1
|
Depenveiller C, Baud S, Belloy N, Bochicchio B, Dandurand J, Dauchez M, Pepe A, Pomès R, Samouillan V, Debelle L. Structural and physical basis for the elasticity of elastin. Q Rev Biophys 2024; 57:e3. [PMID: 38501287 DOI: 10.1017/s0033583524000040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Elastin function is to endow vertebrate tissues with elasticity so that they can adapt to local mechanical constraints. The hydrophobicity and insolubility of the mature elastin polymer have hampered studies of its molecular organisation and structure-elasticity relationships. Nevertheless, a growing number of studies from a broad range of disciplines have provided invaluable insights, and several structural models of elastin have been proposed. However, many questions remain regarding how the primary sequence of elastin (and the soluble precursor tropoelastin) governs the molecular structure, its organisation into a polymeric network, and the mechanical properties of the resulting material. The elasticity of elastin is known to be largely entropic in origin, a property that is understood to arise from both its disordered molecular structure and its hydrophobic character. Despite a high degree of hydrophobicity, elastin does not form compact, water-excluding domains and remains highly disordered. However, elastin contains both stable and labile secondary structure elements. Current models of elastin structure and function are drawn from data collected on tropoelastin and on elastin-like peptides (ELPs) but at the tissue level, elasticity is only achieved after polymerisation of the mature elastin. In tissues, the reticulation of tropoelastin chains in water defines the polymer elastin that bears elasticity. Similarly, ELPs require polymerisation to become elastic. There is considerable interest in elastin especially in the biomaterials and cosmetic fields where ELPs are widely used. This review aims to provide an up-to-date survey of/perspective on current knowledge about the interplay between elastin structure, solvation, and entropic elasticity.
Collapse
Affiliation(s)
- Camille Depenveiller
- UMR URCA/CNRS 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UFR Sciences Exactes et Naturelles, SFR CAP Santé, Université de Reims Champagne-Ardenne, Reims, France
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, France
| | - Stéphanie Baud
- UMR URCA/CNRS 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UFR Sciences Exactes et Naturelles, SFR CAP Santé, Université de Reims Champagne-Ardenne, Reims, France
| | - Nicolas Belloy
- UMR URCA/CNRS 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UFR Sciences Exactes et Naturelles, SFR CAP Santé, Université de Reims Champagne-Ardenne, Reims, France
| | - Brigida Bochicchio
- Laboratory of Bioinspired Materials, Department of Science, University of Basilicata, Potenza, Italy
| | - Jany Dandurand
- CIRIMAT UMR 5085, Université Paul Sabatier, Université de Toulouse, Toulouse, France
| | - Manuel Dauchez
- UMR URCA/CNRS 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UFR Sciences Exactes et Naturelles, SFR CAP Santé, Université de Reims Champagne-Ardenne, Reims, France
| | - Antonietta Pepe
- Laboratory of Bioinspired Materials, Department of Science, University of Basilicata, Potenza, Italy
| | - Régis Pomès
- Molecular Medicine, Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Valérie Samouillan
- CIRIMAT UMR 5085, Université Paul Sabatier, Université de Toulouse, Toulouse, France
| | - Laurent Debelle
- UMR URCA/CNRS 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UFR Sciences Exactes et Naturelles, SFR CAP Santé, Université de Reims Champagne-Ardenne, Reims, France
| |
Collapse
|
2
|
Feistner L, Penk A, Böttner J, Büttner P, Thiele H, Huster D, Schlotter F. Nuclear magnetic resonance spectroscopy to quantify major extracellular matrix components in fibro-calcific aortic valve disease. Sci Rep 2023; 13:18823. [PMID: 37914797 PMCID: PMC10620231 DOI: 10.1038/s41598-023-46143-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023] Open
Abstract
Fibro-calcific aortic valve disease (FCAVD) is a pathological condition marked by overt fibrous and calcific extracellular matrix (ECM) accumulation that leads to valvular dysfunction and left ventricular outflow obstruction. Costly valve implantation is the only approved therapy. Multiple pharmacological interventions are under clinical investigation, however, none has proven clinically beneficial. This failure of translational approaches indicates incomplete understanding of the underlying pathomechanisms and may result from a limited toolbox of scientific methods to assess the cornerstones of FCAVD: lipid deposition, fibrous and calcific ECM accumulation. In this study, we evaluated magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy to both, qualitatively and quantitatively assess these key elements of FCAVD pathogenesis. NMR spectra showed collagen, elastin, triacylglycerols, and phospholipids in human control and FCAVD tissue samples (n = 5). Calcification, measured by the hydroxyapatite content, was detectable in FCAVD tissues and in valve interstitial cells under procalcifying media conditions. Hydroxyapatite was significantly higher in FCAVD tissues than in controls (p < 0.05) as measured by 31P MAS NMR. The relative collagen content was lower in FCAVD tissues vs. controls (p < 0.05). Overall, we demonstrate the versatility of NMR spectroscopy as a diagnostic tool in preclinical FCAVD assessment.
