1
|
Yakovliev V, Lev B. Impact of bacterial outer membrane and general porins on cyanide diffusion and biodegradation kinetics. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136117. [PMID: 39427357 DOI: 10.1016/j.jhazmat.2024.136117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
The present study focuses on the analysis of the diffusion process of various cyanide compounds through general porins and outer membranes of gram-negative bacteria. We demonstrate the impact of the compound-to-porin radius ratio, the charge of cyanide ion, the Donnan potential, the intrinsic porin potential, the number and length of general porins, the fraction of open channels, and the size of bacteria on the effective diffusion coefficients and permeability coefficients of cyanide compounds. Moreover, we report, for the first time, the procedure for comparison of the rate of cyanide diffusion across the outer membrane with the rate of cyanide biodegradation that allows establishing the conditions for which the biodegradation is a diffusion-limited process or the diffusion is a significantly faster process than biodegradation. We apply this procedure to several experimental studies and predict the range of extracellular cyanide concentrations for which diffusion is a significantly faster process than biodegradation. We also demonstrate how these results affect the theoretical view of the cyanide biodegradation kinetics.
Collapse
Affiliation(s)
- Vladyslav Yakovliev
- Department of Synergetics, Bogolyubov Institute for Theoretical Physics of the National Academy of Sciences of Ukraine, 14b Metrolohichna Str., Kyiv 03143, Ukraine.
| | - Bohdan Lev
- Department of Synergetics, Bogolyubov Institute for Theoretical Physics of the National Academy of Sciences of Ukraine, 14b Metrolohichna Str., Kyiv 03143, Ukraine; Condensed Matter Physics Department, J. Stefan Institute, 39 Jamova, Ljubljana 1000, Slovenia; Faculty of Mathematics and Physics, University of Ljubljana, 19 Jadranska, Ljubljana 1000, Slovenia.
| |
Collapse
|
2
|
Vergoz D, Schaumann A, Schmitz I, Afonso C, Dé E, Loutelier-Bourhis C, Alexandre S. Lipidome of Acinetobacter baumannii antibiotic persister cells. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159539. [PMID: 39067686 DOI: 10.1016/j.bbalip.2024.159539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/02/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Persister cells constitute a bacterial subpopulation able to survive to high concentrations of antibiotics. This phenotype is temporary and reversible, and thus could be involved in the recurrence of infections and emergence of antibiotic resistance. To better understand how persister cells survive to such high antibiotic concentration, we examined changes in their lipid composition. We thus compared the lipidome of Acinetobacter baumannii ATCC 19606T persister cells formed under ciprofloxacin treatment with the lipidome of control cells grown without antibiotic. Using matrix assisted laser desorption ionisation-Fourier transform ion cyclotron resonance mass spectrometry, we observed a higher abundance of short chains and secondary chains without hydroxylation for lipid A in persister cells. Using liquid chromatography-tandem mass spectrometry, we found that persister cells produced particular phosphatidylglycerols, as LPAGPE and PAGPE, but also lipids with particular acyl chains containing additional hydroxyl group or uncommon di-unsaturation on C18 and C16 acyl chains. In order to determine the impact of these multiple lipidome modifications on membrane fluidity, fluorescence anisotropy assays were performed. They showed an increase of rigidity for the membrane of persister cells, inducing likely a decrease membrane permeability to protect cells during dormancy. Finally, we highlighted that A. baumannii persister cells also produced particular wax esters, composed of two fatty acids and a fatty diol. These uncommon storage lipids are key metabolites allowing a rapid bacterial regrow when antibiotic pressure disappears. These overall changes in persister lipidome may constitute new therapeutic targets to combat these particular dormant cells.
Collapse
Affiliation(s)
- Delphine Vergoz
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Polymers, Biopolymers, Surfaces Lab., F-76000 Rouen, France; Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France
| | - Annick Schaumann
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Polymers, Biopolymers, Surfaces Lab., F-76000 Rouen, France
| | - Isabelle Schmitz
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Polymers, Biopolymers, Surfaces Lab., F-76000 Rouen, France; Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France
| | - Carlos Afonso
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France
| | - Emmanuelle Dé
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Polymers, Biopolymers, Surfaces Lab., F-76000 Rouen, France
| | - Corinne Loutelier-Bourhis
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France
| | - Stéphane Alexandre
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Polymers, Biopolymers, Surfaces Lab., F-76000 Rouen, France.
| |
Collapse
|
3
|
Ceccarelli M, Milenkovic S, Bodrenko IV. The Effect of Lipopolysaccharides on the Electrostatic Properties of Gram-Negative General Porins from Enterobacteriaceae. Chemphyschem 2024; 25:e202400147. [PMID: 38625051 DOI: 10.1002/cphc.202400147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/17/2024]
Abstract
We investigated, by using all-atom molecular dynamics simulations, the effect of the outer membrane of Gram-negative bacteria, composed in the outer leaflet by polar/charged lipopolysaccharides (LPS), on the electrostatic properties of general porins from the Enterobacteriaceae family. General porins constitute the main path for the facilitated diffusion of polar antibiotics through the outer membrane. As model system we selected OmpK36 from Klebsiella pneumoniae, the ortholog of OmpC from Escherichia coli. This species presents high variability of amino acid composition of porins, with the effect to increase its resistance to the penetration of antibiotics. The various properties we analyzed seem to indicate that LPS acts as an independent layer without affecting the internal electrostatic properties of OmpK36. The only apparent effect on the microsecond time scale we sampled is the appearance of calcium ions, when present at moderate concentration in solution, inside the pore. However, we noticed increased fluctuations of the polarization density and only minor changes on its average value.
Collapse
Affiliation(s)
- Matteo Ceccarelli
- Department of Physics, University of Cagliari, Cittadella Universitaria, 09042, Monserrato, IT
| | - Stefan Milenkovic
- Department of Physics, University of Cagliari, Cittadella Universitaria, 09042, Monserrato, IT
| | - Igor V Bodrenko
- Istituto Nanoscienze, CNR, piazza San Silvestro 12, 56127, Pisa, Italy
- Lab NEST, Scuola Normale Superiore, piazza San Silvestro 12, 56127, Pisa, Italy
| |
Collapse
|
4
|
Bouquiaux C, Champagne B, Beaujean P. Multimillion Atom Simulations of Di-8-ANEPPS Chromophores Embedded in a Model Plasma Membrane: Toward the Investigation of Realistic Dyed Cell Membranes. J Chem Inf Model 2024; 64:518-531. [PMID: 38157204 DOI: 10.1021/acs.jcim.3c01568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
A multistep computational approach has been employed to study a multimillion all-atom dyed plasma membrane, with no less than 42 different lipid species spanning the major head groups and a variety of fatty acids, as well as cholesterol, with the objective of investigating its structure and dynamics, as well as its impact on the embedded di-8-ANEPPS dyes. The latter are commonly used as bioimaging probes and serve as local microscopes. So, they provide information on membrane morphology via their second harmonic nonlinear optical (NLO) responses, which have the advantage of being specific to interface regions and sensitive to the chromophore environment. In previous studies, this chromophore has only been studied in simpler membrane models, far from the complexity of real lipid bilayers, while, owing to the ever-increasing computational resources, multimillion lipid bilayers have been studied, giving access to the effects of its heterogeneity. First, using molecular dynamics (MD) simulations, it is found that the combination of lipids produces a more ordered and denser membrane compared to its homogeneous model counterparts, while the local environment of the embedded dyes becomes enriched in phosphatidylcholine. Subsequently, the second harmonic first hyperpolarizability of the probes was calculated at the TDDFT level on selected frames of MD, highlighting the influence of the lipid environment. Due to the complexity of the system, machine learning (ML) tools have been employed to establish relationships between the membrane structural parameters, the orientation of the probes, and their NLO responses. These ML approaches have revealed influential features, including the presence of diacylglycerol lipids close to the dye. On the whole, this work provides a first step toward understanding the cooperation, synergy, and interactions that occur in such complex guest-host environments, which have emerged as new targets for drug design and membrane lipid therapy.
