was reproduced by specific activation of CaMKII, and in mice with constitutively active Ser2814-RyR. A similar role of protein kinase A (PKA) in promoting RyR cluster fragmentation was established by employing PKA activation or inhibition. Progressive cluster dispersion was linked to declining Ca2+ spark fidelity and magnitude, and slowed release kinetics from Ca2+ propagation between more numerous RyR clusters. In healthy cells, this served to dampen the stimulatory actions of β-adrenergic stimulation over the longer term and protect against pro-arrhythmic Ca2+ waves. However, during HF, RyR dispersion was linked to impaired Ca2+ release. Thus, RyR localization and function are intimately linked via channel phosphorylation by both CaMKII and PKA, which, while finely tuned in healthy cardiomyocytes, underlies impaired cardiac function during pathology.
Collapse
Affiliation(s)
- Xin Shen
- Institute for Experimental Medical Research, Oslo University Hospital, Oslo, Norway
| | | | - Anna Bergan-Dahl
- Institute for Experimental Medical Research, Oslo University Hospital, Oslo, Norway
| | - Terje R Kolstad
- Insitute for Experimental Medical Research, Oslo University Hospital, Oslo, Norway
| | | | - Yufeng Hou
- KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Martin Laasmaa
- Institute for Experimental Medical Research, Oslo University Hospital, Oslo, Norway
| | - Yuriana Aguilar-Sanchez
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, United States
| | - Ann Pepper Quick
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, United States
| | | | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital, Oslo, Norway
| | - Xander H T Wehrens
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, United States
| | | | | | - William Edward Louch
- Institute for Experimental Medical Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
12
|
Weninger G, Pochechueva T, El Chami D, Luo X, Kohl T, Brandenburg S, Urlaub H, Guan K, Lenz C, Lehnart SE. Calpain cleavage of Junctophilin-2 generates a spectrum of calcium-dependent cleavage products and DNA-rich NT 1-fragment domains in cardiomyocytes. Sci Rep 2022; 12:10387. [PMID: 35725601 PMCID: PMC9209451 DOI: 10.1038/s41598-022-14320-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
Calpains are calcium-activated neutral proteases involved in the regulation of key signaling pathways. Junctophilin-2 (JP2) is a Calpain-specific proteolytic target and essential structural protein inside Ca2+ release units required for excitation-contraction coupling in cardiomyocytes. While downregulation of JP2 by Calpain cleavage in heart failure has been reported, the precise molecular identity of the Calpain cleavage sites and the (patho-)physiological roles of the JP2 proteolytic products remain controversial. We systematically analyzed the JP2 cleavage fragments as function of Calpain-1 versus Calpain-2 proteolytic activities, revealing that both Calpain isoforms preferentially cleave mouse JP2 at R565, but subsequently at three additional secondary Calpain cleavage sites. Moreover, we identified the Calpain-specific primary cleavage products for the first time in human iPSC-derived cardiomyocytes. Knockout of RyR2 in hiPSC-cardiomyocytes destabilized JP2 resulting in an increase of the Calpain-specific cleavage fragments. The primary N-terminal cleavage product NT1 accumulated in the nucleus of mouse and human cardiomyocytes in a Ca2+-dependent manner, closely associated with euchromatic chromosomal regions, where NT1 is proposed to function as a cardio-protective transcriptional regulator in heart failure. Taken together, our data suggest that stabilizing NT1 by preventing secondary cleavage events by Calpain and other proteases could be an important therapeutic target for future studies.
Collapse
Affiliation(s)
- Gunnar Weninger
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Robert-Koch-Str. 42a, 37075, Göttingen, Germany.,Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075, Göttingen, Germany.,Collaborative Research Center SFB1190 "Compartmental Gates and Contact Sites in Cells", University of Göttingen, 37073, Göttingen, Germany.,Department of Physiology and Cellular Biophysics, Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Tatiana Pochechueva
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Robert-Koch-Str. 42a, 37075, Göttingen, Germany.,Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075, Göttingen, Germany.,Collaborative Research Center SFB1190 "Compartmental Gates and Contact Sites in Cells", University of Göttingen, 37073, Göttingen, Germany
| | - Dana El Chami
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Robert-Koch-Str. 42a, 37075, Göttingen, Germany.,Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075, Göttingen, Germany.,Collaborative Research Center SFB1190 "Compartmental Gates and Contact Sites in Cells", University of Göttingen, 37073, Göttingen, Germany
| | - Xiaojing Luo
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, 01307, Dresden, Germany
| | - Tobias Kohl
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Robert-Koch-Str. 42a, 37075, Göttingen, Germany.,Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075, Göttingen, Germany.,Collaborative Research Center SFB1190 "Compartmental Gates and Contact Sites in Cells", University of Göttingen, 37073, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC2067), University of Göttingen, 37073, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), partner site, 37075, Göttingen, Germany
| | - Sören Brandenburg
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Robert-Koch-Str. 42a, 37075, Göttingen, Germany.,Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075, Göttingen, Germany.,Collaborative Research Center SFB1190 "Compartmental Gates and Contact Sites in Cells", University of Göttingen, 37073, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC2067), University of Göttingen, 37073, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), partner site, 37075, Göttingen, Germany
| | - Henning Urlaub
- Collaborative Research Center SFB1190 "Compartmental Gates and Contact Sites in Cells", University of Göttingen, 37073, Göttingen, Germany.,Proteomanalyse, Department of Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.,Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Kaomei Guan
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, 01307, Dresden, Germany
| | - Christof Lenz
- Proteomanalyse, Department of Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany. .,Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany.
| | - Stephan E Lehnart
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Robert-Koch-Str. 42a, 37075, Göttingen, Germany. .,Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075, Göttingen, Germany. .,Collaborative Research Center SFB1190 "Compartmental Gates and Contact Sites in Cells", University of Göttingen, 37073, Göttingen, Germany. .,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC2067), University of Göttingen, 37073, Göttingen, Germany. .,DZHK (German Centre for Cardiovascular Research), partner site, 37075, Göttingen, Germany.
| |
Collapse
|
13
|
Hernández Mesa M, van den Brink J, Louch WE, McCabe KJ, Rangamani P. Nanoscale organization of ryanodine receptor distribution and phosphorylation pattern determines the dynamics of calcium sparks. PLoS Comput Biol 2022; 18:e1010126. [PMID: 35666763 PMCID: PMC9203011 DOI: 10.1371/journal.pcbi.1010126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 06/16/2022] [Accepted: 04/20/2022] [Indexed: 11/18/2022] Open
Abstract
Super-resolution imaging techniques have provided a better understanding of the relationship between the nanoscale organization and function of ryanodine receptors (RyRs) in cardiomyocytes. Recent data have indicated that this relationship is disrupted in heart failure (HF), as RyRs are dispersed into smaller and more numerous clusters. However, RyRs are also hyperphosphorylated in this condition, and this is reported to occur preferentially within the cluster centre. Thus, the combined impact of RyR relocalization and sensitization on Ca2+ spark generation in failing cardiomyocytes is likely complex and these observations suggest that both the nanoscale organization of RyRs and the pattern of phosphorylated RyRs within clusters could be critical determinants of Ca2+ spark dynamics. To test this hypothesis, we used computational modeling to quantify the relationships between RyR cluster geometry, phosphorylation patterns, and sarcoplasmic reticulum (SR) Ca2+ release. We found that RyR cluster disruption results in a decrease in spark fidelity and longer sparks with a lower amplitude. Phosphorylation of some RyRs within the cluster can play a compensatory role, recovering healthy spark dynamics. Interestingly, our model predicts that such compensation is critically dependent on the phosphorylation pattern, as phosphorylation localized within the cluster center resulted in longer Ca2+ sparks and higher spark fidelity compared to a uniformly distributed phosphorylation pattern. Our results strongly suggest that both the phosphorylation pattern and nanoscale RyR reorganization are critical determinants of Ca2+ dynamics in HF.
Collapse
Affiliation(s)
- María Hernández Mesa
- Department of Computational Physiology, Simula Research Laboratory, Oslo, Norway
| | - Jonas van den Brink
- Department of Computational Physiology, Simula Research Laboratory, Oslo, Norway
| | - William E. Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K.G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Kimberly J. McCabe
- Department of Computational Physiology, Simula Research Laboratory, Oslo, Norway
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
14
|
Demydenko K, Roderick HL. The cardiomyocyte firestarter-RyR clusters ignite their neighbours after augmentation of Ca 2+ release by β-stimulation. Acta Physiol (Oxf) 2022; 234:e13798. [PMID: 35147280 DOI: 10.1111/apha.13798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Kateryna Demydenko
- Laboratory of Experimental Cardiology Department of Cardiovascular Sciences KU Leuven Leuven Belgium
| | - H. Llewelyn Roderick
- Laboratory of Experimental Cardiology Department of Cardiovascular Sciences KU Leuven Leuven Belgium
| |
Collapse
|
15
|
Colman MA, Alvarez-Lacalle E, Echebarria B, Sato D, Sutanto H, Heijman J. Multi-Scale Computational Modeling of Spatial Calcium Handling From Nanodomain to Whole-Heart: Overview and Perspectives. Front Physiol 2022; 13:836622. [PMID: 35370783 PMCID: PMC8964409 DOI: 10.3389/fphys.2022.836622] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Regulation of intracellular calcium is a critical component of cardiac electrophysiology and excitation-contraction coupling. The calcium spark, the fundamental element of the intracellular calcium transient, is initiated in specialized nanodomains which co-locate the ryanodine receptors and L-type calcium channels. However, calcium homeostasis is ultimately regulated at the cellular scale, by the interaction of spatially separated but diffusively coupled nanodomains with other sub-cellular and surface-membrane calcium transport channels with strong non-linear interactions; and cardiac electrophysiology and arrhythmia mechanisms are ultimately tissue-scale phenomena, regulated by the interaction of a heterogeneous population of coupled myocytes. Recent advances in imaging modalities and image-analysis are enabling the super-resolution reconstruction of the structures responsible for regulating calcium homeostasis, including the internal structure of nanodomains themselves. Extrapolating functional and imaging data from the nanodomain to the whole-heart is non-trivial, yet essential for translational insight into disease mechanisms. Computational modeling has important roles to play in relating structural and functional data at the sub-cellular scale and translating data across the scales. This review covers recent methodological advances that enable image-based modeling of the single nanodomain and whole cardiomyocyte, as well as the development of multi-scale simulation approaches to integrate data from nanometer to whole-heart. Firstly, methods to overcome the computational challenges of simulating spatial calcium dynamics in the nanodomain are discussed, including image-based modeling at this scale. Then, recent whole-cell models, capable of capturing a range of different structures (such as the T-system and mitochondria) and cellular heterogeneity/variability are discussed at two different levels of discretization. Novel methods to integrate the models and data across the scales and simulate stochastic dynamics in tissue-scale models are then discussed, enabling elucidation of the mechanisms by which nanodomain remodeling underlies arrhythmia and contractile dysfunction. Perspectives on model differences and future directions are provided throughout.