Collapse
Affiliation(s)
- Lukas Feistner
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at University of Leipzig, Struempellstr. 39, 04289, Leipzig, Germany
| | - Anja Penk
- Institute for Medical Physics and Biophysics, Leipzig University, Leipzig, Germany
| | - Julia Böttner
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at University of Leipzig, Struempellstr. 39, 04289, Leipzig, Germany
| | - Petra Büttner
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at University of Leipzig, Struempellstr. 39, 04289, Leipzig, Germany
| | - Holger Thiele
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at University of Leipzig, Struempellstr. 39, 04289, Leipzig, Germany
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, Leipzig University, Leipzig, Germany
| | - Florian Schlotter
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at University of Leipzig, Struempellstr. 39, 04289, Leipzig, Germany.
| |
Collapse
|
3
|
Boraldi F, Lofaro FD, Cossarizza A, Quaglino D. The "Elastic Perspective" of SARS-CoV-2 Infection and the Role of Intrinsic and Extrinsic Factors. Int J Mol Sci 2022; 23:ijms23031559. [PMID: 35163482 PMCID: PMC8835950 DOI: 10.3390/ijms23031559] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/20/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023] Open
Abstract
Elastin represents the structural component of the extracellular matrix providing elastic recoil to tissues such as skin, blood vessels and lungs. Elastogenic cells secrete soluble tropoelastin monomers into the extracellular space where these monomers associate with other matrix proteins (e.g., microfibrils and glycoproteins) and are crosslinked by lysyl oxidase to form insoluble fibres. Once elastic fibres are formed, they are very stable, highly resistant to degradation and have an almost negligible turnover. However, there are circumstances, mainly related to inflammatory conditions, where increased proteolytic degradation of elastic fibres may lead to consequences of major clinical relevance. In severely affected COVID-19 patients, for instance, the massive recruitment and activation of neutrophils is responsible for the profuse release of elastases and other proteolytic enzymes which cause the irreversible degradation of elastic fibres. Within the lungs, destruction of the elastic network may lead to the permanent impairment of pulmonary function, thus suggesting that elastases can be a promising target to preserve the elastic component in COVID-19 patients. Moreover, intrinsic and extrinsic factors additionally contributing to damaging the elastic component and to increasing the spread and severity of SARS-CoV-2 infection are reviewed.
Collapse
Affiliation(s)
- Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.B.); (F.D.L.)
| | - Francesco Demetrio Lofaro
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.B.); (F.D.L.)
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.B.); (F.D.L.)
- Correspondence:
| |
Collapse
|
4
|
Heinz A. Elastic fibers during aging and disease. Ageing Res Rev 2021; 66:101255. [PMID: 33434682 DOI: 10.1016/j.arr.2021.101255] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/29/2020] [Accepted: 12/30/2020] [Indexed: 02/08/2023]
Abstract
Elastic fibers are essential constituents of the extracellular matrix of higher vertebrates and endow several tissues and organs including lungs, skin and blood vessels with elasticity and resilience. During the human lifespan, elastic fibers are exposed to a variety of enzymatic, chemical and biophysical influences, and accumulate damage due to their low turnover. Aging of elastin and elastic fibers involves enzymatic degradation, oxidative damage, glycation, calcification, aspartic acid racemization, binding of lipids and lipid peroxidation products, carbamylation and mechanical fatigue. These processes can trigger an impairment or loss of elastic fiber function and are associated with severe pathologies. There are different inherited or acquired pathological conditions, which influence the structure and function of elastic fibers and microfibrils predominantly in the cardiorespiratory system and skin. Inherited elastic-fiber pathologies have a direct or indirect impact on elastic-fiber formation due to mutations in the fibrillin genes (fibrillinopathies), in the elastin gene (elastinopathies) or in genes encoding proteins that are associated with microfibrils or elastic fibers. Acquired elastic-fiber pathologies appear age-related or as a result of multiple factors impairing tissue homeostasis. This review gives an overview on the fate of elastic fibers over the human lifespan in health and disease.