Collapse
Affiliation(s)
- Charlotte Bouquiaux
- University of Namur, Theoretical Chemistry Lab, Unit of Theoretical and Structural Physical Chemistry, Namur Institute of Structured Matter, rue de Bruxelles, 61, B-5000 Namur, Belgium
| | - Benoît Champagne
- University of Namur, Theoretical Chemistry Lab, Unit of Theoretical and Structural Physical Chemistry, Namur Institute of Structured Matter, rue de Bruxelles, 61, B-5000 Namur, Belgium
| | - Pierre Beaujean
- University of Namur, Theoretical Chemistry Lab, Unit of Theoretical and Structural Physical Chemistry, Namur Institute of Structured Matter, rue de Bruxelles, 61, B-5000 Namur, Belgium
| |
Collapse
|
5
|
Wilson MA, Pohorille A. Structure and Computational Electrophysiology of Ac-LS3, a Synthetic Ion Channel. J Phys Chem B 2022; 126:8985-8999. [PMID: 36306164 DOI: 10.1021/acs.jpcb.2c05965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Computer simulations are reported on Ac-LS3, a synthetic ion channel, containing 21 residues with a Leu-Ser-Ser-Leu-Leu-Ser-Leu heptad repeat, which forms ions channels upon application of voltage. A hexameric, coiled-coil bundle initially positioned perpendicular to the membrane settled into a stable, tilted structure after 1.5 μs, most likely to improve contacts between the non-polar exterior of the channel and the hydrophobic core of the membrane. Once tilted, the bundle remained in this state during subsequent simulations of nearly 10 μs at voltages ranging from 200 to -100 mV. In contrast, attempts to identify a stable pentameric structure failed, thus supporting the hypothesis that the channel is a hexamer. Results at 100 mV were used to reconstruct the free energy profiles for K+ and Cl- in the channel. This was done by way of several methods in which results of molecular dynamics (MD) simulations were combined with the electrodiffusion model. Two of them developed recently do not require knowledge of the diffusivity. Instead, they utilize one-sided density profiles and committor probabilities. The consistency between different methods is very good, supporting the utility of the newly developed methods for reconstructing free energies of ions in channels. The flux of K+, which accounts for most of the current through the channel, calculated directly from MD matches well the total measured current. However, the current of Cl- is somewhat overestimated, possibly due to a slightly unbalanced force field involving chloride. The current-voltage dependence was also reconstructed by way of a recently developed, efficient method that requires simulations only at a single voltage, yielding good agreement with the experiment. Taken together, the results demonstrate that computational electrophysiology has become a reliable tool for studying how channels mediate ion transport through membranes.
Collapse
Affiliation(s)
- Michael A Wilson
- Exobiology Branch, MS239-4, NASA Ames Research Center, Moffett Field, California94035, United States.,SETI Institute, 189 Bernardo Avenue, Suite 200, Mountain View, California94043, United States
| | - Andrew Pohorille
- Exobiology Branch, MS239-4, NASA Ames Research Center, Moffett Field, California94033, United States.,Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California94132, United States
| |
Collapse
|
6
|
Maia MAC, Bettin EB, Barbosa LN, de Oliveira NR, Bunde TT, Pedra ACK, Rosa GA, da Rosa EEB, Seixas Neto ACP, Grassmann AA, McFadden J, Dellagostin OA, McBride AJA. Challenges for the development of a universal vaccine against leptospirosis revealed by the evaluation of 22 vaccine candidates. Front Cell Infect Microbiol 2022; 12:940966. [PMID: 36275031 PMCID: PMC9586249 DOI: 10.3389/fcimb.2022.940966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Leptospirosis is a neglected disease of man and animals that affects nearly half a million people annually and causes considerable economic losses. Current human vaccines are inactivated whole-cell preparations (bacterins) of Leptospira spp. that provide strong homologous protection yet fail to induce a cross-protective immune response. Yearly boosters are required, and serious side-effects are frequently reported so the vaccine is licensed for use in humans in only a handful of countries. Novel universal vaccines require identification of conserved surface-exposed epitopes of leptospiral antigens. Outer membrane β-barrel proteins (βb-OMPs) meet these requirements and have been successfully used as vaccines for other diseases. We report the evaluation of 22 constructs containing protein fragments from 33 leptospiral βb-OMPs, previously identified by reverse and structural vaccinology and cell-surface immunoprecipitation. Three-dimensional structures for each leptospiral βb-OMP were predicted by I-TASSER. The surface-exposed epitopes were predicted using NetMHCII 2.2 and BepiPred 2.0. Recombinant constructs containing regions from one or more βb-OMPs were cloned and expressed in Escherichia coli. IMAC-purified recombinant proteins were adsorbed to an aluminium hydroxide adjuvant to produce the vaccine formulations. Hamsters (4-6 weeks old) were vaccinated with 2 doses containing 50 – 125 μg of recombinant protein, with a 14-day interval between doses. Immunoprotection was evaluated in the hamster model of leptospirosis against a homologous challenge (10 – 20× ED50) with L. interrogans serogroup Icterohaemorrhagiae serovar Copenhageni strain Fiocruz L1-130. Of the vaccine formulations, 20/22 were immunogenic and induced significant humoral immune responses (IgG) prior to challenge. Four constructs induced significant protection (100%, P < 0.001) and sterilizing immunity in two independent experiments, however, this was not reproducible in subsequent evaluations (0 – 33.3% protection, P > 0.05). The lack of reproducibility seen in these challenge experiments and in other reports in the literature, together with the lack of immune correlates and commercially available reagents to characterize the immune response, suggest that the hamster may not be the ideal model for evaluation of leptospirosis vaccines and highlight the need for evaluation of alternative models, such as the mouse.
Collapse
Affiliation(s)
- Mara A. C. Maia
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Everton B. Bettin
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Liana N. Barbosa
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Natasha R. de Oliveira
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Tiffany T. Bunde
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Ana Carolina K. Pedra
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Guilherme A. Rosa
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Elias E. B. da Rosa
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Amilton C. P. Seixas Neto
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - André A. Grassmann
- Department of Medicine, University of Connecticut Health, Farmington, CT, United States
| | - Johnjoe McFadden
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Odir A. Dellagostin
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Alan J. A. McBride
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- *Correspondence: Alan J. A. McBride,
| |
Collapse
|
7
|
Lee S, Bayley H. Reconstruction of the Gram-Negative Bacterial Outer-Membrane Bilayer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200007. [PMID: 35289495 DOI: 10.1002/smll.202200007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/27/2022] [Indexed: 06/14/2023]
Abstract
The outer membrane (OM) of gram-negative bacteria is highly asymmetric. The outer leaflet comprises lipopolysaccharides (LPS) and the inner leaflet phospholipids. Here, it is shown that the outer membrane lipid bilayer (OMLB) of Escherichia coli can be reconstructed as a droplet interface bilayer (DIB), which separates two aqueous droplets in oil. The trimeric porin OmpF is inserted into the model OMLB and the translocation of the bacteriocin colicin E9 (colE9) through it is monitored. By contrast with LPS-free bilayers, it is found that colE9 made multiple failed attempts to engage with OmpF in an OMLB before successful translocation occurred. In addition, the observed rate for the second step of colE9 translocation is 3-times smaller than that in LPS-free bilayers, and further, the colE9 dissociates when the membrane potential is reversed. The findings demonstrate the utility of the DIB approach for constructing model OMLBs from physiologically realistic lipids and that the properties of the model OMLBs differ from those of a simple lipid bilayer. The model OMLB offers a credible platform for screening the properties of antibiotics.
Collapse
Affiliation(s)
- Sejeong Lee
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Hagan Bayley
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
8
|
Sun J, Rutherford ST, Silhavy TJ, Huang KC. Physical properties of the bacterial outer membrane. Nat Rev Microbiol 2022; 20:236-248. [PMID: 34732874 PMCID: PMC8934262 DOI: 10.1038/s41579-021-00638-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2021] [Indexed: 11/09/2022]
Abstract
It has long been appreciated that the Gram-negative outer membrane acts as a permeability barrier, but recent studies have uncovered a more expansive and versatile role for the outer membrane in cellular physiology and viability. Owing to recent developments in microfluidics and microscopy, the structural, rheological and mechanical properties of the outer membrane are becoming apparent across multiple scales. In this Review, we discuss experimental and computational studies that have revealed key molecular factors and interactions that give rise to the spatial organization, limited diffusivity and stress-bearing capacity of the outer membrane. These physical properties suggest broad connections between cellular structure and physiology, and we explore future prospects for further elucidation of the implications of outer membrane construction for cellular fitness and survival.