Collapse
Affiliation(s)
- Michael A. Colman
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | | | - Blas Echebarria
- Departament de Fisica, Universitat Politècnica de Catalunya-BarcelonaTech, Barcelona, Spain
| | - Daisuke Sato
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Henry Sutanto
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY, United States
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
16
|
Louch WE, Perdreau-Dahl H, Edwards AG. Image-Driven Modeling of Nanoscopic Cardiac Function: Where Have We Come From, and Where Are We Going? Front Physiol 2022; 13:834211. [PMID: 35356084 PMCID: PMC8959215 DOI: 10.3389/fphys.2022.834211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/31/2022] [Indexed: 11/24/2022] Open
Abstract
Complementary developments in microscopy and mathematical modeling have been critical to our understanding of cardiac excitation-contraction coupling. Historically, limitations imposed by the spatial or temporal resolution of imaging methods have been addressed through careful mathematical interrogation. Similarly, limitations imposed by computational power have been addressed by imaging macroscopic function in large subcellular domains or in whole myocytes. As both imaging resolution and computational tractability have improved, the two approaches have nearly merged in terms of the scales that they can each be used to interrogate. With this review we will provide an overview of these advances and their contribution to understanding ventricular myocyte function, including exciting developments over the last decade. We specifically focus on experimental methods that have pushed back limits of either spatial or temporal resolution of nanoscale imaging (e.g., DNA-PAINT), or have permitted high resolution imaging on large cellular volumes (e.g., serial scanning electron microscopy). We also review the progression of computational approaches used to integrate and interrogate these new experimental data sources, and comment on near-term advances that may unify understanding of the underlying biology. Finally, we comment on several outstanding questions in cardiac physiology that stand to benefit from a concerted and complementary application of these new experimental and computational methods.
Collapse
Affiliation(s)
- William E. Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Harmonie Perdreau-Dahl
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | | |
Collapse
|
17
|
Brandenburg S, Pawlowitz J, Steckmeister V, Subramanian H, Uhlenkamp D, Scardigli M, Mushtaq M, Amlaz SI, Kohl T, Wegener JW, Arvanitis DA, Sanoudou D, Sacconi L, Hasenfuss G, Voigt N, Nikolaev VO, Lehnart SE. A junctional cAMP compartment regulates rapid Ca 2+ signaling in atrial myocytes. J Mol Cell Cardiol 2022; 165:141-157. [PMID: 35033544 DOI: 10.1016/j.yjmcc.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/15/2021] [Accepted: 01/08/2022] [Indexed: 10/19/2022]
Abstract
Axial tubule junctions with the sarcoplasmic reticulum control the rapid intracellular Ca2+-induced Ca2+ release that initiates atrial contraction. In atrial myocytes we previously identified a constitutively increased ryanodine receptor (RyR2) phosphorylation at junctional Ca2+ release sites, whereas non-junctional RyR2 clusters were phosphorylated acutely following β-adrenergic stimulation. Here, we hypothesized that the baseline synthesis of 3',5'-cyclic adenosine monophosphate (cAMP) is constitutively augmented in the axial tubule junctional compartments of atrial myocytes. Confocal immunofluorescence imaging of atrial myocytes revealed that junctin, binding to RyR2 in the sarcoplasmic reticulum, was densely clustered at axial tubule junctions. Interestingly, a new transgenic junctin-targeted FRET cAMP biosensor was exclusively co-clustered in the junctional compartment, and hence allowed to monitor cAMP selectively in the vicinity of junctional RyR2 channels. To dissect local cAMP levels at axial tubule junctions versus subsurface Ca2+ release sites, we developed a confocal FRET imaging technique for living atrial myocytes. A constitutively high adenylyl cyclase activity sustained increased local cAMP levels at axial tubule junctions, whereas β-adrenergic stimulation overcame this cAMP compartmentation resulting in additional phosphorylation of non-junctional RyR2 clusters. Adenylyl cyclase inhibition, however, abolished the junctional RyR2 phosphorylation and decreased L-type Ca2+ channel currents, while FRET imaging showed a rapid cAMP decrease. In conclusion, FRET biosensor imaging identified compartmentalized, constitutively augmented cAMP levels in junctional dyads, driving both the locally increased phosphorylation of RyR2 clusters and larger L-type Ca2+ current density in atrial myocytes. This cell-specific cAMP nanodomain is maintained by a constitutively increased adenylyl cyclase activity, contributing to the rapid junctional Ca2+-induced Ca2+ release, whereas β-adrenergic stimulation overcomes the junctional cAMP compartmentation through cell-wide activation of non-junctional RyR2 clusters.
Collapse
Affiliation(s)
- Sören Brandenburg
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany; DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany.
| | - Jan Pawlowitz
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Vanessa Steckmeister
- Heart Research Center Göttingen, Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
| | - Hariharan Subramanian
- Institute of Experimental Cardiovascular Research, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Dennis Uhlenkamp
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Marina Scardigli
- Department of Physics and Astronomy, University of Florence, Florence, Italy; European Laboratory for Non-Linear Spectroscopy and National Institute of Optics (INO-CNR), Sesto Fiorentino, Italy
| | - Mufassra Mushtaq
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Saskia I Amlaz
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
| | - Tobias Kohl
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
| | - Jörg W Wegener
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
| | - Demetrios A Arvanitis
- Molecular Biology Division, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Despina Sanoudou
- Molecular Biology Division, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Leonardo Sacconi
- European Laboratory for Non-Linear Spectroscopy and National Institute of Optics (INO-CNR), Sesto Fiorentino, Italy; Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Gerd Hasenfuss
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany; DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
| | - Niels Voigt
- DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany; Heart Research Center Göttingen, Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Stephan E Lehnart
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany; DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany; BioMET, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
18
|
Abstract
Junctophilins (JPHs) comprise a family of structural proteins that connect the plasma membrane to intracellular organelles such as the endo/sarcoplasmic reticulum. Tethering of these membrane structures results in the formation of highly organized subcellular junctions that play important signaling roles in all excitable cell types. There are four JPH isoforms, expressed primarily in muscle and neuronal cell types. Each JPH protein consists of 6 'membrane occupation and recognition nexus' (MORN) motifs, a joining region connecting these to another set of 2 MORN motifs, a putative alpha-helical region, a divergent region exhibiting low homology between JPH isoforms, and a carboxy-terminal transmembrane region anchoring into the ER/SR membrane. JPH isoforms play essential roles in developing and maintaining subcellular membrane junctions. Conversely, inherited mutations in JPH2 cause hypertrophic or dilated cardiomyopathy, while trinucleotide expansions in the JPH3 gene cause Huntington Disease-Like 2. Loss of JPH1 protein levels can cause skeletal myopathy, while loss of cardiac JPH2 levels causes heart failure and atrial fibrillation, among other disease. This review will provide a comprehensive overview of the JPH gene family, phylogeny, and evolutionary analysis of JPH genes and other MORN domain proteins. JPH biogenesis, membrane tethering, and binding partners will be discussed, as well as functional roles of JPH isoforms in excitable cells. Finally, potential roles of JPH isoform deficits in human disease pathogenesis will be reviewed.
Collapse
Affiliation(s)
- Stephan E Lehnart
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, United States; Departments of Molecular Physiology and Biophysics, Medicine (Cardiology), Pediatrics (Cardiology), Neuroscience, and Center for Space Medicine, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
19
|
Iaparov BI, Zahradnik I, Moskvin AS, Zahradníková A. In silico simulations reveal that RYR distribution affects the dynamics of calcium release in cardiac myocytes. J Gen Physiol 2021; 153:211900. [PMID: 33735373 PMCID: PMC7980188 DOI: 10.1085/jgp.202012685] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 02/08/2021] [Indexed: 11/20/2022] Open
Abstract
The dyads of cardiac myocytes contain ryanodine receptors (RYRs) that generate calcium sparks upon activation. To test how geometric factors of RYR distribution contribute to the formation of calcium sparks, which cannot be addressed experimentally, we performed in silico simulations on a large set of models of calcium release sites (CRSs). Our models covered the observed range of RYR number, density, and spatial arrangement. The calcium release function of CRSs was modeled by RYR openings, with an open probability dependent on concentrations of free Ca2+ and Mg2+ ions, in a rapidly buffered system, with a constant open RYR calcium current. We found that simulations of spontaneous sparks by repeatedly opening one of the RYRs in a CRS produced three different types of calcium release events (CREs) in any of the models. Transformation of simulated CREs into fluorescence signals yielded calcium sparks with characteristics close to the observed ones. CRE occurrence varied broadly with the spatial distribution of RYRs in the CRS but did not consistently correlate with RYR number, surface density, or calcium current. However, it correlated with RYR coupling strength, defined as the weighted product of RYR vicinity and calcium current, so that CRE characteristics of all models followed the same state-response function. This finding revealed the synergy between structure and function of CRSs in shaping dyad function. Lastly, rearrangements of RYRs simulating hypothetical experiments on splitting and compaction of a dyad revealed an increased propensity to generate spontaneous sparks and an overall increase in calcium release in smaller and more compact dyads, thus underlying the importance and physiological role of RYR arrangement in cardiac myocytes.
Collapse
Affiliation(s)
- Bogdan I Iaparov
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.,Research Institute of Physics and Applied Mathematics, and Department of Theoretical and Mathematical Physics, Ural Federal University, Ekaterinburg, Russia
| | - Ivan Zahradnik
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Alexander S Moskvin
- Research Institute of Physics and Applied Mathematics, and Department of Theoretical and Mathematical Physics, Ural Federal University, Ekaterinburg, Russia
| | - Alexandra Zahradníková
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
20
|
Laasmaa M, Branovets J, Barsunova K, Karro N, Lygate CA, Birkedal R, Vendelin M. Altered calcium handling in cardiomyocytes from arginine-glycine amidinotransferase-knockout mice is rescued by creatine. Am J Physiol Heart Circ Physiol 2021; 320:H805-H825. [PMID: 33275525 DOI: 10.1152/ajpheart.00300.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/30/2020] [Accepted: 11/23/2020] [Indexed: 01/14/2023]
Abstract
The creatine kinase system facilitates energy transfer between mitochondria and the major ATPases in the heart. Creatine-deficient mice, which lack arginine-glycine amidinotransferase (AGAT) to synthesize creatine and homoarginine, exhibit reduced cardiac contractility. We studied how the absence of a functional CK system influences calcium handling in isolated cardiomyocytes from AGAT-knockouts and wild-type littermates as well as in AGAT-knockout mice receiving lifelong creatine supplementation via the food. Using a combination of whole cell patch clamp and fluorescence microscopy, we demonstrate that the L-type calcium channel (LTCC) current amplitude and voltage range of activation were significantly lower in AGAT-knockout compared with wild-type littermates. Additionally, the inactivation of LTCC and the calcium transient decay were significantly slower. According to our modeling results, these changes can be reproduced by reducing three parameters in knockout mice when compared with wild-type: LTCC conductance, the exchange constant of Ca2+ transfer between subspace and cytosol, and SERCA activity. Because tissue expression of LTCC and SERCA protein were not significantly different between genotypes, this suggests the involvement of posttranslational regulatory mechanisms or structural reorganization. The AGAT-knockout phenotype of calcium handling was fully reversed by dietary creatine supplementation throughout life. Our results indicate reduced calcium cycling in cardiomyocytes from AGAT-knockouts and suggest that the creatine kinase system is important for the development of calcium handling in the heart.NEW & NOTEWORTHY Creatine-deficient mice lacking arginine-glycine amidinotransferase exhibit compromised cardiac function. Here, we show that this is at least partially due to an overall slowing of calcium dynamics. Calcium influx into the cytosol via the L-type calcium current (LTCC) is diminished, and the rate of the sarcoendoplasmic reticulum calcium ATPase (SERCA) pumping calcium back into the sarcoplasmic reticulum is slower. The expression of LTCC and SERCA did not change, suggesting that the changes are regulatory.