Collapse
|
5
|
Wang R, Yu X, Gkousioudi A, Zhang Y. Effect of Glycation on Interlamellar Bonding of Arterial Elastin. EXPERIMENTAL MECHANICS 2021; 61:81-94. [PMID: 33583947 PMCID: PMC7880226 DOI: 10.1007/s11340-020-00644-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/21/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Interlamellar bonding in the arterial wall is often compromised by cardiovascular diseases. However, several recent nationwide and hospital-based studies have uniformly reported reduced risk of thoracic aortic dissection in patients with diabetes. As one of the primary structural constituents in the arterial wall, elastin plays an important role in providing its interlamellar structural integrity. OBJECTIVE The purpose of this study is to examine the effects of glycation on the interlamellar bonding properties of arterial elastin. METHODS Purified elastin network was isolated from porcine descending thoracic aorta and incubated in 2 M glucose solution for 7, 14 or 21 days at 37 °C. Peeling and direct tension tests were performed to provide complimentary information on understanding the interlamellar layer separation properties of elastin network with glycation effect. Peeling tests were simulated using a cohesive zone model (CZM). Multiphoton imaging was used to visualize the interlamellar elastin fibers in samples subjected to peeling and direct tension. RESULTS Peeling and direct tension tests show that interlamellar energy release rate and strength both increases with the duration of glucose treatment. The traction at damage initiation estimated for the CZM agrees well with the interlamellar strength measurements from direct tension tests. Glycation was also found to increase the interlamellar failure strain of arterial elastin. Multiphoton imaging confirmed the contribution of radially running elastin fibers to resisting dissection. CONCLUSIONS Nonenzymatic glycation reduces the propensity of arterial elastin to dissection. This study also suggests that the CZM effectively describes the interlamellar bonding properties of arterial elastin.
Collapse
Affiliation(s)
- R Wang
- Department of Mechanical Engineering, Boston University, Boston, MA 02215
| | - X Yu
- Department of Mechanical Engineering, Boston University, Boston, MA 02215
| | - A Gkousioudi
- Department of Mechanical Engineering, Boston University, Boston, MA 02215
| | - Y Zhang
- Department of Mechanical Engineering, Boston University, Boston, MA 02215
- Department of Biomedical Engineering, Boston University, Boston, MA 02215
- Divison of Materials Science & Engineering, Boston University, Boston, MA 02215
| |
Collapse
|
6
|
Wang Y, Hahn J, Zhang Y. Mechanical Properties of Arterial Elastin With Water Loss. J Biomech Eng 2019; 140:2668584. [PMID: 29305611 DOI: 10.1115/1.4038887] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Indexed: 01/08/2023]
Abstract
Elastin is a peculiar elastomer in that it requires water to maintain resilience, and its mechanical properties are closely associated with the immediate aqueous environment. The bulk, extra- and intrafibrillar water plays important roles in both elastic and viscoelastic properties of elastin. In this study, a two-stage liquid-vapor method was developed to investigate the effects of water loss on the mechanical properties of porcine aortic elastin. The tissue samples started in a phosphate-buffered saline (PBS) solution at their fully hydrated condition, with a gravimetric water content of 370±36%. The hydration level was reduced by enclosing the tissue in dialysis tubing and submerging it in polyethylene glycol (PEG) solution at concentrations of 10%, 20%, 30%, and 45% w/v, which reduced the water content of the samples to 258±34%, 224±20%, 109±9%, and 58±3%, respectively. The samples were then transferred to a humidity chamber to maintain the hydration level while the samples underwent equi-biaxial tensile and stress relaxation tests. The concentration of 10% PEG treatment induced insignificant changes in tissue dimensions and stiffness, indicating that the removal of bulk water has less effect on elastin. Significant increases in tangent modulus were observed after 20% and 30% PEG treatment due to the decreased presence of extrafibrillar water. Elastin treated with 45% PEG shows a very rigid behavior as most of the extrafibrillar water is eliminated. These results suggest that extrafibrillar water is crucial for elastin to maintain its elastic behavior. It was also observed that the anisotropy of elastin tends to decrease with water loss. An increase in stress relaxation was observed for elastin treated with 30% PEG, indicating a more viscous behavior of elastin when the amount of extrafibrillar water is significantly reduced. Results from this study shed light on the close association between the bulk, extra- and intrafibrillar water pools and the mechanics of elastin.