Collapse
Affiliation(s)
- Jiawei Sun
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Steven T. Rutherford
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA 94080, USA,To whom correspondence should be addressed: , ,
| | - Thomas J. Silhavy
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA,To whom correspondence should be addressed: , ,
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA, USA. .,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
9
|
Carey AB, Ashenden A, Köper I. Model architectures for bacterial membranes. Biophys Rev 2022; 14:111-143. [PMID: 35340604 PMCID: PMC8921416 DOI: 10.1007/s12551-021-00913-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/14/2021] [Indexed: 02/06/2023] Open
Abstract
The complex composition of bacterial membranes has a significant impact on the understanding of pathogen function and their development towards antibiotic resistance. In addition to the inherent complexity and biosafety risks of studying biological pathogen membranes, the continual rise of antibiotic resistance and its significant economical and clinical consequences has motivated the development of numerous in vitro model membrane systems with tuneable compositions, geometries, and sizes. Approaches discussed in this review include liposomes, solid-supported bilayers, and computational simulations which have been used to explore various processes including drug-membrane interactions, lipid-protein interactions, host-pathogen interactions, and structure-induced bacterial pathogenesis. The advantages, limitations, and applicable analytical tools of all architectures are summarised with a perspective for future research efforts in architectural improvement and elucidation of resistance development strategies and membrane-targeting antibiotic mechanisms. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-021-00913-7.
Collapse
Affiliation(s)
- Ashley B. Carey
- Institute for Nanoscale Science and Technology, College for Science and Engineering, Flinders University, Adelaide, SA 5042 Australia
| | - Alex Ashenden
- Institute for Nanoscale Science and Technology, College for Science and Engineering, Flinders University, Adelaide, SA 5042 Australia
| | - Ingo Köper
- Institute for Nanoscale Science and Technology, College for Science and Engineering, Flinders University, Adelaide, SA 5042 Australia
| |
Collapse
|
10
|
González-Fernández C, Bringas E, Oostenbrink C, Ortiz I. In silico investigation and surmounting of Lipopolysaccharide barrier in Gram-Negative Bacteria: How far has molecular dynamics Come? Comput Struct Biotechnol J 2022; 20:5886-5901. [PMID: 36382192 PMCID: PMC9636410 DOI: 10.1016/j.csbj.2022.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 11/29/2022] Open
Abstract
Lipopolysaccharide (LPS), a main component of the outer membrane of Gram-negative bacteria, has crucial implications on both antibiotic resistance and the overstimulation of the host innate immune system. Fighting against these global concerns calls for the molecular understanding of the barrier function and immunostimulatory ability of LPS. Molecular dynamics (MD) simulations have become an invaluable tool for uncovering important findings in LPS research. While the reach of MD simulations for investigating the immunostimulatory ability of LPS has been already outlined, little attention has been paid to the role of MD simulations for exploring its barrier function and synthesis. Herein, we give an overview about the impact of MD simulations on gaining insight into the shield role and synthesis pathway of LPS, which have attracted considerable attention to discover molecules able to surmount antibiotic resistance, either circumventing LPS defenses or disrupting its synthesis. We specifically focus on the enhanced sampling and free energy calculation methods that have been combined with MD simulations to address such research. We also highlight the use of special-purpose MD supercomputers, the importance of appropriate LPS and ions parameterization to obtain reliable results, and the complementary views that MD and wet-lab experiments provide. Thereby, this work, which covers the last five years of research, apart from outlining the phenomena and strategies that are being explored, evidences the valuable insights that are gained by MD, which may be useful to advance antibiotic design, and what the prospects of this in silico method could be in LPS research.
Collapse
Affiliation(s)
- Cristina González-Fernández
- Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain
| | - Eugenio Bringas
- Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain
| | - Chris Oostenbrink
- Institute for Molecular Modeling and Simulation, BOKU – University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Inmaculada Ortiz
- Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain
- Corresponding author.
| |
Collapse
|
11
|
Engineering the Outer Membrane Could Facilitate Better Bacterial Performance and Effectively Enhance Poly-3-Hydroxybutyrate Accumulation. Appl Environ Microbiol 2021; 87:e0138921. [PMID: 34550763 DOI: 10.1128/aem.01389-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Poly-3-hydroxybutyrate (PHB) is an environmentally friendly polymer and can be produced in Escherichia coli cells after overexpression of the heterologous gene cluster phaCAB. The biosynthesis of the outer membrane (OM) consumes many nutrients and influences cell morphology. Here, we engineered the OM by disrupting all gene clusters relevant to the polysaccharide portion of lipopolysaccharide (LPS), colanic acid (CA), flagella, and/or fimbria in E. coli W3110. All these disruptions benefited PHB production. Especially, disrupting all these OM components increased the PHB content to 83.0 wt% (PHB content percentage of dry cell weight), while the wild-type control produced only 1.5 wt% PHB. The increase was mainly due to the LPS truncation to Kdo2 (3-deoxy-d-manno-octulosonic acid)-lipid A, which resulted in 82.0 wt% PHB with a 25-fold larger cell volume, and disrupting CA resulted in 57.8 wt% PHB. In addition, disrupting LPS facilitated advantageous fermentation features, including 69.1% less acetate, a 550% higher percentage of autoaggregated cells among the total culture cells, 69.1% less biofilm, and a higher broken cell ratio. Further detailed mechanism investigations showed that disrupting LPS caused global changes in envelope and cellular metabolism: (i) a sharp decrease in flagella, fimbria, and secretions; (ii) more elastic cells; (iii) much greater carbon flux toward acetyl coenzyme A (acetyl-CoA) and supply of cofactors, including NADP, NAD, and ATP; and (iv) a decrease in by-product acids but increase in γ-aminobutyric acid by activating σE factor. Disrupting CA, flagella, and fimbria also improved the levels of acetyl-CoA and cofactors. The results indicate that engineering the OM is an effective strategy to enhance PHB production and highlight the applicability of OM engineering to increase microbial cell factory performance. IMPORTANCE Understanding the detailed influence of the OM on the cell envelope and cellular metabolism is important for optimizing the E. coli cell factory and many other microorganisms. This study revealed the applicability of remodeling the OM to enhance PHB accumulation as representative inclusion bodies. The results generated in this study give essential information for producing other inclusion bodies or chemicals which need more acetyl-CoA and cofactors but less by-product acids. This study is promising to provide new ideas for the improvement of microbial cell factories.
Collapse
|
12
|
Hu X, Zhang X, Luo S, Wu J, Sun X, Liu M, Wang X, Wang X. Enhanced Sensitivity of Salmonella to Antimicrobial Blue Light Caused by Inactivating rfaC Gene Involved in Lipopolysaccharide Biosynthesis. Foodborne Pathog Dis 2021; 18:599-606. [PMID: 34403268 DOI: 10.1089/fpd.2020.2888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Salmonella is a global foodborne pathogen that causes human diseases ranging from mild gastroenteritis to severe systemic infections. Recently, antimicrobial blue light (aBL) showed effective bactericidal activity against a variety of bacteria (e.g., Salmonella) with varying efficiency. However, the antimicrobial mechanism of aBL has not been fully elucidated. Our previous report showed that the outer membrane (OM) is a key target of aBL. The major component of the OM, lipopolysaccharide (LPS), may play a role in aBL bactericidal effect. Therefore, the influence of LPS truncation on the sensitivity of Salmonella Typhimurium SL1344 to aBL was investigated for the first time. First, the rfaC gene in the SL1344 strain likely involved in linking lipid A to the core region of LPS was inactivated and the influence on LPS structure was verified in the mutant strain SL1344ΔrfaC. SL1344ΔrfaC showed a significant increase in sensitivity to aBL, and the bactericidal efficiency exceeded 8 log CFU at an aBL dose of 383 J/cm2, while that of its parental SL1344 strain approached 4 log CFU. To discover the possible mechanism of higher sensitivity, the permeability of OM was determined. Compared to SL1344, SL1344ΔrfaC showed 2.7-fold higher permeability of the OM at 20 J/cm2, this may explain the higher vulnerability of the OM to aBL. Furthermore, the fatty acid profile was analyzed to reveal the detailed changes in the OM and inner membrane of the mutant. Results showed that the membrane lipids of SL1344ΔrfaC were markedly different to SL1344, indicating that change in fatty acid profile might mediate the enhancement of OM permeability and the increased sensitivity to aBL in SL1344ΔrfaC. Hence, we concluded that disruption of rfaC in Salmonella Typhimurium led to the formation of truncated LPS and thus enhanced the permeability of the OM, which contributed to the increased sensitivity to aBL.