Collapse
Affiliation(s)
- Martin Laasmaa
- Laboratory of Systems Biology, Department of Cybernetics, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Jelena Branovets
- Laboratory of Systems Biology, Department of Cybernetics, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Karina Barsunova
- Laboratory of Systems Biology, Department of Cybernetics, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Niina Karro
- Laboratory of Systems Biology, Department of Cybernetics, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Craig A Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, and the British Heart Foundation Centre of Research Excellence, University of Oxford, Tallinn, United Kingdom
| | - Rikke Birkedal
- Laboratory of Systems Biology, Department of Cybernetics, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Marko Vendelin
- Laboratory of Systems Biology, Department of Cybernetics, School of Science, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
21
|
Timmermann V, McCulloch AD. Mechano-Electric Coupling and Arrhythmogenic Current Generation in a Computational Model of Coupled Myocytes. Front Physiol 2020; 11:519951. [PMID: 33362569 PMCID: PMC7758443 DOI: 10.3389/fphys.2020.519951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 11/10/2020] [Indexed: 11/25/2022] Open
Abstract
A wide range of arrhythmogenic phenotypes have been associated with heterogeneous mechanical dyskinesis. Pro-arrhythmic effects are often associated with dysregulated intra-cellular calcium handling, especially via the development of intra- and inter-cellular calcium waves. Experimental evidence suggests that mechanical strain can contribute to the generation and maintenance of these calcium waves via a variety of mechano-electric coupling mechanisms. Most model studies of mechano-electric coupling mechanisms have been focused on mechano-sensitive ion channels, even though experimental studies have shown that intra- and inter-cellular calcium waves triggered by mechanical perturbations are likely to be more prevalent pro-arrhythmic mechanisms in the diseased heart. A one-dimensional strongly coupled computational model of electromechanics in rabbit ventricular cardiomyocytes showed that specific myocyte stretch sequences can modulate the susceptibility threshold for delayed after-depolarizations. In simulations of mechanically-triggered calcium waves in cardiomyocytes coupled to fibroblasts, susceptibility to calcium wave propagation was reduced as the current through the gap junction caused current drain from the myocytes. In 1D multi-cellular arrays coupled via gap junctions, mechanically-induced waves may contribute to synchronizing arrhythmogenic calcium waves and after-depolarizations.
Collapse
Affiliation(s)
- Viviane Timmermann
- Simula Research Laboratory, Department of Computational Physiology, Fornebu, Norway
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA, United States
| | - Andrew D. McCulloch
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
22
|
Cardiomyocyte calcium handling in health and disease: Insights from in vitro and in silico studies. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 157:54-75. [PMID: 32188566 DOI: 10.1016/j.pbiomolbio.2020.02.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/31/2019] [Accepted: 02/29/2020] [Indexed: 02/07/2023]
Abstract
Calcium (Ca2+) plays a central role in cardiomyocyte excitation-contraction coupling. To ensure an optimal electrical impulse propagation and cardiac contraction, Ca2+ levels are regulated by a variety of Ca2+-handling proteins. In turn, Ca2+ modulates numerous electrophysiological processes. Accordingly, Ca2+-handling abnormalities can promote cardiac arrhythmias via various mechanisms, including the promotion of afterdepolarizations, ion-channel modulation and structural remodeling. In the last 30 years, significant improvements have been made in the computational modeling of cardiomyocyte Ca2+ handling under physiological and pathological conditions. However, numerous questions involving the Ca2+-dependent regulation of different macromolecular complexes, cross-talk between Ca2+-dependent regulatory pathways operating over a wide range of time scales, and bidirectional interactions between electrophysiology and mechanics remain to be addressed by in vitro and in silico studies. A better understanding of disease-specific Ca2+-dependent proarrhythmic mechanisms may facilitate the development of improved therapeutic strategies. In this review, we describe the fundamental mechanisms of cardiomyocyte Ca2+ handling in health and disease, and provide an overview of currently available computational models for cardiomyocyte Ca2+ handling. Finally, we discuss important uncertainties and open questions about cardiomyocyte Ca2+ handling and highlight how synergy between in vitro and in silico studies may help to answer several of these issues.
Collapse
|
23
|
Gilbert G, Demydenko K, Dries E, Puertas RD, Jin X, Sipido K, Roderick HL. Calcium Signaling in Cardiomyocyte Function. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035428. [PMID: 31308143 DOI: 10.1101/cshperspect.a035428] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Rhythmic increases in intracellular Ca2+ concentration underlie the contractile function of the heart. These heart muscle-wide changes in intracellular Ca2+ are induced and coordinated by electrical depolarization of the cardiomyocyte sarcolemma by the action potential. Originating at the sinoatrial node, conduction of this electrical signal throughout the heart ensures synchronization of individual myocytes into an effective cardiac pump. Ca2+ signaling pathways also regulate gene expression and cardiomyocyte growth during development and in pathology. These fundamental roles of Ca2+ in the heart are illustrated by the prevalence of altered Ca2+ homeostasis in cardiovascular diseases. Indeed, heart failure (an inability of the heart to support hemodynamic needs), rhythmic disturbances, and inappropriate cardiac growth all share an involvement of altered Ca2+ handling. The prevalence of these pathologies, contributing to a third of all deaths in the developed world as well as to substantial morbidity makes understanding the mechanisms of Ca2+ handling and dysregulation in cardiomyocytes of great importance.
Collapse
Affiliation(s)
- Guillaume Gilbert
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - Kateryna Demydenko
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - Eef Dries
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - Rosa Doñate Puertas
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - Xin Jin
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - Karin Sipido
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - H Llewelyn Roderick
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| |
Collapse
|
24
|
Gillespie D. Recruiting RyRs to Open in a Ca 2+ Release Unit: Single-RyR Gating Properties Make RyR Group Dynamics. Biophys J 2019; 118:232-242. [PMID: 31839264 DOI: 10.1016/j.bpj.2019.11.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/01/2019] [Accepted: 11/19/2019] [Indexed: 01/01/2023] Open
Abstract
In cardiac myocytes, clusters of type-2 ryanodine receptors (RyR2s) release Ca2+ from the sarcoplasmic reticulum (SR) via a positive feedback mechanism in which fluxed Ca2+ activates nearby RyRs. Although the general principles of this are understood, less is known about how single-RyR gating properties define the RyR group dynamics in an array of many channels. Here, we examine this using simulations with three models of RyR gating that have identical open probabilities: the commonly used two-state Markov gating model, one that utilizes multiple exponentials to fit single-channel open time (OT) and closed time (CT) distributions, and an extension of this multiexponential model that also includes experimentally measured correlations between single-channel OTs and CTs. The simulations of RyR clusters that utilize the multiexponential gating model produce infrequent Ca2+ release events with relatively few open RyRs. Ca2+ release events become even smaller when OT/CT correlations are included. This occurs because the correlations produce a small but consistent bias against recruiting more RyRs to open during the middle of a Ca2+ release event, between the initiation and termination phases (which are unaltered compared to the uncorrelated simulations). In comparison, the two-state model produces frequent, large, and long Ca2+ release events because it had a recruitment bias in favor of opening more RyRs. This difference stems from the two-state model's single-RyR OT and CT distributions being qualitatively different from the experimental ones. Thus, the details of single-RyR gating can profoundly affect SR Ca2+ release even if open probability and mean OTs and CTs are identical. We also show that Ca2+ release events can terminate spontaneously without any reduction in SR [Ca2+], luminal regulation, Ca2+-dependent inactivation, or physical coupling between RyRs when Ca2+ flux is below a threshold value. This supports and extends the pernicious attrition/induction decay hypothesis that SR Ca2+ release events terminate below a threshold Ca2+ flux.
Collapse
Affiliation(s)
- Dirk Gillespie
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, Illinois.
| |
Collapse
|
25
|
Boyman L, Karbowski M, Lederer WJ. Regulation of Mitochondrial ATP Production: Ca 2+ Signaling and Quality Control. Trends Mol Med 2019; 26:21-39. [PMID: 31767352 DOI: 10.1016/j.molmed.2019.10.007] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/16/2019] [Accepted: 10/23/2019] [Indexed: 02/06/2023]
Abstract
Cardiac ATP production primarily depends on oxidative phosphorylation in mitochondria and is dynamically regulated by Ca2+ levels in the mitochondrial matrix as well as by cytosolic ADP. We discuss mitochondrial Ca2+ signaling and its dysfunction which has recently been linked to cardiac pathologies including arrhythmia and heart failure. Similar dysfunction in other excitable and long-lived cells including neurons is associated with neurodegenerative diseases such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and Parkinson's disease (PD). Central to this new understanding is crucial Ca2+ regulation of both mitochondrial quality control and ATP production. Mitochondria-associated membrane (MAM) signaling from the sarcoplasmic reticulum (SR) and the endoplasmic reticulum (ER) to mitochondria is discussed. We propose future research directions that emphasize a need to define quantitatively the physiological roles of MAMs, as well as mitochondrial quality control and ATP production.
Collapse
Affiliation(s)
- Liron Boyman
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mariusz Karbowski
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - W Jonathan Lederer
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
26
|
Cosi FG, Giese W, Neubert W, Luther S, Chamakuri N, Parlitz U, Falcke M. Multiscale Modeling of Dyadic Structure-Function Relation in Ventricular Cardiac Myocytes. Biophys J 2019; 117:2409-2419. [PMID: 31635789 PMCID: PMC6990380 DOI: 10.1016/j.bpj.2019.09.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 01/20/2023] Open
Abstract
Cardiovascular disease is often related to defects of subcellular components in cardiac myocytes, specifically in the dyadic cleft, which include changes in cleft geometry and channel placement. Modeling of these pathological changes requires both spatially resolved cleft as well as whole cell level descriptions. We use a multiscale model to create dyadic structure-function relationships to explore the impact of molecular changes on whole cell electrophysiology and calcium cycling. This multiscale model incorporates stochastic simulation of individual L-type calcium channels and ryanodine receptor channels, spatially detailed concentration dynamics in dyadic clefts, rabbit membrane potential dynamics, and a system of partial differential equations for myoplasmic and lumenal free Ca2+ and Ca2+-binding molecules in the bulk of the cell. We found action potential duration, systolic, and diastolic [Ca2+] to respond most sensitively to changes in L-type calcium channel current. The ryanodine receptor channel cluster structure inside dyadic clefts was found to affect all biomarkers investigated. The shape of clusters observed in experiments by Jayasinghe et al. and channel density within the cluster (characterized by mean occupancy) showed the strongest correlation to the effects on biomarkers.
Collapse
Affiliation(s)
- Filippo G Cosi
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany; Georg-August-Universität Göttingen, Institute for the Dynamics of Complex Systems, Göttingen, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Wolfgang Giese
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Wilhelm Neubert
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Stefan Luther
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany; Georg-August-Universität Göttingen, Institute for the Dynamics of Complex Systems, Göttingen, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Nagaiah Chamakuri
- Institute of Applied Mathematics, University of Hohenheim, Stuttgart, Germany
| | - Ulrich Parlitz
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany; Georg-August-Universität Göttingen, Institute for the Dynamics of Complex Systems, Göttingen, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Martin Falcke
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany; Department of Physics, Humboldt University Berlin, Germany.
| |
Collapse
|
27
|
Blom AE, Campello HR, Lester HA, Gallagher T, Dougherty DA. Probing Binding Interactions of Cytisine Derivatives to the α4β2 Nicotinic Acetylcholine Receptor. J Am Chem Soc 2019; 141:15840-15849. [DOI: 10.1021/jacs.9b06580] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | - Hugo Rego Campello
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | | | - Timothy Gallagher
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | | |
Collapse
|
28
|
Nader M. The SLMAP/Striatin complex: An emerging regulator of normal and abnormal cardiac excitation-contraction coupling. Eur J Pharmacol 2019; 858:172491. [PMID: 31233748 DOI: 10.1016/j.ejphar.2019.172491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 12/01/2022]
Abstract
The excitation-contraction (E-C) module involves a harmonized correspondence between the sarcolemma and the sarcoplasmic reticulum. This is provided by membrane proteins, which primarily shape the caveolae, the T-tubule/Sarcoplasmic reticulum (TT/SR) junction, and the intercalated discs (ICDs). Distortion of either one of these structures impairs myocardial contraction, and subsequently translates into cardiac failure. Thus, detailed studies on the molecular cues of the E-C module are becoming increasingly necessary to pharmacologically eradicate cardiac failure Herein we reviewed the organization of caveolae, TT/SR junctions, and the ICDs in the heart, with special attention to the Sarcolemma Membrane Associated Protein (SLMAP) and striatin (STRN) in cardiac membranes biology and cardiomyocyte contraction. We emphasized on their in vivo and in vitro signaling in cardiac function/dysfunction. SLMAP is a cardiac membrane protein that plays an important role in E-C coupling and the adrenergic response of the heart. Similarly, STRN is a dynamic protein that is also involved in cardiac E-C coupling and ICD-related cardiomyopathies. Both SLMAP and STRN are linked to cardiac conditions, including heart failure, and their role in cardiomyocyte function was elucidated in our laboratory. They interact together in a protein complex that holds therapeutic potentials for cardiac dysfunction. This review is the first of its kind to conceptualize the role of the SLMAP/STRN complex in cardiac function and failure. It provides in depth information on the signaling of these two proteins and projects their interaction as a novel therapeutic target for cardiac failure.