Collapse
Affiliation(s)
- Yunjie Wang
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA 02215
| | - Jacob Hahn
- Department of Mechanical Engineering, Boston University, , Boston, MA 02215
| | - Yanhang Zhang
- Department of Mechanical Engineering, Boston University, , Boston, MA 02215.,Department of Biomedical Engineering, Boston University, Boston, MA 02215 e-mail:
| |
Collapse
|
7
|
Alterations of elastin in female reproductive tissues arising from advancing parity. Arch Biochem Biophys 2019; 666:127-137. [PMID: 30914253 DOI: 10.1016/j.abb.2019.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/01/2019] [Accepted: 03/16/2019] [Indexed: 11/22/2022]
Abstract
Female reproductive tissues undergo significant alterations during pregnancy, which may compromise the structural integrity of extracellular matrix proteins. Here, we report on modifications of elastic fibers, which are primarily composed of elastin and believed to provide a scaffold to the reproductive tissues, due to parity and parturition. Elastic fibers from the upper vaginal wall of virgin Sprague Dawley rats were investigated and compared to rats having undergone one, three, or more than five pregnancies. Optical microscopy was used to study fiber level changes. Mass spectrometry, 13C and 2H NMR, was applied to study alterations of elastin from the uterine horns. Spectrophotometry was used to measure matrix metalloproteinases-2,9 and tissue inhibitor of metalloproteinase-1 concentration changes in the uterine horns. Elastic fibers were found to exhibit increase in tortuosity and fragmentation with increased pregnancies. Surprisingly, secondary structure, dynamics, and crosslinking of elastin from multiparous cohorts appear similar to healthy mammalian tissues, despite fragmentation observed at the fiber level. In contrast, elastic fibers from virgin and single pregnancy cohorts are less fragmented and comprised of elastin exhibiting structure and dynamics distinguishable from multiparous groups, with reduced crosslinking. These alterations were correlated to matrix metalloproteinases-2,9 and tissue inhibitor of metalloproteinase-1 concentrations. This work indicates that fiber level alterations resulting from pregnancy and/or parturition, such as fragmentation, rather than secondary structure (e.g. elastin crosslinking density), appear to govern scaffolding characteristics in the female reproductive tissues.
Collapse
|
8
|
Franck JM, Han S. Overhauser Dynamic Nuclear Polarization for the Study of Hydration Dynamics, Explained. Methods Enzymol 2018; 615:131-175. [PMID: 30638529 DOI: 10.1016/bs.mie.2018.09.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We outline the physical properties of hydration water that are captured by Overhauser Dynamic Nuclear Polarization (ODNP) relaxometry and explore the insights that ODNP yields about the water and the surface that this water is coupled to. As ODNP relies on the pairwise cross-relaxation between the electron spin of a spin probe and a proton nuclear spin of water, it captures the dynamics of single-particle diffusion of an ensemble of water molecules moving near the spin probe. ODNP principally utilizes the same physics as other nuclear magnetic resonance (NMR) relaxometry (i.e., relaxation measurement) techniques. However, in ODNP, electron paramagnetic resonance (EPR) excites the electron spins probes and their high net polarization acts as a signal amplifier. Furthermore, it renders ODNP parameters highly sensitive to water moving at rates commensurate with the EPR frequency of the spin probe (typically 10GHz). Also, ODNP selectively enhances the NMR signal contributions of water moving within close proximity to the spin label. As a result, ODNP can capture ps-ns movements of hydration waters with high sensitivity and locality, even in samples with protein concentrations as dilute as 10 µM. To date, the utility of the ODNP technique has been demonstrated for two major applications: the characterization of the spatial variation in the properties of the hydration layer of proteins or other surfaces displaying topological diversity, and the identification of structural properties emerging from highly disordered proteins and protein domains. The former has been shown to correlate well with the properties of hydration water predicted by MD simulations and has been shown capable of evaluating the hydrophilicity or hydrophobicity of a surface. The latter has been demonstrated for studies of an interhelical loop of proteorhodopsin, the partial structure of α-synuclein embedded at the lipid membrane surface, incipient structures adopted by tau proteins en route to fibrils, and the structure and hydration profile of a transmembrane peptide. This chapter focuses on offering a mechanistic understanding of the ODNP measurement and the molecular dynamics encoded in the ODNP parameters. In particular, it clarifies how the electron-nuclear dipolar coupling encodes information about the molecular dynamics in the nuclear spin self-relaxation and, more importantly, the electron-nuclear spin cross-relaxation rates. The clarification of the molecular dynamics underlying ODNP should assist in establishing a connection to theory and computer simulation that will offer far richer interpretations of ODNP results in future studies.