Collapse
Affiliation(s)
- Xiaoqing Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Xiujuan Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shuanghua Luo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jiaxin Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiaoying Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Minmin Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiaohong Wang
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, China
| |
Collapse
|
13
|
Outer membrane permeability: Antimicrobials and diverse nutrients bypass porins in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2021; 118:2107644118. [PMID: 34326266 PMCID: PMC8346889 DOI: 10.1073/pnas.2107644118] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Novel antibiotics are urgently needed to resolve the current antimicrobial resistance crisis. For critical pathogens, drug entry through the cell envelope is one of the major challenges in the development of effective novel antibiotics. Envelope proteins forming water-filled channels, so-called porins, are commonly thought to be essential for entry of hydrophilic molecules, but we show here for the critical pathogen Pseudomonas aeruginosa that almost all antibiotics and diverse hydrophilic nutrients bypass porins and instead permeate directly through the outer membrane lipid bilayer. However, carboxylate groups hinder bilayer penetration, and Pseudomonas thus needs porins for efficient utilization of carboxylate-containing nutrients such as succinate. The major porin-independent entry route might open opportunities for facilitating drug delivery into bacteria. Gram-negative bacterial pathogens have an outer membrane that restricts entry of molecules into the cell. Water-filled protein channels in the outer membrane, so-called porins, facilitate nutrient uptake and are thought to enable antibiotic entry. Here, we determined the role of porins in a major pathogen, Pseudomonas aeruginosa, by constructing a strain lacking all 40 identifiable porins and 15 strains carrying only a single unique type of porin and characterizing these strains with NMR metabolomics and antimicrobial susceptibility assays. In contrast to common assumptions, all porins were dispensable for Pseudomonas growth in rich medium and consumption of diverse hydrophilic nutrients. However, preferred nutrients with two or more carboxylate groups such as succinate and citrate permeated poorly in the absence of porins. Porins provided efficient translocation pathways for these nutrients with broad and overlapping substrate selectivity while efficiently excluding all tested antibiotics except carbapenems, which partially entered through OprD. Porin-independent permeation of antibiotics through the outer-membrane lipid bilayer was hampered by carboxylate groups, consistent with our nutrient data. Together, these results challenge common assumptions about the role of porins by demonstrating porin-independent permeation of the outer-membrane lipid bilayer as a major pathway for nutrient and drug entry into the bacterial cell.
Collapse
|
14
|
Rybenkov VV, Zgurskaya HI, Ganguly C, Leus IV, Zhang Z, Moniruzzaman M. The Whole Is Bigger than the Sum of Its Parts: Drug Transport in the Context of Two Membranes with Active Efflux. Chem Rev 2021; 121:5597-5631. [PMID: 33596653 PMCID: PMC8369882 DOI: 10.1021/acs.chemrev.0c01137] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cell envelope plays a dual role in the life of bacteria by simultaneously protecting it from a hostile environment and facilitating access to beneficial molecules. At the heart of this ability lie the restrictive properties of the cellular membrane augmented by efflux transporters, which preclude intracellular penetration of most molecules except with the help of specialized uptake mediators. Recently, kinetic properties of the cell envelope came into focus driven on one hand by the urgent need in new antibiotics and, on the other hand, by experimental and theoretical advances in studies of transmembrane transport. A notable result from these studies is the development of a kinetic formalism that integrates the Michaelis-Menten behavior of individual transporters with transmembrane diffusion and offers a quantitative basis for the analysis of intracellular penetration of bioactive compounds. This review surveys key experimental and computational approaches to the investigation of transport by individual translocators and in whole cells, summarizes key findings from these studies and outlines implications for antibiotic discovery. Special emphasis is placed on Gram-negative bacteria, whose envelope contains two separate membranes. This feature sets these organisms apart from Gram-positive bacteria and eukaryotic cells by providing them with full benefits of the synergy between slow transmembrane diffusion and active efflux.
Collapse
Affiliation(s)
- Valentin V Rybenkov
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Helen I Zgurskaya
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Chhandosee Ganguly
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Inga V Leus
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Zhen Zhang
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Mohammad Moniruzzaman
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| |
Collapse
|
15
|
Alav I, Kobylka J, Kuth MS, Pos KM, Picard M, Blair JMA, Bavro VN. Structure, Assembly, and Function of Tripartite Efflux and Type 1 Secretion Systems in Gram-Negative Bacteria. Chem Rev 2021; 121:5479-5596. [PMID: 33909410 PMCID: PMC8277102 DOI: 10.1021/acs.chemrev.1c00055] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Tripartite efflux pumps and the related type 1 secretion systems (T1SSs) in Gram-negative organisms are diverse in function, energization, and structural organization. They form continuous conduits spanning both the inner and the outer membrane and are composed of three principal components-the energized inner membrane transporters (belonging to ABC, RND, and MFS families), the outer membrane factor channel-like proteins, and linking the two, the periplasmic adaptor proteins (PAPs), also known as the membrane fusion proteins (MFPs). In this review we summarize the recent advances in understanding of structural biology, function, and regulation of these systems, highlighting the previously undescribed role of PAPs in providing a common architectural scaffold across diverse families of transporters. Despite being built from a limited number of basic structural domains, these complexes present a staggering variety of architectures. While key insights have been derived from the RND transporter systems, a closer inspection of the operation and structural organization of different tripartite systems reveals unexpected analogies between them, including those formed around MFS- and ATP-driven transporters, suggesting that they operate around basic common principles. Based on that we are proposing a new integrated model of PAP-mediated communication within the conformational cycling of tripartite systems, which could be expanded to other types of assemblies.
Collapse
Affiliation(s)
- Ilyas Alav
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Jessica Kobylka
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Miriam S. Kuth
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Klaas M. Pos
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Martin Picard
- Laboratoire
de Biologie Physico-Chimique des Protéines Membranaires, CNRS
UMR 7099, Université de Paris, 75005 Paris, France
- Fondation
Edmond de Rothschild pour le développement de la recherche
Scientifique, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Jessica M. A. Blair
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Vassiliy N. Bavro
- School
of Life Sciences, University of Essex, Colchester, CO4 3SQ United Kingdom
| |
Collapse
|
16
|
Shearer J, Marzinek JK, Bond PJ, Khalid S. Molecular dynamics simulations of bacterial outer membrane lipid extraction: Adequate sampling? J Chem Phys 2021; 153:044122. [PMID: 32752683 DOI: 10.1063/5.0017734] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The outer membrane of Gram-negative bacteria is almost exclusively composed of lipopolysaccharide in its outer leaflet, whereas the inner leaflet contains a mixture of phospholipids. Lipopolysaccharide diffuses at least an order of magnitude slower than phospholipids, which can cause issues for molecular dynamics simulations in terms of adequate sampling. Here, we test a number of simulation protocols for their ability to achieve convergence with reasonable computational effort using the MARTINI coarse-grained force-field. This is tested in the context both of potential of mean force (PMF) calculations for lipid extraction from membranes and of lateral mixing within the membrane phase. We find that decoupling the cations that cross-link the lipopolysaccharide headgroups from the extracted lipid during PMF calculations is the best approach to achieve convergence comparable to that for phospholipid extraction. We also show that lateral lipopolysaccharide mixing/sorting is very slow and not readily addressable even with Hamiltonian replica exchange. We discuss why more sorting may be unrealistic for the short (microseconds) timescales we simulate and provide an outlook for future studies of lipopolysaccharide-containing membranes.
Collapse
Affiliation(s)
- Jonathan Shearer
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Jan K Marzinek
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (ASTAR), 30 Biopolis Street, Matrix #07-01, 138671, Singapore
| | - Peter J Bond
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (ASTAR), 30 Biopolis Street, Matrix #07-01, 138671, Singapore
| | - Syma Khalid
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
17
|
Wang J, Ma W, Wang X. Insights into the structure of Escherichia coli outer membrane as the target for engineering microbial cell factories. Microb Cell Fact 2021; 20:73. [PMID: 33743682 PMCID: PMC7980664 DOI: 10.1186/s12934-021-01565-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/12/2021] [Indexed: 12/16/2022] Open
Abstract
Escherichia coli is generally used as model bacteria to define microbial cell factories for many products and to investigate regulation mechanisms. E. coli exhibits phospholipids, lipopolysaccharides, colanic acid, flagella and type I fimbriae on the outer membrane which is a self-protective barrier and closely related to cellular morphology, growth, phenotypes and stress adaptation. However, these outer membrane associated molecules could also lead to potential contamination and insecurity for fermentation products and consume lots of nutrients and energy sources. Therefore, understanding critical insights of these membrane associated molecules is necessary for building better microbial producers. Here the biosynthesis, function, influences, and current membrane engineering applications of these outer membrane associated molecules were reviewed from the perspective of synthetic biology, and the potential and effective engineering strategies on the outer membrane to improve fermentation features for microbial cell factories were suggested.