Collapse
Affiliation(s)
- Moni Nader
- Department of Physiological Sciences, College of Medicine, Alfaisal University, Riyadh, 11533, P.O. Box 50927, Saudi Arabia; Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
| |
Collapse
|
29
|
Alsina KM, Hulsurkar M, Brandenburg S, Kownatzki-Danger D, Lenz C, Urlaub H, Abu-Taha I, Kamler M, Chiang DY, Lahiri SK, Reynolds JO, Quick AP, Scott L, Word TA, Gelves MD, Heck AJR, Li N, Dobrev D, Lehnart SE, Wehrens XHT. Loss of Protein Phosphatase 1 Regulatory Subunit PPP1R3A Promotes Atrial Fibrillation. Circulation 2019; 140:681-693. [PMID: 31185731 DOI: 10.1161/circulationaha.119.039642] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Abnormal calcium (Ca2+) release from the sarcoplasmic reticulum (SR) contributes to the pathogenesis of atrial fibrillation (AF). Increased phosphorylation of 2 proteins essential for normal SR-Ca2+ cycling, the type-2 ryanodine receptor (RyR2) and phospholamban (PLN), enhances the susceptibility to AF, but the underlying mechanisms remain unclear. Protein phosphatase 1 (PP1) limits steady-state phosphorylation of both RyR2 and PLN. Proteomic analysis uncovered a novel PP1-regulatory subunit (PPP1R3A [PP1 regulatory subunit type 3A]) in the RyR2 macromolecular channel complex that has been previously shown to mediate PP1 targeting to PLN. We tested the hypothesis that reduced PPP1R3A levels contribute to AF pathogenesis by reducing PP1 binding to both RyR2 and PLN. METHODS Immunoprecipitation, mass spectrometry, and complexome profiling were performed from the atrial tissue of patients with AF and from cardiac lysates of wild-type and Pln-knockout mice. Ppp1r3a-knockout mice were generated by CRISPR-mediated deletion of exons 2 to 3. Ppp1r3a-knockout mice and wild-type littermates were subjected to in vivo programmed electrical stimulation to determine AF susceptibility. Isolated atrial cardiomyocytes were used for Stimulated Emission Depletion superresolution microscopy and confocal Ca2+ imaging. RESULTS Proteomics identified the PP1-regulatory subunit PPP1R3A as a novel RyR2-binding partner, and coimmunoprecipitation confirmed PPP1R3A binding to RyR2 and PLN. Complexome profiling and Stimulated Emission Depletion imaging revealed that PLN is present in the PPP1R3A-RyR2 interaction, suggesting the existence of a previously unknown SR nanodomain composed of both RyR2 and PLN/sarco/endoplasmic reticulum calcium ATPase-2a macromolecular complexes. This novel RyR2/PLN/sarco/endoplasmic reticulum calcium ATPase-2a complex was also identified in human atria. Genetic ablation of Ppp1r3a in mice impaired binding of PP1 to both RyR2 and PLN. Reduced PP1 targeting was associated with increased phosphorylation of RyR2 and PLN, aberrant SR-Ca2+ release in atrial cardiomyocytes, and enhanced susceptibility to pacing-induced AF. Finally, PPP1R3A was progressively downregulated in the atria of patients with paroxysmal and persistent (chronic) AF. CONCLUSIONS PPP1R3A is a novel PP1-regulatory subunit within the RyR2 channel complex. Reduced PPP1R3A levels impair PP1 targeting and increase phosphorylation of both RyR2 and PLN. PPP1R3A deficiency promotes abnormal SR-Ca2+ release and increases AF susceptibility in mice. Given that PPP1R3A is downregulated in patients with AF, this regulatory subunit may represent a new target for AF therapeutic strategies.
Collapse
Affiliation(s)
- Katherina M Alsina
- Integrative Molecular and Biomedical Sciences (K.M.A., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX.,Cardiovascular Research Institute (K.MA., M.H., D.Y.C., S.K.L., J.O.R., A.P.Q., L.S., T.A.W., M.D.G., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX
| | - Mohit Hulsurkar
- Cardiovascular Research Institute (K.MA., M.H., D.Y.C., S.K.L., J.O.R., A.P.Q., L.S., T.A.W., M.D.G., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX.,Department of Molecular Physiology & Biophysics (M.H., S.K.L., J.O.R., A.P.Q., L.S., T.A.W., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX
| | - Sören Brandenburg
- Cellular Biophysics and Translational Cardiology Research Section, Heart Research Center Göttingen, and Department of Cardiology & Pneumology, University Medical Center of Göttingen, Germany (S.B., D.K.-D., S.E.L.)
| | - Daniel Kownatzki-Danger
- Cardiovascular Research Institute (K.MA., M.H., D.Y.C., S.K.L., J.O.R., A.P.Q., L.S., T.A.W., M.D.G., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX.,Cellular Biophysics and Translational Cardiology Research Section, Heart Research Center Göttingen, and Department of Cardiology & Pneumology, University Medical Center of Göttingen, Germany (S.B., D.K.-D., S.E.L.)
| | - Christof Lenz
- Institute of Clinical Chemistry, University Medical Center Göttingen, and Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Germany (C.L., H.U.)
| | - Henning Urlaub
- Institute of Clinical Chemistry, University Medical Center Göttingen, and Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Germany (C.L., H.U.)
| | - Issam Abu-Taha
- Institute of Pharmacology, West Germany Heart and Vascular Center (I.A.-T., D.D.), University Duisburg-Essen, Germany
| | - Markus Kamler
- Department of Thoracic and Cardiovascular Surgery Huttrop (M.K.), University Duisburg-Essen, Germany
| | - David Y Chiang
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (D.Y.C.)
| | - Satadru K Lahiri
- Cardiovascular Research Institute (K.MA., M.H., D.Y.C., S.K.L., J.O.R., A.P.Q., L.S., T.A.W., M.D.G., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX.,Department of Molecular Physiology & Biophysics (M.H., S.K.L., J.O.R., A.P.Q., L.S., T.A.W., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX
| | - Julia O Reynolds
- Cardiovascular Research Institute (K.MA., M.H., D.Y.C., S.K.L., J.O.R., A.P.Q., L.S., T.A.W., M.D.G., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX.,Department of Molecular Physiology & Biophysics (M.H., S.K.L., J.O.R., A.P.Q., L.S., T.A.W., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX
| | - Ann P Quick
- Cardiovascular Research Institute (K.MA., M.H., D.Y.C., S.K.L., J.O.R., A.P.Q., L.S., T.A.W., M.D.G., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX.,Department of Molecular Physiology & Biophysics (M.H., S.K.L., J.O.R., A.P.Q., L.S., T.A.W., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX
| | - Larry Scott
- Cardiovascular Research Institute (K.MA., M.H., D.Y.C., S.K.L., J.O.R., A.P.Q., L.S., T.A.W., M.D.G., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX.,Department of Molecular Physiology & Biophysics (M.H., S.K.L., J.O.R., A.P.Q., L.S., T.A.W., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX
| | - Tarah A Word
- Cardiovascular Research Institute (K.MA., M.H., D.Y.C., S.K.L., J.O.R., A.P.Q., L.S., T.A.W., M.D.G., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX.,Department of Molecular Physiology & Biophysics (M.H., S.K.L., J.O.R., A.P.Q., L.S., T.A.W., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX
| | - Maria D Gelves
- Cardiovascular Research Institute (K.MA., M.H., D.Y.C., S.K.L., J.O.R., A.P.Q., L.S., T.A.W., M.D.G., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, The Netherlands (A.J.R.H.).,Netherlands Proteomics Centre, Utrecht (A.J.R.H.)
| | - Na Li
- Integrative Molecular and Biomedical Sciences (K.M.A., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX.,Cardiovascular Research Institute (K.MA., M.H., D.Y.C., S.K.L., J.O.R., A.P.Q., L.S., T.A.W., M.D.G., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX.,Department of Molecular Physiology & Biophysics (M.H., S.K.L., J.O.R., A.P.Q., L.S., T.A.W., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX.,Department of Medicine (Cardiology), Baylor College of Medicine (N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX
| | - Dobromir Dobrev
- Institute of Pharmacology, West Germany Heart and Vascular Center (I.A.-T., D.D.), University Duisburg-Essen, Germany.,DZHK (German Centre for Cardiovascular Research) site Goettingen (S.E.L.)
| | - Stephan E Lehnart
- Cellular Biophysics and Translational Cardiology Research Section, Heart Research Center Göttingen, and Department of Cardiology & Pneumology, University Medical Center of Göttingen, Germany (S.B., D.K.-D., S.E.L.)
| | - Xander H T Wehrens
- Integrative Molecular and Biomedical Sciences (K.M.A., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX.,Cardiovascular Research Institute (K.MA., M.H., D.Y.C., S.K.L., J.O.R., A.P.Q., L.S., T.A.W., M.D.G., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX.,Department of Molecular Physiology & Biophysics (M.H., S.K.L., J.O.R., A.P.Q., L.S., T.A.W., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX.,Department of Medicine (Cardiology), Baylor College of Medicine (N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX.,Department of Pediatrics (Cardiology) (X.H.T.W.), Baylor College of Medicine, Houston, TX
| |
Collapse
|
30
|
Mechanisms of Calcium Leak from Cardiac Sarcoplasmic Reticulum Revealed by Statistical Mechanics. Biophys J 2019; 116:2212-2223. [PMID: 31103231 DOI: 10.1016/j.bpj.2019.04.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/17/2019] [Accepted: 04/26/2019] [Indexed: 11/21/2022] Open
Abstract
Heart muscle contraction is normally activated by a synchronized Ca release from sarcoplasmic reticulum (SR), a major intracellular Ca store. However, under abnormal conditions, Ca leaks from the SR, decreasing heart contraction amplitude and increasing risk of life-threatening arrhythmia. The mechanisms and regimes of SR operation generating the abnormal Ca leak remain unclear. Here, we employed both numerical and analytical modeling to get mechanistic insights into the emergent Ca leak phenomenon. Our numerical simulations using a detailed realistic model of the Ca release unit reveal sharp transitions resulting in Ca leak. The emergence of leak is closely mapped mathematically to the Ising model from statistical mechanics. The system steady-state behavior is determined by two aggregate parameters: the analogs of magnetic field (h) and the inverse temperature (β) in the Ising model, for which we have explicit formulas in terms of SR [Ca] and release channel opening and closing rates. The classification of leak regimes takes the shape of a phase β-h diagram, with the regime boundaries occurring at h = 0 and a critical value of β (β∗) that we estimate using a classical Ising model and mean field theory. Our theory predicts that a synchronized Ca leak will occur when h > 0 and β >β∗, and a disordered leak occurs when β <β∗ and h is not too negative. The disorder leak is distinguished from synchronized leak (in long-lasting sparks) by larger Peierls contour lengths, an output parameter reflecting degree of disorder. Thus, in addition to our detailed numerical model approach, we also offer an instantaneous computational tool using analytical formulas of the Ising model for respective ryanodine receptor parameters and SR Ca load that describe and classify phase transitions and leak emergence.