Collapse
Affiliation(s)
- John M Franck
- Department of Chemistry, Syracuse University, Syracuse, NY, United States.
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, United States; Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
9
|
Janssen R, Piscaer I, Wouters EFM. Inhalation therapy for repairing damaged elastin fibers and decelerating elastinolysis in chronic obstructive pulmonary disease. Expert Rev Respir Med 2018; 12:349-360. [DOI: 10.1080/17476348.2018.1460206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Rob Janssen
- Department of Pulmonary Medicine, Canisius-Wilhelmina Hospital, Nijmegen, Netherlands
| | - Ianthe Piscaer
- Department of Respiratory Medicine, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Emiel FM. Wouters
- Department of Research and Education, Center of Expertise for Chronic Organ Failure(CIRO), Horn, Netherlands
| |
Collapse
|
10
|
Wang Y, Li H, Zhang Y. Understanding the viscoelastic behavior of arterial elastin in glucose via relaxation time distribution spectrum. J Mech Behav Biomed Mater 2018; 77:634-641. [DOI: 10.1016/j.jmbbm.2017.10.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 10/10/2017] [Accepted: 10/16/2017] [Indexed: 01/05/2023]
|
11
|
Abstract
The protein elastin imparts extensibility, elastic recoil, and resilience to tissues including arterial walls, skin, lung alveoli, and the uterus. Elastin and elastin-like peptides are hydrophobic, disordered, and undergo liquid-liquid phase separation upon self-assembly. Despite extensive study, the structure of elastin remains controversial. We use molecular dynamics simulations on a massive scale to elucidate the structural ensemble of aggregated elastin-like peptides. Consistent with the entropic nature of elastic recoil, the aggregated state is stabilized by the hydrophobic effect. However, self-assembly does not entail formation of a hydrophobic core. The polypeptide backbone forms transient, sparse hydrogen-bonded turns and remains significantly hydrated even as self-assembly triples the extent of non-polar side chain contacts. Individual chains in the assembly approach a maximally-disordered, melt-like state which may be called the liquid state of proteins. These findings resolve long-standing controversies regarding elastin structure and function and afford insight into the phase separation of disordered proteins.
Collapse
Affiliation(s)
- Sarah Rauscher
- Molecular MedicineThe Hospital for Sick ChildrenTorontoCanada
- Department of BiochemistryUniversity of TorontoTorontoCanada
| | - Régis Pomès
- Molecular MedicineThe Hospital for Sick ChildrenTorontoCanada
- Department of BiochemistryUniversity of TorontoTorontoCanada
| |
Collapse
|
12
|
Dhital B, Gul-E-Noor F, Downing KT, Hirsch S, Boutis GS. Pregnancy-Induced Dynamical and Structural Changes of Reproductive Tract Collagen. Biophys J 2017; 111:57-68. [PMID: 27410734 DOI: 10.1016/j.bpj.2016.05.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/27/2016] [Accepted: 05/27/2016] [Indexed: 11/16/2022] Open
Abstract
The tissues and organs of the female reproductive tract and pelvic floor undergo significant remodeling and alterations to allow for fetal growth and birth. In this work, we report on a study of the alterations of murine reproductive tract collagen resulting from pregnancy and parturition by spectrophotometry, histology, and (13)C, (2)H nuclear magnetic resonance (NMR). Four different cohorts of rats were investigated that included virgin, multiparous, two- and fourteen-day postpartum primiparous rats. (13)C CPMAS NMR revealed small chemical shift differences across the cohorts. The measured H-C internuclear correlation times indicated differences in dynamics of some motifs. However, the dynamics of the major amino acids, e.g., Gly, remained unaltered with respect to parity. (2)H NMR relaxation measurements revealed an additional water reservoir in the postpartum and multiparous cohorts pointing to redistribution of water due to pregnancy and/or parturition. Spectrophotometric measurements indicated that the collagen content in virgin rats was highest. Histological analysis of the upper vaginal wall indicated a signature of collagen fiber dissociation with smooth muscle and a change in the density of collagen fibers in multiparous rats.