Collapse
Affiliation(s)
- Jianli Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Wenjian Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China. .,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
18
|
Prajapati JD, Kleinekathöfer U, Winterhalter M. How to Enter a Bacterium: Bacterial Porins and the Permeation of Antibiotics. Chem Rev 2021; 121:5158-5192. [PMID: 33724823 DOI: 10.1021/acs.chemrev.0c01213] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite tremendous successes in the field of antibiotic discovery seen in the previous century, infectious diseases have remained a leading cause of death. More specifically, pathogenic Gram-negative bacteria have become a global threat due to their extraordinary ability to acquire resistance against any clinically available antibiotic, thus urging for the discovery of novel antibacterial agents. One major challenge is to design new antibiotics molecules able to rapidly penetrate Gram-negative bacteria in order to achieve a lethal intracellular drug accumulation. Protein channels in the outer membrane are known to form an entry route for many antibiotics into bacterial cells. Up until today, there has been a lack of simple experimental techniques to measure the antibiotic uptake and the local concentration in subcellular compartments. Hence, rules for translocation directly into the various Gram-negative bacteria via the outer membrane or via channels have remained elusive, hindering the design of new or the improvement of existing antibiotics. In this review, we will discuss the recent progress, both experimentally as well as computationally, in understanding the structure-function relationship of outer-membrane channels of Gram-negative pathogens, mainly focusing on the transport of antibiotics.
Collapse
Affiliation(s)
| | | | - Mathias Winterhalter
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen 28759, Germany
| |
Collapse
|
19
|
Horne JE, Brockwell DJ, Radford SE. Role of the lipid bilayer in outer membrane protein folding in Gram-negative bacteria. J Biol Chem 2020; 295:10340-10367. [PMID: 32499369 PMCID: PMC7383365 DOI: 10.1074/jbc.rev120.011473] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/03/2020] [Indexed: 01/09/2023] Open
Abstract
β-Barrel outer membrane proteins (OMPs) represent the major proteinaceous component of the outer membrane (OM) of Gram-negative bacteria. These proteins perform key roles in cell structure and morphology, nutrient acquisition, colonization and invasion, and protection against external toxic threats such as antibiotics. To become functional, OMPs must fold and insert into a crowded and asymmetric OM that lacks much freely accessible lipid. This feat is accomplished in the absence of an external energy source and is thought to be driven by the high thermodynamic stability of folded OMPs in the OM. With such a stable fold, the challenge that bacteria face in assembling OMPs into the OM is how to overcome the initial energy barrier of membrane insertion. In this review, we highlight the roles of the lipid environment and the OM in modulating the OMP-folding landscape and discuss the factors that guide folding in vitro and in vivo We particularly focus on the composition, architecture, and physical properties of the OM and how an understanding of the folding properties of OMPs in vitro can help explain the challenges they encounter during folding in vivo Current models of OMP biogenesis in the cellular environment are still in flux, but the stakes for improving the accuracy of these models are high. OMP folding is an essential process in all Gram-negative bacteria, and considering the looming crisis of widespread microbial drug resistance it is an attractive target. To bring down this vital OMP-supported barrier to antibiotics, we must first understand how bacterial cells build it.
Collapse
Affiliation(s)
- Jim E Horne
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
20
|
Ongwae GM, Morrison KR, Allen RA, Kim S, Im W, Wuest WM, Pires MM. Broadening Activity of Polymyxin by Quaternary Ammonium Grafting. ACS Infect Dis 2020; 6:1427-1435. [PMID: 32212668 DOI: 10.1021/acsinfecdis.0c00037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bacterial pathogens continue to impose a tremendous health burden across the globe. Here, we describe a novel series of polymyxin-based agents grafted with membrane-active quaternary ammonium warheads to combine two important classes of Gram-negative antimicrobial scaffolds. The goal was to deliver a targeted quaternary ammonium warhead onto the surface of bacterial pathogens using the outer membrane homing properties of polymyxin. The most potent agents resulted in new scaffolds that retained the ability to target Gram-negative bacteria and had limited toxicity toward mammalian cells. We showed, using a molecular dynamics approach, that the new agents retained their ability to engage in specific interactions with lipopolysaccharide molecules. Significantly, the combination of quaternary ammonium and polymyxin widens the activity to the pathogen Staphylococcus aureus. Our results serve as an example of how two membrane-active agents can be combined to produce a class of novel scaffolds with potent biological activity.
Collapse
Affiliation(s)
- George M. Ongwae
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Kelly R. Morrison
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ryan A. Allen
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Seonghoon Kim
- Departments of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Wonpil Im
- Departments of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - William M. Wuest
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Marcos M. Pires
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
21
|
Gao Y, Lee J, Widmalm G, Im W. Modeling and Simulation of Bacterial Outer Membranes with Lipopolysaccharides and Enterobacterial Common Antigen. J Phys Chem B 2020; 124:5948-5956. [DOI: 10.1021/acs.jpcb.0c03353] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ya Gao
- School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai 201620, China
- Department of Biological Sciences, Department of Chemistry, and Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Jumin Lee
- Department of Biological Sciences, Department of Chemistry, and Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| | - Wonpil Im
- Department of Biological Sciences, Department of Chemistry, and Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
| |
Collapse
|
22
|
Patel DS, Blasco P, Widmalm G, Im W. Escherichia coli O176 LPS structure and dynamics: A NMR spectroscopy and MD simulation study. Curr Res Struct Biol 2020; 2:79-88. [PMID: 34235471 PMCID: PMC8244359 DOI: 10.1016/j.crstbi.2020.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/06/2020] [Accepted: 04/08/2020] [Indexed: 01/30/2023] Open
Abstract
A lipopolysaccharide (LPS) molecule is a key component of the bacterial outer membrane used to protect the bacterium and to interact with the environment. To gain insight into its function, the study of the LPS conformation and dynamics at the molecular and cellular levels is necessary, but these highly diverse and dynamic membrane-LPS systems are difficult to study. In this work, by using NMR spectroscopy and molecular dynamics (MD) simulations, we determined the conformational preferences of an E. coli O176 O-antigen polysaccharide at the atomic level. Moreover, we analyzed the use of non-uniform sampling (NUS) for the acquisition of high dynamic range spectra, like 1H,1H-NOESY NMR experiments. A comparison of the effective transglycosidic distances derived from conventional uniformly sampled and NUS 1H,1H-NOESY data showed high similarity under equal measuring time conditions. Furthermore, the experimentally derived internuclear distances of the O-antigen polysaccharide with ten repeating units (RUs) showed very good agreement to those calculated from the MD simulations of the same O-antigen polysaccharide in solution. Analysis of the LPS bilayer simulations with five and with ten RUs revealed that, although similar with respect to populated states in solution, the O-antigen in LPS bilayers had more extended chains as a result of spatial limitations due to close packing. Additional MD simulations of O-antigen polysaccharides from E. coli O6 (branched repeating unit) and O91 (negatively charged linear repeating unit) in solution and LPS bilayers were performed and compared to those of O176 (linear polymer). For all three O-antigens, the ensemble of structures present for the polysaccharides in solution were consistent with the results from their 1H,1H-NOESY experiments. In addition, the similarities between the O-antigen on its own and as a constituent of the full LPS in bilayer environment makes it possible to realistically describe the LPS conformation and dynamics from the MD simulations. Uniform and non-uniform sampled NOESY NMR data yield similar internuclear distances. O-antigen internuclear distances from NMR and MD show excellent agreement. O-antigen ensemble structures from MD are consistent with NMR observations. O-antigen structures are more extended in LPS bilayers than in solution. MD simulations can describe realistic LPS conformation and dynamics.
Collapse
Affiliation(s)
- Dhilon S Patel
- Departments of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, Bethlehem, PA, 18015, USA
| | - Pilar Blasco
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Wonpil Im
- Departments of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, Bethlehem, PA, 18015, USA
| |
Collapse
|
23
|
Abstract
Gram-negative bacteria are protected by a multicompartmental molecular architecture known as the cell envelope that contains two membranes and a thin cell wall. As the cell envelope controls influx and efflux of molecular species, in recent years both experimental and computational studies of such architectures have seen a resurgence due to the implications for antibiotic development. In this article we review recent progress in molecular simulations of bacterial membranes. We show that enormous progress has been made in terms of the lipidic and protein compositions of bacterial systems. The simulations have moved away from the traditional setup of one protein surrounded by a large patch of the same lipid type toward a more bio-logically representative viewpoint. Simulations with multiple cell envelope components are also emerging. We review some of the key method developments that have facilitated recent progress, discuss some current limitations, and offer a perspective on future directions.