Collapse
|
31
|
Kojic M, Milosevic M, Simic V, Geroski V, Ziemys A, Filipovic N, Ferrari M. Smeared multiscale finite element model for electrophysiology and ionic transport in biological tissue. Comput Biol Med 2019; 108:288-304. [PMID: 31015049 DOI: 10.1016/j.compbiomed.2019.03.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 10/27/2022]
Abstract
Basic functions of living organisms are governed by the nervous system through bidirectional signals transmitted from the brain to neural networks. These signals are similar to electrical waves. In electrophysiology the goal is to study the electrical properties of biological cells and tissues, and the transmission of signals. From a physics perspective, there exists a field of electrical potential within the living body, the nervous system, extracellular space and cells. Electrophysiological problems can be investigated experimentally and also theoretically by developing appropriate mathematical or computational models. Due to the enormous complexity of biological systems, it would be almost impossible to establish a detailed computational model of the electrical field, even for only a single organ (e.g. heart), including the entirety of cells comprising the neural network. In order to make computational models feasible for practical applications, we here introduce the concept of smeared fields, which represents a generalization of the previously formulated multiscale smeared methodology for mass transport in blood vessels, lymph, and tissue. We demonstrate the accuracy of the smeared finite element computational models for the electric field in numerical examples. The electrical field is further coupled with ionic mass transport within tissue composed of interstitial spaces extracellularly and by cytoplasm and organelles intracellularly. The proposed methodology, which couples electrophysiology and molecular ionic transport, is applicable to a variety of biological systems.
Collapse
Affiliation(s)
- M Kojic
- Houston Methodist Research Institute, The Department of Nanomedicine, 6670 Bertner Ave., R7-117, Houston, TX, 77030, USA; Bioengineering Research and Development Center BioIRC Kragujevac, Prvoslava Stojanovica 6, 3400, Kragujevac, Serbia; Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000, Belgrade, Serbia.
| | - M Milosevic
- Bioengineering Research and Development Center BioIRC Kragujevac, Prvoslava Stojanovica 6, 3400, Kragujevac, Serbia; Belgrade Metropolitan University, Tadeuša Košćuška 63, 11000, Belgrade, Serbia
| | - V Simic
- Bioengineering Research and Development Center BioIRC Kragujevac, Prvoslava Stojanovica 6, 3400, Kragujevac, Serbia
| | - V Geroski
- Bioengineering Research and Development Center BioIRC Kragujevac, Prvoslava Stojanovica 6, 3400, Kragujevac, Serbia
| | - A Ziemys
- Houston Methodist Research Institute, The Department of Nanomedicine, 6670 Bertner Ave., R7-117, Houston, TX, 77030, USA
| | - N Filipovic
- University of Kragujevac, Faculty for Engineering Sciences, Sestre Janic 6, 34000, Kragujevac, Serbia
| | - M Ferrari
- Houston Methodist Research Institute, The Department of Nanomedicine, 6670 Bertner Ave., R7-117, Houston, TX, 77030, USA
| |
Collapse
|
32
|
Sheard TD, Hurley ME, Colyer J, White E, Norman R, Pervolaraki E, Narayanasamy KK, Hou Y, Kirton HM, Yang Z, Hunter L, Shim JU, Clowsley AH, Smith AJ, Baddeley D, Soeller C, Colman MA, Jayasinghe I. Three-Dimensional and Chemical Mapping of Intracellular Signaling Nanodomains in Health and Disease with Enhanced Expansion Microscopy. ACS NANO 2019; 13:2143-2157. [PMID: 30715853 PMCID: PMC6396323 DOI: 10.1021/acsnano.8b08742] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/04/2019] [Indexed: 05/08/2023]
Abstract
Nanodomains are intracellular foci which transduce signals between major cellular compartments. One of the most ubiquitous signal transducers, the ryanodine receptor (RyR) calcium channel, is tightly clustered within these nanodomains. Super-resolution microscopy has previously been used to visualize RyR clusters near the cell surface. A majority of nanodomains located deeper within cells have remained unresolved due to limited imaging depths and axial resolution of these modalities. A series of enhancements made to expansion microscopy allowed individual RyRs to be resolved within planar nanodomains at the cell periphery and the curved nanodomains located deeper within the interiors of cardiomyocytes. With a resolution of ∼ 15 nm, we localized both the position of RyRs and their individual phosphorylation for the residue Ser2808. With a three-dimensional imaging protocol, we observed disturbances to the RyR arrays in the nanometer scale which accompanied right-heart failure caused by pulmonary hypertension. The disease coincided with a distinct gradient of RyR hyperphosphorylation from the edge of the nanodomain toward the center, not seen in healthy cells. This spatial profile appeared to contrast distinctly from that sustained by the cells during acute, physiological hyperphosphorylation when they were stimulated with a β-adrenergic agonist. Simulations of RyR arrays based on the experimentally determined channel positions and phosphorylation signatures showed how the nanoscale dispersal of the RyRs during pathology diminishes its intrinsic likelihood to ignite a calcium signal. It also revealed that the natural topography of RyR phosphorylation could offset potential heterogeneity in nanodomain excitability which may arise from such RyR reorganization.
Collapse
Affiliation(s)
- Thomas
M. D. Sheard
- School
of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Miriam E. Hurley
- School
of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - John Colyer
- School
of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Ed White
- School
of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Ruth Norman
- School
of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Eleftheria Pervolaraki
- School
of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Kaarjel K. Narayanasamy
- School
of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Yufeng Hou
- Institute
of Experimental Medical Research, Oslo University
Hospital Ullevål, Oslo 0407, Norway
| | - Hannah M. Kirton
- School
of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Zhaokang Yang
- School
of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Liam Hunter
- School
of Physics and Astronomy, Faculty of Mathematics and Physical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Jung-uk Shim
- School
of Physics and Astronomy, Faculty of Mathematics and Physical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | - Andrew J. Smith
- School
of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - David Baddeley
- Auckland
Bioengineering Institute, University of
Auckland, UniServices
House, Level, 6/70 Symonds St, Grafton, Auckland 1010, New Zealand
| | - Christian Soeller
- Living
Systems Institute, University of Exeter, Devon EX4 4QL, United Kingdom
| | - Michael A. Colman
- School
of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Izzy Jayasinghe
- School
of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
33
|
Xie Y, Yang Y, Galice S, Bers DM, Sato D. Size Matters: Ryanodine Receptor Cluster Size Heterogeneity Potentiates Calcium Waves. Biophys J 2019; 116:530-539. [PMID: 30686487 PMCID: PMC6369574 DOI: 10.1016/j.bpj.2018.12.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 11/11/2018] [Accepted: 12/12/2018] [Indexed: 12/21/2022] Open
Abstract
Ryanodine receptors (RyRs) mediate calcium (Ca)-induced Ca release and intracellular Ca homeostasis. In a cardiac myocyte, RyRs group into clusters of variable size from a few to several hundred RyRs, creating a spatially nonuniform intracellular distribution. It is unclear how heterogeneity of RyR cluster size alters spontaneous sarcoplasmic reticulum (SR) Ca releases (Ca sparks) and arrhythmogenic Ca waves. Here, we tested the impact of heterogeneous RyR cluster size on the initiation of Ca waves. Experimentally, we measured RyR cluster sizes at Ca spark sites in rat ventricular myocytes and further tested functional impacts using a physiologically detailed computational model with spatial and stochastic intracellular Ca dynamics. We found that the spark frequency and amplitude increase nonlinearly with the size of RyR clusters. Larger RyR clusters have lower SR Ca release threshold for local Ca spark initiation and exhibit steeper SR Ca release versus SR Ca load relationship. However, larger RyR clusters tend to lower SR Ca load because of the higher Ca leak rate. Conversely, smaller clusters have a higher threshold and a lower leak, which tends to increase SR Ca load. At the myocyte level, homogeneously large or small RyR clusters limit Ca waves (because of low load for large clusters but low excitability for small clusters). Mixtures of large and small RyR clusters potentiates Ca waves because the enhanced SR Ca load driven by smaller clusters enables Ca wave initiation and propagation from larger RyR clusters. Our study suggests that a spatially heterogeneous distribution of RyR cluster size under pathological conditions may potentiate Ca waves and thus afterdepolarizations and triggered arrhythmias.
Collapse
Affiliation(s)
- Yuanfang Xie
- Department of Pharmacology, University of California Davis, Davis, California
| | - Yi Yang
- Department of Pharmacology, University of California Davis, Davis, California
| | - Samuel Galice
- Department of Pharmacology, University of California Davis, Davis, California
| | - Donald M Bers
- Department of Pharmacology, University of California Davis, Davis, California
| | - Daisuke Sato
- Department of Pharmacology, University of California Davis, Davis, California.
| |
Collapse
|
34
|
Chu L, Greenstein JL, Winslow RL. Na + microdomains and sparks: Role in cardiac excitation-contraction coupling and arrhythmias in ankyrin-B deficiency. J Mol Cell Cardiol 2019; 128:145-157. [PMID: 30731085 DOI: 10.1016/j.yjmcc.2019.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 02/01/2019] [Accepted: 02/02/2019] [Indexed: 01/25/2023]
Abstract
Cardiac sodium (Na+) potassium ATPase (NaK) pumps, neuronal sodium channels (INa), and sodium calcium (Ca2+) exchangers (NCX1) may co-localize to form a Na+ microdomain. It remains controversial as to whether neuronal INa contributes to local Na+ accumulation, resulting in reversal of nearby NCX1 and influx of Ca2+ into the cell. Therefore, there has been great interest in the possible roles of a Na+ microdomain in cardiac Ca2+-induced Ca2+ release (CICR). In addition, the important role of co-localization of NaK and NCX1 in regulating localized Na+ and Ca2+ levels and CICR in ankyrin-B deficient (ankyrin-B+/-) cardiomyocytes has been examined in many recent studies. Altered Na+ dynamics may contribute to the appearance of arrhythmias, but the mechanisms underlying this relationship remain unclear. In order to investigate this, we present a mechanistic canine cardiomyocyte model which reproduces independent local dyadic junctional SR (JSR) Ca2+ release events underlying cell-wide excitation-contraction coupling, as well as a three-dimensional super-resolution model of the Ca2+ spark that describes local Na+ dynamics as governed by NaK pumps, neuronal INa, and NCX1. The model predicts the existence of Na+ sparks, which are generated by NCX1 and exhibit significantly slower dynamics as compared to Ca2+ sparks. Moreover, whole-cell simulations indicate that neuronal INa in the cardiac dyad plays a key role during the systolic phase. Rapid inward neuronal INa can elevate dyadic [Na+] to 35-40 mM, which drives reverse-mode NCX1 transport, and therefore promotes Ca2+ entry into the dyad, enhancing the trigger for JSR Ca2+ release. The specific role of decreased co-localization of NaK and NCX1 in ankyrin-B+/- cardiomyocytes was examined. Model results demonstrate that a reduction in the local NCX1- and NaK-mediated regulation of dyadic [Ca2+] and [Na+] results in an increase in Ca2+ spark activity during isoproterenol stimulation, which in turn stochastically activates NCX1 in the dyad. This alteration in NCX1/NaK co-localization interrupts the balance between NCX1 and NaK currents in a way that leads to enhanced depolarizing inward current during the action potential plateau, which ultimately leads to a higher probability of L-type Ca2+ channel reopening and arrhythmogenic early-afterdepolarizations.