Collapse
Affiliation(s)
- Basant Dhital
- Department of Physics, The Graduate Center, The City University of New York, New York, New York
| | - Farhana Gul-E-Noor
- Department of Physics, Brooklyn College, The City University of New York, Brooklyn, New York
| | - Keith T Downing
- Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Shari Hirsch
- Department of Physics, Brooklyn College, The City University of New York, Brooklyn, New York
| | - Gregory S Boutis
- Department of Physics, The Graduate Center, The City University of New York, New York, New York; Department of Physics, Brooklyn College, The City University of New York, Brooklyn, New York.
| |
Collapse
|
13
|
Dhital B, Durlik P, Rathod P, Gul-E-Noor F, Wang Z, Sun C, Chang EJ, Itin B, Boutis GS. Ultraviolet radiation reduces desmosine cross-links in elastin. Biochem Biophys Rep 2017; 10:172-177. [PMID: 28955744 PMCID: PMC5614723 DOI: 10.1016/j.bbrep.2017.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/16/2017] [Accepted: 04/03/2017] [Indexed: 12/02/2022] Open
Abstract
Elastic fibers, a major component of the extracellular matrix of the skin, are often exposed to ultraviolet (UV) radiation throughout mammalian life. We report on an in vitro study of the alterations in bovine nuchal ligament elastic fibers resulting from continuous UV-A exposure by the use of transmission electron microscopy (TEM), histology, mass spectrometry, and solid state 13C NMR methodologies. TEM images reveal distinct cracks in elastic fibers as a result of UV-A irradiation and histological measurements show a disruption in the regular array of elastic fibers present in unirradiated samples; elastic fibers appear shorter, highly fragmented, and thinner after UV-A treatment. Magic angle spinning 13C NMR was applied to investigate possible secondary structural changes or dynamics in the irradiated samples; our spectra reveal no differences between UV-A irradiated and non-irradiated samples. Lastly, MALDI mass spectrometry indicates that the concentration of desmosine, which forms cross-links in elastin, is observed to decrease by 11 % following 9 days of continuous UV-A irradiation, in comparison to unirradiated samples. These alterations presumably play a significant role in the loss of elasticity observed in UV exposed skin. UV-A exposure results in cracks in elastic fibers as observed by TEM. Cross-linking of elastin is observed to decrease following UV-A exposure. UV-A exposed fibers appear shorter and fragmented in comparison to controls. 13C MAS NMR spectra of UV irradiated samples appear similar to controls.
Collapse
Affiliation(s)
- Basant Dhital
- The Graduate Center of The City University of New York, Department of Physics, New York, New York, USA
| | - Philip Durlik
- Department of Physics, Brooklyn College of The City University of New York, Brooklyn, New York, USA
| | - Pratikkumar Rathod
- The Graduate Center of The City University of New York, Department of Chemistry, New York, New York, USA
- York College of The City University of New York, Department of Chemistry, Jamaica, New York, USA
| | - Farhana Gul-E-Noor
- Department of Physics, Brooklyn College of The City University of New York, Brooklyn, New York, USA
| | - Zhixiao Wang
- College of Physical Science and Technology, Dalian University, Dalian, China
| | - Cheng Sun
- College of Physical Science and Technology, Dalian University, Dalian, China
| | - Emmanuel J. Chang
- The Graduate Center of The City University of New York, Department of Chemistry, New York, New York, USA
- York College of The City University of New York, Department of Chemistry, Jamaica, New York, USA
- The Graduate Center of The City University of New York, Department of Biochemistry, New York, New York, USA
| | - Boris Itin
- New York Structural Biology Center, 89 Convent Ave, New York, NY, USA
| | - Gregory S. Boutis
- The Graduate Center of The City University of New York, Department of Physics, New York, New York, USA
- Department of Physics, Brooklyn College of The City University of New York, Brooklyn, New York, USA
- Corresponding author at: The Graduate Center of The City University of New York, Department of Physics, New York, New York, USA.