Collapse
Affiliation(s)
- Wonpil Im
- Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
| | - Syma Khalid
- School of Chemistry, University of Southampton, Southampton S017 1BJ, United Kingdom
| |
Collapse
|
24
|
Molecular characterization of the outer membrane of Pseudomonas aeruginosa. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183151. [DOI: 10.1016/j.bbamem.2019.183151] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/28/2019] [Accepted: 12/06/2019] [Indexed: 01/07/2023]
|
25
|
Effect of O antigen ligase gene mutation on oxidative stress resistance and pathogenicity of NMEC strain RS218. Microb Pathog 2019; 136:103656. [PMID: 31400443 DOI: 10.1016/j.micpath.2019.103656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 12/24/2022]
Abstract
Escherichia coli is one of the primary causes of bacterial sepsis and meningitis in newborns. E. coli RS218, a prototype strain of neonatal meningitis E. coli (NMEC), is often used in research on the pathogenesis of NMEC. Phagocytes are crucial sentinels of immunity, and their antibacterial ability is largely determined by the capability to produce large amounts of ROS. The capacity of bacteria to endure oxidative pressure affects their colonization in the host. Here, we systematically screened the genes that plays key roles in the tolerance of the model of E. coli RS218 to peroxygen environment using a Tn5 mutant library. As a result, a gene encoding O antigen polymerase (O antigen ligase) that contains the Wzy_C superfamily domain (herein designated as Ocw) was identified in E. coli RS218. Furthermore, we constructed an isogenic deletion mutant of ocw gene and its complementary strain in E. coli. Our results revealed that ocw affects the lipopolysaccharide synthesis, ROS tolerance, and survival of E. coli in the host environment. The discovery of ocw provides important clues for better understanding the function of O-antigen.
Collapse
|
26
|
Kesireddy A, Pothula KR, Lee J, Patel DS, Pathania M, van den Berg B, Im W, Kleinekathöfer U. Modeling of Specific Lipopolysaccharide Binding Sites on a Gram-Negative Porin. J Phys Chem B 2019; 123:5700-5708. [DOI: 10.1021/acs.jpcb.9b03669] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Anusha Kesireddy
- Department of Physics and Earth Sciences, Jacobs University Bremen, 28759 Bremen, Germany
| | - Karunakar R. Pothula
- Department of Physics and Earth Sciences, Jacobs University Bremen, 28759 Bremen, Germany
| | - Jumin Lee
- Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Dhilon S. Patel
- Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Monisha Pathania
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Bert van den Berg
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Wonpil Im
- Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Ulrich Kleinekathöfer
- Department of Physics and Earth Sciences, Jacobs University Bremen, 28759 Bremen, Germany
| |
Collapse
|
27
|
Marrink SJ, Corradi V, Souza PC, Ingólfsson HI, Tieleman DP, Sansom MS. Computational Modeling of Realistic Cell Membranes. Chem Rev 2019; 119:6184-6226. [PMID: 30623647 PMCID: PMC6509646 DOI: 10.1021/acs.chemrev.8b00460] [Citation(s) in RCA: 435] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Indexed: 12/15/2022]
Abstract
Cell membranes contain a large variety of lipid types and are crowded with proteins, endowing them with the plasticity needed to fulfill their key roles in cell functioning. The compositional complexity of cellular membranes gives rise to a heterogeneous lateral organization, which is still poorly understood. Computational models, in particular molecular dynamics simulations and related techniques, have provided important insight into the organizational principles of cell membranes over the past decades. Now, we are witnessing a transition from simulations of simpler membrane models to multicomponent systems, culminating in realistic models of an increasing variety of cell types and organelles. Here, we review the state of the art in the field of realistic membrane simulations and discuss the current limitations and challenges ahead.
Collapse
Affiliation(s)
- Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute & Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Valentina Corradi
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Paulo C.T. Souza
- Groningen
Biomolecular Sciences and Biotechnology Institute & Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Helgi I. Ingólfsson
- Biosciences
and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - D. Peter Tieleman
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Mark S.P. Sansom
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| |
Collapse
|
28
|
Corradi V, Sejdiu BI, Mesa-Galloso H, Abdizadeh H, Noskov SY, Marrink SJ, Tieleman DP. Emerging Diversity in Lipid-Protein Interactions. Chem Rev 2019; 119:5775-5848. [PMID: 30758191 PMCID: PMC6509647 DOI: 10.1021/acs.chemrev.8b00451] [Citation(s) in RCA: 264] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Indexed: 02/07/2023]
Abstract
Membrane lipids interact with proteins in a variety of ways, ranging from providing a stable membrane environment for proteins to being embedded in to detailed roles in complicated and well-regulated protein functions. Experimental and computational advances are converging in a rapidly expanding research area of lipid-protein interactions. Experimentally, the database of high-resolution membrane protein structures is growing, as are capabilities to identify the complex lipid composition of different membranes, to probe the challenging time and length scales of lipid-protein interactions, and to link lipid-protein interactions to protein function in a variety of proteins. Computationally, more accurate membrane models and more powerful computers now enable a detailed look at lipid-protein interactions and increasing overlap with experimental observations for validation and joint interpretation of simulation and experiment. Here we review papers that use computational approaches to study detailed lipid-protein interactions, together with brief experimental and physiological contexts, aiming at comprehensive coverage of simulation papers in the last five years. Overall, a complex picture of lipid-protein interactions emerges, through a range of mechanisms including modulation of the physical properties of the lipid environment, detailed chemical interactions between lipids and proteins, and key functional roles of very specific lipids binding to well-defined binding sites on proteins. Computationally, despite important limitations, molecular dynamics simulations with current computer power and theoretical models are now in an excellent position to answer detailed questions about lipid-protein interactions.
Collapse
Affiliation(s)
- Valentina Corradi
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Besian I. Sejdiu
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Haydee Mesa-Galloso
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Haleh Abdizadeh
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Sergei Yu. Noskov
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - D. Peter Tieleman
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
29
|
Muller MP, Jiang T, Sun C, Lihan M, Pant S, Mahinthichaichan P, Trifan A, Tajkhorshid E. Characterization of Lipid-Protein Interactions and Lipid-Mediated Modulation of Membrane Protein Function through Molecular Simulation. Chem Rev 2019; 119:6086-6161. [PMID: 30978005 PMCID: PMC6506392 DOI: 10.1021/acs.chemrev.8b00608] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The cellular membrane constitutes one of the most fundamental compartments of a living cell, where key processes such as selective transport of material and exchange of information between the cell and its environment are mediated by proteins that are closely associated with the membrane. The heterogeneity of lipid composition of biological membranes and the effect of lipid molecules on the structure, dynamics, and function of membrane proteins are now widely recognized. Characterization of these functionally important lipid-protein interactions with experimental techniques is however still prohibitively challenging. Molecular dynamics (MD) simulations offer a powerful complementary approach with sufficient temporal and spatial resolutions to gain atomic-level structural information and energetics on lipid-protein interactions. In this review, we aim to provide a broad survey of MD simulations focusing on exploring lipid-protein interactions and characterizing lipid-modulated protein structure and dynamics that have been successful in providing novel insight into the mechanism of membrane protein function.
Collapse
Affiliation(s)
- Melanie P. Muller
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tao Jiang
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chang Sun
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Muyun Lihan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shashank Pant
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Paween Mahinthichaichan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Anda Trifan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
30
|
Molecular modeling of the effects of glycosylation on the structure and dynamics of human interferon-gamma. J Mol Model 2019; 25:127. [DOI: 10.1007/s00894-019-4013-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/29/2019] [Indexed: 02/07/2023]
|
31
|
Jefferies D, Shearer J, Khalid S. Role of O-Antigen in Response to Mechanical Stress of the E. coli Outer Membrane: Insights from Coarse-Grained MD Simulations. J Phys Chem B 2019; 123:3567-3575. [DOI: 10.1021/acs.jpcb.8b12168] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Damien Jefferies
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | - Jonathan Shearer
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | - Syma Khalid
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| |
Collapse
|
32
|
Shearer J, Jefferies D, Khalid S. Outer Membrane Proteins OmpA, FhuA, OmpF, EstA, BtuB, and OmpX Have Unique Lipopolysaccharide Fingerprints. J Chem Theory Comput 2019; 15:2608-2619. [PMID: 30848905 DOI: 10.1021/acs.jctc.8b01059] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The outer membrane of Gram-negative bacteria has a highly complex asymmetrical architecture, containing a mixture of phospholipids in the inner leaflet and almost exclusively lipopolysaccharide (LPS) molecules in the outer leaflet. In E. coli, the outer membrane contains a wide range of proteins with a β barrel architecture, that vary in size from the smallest having eight strands to larger barrels composed of 22 strands. Here we report coarse-grained molecular dynamics simulations of six proteins from the E. coli outer membrane OmpA, OmpX, BtuB, FhuA, OmpF, and EstA in a range of membrane environments, which are representative of the in vivo conditions for different strains of E. coli. We show that each protein has a unique pattern of interaction with the surrounding membrane, which is influenced by the composition of the protein, the level of LPS in the outer leaflet, and the differing mobilities of the lipids in the two leaflets of the membrane. Overall we present analyses from over 200 μs of simulation for each protein.