Collapse
Affiliation(s)
- Lulu Chu
- Department of Biomedical Engineering and the Institute for Computational Medicine, The Johns Hopkins University School of Medicine and Whiting School of Engineering, 3400 N Charles Street, Baltimore, MD 21218, USA.
| | - Joseph L Greenstein
- Department of Biomedical Engineering and the Institute for Computational Medicine, The Johns Hopkins University School of Medicine and Whiting School of Engineering, 3400 N Charles Street, Baltimore, MD 21218, USA.
| | - Raimond L Winslow
- Department of Biomedical Engineering and the Institute for Computational Medicine, The Johns Hopkins University School of Medicine and Whiting School of Engineering, 3400 N Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
35
|
Joca HC, Coleman AK, Ward CW, Williams GSB. Quantitative tests reveal that microtubules tune the healthy heart but underlie arrhythmias in pathology. J Physiol 2019; 598:1327-1338. [PMID: 30582750 PMCID: PMC7432954 DOI: 10.1113/jp277083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 12/14/2018] [Indexed: 01/23/2023] Open
Abstract
KEY POINTS Our group previously discovered and characterized the microtubule mechanotransduction pathway linking diastolic stretch to NADPH oxidase 2-derived reactive oxygen species signals that regulate calcium sparks and calcium influx pathways. Here we used focused experimental tests to constrain and expand our existing computational models of calcium signalling in heart. Mechanistic and quantitative modelling revealed new insights in disease including: changes in microtubule network density and properties, elevated NOX2 expression, altered calcium release dynamics, how NADPH oxidase 2 is activated by and responds to stretch, and finally the degree to which normalizing mechano-activated reactive oxygen species signals can prevent calcium-dependent arrhythmias. ABSTRACT Microtubule (MT) mechanotransduction links diastolic stretch to generation of NADPH oxidase 2 (NOX2)-dependent reactive oxygen species (ROS), signals we term X-ROS. While stretch-elicited X-ROS primes intracellular calcium (Ca2+ ) channels for synchronized activation in the healthy heart, the dysregulated excess in this pathway underscores asynchronous Ca2+ release and arrhythmia. Here, we expanded our existing computational models of Ca2+ signalling in heart to include MT-dependent mechanotransduction through X-ROS. Informed by new focused experimental tests to properly constrain our model, we quantify the role of X-ROS on excitation-contraction coupling in healthy and pathological conditions. This approach allowed for a mechanistic investigation that revealed new insights into X-ROS signalling in disease including changes in MT network density and post-translational modifications (PTMs), elevated NOX2 expression, altered Ca2+ release dynamics (i.e. Ca2+ sparks and Ca2+ waves), how NOX2 is activated by and responds to stretch, and finally the degree to which normalizing X-ROS can prevent Ca2+ -dependent arrhythmias.
Collapse
Affiliation(s)
- Humberto C Joca
- Centre for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Andrew K Coleman
- Centre for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Chris W Ward
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - George S B Williams
- Centre for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
36
|
Shen X, van den Brink J, Hou Y, Colli D, Le C, Kolstad TR, MacQuaide N, Carlson CR, Kekenes‐Huskey PM, Edwards AG, Soeller C, Louch WE. 3D dSTORM imaging reveals novel detail of ryanodine receptor localization in rat cardiac myocytes. J Physiol 2019; 597:399-418. [PMID: 30412283 PMCID: PMC6332759 DOI: 10.1113/jp277360] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/08/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Using 3D direct stochastic optical reconstruction microscopy (dSTORM), we developed novel approaches to quantitatively describe the nanoscale, 3D organization of ryanodine receptors (RyRs) in cardiomyocytes. Complex arrangements of RyR clusters were observed in 3D space, both at the cell surface and within the cell interior, with allocation to dyadic and non-dyadic pools. 3D imaging importantly allowed discernment of clusters overlapping in the z-axis, for which detection was obscured by conventional 2D imaging techniques. Thus, RyR clusters were found to be significantly smaller than previous 2D estimates. Ca2+ release units (CRUs), i.e. functional groupings of neighbouring RyR clusters, were similarly observed to be smaller than earlier reports. Internal CRUs contained more RyRs in more clusters than CRUs on the cell surface, and yielded longer duration Ca2+ sparks. ABSTRACT Cardiomyocyte contraction is dependent on Ca2+ release from ryanodine receptors (RyRs). However, the precise localization of RyRs remains unknown, due to shortcomings of imaging techniques which are diffraction limited or restricted to 2D. We aimed to determine the 3D nanoscale organization of RyRs in rat cardiomyocytes by employing direct stochastic optical reconstruction microscopy (dSTORM) with phase ramp technology. Initial observations at the cell surface showed an undulating organization of RyR clusters, resulting in their frequent overlap in the z-axis and obscured detection by 2D techniques. Non-overlapping clusters were imaged to create a calibration curve for estimating RyR number based on recorded fluorescence blinks. Employing this method at the cell surface and interior revealed smaller RyR clusters than 2D estimates, as erroneous merging of axially aligned RyRs was circumvented. Functional groupings of RyR clusters (Ca2+ release units, CRUs), contained an average of 18 and 23 RyRs at the surface and interior, respectively, although half of all CRUs contained only a single 'rogue' RyR. Internal CRUs were more tightly packed along z-lines than surface CRUs, contained larger and more numerous RyR clusters, and constituted ∼75% of the roughly 1 million RyRs present in an average cardiomyocyte. This complex internal 3D geometry was underscored by correlative imaging of RyRs and t-tubules, which enabled quantification of dyadic and non-dyadic RyR populations. Mirroring differences in CRU size and complexity, Ca2+ sparks originating from internal CRUs were of longer duration than those at the surface. These data provide novel, nanoscale insight into RyR organization and function across cardiomyocytes.
Collapse
Affiliation(s)
- Xin Shen
- Institute for Experimental Medical ResearchOslo University Hospital and University of OsloNO‐0424OsloNorway
| | | | - Yufeng Hou
- Institute for Experimental Medical ResearchOslo University Hospital and University of OsloNO‐0424OsloNorway
| | - Dylan Colli
- Department of ChemistryUniversity of KentuckyLexingtonKYUSA
| | - Christopher Le
- Institute for Experimental Medical ResearchOslo University Hospital and University of OsloNO‐0424OsloNorway
| | - Terje R. Kolstad
- Institute for Experimental Medical ResearchOslo University Hospital and University of OsloNO‐0424OsloNorway
| | - Niall MacQuaide
- Institute of Cardiovascular SciencesUniversity of GlasgowGlasgowUK
| | - Cathrine R. Carlson
- Institute for Experimental Medical ResearchOslo University Hospital and University of OsloNO‐0424OsloNorway
| | | | | | | | - William E. Louch
- Institute for Experimental Medical ResearchOslo University Hospital and University of OsloNO‐0424OsloNorway
- KG Jebsen Center for Cardiac ResearchUniversity of OsloOsloNorway
| |
Collapse
|
37
|
Jones PP, MacQuaide N, Louch WE. Dyadic Plasticity in Cardiomyocytes. Front Physiol 2018; 9:1773. [PMID: 30618792 PMCID: PMC6298195 DOI: 10.3389/fphys.2018.01773] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/23/2018] [Indexed: 11/13/2022] Open
Abstract
Contraction of cardiomyocytes is dependent on sub-cellular structures called dyads, where invaginations of the surface membrane (t-tubules) form functional junctions with the sarcoplasmic reticulum (SR). Within each dyad, Ca2+ entry through t-tubular L-type Ca2+ channels (LTCCs) elicits Ca2+ release from closely apposed Ryanodine Receptors (RyRs) in the SR membrane. The efficiency of this process is dependent on the density and macroscale arrangement of dyads, but also on the nanoscale organization of LTCCs and RyRs within them. We presently review accumulating data demonstrating the remarkable plasticity of these structures. Dyads are known to form gradually during development, with progressive assembly of both t-tubules and junctional SR terminals, and precise trafficking of LTCCs and RyRs. While dyads can exhibit compensatory remodeling when required, dyadic degradation is believed to promote impaired contractility and arrythmogenesis in cardiac disease. Recent data indicate that this plasticity of dyadic structure/function is dependent on the regulatory proteins junctophilin-2, amphiphysin-2 (BIN1), and caveolin-3, which critically arrange dyadic membranes while stabilizing the position and activity of LTCCs and RyRs. Indeed, emerging evidence indicates that clustering of both channels enables "coupled gating", implying that nanoscale localization and function are intimately linked, and may allow fine-tuning of LTCC-RyR crosstalk. We anticipate that improved understanding of dyadic plasticity will provide greater insight into the processes of cardiac compensation and decompensation, and new opportunities to target the basic mechanisms underlying heart disease.
Collapse
Affiliation(s)
- Peter P. Jones
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- HeartOtago, University of Otago, Dunedin, New Zealand
| | - Niall MacQuaide
- Institute of Cardiovascular Sciences, University of Glasgow, Glasgow, United Kingdom
- Clyde Biosciences, Glasgow, United Kingdom
| | - William E. Louch
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Oslo, Norway
- KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| |
Collapse
|
38
|
Kolstad TR, van den Brink J, MacQuaide N, Lunde PK, Frisk M, Aronsen JM, Norden ES, Cataliotti A, Sjaastad I, Sejersted OM, Edwards AG, Lines GT, Louch WE. Ryanodine receptor dispersion disrupts Ca 2+ release in failing cardiac myocytes. eLife 2018; 7:39427. [PMID: 30375974 PMCID: PMC6245731 DOI: 10.7554/elife.39427] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/24/2018] [Indexed: 12/22/2022] Open
Abstract
Reduced cardiac contractility during heart failure (HF) is linked to impaired Ca2+ release from Ryanodine Receptors (RyRs). We investigated whether this deficit can be traced to nanoscale RyR reorganization. Using super-resolution imaging, we observed dispersion of RyR clusters in cardiomyocytes from post-infarction HF rats, resulting in more numerous, smaller clusters. Functional groupings of RyR clusters which produce Ca2+ sparks (Ca2+ release units, CRUs) also became less solid. An increased fraction of small CRUs in HF was linked to augmented ‘silent’ Ca2+ leak, not visible as sparks. Larger multi-cluster CRUs common in HF also exhibited low fidelity spark generation. When successfully triggered, sparks in failing cells displayed slow kinetics as Ca2+ spread across dispersed CRUs. During the action potential, these slow sparks protracted and desynchronized the overall Ca2+ transient. Thus, nanoscale RyR reorganization during HF augments Ca2+ leak and slows Ca2+ release kinetics, leading to weakened contraction in this disease. The muscle cells of the heart coordinate how they contract and relax in order to produce the heartbeat. During heart failure, these cells become less able to contract. As a result the heart becomes inefficient, pumping less blood around the body. For the cardiac muscle cells to contract, the levels of calcium ions in the cells needs to rapidly increase. In failing hearts, these increases in calcium ion levels are smaller, slower and less well coordinated. It was not known what causes these changes, making it difficult to treat heart failure. Calcium ions are released in cardiac muscle cells through protein channels called ryanodine receptors. These receptors form clusters that allow them to synchronize when they open and close. Could the reorganization of ryanodine receptors account for the problems seen in failing hearts? To investigate, Kolstad et al. examined rat hearts using a technique called super-resolution microscopy. This showed that the clusters of ryanodine receptors break apart during heart failure to form smaller clusters. Further experiments showed that calcium ions ‘leak’ from these smaller clusters, reducing the amount of calcium that can be released into cardiac muscle cells during each heartbeat. Released calcium also spreads between the dispersed clusters, resulting in a slower rise of the calcium levels in the cells. Both changes contribute to weakened contractions of cells in failing hearts. Therefore, heart failure can be traced back to very small rearrangements of the ryanodine receptors. This understanding will help researchers as they investigate new ways to treat heart failure.