| |
Collapse
|
14
|
Zhang Y, Li J, Boutis GS. The Coupled Bio-Chemo-Electro-Mechanical Behavior of Glucose Exposed Arterial Elastin. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2017; 50:133001. [PMID: 28989186 PMCID: PMC5626447 DOI: 10.1088/1361-6463/aa5c55] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Elastin, the principle protein component of the elastic fiber, is a critical extracellular matrix (ECM) component of the arterial wall providing structural resilience and biological signaling essential in vascular morphogenesis and maintenance of mechanical homeostasis. Pathogenesis of many cardiovascular diseases have been associated with alterations of elastin. As a long-lived ECM protein that is deposited and organized before adulthood, elastic fibers can suffer from cumulative effects of biochemical exposure encountered during aging and/or disease, which greatly compromise their mechanical function. This review article covers findings from recent studies of the mechanical and structural contribution of elastin to vascular function, and the effects of biochemical degradation. Results from diverse experimental methods including tissue-level mechanical characterization, fiber-level nonlinear optical imaging, piezoelectric force microscopy, and nuclear magnetic resonance are reviewed. The intriguing coupled bio-chemo-electro-mechanical behavior of elastin calls for a multi-scale and multi-physical understanding of ECM mechanics and mechanobiology in vascular remodeling.
Collapse
Affiliation(s)
- Yanhang Zhang
- Department of Mechanical Engineering, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Jiangyu Li
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Gregory S Boutis
- Department of Physics, Brooklyn College and The Graduate Center, The City University of New York, NY, USA
| |
Collapse
|
15
|
Bilici K, Morgan SW, Silverstein MC, Wang Y, Sun HJ, Zhang Y, Boutis GS. Mechanical, structural, and dynamical modifications of cholesterol exposed porcine aortic elastin. Biophys Chem 2016; 218:47-57. [PMID: 27648754 DOI: 10.1016/j.bpc.2016.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/03/2016] [Accepted: 09/03/2016] [Indexed: 11/27/2022]
Abstract
Elastin is a protein of the extracellular matrix that contributes significantly to the elasticity of connective tissues. In this study, we examine dynamical and structural modifications of aortic elastin exposed to cholesterol by NMR spectroscopic and relaxation methodologies. Macroscopic measurements are also presented and reveal that cholesterol treatment may cause a decrease in the stiffness of tissue. 2H NMR relaxation techniques revealed differences between the relative populations of water that correlate with the swelling of the tissue following cholesterol exposure. 13C magic-angle-spinning NMR spectroscopy and relaxation methods indicate that cholesterol treated aortic elastin is more mobile than control samples. Molecular dynamics simulations on a short elastin repeat VPGVG in the presence of cholesterol are used to investigate the energetic and entropic contributions to the retractive force, in comparison to the same peptide in water. Peptide stiffness is observed to reduce following cholesterol exposure due to a decrease in the entropic force.
Collapse
Affiliation(s)
- Kubra Bilici
- Department of Physics, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn NY, United States
| | - Steven W Morgan
- Division of Science and Mathematics, University of Minnesota, Morris, 600 E 4th St Moris, MN, United States
| | - Moshe C Silverstein
- Department of Physics, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn NY, United States
| | - Yunjie Wang
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston MA, United States
| | - Hyung Jin Sun
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston MA, United States
| | - Yanhang Zhang
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston MA, United States; Department of Biomedical Engineering, Boston University, 110 Cummington Mall, Boston MA, United States
| | - Gregory S Boutis
- Department of Physics, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn NY, United States; Department of Physics, The Graduate Center of The City University of New York, 365 5th Ave, New York, NY, United States.
| |
Collapse
|