Collapse
Affiliation(s)
- Jonathan Shearer
- School of Chemistry , University of Southampton, Highfield , Southampton , SO17 1BJ United Kingdom
| | - Damien Jefferies
- School of Chemistry , University of Southampton, Highfield , Southampton , SO17 1BJ United Kingdom
| | - Syma Khalid
- School of Chemistry , University of Southampton, Highfield , Southampton , SO17 1BJ United Kingdom
| |
Collapse
|
33
|
Baltoumas FA, Hamodrakas SJ, Iconomidou VA. The gram‐negative outer membrane modeler: Automated building of lipopolysaccharide‐rich bacterial outer membranes in four force fields. J Comput Chem 2019; 40:1727-1734. [DOI: 10.1002/jcc.25823] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/18/2019] [Accepted: 03/03/2019] [Indexed: 01/11/2023]
Affiliation(s)
- Fotis A. Baltoumas
- Section of Cell Biology and Biophysics, Department of Biology, School of SciencesNational and Kapodistrian University of Athens Panepistimiopolis, 15701, Athens Greece
| | - Stavros J. Hamodrakas
- Section of Cell Biology and Biophysics, Department of Biology, School of SciencesNational and Kapodistrian University of Athens Panepistimiopolis, 15701, Athens Greece
| | - Vassiliki A. Iconomidou
- Section of Cell Biology and Biophysics, Department of Biology, School of SciencesNational and Kapodistrian University of Athens Panepistimiopolis, 15701, Athens Greece
| |
Collapse
|
34
|
Samsudin F, Khalid S. Movement of Arginine through OprD: The Energetics of Permeation and the Role of Lipopolysaccharide in Directing Arginine to the Protein. J Phys Chem B 2019; 123:2824-2832. [DOI: 10.1021/acs.jpcb.9b00063] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Firdaus Samsudin
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | - Syma Khalid
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| |
Collapse
|
35
|
Vassen V, Valotteau C, Feuillie C, Formosa-Dague C, Dufrêne YF, De Bolle X. Localized incorporation of outer membrane components in the pathogen Brucella abortus. EMBO J 2019; 38:e100323. [PMID: 30635335 PMCID: PMC6396147 DOI: 10.15252/embj.2018100323] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 12/21/2022] Open
Abstract
The zoonotic pathogen Brucella abortus is part of the Rhizobiales, which are alpha-proteobacteria displaying unipolar growth. Here, we show that this bacterium exhibits heterogeneity in its outer membrane composition, with clusters of rough lipopolysaccharide co-localizing with the essential outer membrane porin Omp2b, which is proposed to allow facilitated diffusion of solutes through the porin. We also show that the major outer membrane protein Omp25 and peptidoglycan are incorporated at the new pole and the division site, the expected growth sites. Interestingly, lipopolysaccharide is also inserted at the same growth sites. The absence of long-range diffusion of main components of the outer membrane could explain the apparent immobility of the Omp2b clusters, as well as unipolar and mid-cell localizations of newly incorporated outer membrane proteins and lipopolysaccharide. Unipolar growth and limited mobility of surface structures also suggest that new surface variants could arise in a few generations without the need of diluting pre-existing surface antigens.
Collapse
Affiliation(s)
- Victoria Vassen
- Research Unit in Biology of Microorganisms (URBM), Narilis University of Namur (UNamur), Namur, Belgium
| | - Claire Valotteau
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain (UCL), Louvain-la-Neuve, Belgium
| | - Cécile Feuillie
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain (UCL), Louvain-la-Neuve, Belgium
| | - Cécile Formosa-Dague
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain (UCL), Louvain-la-Neuve, Belgium
| | - Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain (UCL), Louvain-la-Neuve, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wavre, Belgium
| | - Xavier De Bolle
- Research Unit in Biology of Microorganisms (URBM), Narilis University of Namur (UNamur), Namur, Belgium
| |
Collapse
|
36
|
Golla VK, Sans-Serramitjana E, Pothula KR, Benier L, Bafna JA, Winterhalter M, Kleinekathöfer U. Fosfomycin Permeation through the Outer Membrane Porin OmpF. Biophys J 2019; 116:258-269. [PMID: 30616836 PMCID: PMC6350074 DOI: 10.1016/j.bpj.2018.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/21/2018] [Accepted: 12/03/2018] [Indexed: 01/14/2023] Open
Abstract
Fosfomycin is a frequently prescribed drug in the treatment of acute urinary tract infections. It enters the bacterial cytoplasm and inhibits the biosynthesis of peptidoglycans by targeting the MurA enzyme. Despite extensive pharmacological studies and clinical use, the permeability of fosfomycin across the bacterial outer membrane is largely unexplored. Here, we investigate the fosfomycin permeability across the outer membrane of Gram-negative bacteria by electrophysiology experiments as well as by all-atom molecular dynamics simulations including free-energy and applied-field techniques. Notably, in an electrophysiological zero-current assay as well as in the molecular simulations, we found that fosfomycin can rapidly permeate the abundant Escherichia coli porin OmpF. Furthermore, two triple mutants in the constriction region of the porin have been investigated. The permeation rates through these mutants are slightly lower than that of the wild type but fosfomycin can still permeate. Altogether, this work unravels molecular details of fosfomycin permeation through the outer membrane porin OmpF of E. coli and moreover provides hints for understanding the translocation of phosphonic acid antibiotics through other outer membrane pores.
Collapse
Affiliation(s)
- Vinaya Kumar Golla
- Department of Physics and Earth Sciences, Jacobs University Bremen, Bremen, Germany
| | | | | | - Lorraine Benier
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Jayesh Arun Bafna
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Mathias Winterhalter
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Ulrich Kleinekathöfer
- Department of Physics and Earth Sciences, Jacobs University Bremen, Bremen, Germany.
| |
Collapse
|
37
|
Lee J, Patel DS, Ståhle J, Park SJ, Kern NR, Kim S, Lee J, Cheng X, Valvano MA, Holst O, Knirel YA, Qi Y, Jo S, Klauda JB, Widmalm G, Im W. CHARMM-GUI Membrane Builder for Complex Biological Membrane Simulations with Glycolipids and Lipoglycans. J Chem Theory Comput 2018; 15:775-786. [PMID: 30525595 DOI: 10.1021/acs.jctc.8b01066] [Citation(s) in RCA: 363] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Glycolipids (such as glycoglycerolipids, glycosphingolipids, and glycosylphosphatidylinositol) and lipoglycans (such as lipopolysaccharides (LPS), lipooligosaccharides (LOS), mycobacterial lipoarabinomannan, and mycoplasma lipoglycans) are typically found on the surface of cell membranes and play crucial roles in various cellular functions. Characterizing their structure and dynamics at the molecular level is essential to understand their biological roles, but systematic generation of glycolipid and lipoglycan structures is challenging because of great variations in lipid structures and glycan sequences (i.e., carbohydrate types and their linkages). To facilitate the generation of all-atom glycolipid/LPS/LOS structures, we have developed Glycolipid Modeler and LPS Modeler in CHARMM-GUI ( http://www.charmm-gui.org ), a web-based interface that simplifies building of complex biological simulation systems. In addition, we have incorporated these modules into Membrane Builder so that users can readily build a complex symmetric or asymmetric biological membrane system with various glycolipids and LPS/LOS. These tools are expected to be useful in innovative and novel glycolipid/LPS/LOS modeling and simulation research by easing tedious and intricate steps in modeling complex biological systems and shall provide insight into structures, dynamics, and underlying mechanisms of complex glycolipid-/LPS-/LOS-containing biological membrane systems.