Collapse
Affiliation(s)
- Terje R Kolstad
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | | | - Niall MacQuaide
- Institute of Cardiovascular Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Per Kristian Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Michael Frisk
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Jan Magnus Aronsen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,Bjørknes College, Oslo, Norway
| | - Einar S Norden
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,Bjørknes College, Oslo, Norway
| | - Alessandro Cataliotti
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Ole M Sejersted
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | | | | | - William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| |
Collapse
|
39
|
Jayasinghe I, Clowsley AH, de Langen O, Sali SS, Crossman DJ, Soeller C. Shining New Light on the Structural Determinants of Cardiac Couplon Function: Insights From Ten Years of Nanoscale Microscopy. Front Physiol 2018; 9:1472. [PMID: 30405432 PMCID: PMC6204384 DOI: 10.3389/fphys.2018.01472] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/28/2018] [Indexed: 12/12/2022] Open
Abstract
Remodelling of the membranes and protein clustering patterns during the pathogenesis of cardiomyopathies has renewed the interest in spatial visualisation of these structures in cardiomyocytes. Coincidental emergence of single molecule (super-resolution) imaging and tomographic electron microscopy tools in the last decade have led to a number of new observations on the structural features of the couplons, the primary sites of excitation-contraction coupling in the heart. In particular, super-resolution and tomographic electron micrographs have revised and refined the classical views of the nanoscale geometries of couplons, t-tubules and the organisation of the principal calcium handling proteins in both healthy and failing hearts. These methods have also allowed the visualisation of some features which were too small to be detected with conventional microscopy tools. With new analytical capabilities such as single-protein mapping, in situ protein quantification, correlative and live cell imaging we are now observing an unprecedented interest in adapting these research tools across the cardiac biophysical research discipline. In this article, we review the depth of the new insights that have been enabled by these tools toward understanding the structure and function of the cardiac couplon. We outline the major challenges that remain in these experiments and emerging avenues of research which will be enabled by these technologies.
Collapse
Affiliation(s)
- Izzy Jayasinghe
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | | | - Oscar de Langen
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Sonali S Sali
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - David J Crossman
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Christian Soeller
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
40
|
Ryanodine receptor cluster size sets the tone in cerebral smooth muscle. Proc Natl Acad Sci U S A 2018; 115:10195-10197. [PMID: 30257942 DOI: 10.1073/pnas.1814207115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
41
|
Brandenburg S, Pawlowitz J, Fakuade FE, Kownatzki-Danger D, Kohl T, Mitronova GY, Scardigli M, Neef J, Schmidt C, Wiedmann F, Pavone FS, Sacconi L, Kutschka I, Sossalla S, Moser T, Voigt N, Lehnart SE. Axial Tubule Junctions Activate Atrial Ca 2+ Release Across Species. Front Physiol 2018; 9:1227. [PMID: 30349482 PMCID: PMC6187065 DOI: 10.3389/fphys.2018.01227] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/14/2018] [Indexed: 01/10/2023] Open
Abstract
Rationale: Recently, abundant axial tubule (AT) membrane structures were identified deep inside atrial myocytes (AMs). Upon excitation, ATs rapidly activate intracellular Ca2+ release and sarcomeric contraction through extensive AT junctions, a cell-specific atrial mechanism. While AT junctions with the sarcoplasmic reticulum contain unusually large clusters of ryanodine receptor 2 (RyR2) Ca2+ release channels in mouse AMs, it remains unclear if similar protein networks and membrane structures exist across species, particularly those relevant for atrial disease modeling. Objective: To examine and quantitatively analyze the architecture of AT membrane structures and associated Ca2+ signaling proteins across species from mouse to human. Methods and Results: We developed superresolution microscopy (nanoscopy) strategies for intact live AMs based on a new custom-made photostable cholesterol dye and immunofluorescence imaging of membraneous structures and membrane proteins in fixed tissue sections from human, porcine, and rodent atria. Consistently, in mouse, rat, and rabbit AMs, intact cell-wide tubule networks continuous with the surface membrane were observed, mainly composed of ATs. Moreover, co-immunofluorescence nanoscopy showed L-type Ca2+ channel clusters adjacent to extensive junctional RyR2 clusters at ATs. However, only junctional RyR2 clusters were highly phosphorylated and may thus prime Ca2+ release at ATs, locally for rapid signal amplification. While the density of the integrated L-type Ca2+ current was similar in human and mouse AMs, the intracellular Ca2+ transient showed quantitative differences. Importantly, local intracellular Ca2+ release from AT junctions occurred through instantaneous action potential propagation via transverse tubules (TTs) from the surface membrane. Hence, sparse TTs were sufficient as electrical conduits for rapid activation of Ca2+ release through ATs. Nanoscopy of atrial tissue sections confirmed abundant ATs as the major network component of AMs, particularly in human atrial tissue sections. Conclusion: AT junctions represent a conserved, cell-specific membrane structure for rapid excitation-contraction coupling throughout a representative spectrum of species including human. Since ATs provide the major excitable membrane network component in AMs, a new model of atrial “super-hub” Ca2+ signaling may apply across biomedically relevant species, opening avenues for future investigations about atrial disease mechanisms and therapeutic targeting.
Collapse
Affiliation(s)
- Sören Brandenburg
- Heart Research Center Göttingen, Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Jan Pawlowitz
- Heart Research Center Göttingen, Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Funsho E Fakuade
- Heart Research Center Göttingen, Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
| | - Daniel Kownatzki-Danger
- Heart Research Center Göttingen, Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Tobias Kohl
- Heart Research Center Göttingen, Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Gyuzel Y Mitronova
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Marina Scardigli
- European Laboratory for Non-Linear Spectroscopy and National Institute of Optics (INO-CNR), Sesto Fiorentino, Italy
| | - Jakob Neef
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Constanze Schmidt
- Heart Research Center Göttingen, Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research) partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.,Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Heidelberg, Germany
| | - Felix Wiedmann
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research) partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.,Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Heidelberg, Germany
| | - Francesco S Pavone
- European Laboratory for Non-Linear Spectroscopy and National Institute of Optics (INO-CNR), Sesto Fiorentino, Italy.,Department of Physics, University of Florence, Florence, Italy
| | - Leonardo Sacconi
- European Laboratory for Non-Linear Spectroscopy and National Institute of Optics (INO-CNR), Sesto Fiorentino, Italy
| | - Ingo Kutschka
- Department of Cardiothoracic and Vascular Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Samuel Sossalla
- Heart Research Center Göttingen, Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Niels Voigt
- Heart Research Center Göttingen, Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research) partner site Göttingen, Göttingen, Germany
| | - Stephan E Lehnart
- Heart Research Center Göttingen, Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research) partner site Göttingen, Göttingen, Germany.,BioMET, The Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
42
|
Tveito A, Maleckar MM, Lines GT. Computing Optimal Properties of Drugs Using Mathematical Models of Single Channel Dynamics. COMPUTATIONAL AND MATHEMATICAL BIOPHYSICS 2018. [DOI: 10.1515/cmb-2018-0004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractSingle channel dynamics can be modeled using stochastic differential equations, and the dynamics of the state of the channel (e.g. open, closed, inactivated) can be represented using Markov models. Such models can also be used to represent the effect of mutations as well as the effect of drugs used to alleviate deleterious effects of mutations. Based on the Markov model and the stochastic models of the single channel, it is possible to derive deterministic partial differential equations (PDEs) giving the probability density functions (PDFs) of the states of the Markov model. In this study, we have analyzed PDEs modeling wild type (WT) channels, mutant channels (MT) and mutant channels for which a drug has been applied (MTD). Our aim is to show that it is possible to optimize the parameters of a given drug such that the solution of theMTD model is very close to that of the WT: the mutation’s effect is, theoretically, reduced significantly.We will present the mathematical framework underpinning this methodology and apply it to several examples. In particular, we will show that it is possible to use the method to, theoretically, improve the properties of some well-known existing drugs.
Collapse
Affiliation(s)
- Aslak Tveito
- 1Simula Research Laboratory, Norway and Department of Informatics, The University of Oslo,Oslo, Norway
| | | | | |
Collapse
|
43
|
Pan M, Gawthrop PJ, Tran K, Cursons J, Crampin EJ. A thermodynamic framework for modelling membrane transporters. J Theor Biol 2018; 481:10-23. [PMID: 30273576 DOI: 10.1016/j.jtbi.2018.09.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/24/2018] [Accepted: 09/27/2018] [Indexed: 12/18/2022]
Abstract
Membrane transporters contribute to the regulation of the internal environment of cells by translocating substrates across cell membranes. Like all physical systems, the behaviour of membrane transporters is constrained by the laws of thermodynamics. However, many mathematical models of transporters, especially those incorporated into whole-cell models, are not thermodynamically consistent, leading to unrealistic behaviour. In this paper we use a physics-based modelling framework, in which the transfer of energy is explicitly accounted for, to develop thermodynamically consistent models of transporters. We then apply this methodology to model two specific transporters: the cardiac sarcoplasmic/endoplasmic Ca2+ ATPase (SERCA) and the cardiac Na+/K+ ATPase.
Collapse
Affiliation(s)
- Michael Pan
- Systems Biology Laboratory, School of Mathematics and Statistics, and Department of Biomedical Engineering, Melbourne School of Engineering, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Peter J Gawthrop
- Systems Biology Laboratory, School of Mathematics and Statistics, and Department of Biomedical Engineering, Melbourne School of Engineering, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Kenneth Tran
- Auckland Bioengineering Institute, University of Auckland, New Zealand.
| | - Joseph Cursons
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, School of Medicine, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Edmund J Crampin
- Systems Biology Laboratory, School of Mathematics and Statistics, and Department of Biomedical Engineering, Melbourne School of Engineering, University of Melbourne, Parkville, Victoria 3010, Australia; School of Medicine, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria 3010, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Melbourne School of Engineering, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
44
|
Sutanto H, van Sloun B, Schönleitner P, van Zandvoort MAMJ, Antoons G, Heijman J. The Subcellular Distribution of Ryanodine Receptors and L-Type Ca 2+ Channels Modulates Ca 2+-Transient Properties and Spontaneous Ca 2+-Release Events in Atrial Cardiomyocytes. Front Physiol 2018; 9:1108. [PMID: 30166973 PMCID: PMC6107030 DOI: 10.3389/fphys.2018.01108] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/23/2018] [Indexed: 11/13/2022] Open
Abstract
Spontaneous Ca2+-release events (SCaEs) from the sarcoplasmic reticulum play crucial roles in the initiation of cardiac arrhythmias by promoting triggered activity. However, the subcellular determinants of these SCaEs remain incompletely understood. Structural differences between atrial and ventricular cardiomyocytes, e.g., regarding the density of T-tubular membrane invaginations, may influence cardiomyocyte Ca2+-handling and the distribution of cardiac ryanodine receptors (RyR2) has recently been shown to undergo remodeling in atrial fibrillation. These data suggest that the subcellular distribution of Ca2+-handling proteins influences proarrhythmic Ca2+-handling abnormalities. Here, we employ computational modeling to provide an in-depth analysis of the impact of variations in subcellular RyR2 and L-type Ca2+-channel distributions on Ca2+-transient properties and SCaEs in a human atrial cardiomyocyte model. We incorporate experimentally observed RyR2 expression patterns and various configurations of axial tubules in a previously published model of the human atrial cardiomyocyte. We identify an increased SCaE incidence for larger heterogeneity in RyR2 expression, in which SCaEs preferentially arise from regions of high local RyR2 expression. Furthermore, we show that the propagation of Ca2+ waves is modulated by the distance between RyR2 bands, as well as the presence of experimentally observed RyR2 clusters between bands near the lateral membranes. We also show that incorporation of axial tubules in various amounts and locations reduces Ca2+-transient time to peak. Furthermore, selective hyperphosphorylation of RyR2 around axial tubules increases the number of spontaneous waves. Finally, we present a novel model of the human atrial cardiomyocyte with physiological RyR2 and L-type Ca2+-channel distributions that reproduces experimentally observed Ca2+-handling properties. Taken together, these results significantly enhance our understanding of the structure-function relationship in cardiomyocytes, identifying that RyR2 and L-type Ca2+-channel distributions have a major impact on systolic Ca2+ transients and SCaEs.
Collapse
Affiliation(s)
- Henry Sutanto
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | - Bart van Sloun
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | - Patrick Schönleitner
- Department of Physiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | | | - Gudrun Antoons
- Department of Physiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | - Jordi Heijman
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
45
|
Zhong M, Rees CM, Terentyev D, Choi BR, Koren G, Karma A. NCX-Mediated Subcellular Ca 2+ Dynamics Underlying Early Afterdepolarizations in LQT2 Cardiomyocytes. Biophys J 2018; 115:1019-1032. [PMID: 30173888 DOI: 10.1016/j.bpj.2018.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/18/2018] [Accepted: 08/02/2018] [Indexed: 12/12/2022] Open
Abstract
Long QT syndrome type 2 (LQT2) is a congenital disease characterized by loss of function mutations in hERG potassium channels (IKr). LQT2 is associated with fatal ventricular arrhythmias promoted by triggered activity in the form of early afterdepolarizations (EADs). We previously demonstrated that intracellular Ca2+ handling is remodeled in LQT2 myocytes. Remodeling leads to aberrant late RyR-mediated Ca2+ releases that drive forward-mode Na+-Ca2+ exchanger (NCX) current and slow repolarization to promote reopening of L-type calcium channels and EADs. Forward-mode NCX was found to be enhanced despite the fact that these late releases do not significantly alter the whole-cell cytosolic calcium concentration during a vulnerable period of phase 2 of the action potential corresponding to the onset of EADs. Here, we use a multiscale ventricular myocyte model to explain this finding. We show that because the local NCX current is a saturating nonlinear function of the local submembrane calcium concentration, a larger number of smaller-amplitude discrete Ca2+ release events can produce a large increase in whole-cell forward-mode NCX current without increasing significantly the whole-cell cytosolic calcium concentration. Furthermore, we develop novel insights, to our knowledge, into how alterations of stochastic RyR activity at the single-channel level cause late aberrant Ca2+ release events. Experimental measurements in transgenic LTQ2 rabbits confirm the critical arrhythmogenic role of NCX and identify this current as a potential target for antiarrhythmic therapies in LQT2.
Collapse
Affiliation(s)
- Mingwang Zhong
- Physics Department and Center for Interdisciplinary Research in Complex Systems, Northeastern University, Boston, Massachusetts
| | - Colin M Rees
- Physics Department and Center for Interdisciplinary Research in Complex Systems, Northeastern University, Boston, Massachusetts
| | - Dmitry Terentyev
- Cardiovascular Research Centre, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Bum-Rak Choi
- Cardiovascular Research Centre, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Gideon Koren
- Cardiovascular Research Centre, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Alain Karma
- Physics Department and Center for Interdisciplinary Research in Complex Systems, Northeastern University, Boston, Massachusetts.
| |
Collapse
|
46
|
Eichinger P, Herrmann AM, Ruck T, Herty M, Gola L, Kovac S, Budde T, Meuth SG, Hundehege P. Human T cells in silico: Modelling dynamic intracellular calcium and its influence on cellular electrophysiology. J Immunol Methods 2018; 461:78-84. [PMID: 30158076 DOI: 10.1016/j.jim.2018.06.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/28/2018] [Accepted: 06/28/2018] [Indexed: 01/01/2023]
Abstract
A network of ion currents influences basic cellular T cell functions. After T cell receptor activation, changes in highly regulated calcium levels play a central role in triggering effector functions and cell differentiation. A dysregulation of these processes might be involved in the pathogenesis of several diseases. We present a mathematical model based on the NEURON simulation environment that computes dynamic calcium levels in combination with the current output of diverse ion channels (KV1.3, KCa3.1, K2P channels (TASK1-3, TRESK), VRAC, TRPM7, CRAC). In line with experimental data, the simulation shows a strong increase in intracellular calcium after T cell receptor stimulation before reaching a new, elevated calcium plateau in the T cell's activated state. Deactivation of single ion channel modules, mimicking the application of channel blockers, reveals that two types of potassium channels are the main regulators of intracellular calcium level: calcium-dependent potassium (KCa3.1) and two-pore-domain potassium (K2P) channels.
Collapse
Affiliation(s)
- Paul Eichinger
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München TUM, Ismaninger Straße 22, 81675 Munich, Germany
| | - Alexander M Herrmann
- Department of Neurology with Institute of Translational Neurology, Albert-Schweitzer-Campus 1, Building A1, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Tobias Ruck
- Department of Neurology with Institute of Translational Neurology, Albert-Schweitzer-Campus 1, Building A1, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Michael Herty
- RWTH Aachen University, Mathematics (Continuous optimization), Templergraben 55, 52056 Aachen, Germany
| | - Lukas Gola
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München TUM, Ismaninger Straße 22, 81675 Munich, Germany
| | - Stjepana Kovac
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München TUM, Ismaninger Straße 22, 81675 Munich, Germany
| | - Thomas Budde
- Institute of Physiology I, Westfälische Wilhelms-Universität Münster, Robert-Koch-Str. 27a, 48149 Münster, Germany
| | - Sven G Meuth
- Department of Neurology with Institute of Translational Neurology, Albert-Schweitzer-Campus 1, Building A1, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Petra Hundehege
- Department of Neurology with Institute of Translational Neurology, Albert-Schweitzer-Campus 1, Building A1, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany.
| |
Collapse
|
47
|
Galice S, Xie Y, Yang Y, Sato D, Bers DM. Size Matters: Ryanodine Receptor Cluster Size Affects Arrhythmogenic Sarcoplasmic Reticulum Calcium Release. J Am Heart Assoc 2018; 7:e008724. [PMID: 29929992 PMCID: PMC6064922 DOI: 10.1161/jaha.118.008724] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/16/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND Ryanodine receptors (RyR) mediate sarcoplasmic reticulum calcium (Ca2+) release and influence myocyte Ca2+ homeostasis and arrhythmias. In cardiac myocytes, RyRs are found in clusters of various sizes and shapes, and RyR cluster size may critically influence normal and arrhythmogenic Ca2+ spark and wave formation. However, the actual RyR cluster sizes at specific Ca2+ spark sites have never been measured in the physiological setting. METHODS AND RESULTS Here we measured RyR cluster size and Ca2+ sparks simultaneously to assess how RyR cluster size influences Ca2+ sparks and sarcoplasmic reticulum Ca2+ leak. For small RyR cluster sizes (<50), Ca2+ spark frequency is very low but then increases dramatically at larger cluster sizes. In contrast, Ca2+ spark amplitude is nearly maximal even at relatively small RyR cluster size (≈10) and changes little at larger cluster size. These properties agreed with computational simulations of RyR gating within clusters. CONCLUSIONS Our study explains how this combination of properties may limit arrhythmogenic Ca2+ sparks and wave propagation (at many junctions) while preserving the efficacy and spatial synchronization of Ca2+-induced Ca2+-release during normal excitation-contraction coupling. However, variations in RyR cluster size among individual junctions and RyR sensitivity could exacerbate heterogeneity of local sarcoplasmic reticulum Ca2+ release and arrhythmogenesis under pathological conditions.
Collapse
Affiliation(s)
- Samuel Galice
- Department of Pharmacology, University of California Davis, Davis, CA
| | - Yuanfang Xie
- Department of Pharmacology, University of California Davis, Davis, CA
| | - Yi Yang
- Department of Pharmacology, University of California Davis, Davis, CA
| | - Daisuke Sato
- Department of Pharmacology, University of California Davis, Davis, CA
| | - Donald M Bers
- Department of Pharmacology, University of California Davis, Davis, CA
| |
Collapse
|
48
|
Chen X, Feng Y, Huo Y, Tan W. The Interplay of Rogue and Clustered Ryanodine Receptors Regulates Ca2+ Waves in Cardiac Myocytes. Front Physiol 2018; 9:393. [PMID: 29755362 PMCID: PMC5932313 DOI: 10.3389/fphys.2018.00393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 04/03/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Xudong Chen
- State Key Laboratory of Turbulence and Complex Systems and Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
| | - Yundi Feng
- State Key Laboratory of Turbulence and Complex Systems and Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
| | - Yunlong Huo
- State Key Laboratory of Turbulence and Complex Systems and Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
- PKU-HKUST Shenzhen-Hong Kong Institution, Shenzhen, China
- *Correspondence: Yunlong Huo
| | - Wenchang Tan
- State Key Laboratory of Turbulence and Complex Systems and Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
- PKU-HKUST Shenzhen-Hong Kong Institution, Shenzhen, China
- Shenzhen Graduate School, Peking University, Shenzhen, China
- Wenchang Tan
| |
Collapse
|
49
|
|
50
|
Chen X, Feng Y, Huo Y, Tan W. Effects of rogue ryanodine receptors on Ca 2+ sparks in cardiac myocytes. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171462. [PMID: 29515864 PMCID: PMC5830753 DOI: 10.1098/rsos.171462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/17/2018] [Indexed: 06/15/2023]
Abstract
Ca2+ sparks and Ca2+ quarks, arising from clustered and rogue ryanodine receptors (RyRs), are significant Ca2+ release events from the junctional sarcoplasmic reticulum (JSR). Based on the anomalous subdiffusion of Ca2+ in the cytoplasm, a mathematical model was developed to investigate the effects of rogue RyRs on Ca2+ sparks in cardiac myocytes. Ca2+ quarks and sparks from the stochastic opening of rogue and clustered RyRs are numerically reproduced and agree with experimental measurements. It is found that the stochastic opening Ca2+ release units (CRUs) of clustered RyRs are regulated by free Ca2+ concentration in the JSR lumen (i.e. [Ca2+]lumen). The frequency of spontaneous Ca2+ sparks is remarkably increased by the rogue RyRs opening at high [Ca2+]lumen, but not at low [Ca2+]lumen. Hence, the opening of rogue RyRs contributes to the formation of Ca2+ sparks at high [Ca2+]lumen. The interplay of Ca2+ sparks and Ca2+ quarks has been discussed in detail. This work is of significance to provide insight into understanding Ca2+ release mechanisms in cardiac myocytes.
Collapse
Affiliation(s)
- Xudong Chen
- State Key Laboratory of Turbulence and Complex Systems and Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, People's Republic of China
| | - Yundi Feng
- State Key Laboratory of Turbulence and Complex Systems and Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, People's Republic of China
| | - Yunlong Huo
- State Key Laboratory of Turbulence and Complex Systems and Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, People's Republic of China
- PKU-HKUST Shenzhen-Hong Kong Institution, Shenzhen, People's Republic of China
| | - Wenchang Tan
- State Key Laboratory of Turbulence and Complex Systems and Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, People's Republic of China
- PKU-HKUST Shenzhen-Hong Kong Institution, Shenzhen, People's Republic of China
- Shenzhen Graduate School, Peking University, Shenzhen, People's Republic of China
| |
Collapse
|