Collapse
Affiliation(s)
- Jumin Lee
- Departments of Biological Sciences and Bioengineering , Lehigh University , Bethlehem , Pennsylvania 18015 , United States
| | - Dhilon S Patel
- Departments of Biological Sciences and Bioengineering , Lehigh University , Bethlehem , Pennsylvania 18015 , United States
| | - Jonas Ståhle
- Department of Organic Chemistry, Arrhenius Laboratory , Stockholm University , SE-106 91 Stockholm , Sweden
| | - Sang-Jun Park
- Departments of Biological Sciences and Bioengineering , Lehigh University , Bethlehem , Pennsylvania 18015 , United States
| | - Nathan R Kern
- Departments of Biological Sciences and Bioengineering , Lehigh University , Bethlehem , Pennsylvania 18015 , United States
| | - Seonghoon Kim
- Departments of Biological Sciences and Bioengineering , Lehigh University , Bethlehem , Pennsylvania 18015 , United States
| | - Joonseong Lee
- Departments of Biological Sciences and Bioengineering , Lehigh University , Bethlehem , Pennsylvania 18015 , United States
| | - Xi Cheng
- State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road , Shanghai 201203 , China
| | - Miguel A Valvano
- Wellcome-Wolfson Institute for Experimental Medicine , Queen's University Belfast BT9 7BL , United Kingdom
| | - Otto Holst
- Division of Structural Biochemistry, Research Center Borstel , Airway Research Center North, Member of the German Center for Lung Research (DZL) , D-23845 Borstel , Germany
| | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry , Russian Academy of Sciences , 119991 Moscow , Russia
| | - Yifei Qi
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , China
| | - Sunhwan Jo
- Leadership Computing Facility , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Jeffery B Klauda
- Department of Chemical and Biomolecular Engineering and the Biophysics Graduate Program , University of Maryland , College Park , Maryland 20742 , United States
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory , Stockholm University , SE-106 91 Stockholm , Sweden
| | - Wonpil Im
- Departments of Biological Sciences and Bioengineering , Lehigh University , Bethlehem , Pennsylvania 18015 , United States
| |
Collapse
|
38
|
Feigman MS, Kim S, Pidgeon SE, Yu Y, Ongwae GM, Patel DS, Regen S, Im W, Pires MM. Synthetic Immunotherapeutics against Gram-negative Pathogens. Cell Chem Biol 2018; 25:1185-1194.e5. [PMID: 29983273 PMCID: PMC6195440 DOI: 10.1016/j.chembiol.2018.05.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/06/2018] [Accepted: 05/29/2018] [Indexed: 12/11/2022]
Abstract
While traditional drug discovery continues to be an important platform for the search of new antibiotics, alternative approaches should also be pursued to complement these efforts. We herein designed a class of molecules that decorate bacterial cell surfaces with the goal of re-engaging components of the immune system toward Escherichia coli and Pseudomonas aeruginosa. More specifically, conjugates were assembled using polymyxin B (an antibiotic that inherently attaches to the surface of Gram-negative pathogens) and antigenic epitopes that recruit antibodies found in human serum. We established that the spacer length played a significant role in hapten display within the bacterial cell surface, a result that was confirmed both experimentally and via molecular dynamics simulations. Most importantly, we demonstrated the specific killing of bacteria by our agent in the presence of human serum. By enlisting the immune system, these agents have the potential to pave the way for a potent antimicrobial modality.
Collapse
Affiliation(s)
| | - Seonghoon Kim
- Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Sean E Pidgeon
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015, USA
| | - Yuming Yu
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015, USA
| | | | - Dhilon S Patel
- Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Steven Regen
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015, USA
| | - Wonpil Im
- Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Marcos M Pires
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015, USA.
| |
Collapse
|
39
|
Travers T, Wang KJ, López CA, Gnanakaran S. Sequence- and structure-based computational analyses of Gram-negative tripartite efflux pumps in the context of bacterial membranes. Res Microbiol 2018; 169:414-424. [DOI: 10.1016/j.resmic.2018.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/28/2017] [Accepted: 01/21/2018] [Indexed: 01/12/2023]
|
40
|
Lee J, Pothula KR, Kleinekathöfer U, Im W. Simulation Study of Occk5 Functional Properties in Pseudomonas aeruginosa Outer Membranes. J Phys Chem B 2018; 122:8185-8192. [DOI: 10.1021/acs.jpcb.8b07109] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Joonseong Lee
- Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Karunakar R. Pothula
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Ulrich Kleinekathöfer
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Wonpil Im
- Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
41
|
Wen PC, Mahinthichaichan P, Trebesch N, Jiang T, Zhao Z, Shinn E, Wang Y, Shekhar M, Kapoor K, Chan CK, Tajkhorshid E. Microscopic view of lipids and their diverse biological functions. Curr Opin Struct Biol 2018; 51:177-186. [PMID: 30048836 DOI: 10.1016/j.sbi.2018.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/27/2018] [Accepted: 07/05/2018] [Indexed: 12/21/2022]
Abstract
Biological membranes and their diverse lipid constituents play key roles in a broad spectrum of cellular and physiological processes. Characterization of membrane-associated phenomena at a microscopic level is therefore essential to our fundamental understanding of such processes. Due to the semi-fluid and dynamic nature of lipid bilayers, and their complex compositions, detailed characterization of biological membranes at an atomic scale has been refractory to experimental approaches. Computational modeling and simulation offer a highly complementary toolset with sufficient spatial and temporal resolutions to fill this gap. Here, we review recent molecular dynamics studies focusing on the diversity of lipid composition of biological membranes, or aiming at the characterization of lipid-protein interaction, with the overall goal of dissecting how lipids impact biological roles of the cellular membranes.
Collapse
Affiliation(s)
- Po-Chao Wen
- Department of Biochemistry, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Paween Mahinthichaichan
- Department of Biochemistry, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Noah Trebesch
- Department of Biochemistry, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tao Jiang
- Department of Biochemistry, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zhiyu Zhao
- Department of Biochemistry, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Eric Shinn
- Department of Biochemistry, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yuhang Wang
- Department of Biochemistry, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Mrinal Shekhar
- Department of Biochemistry, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Karan Kapoor
- Department of Biochemistry, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chun Kit Chan
- Department of Biochemistry, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Emad Tajkhorshid
- Department of Biochemistry, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
42
|
Donnarumma D, Maestri C, Giammarinaro PI, Capriotti L, Bartolini E, Veggi D, Petracca R, Scarselli M, Norais N. Native State Organization of Outer Membrane Porins Unraveled by HDx-MS. J Proteome Res 2018; 17:1794-1800. [PMID: 29619829 DOI: 10.1021/acs.jproteome.7b00830] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Hydrogen-deuterium exchange (HDx) associated with mass spectrometry (MS) is emerging as a powerful tool to provide conformational information about membrane proteins. Unfortunately, as for X-ray diffraction and NMR, HDx performed on reconstituted in vitro systems might not always reflect the in vivo environment. Outer-membrane vesicles naturally released by Escherichia coli were used to carry out analysis of native OmpF through HDx-MS. A new protocol compatible with HDx analysis that avoids hindrance from the lipid contents was setup. The extent of deuterium incorporation was in good agreement with the X-ray diffraction data of OmpF as the buried β-barrels incorporated a low amount of deuterium, whereas the internal loop L3 and the external loops incorporated a higher amount of deuterium. Moreover, the kinetics of incorporation clearly highlights that peptides segregate well in two distinct groups based exclusively on a trimeric organization of OmpF in the membrane: peptides presenting fast kinetics of labeling are facing the complex surrounding environment, whereas those presenting slow kinetics are located in the buried core of the trimer. The data show that HDx-MS applied to a complex biological system is able to reveal solvent accessibility and spatial arrangement of an integral outer-membrane protein complex.
Collapse
|
43
|
Tomasek K, Bergmiller T, Guet CC. Lack of cations in flow cytometry buffers affect fluorescence signals by reducing membrane stability and viability of Escherichia coli strains. J Biotechnol 2018; 268:40-52. [DOI: 10.1016/j.jbiotec.2018.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/10/2018] [Accepted: 01/13/2018] [Indexed: 10/18/2022]
|
44
|
Prajapati JD, Solano CJF, Winterhalter M, Kleinekathöfer U. Enrofloxacin Permeation Pathways across the Porin OmpC. J Phys Chem B 2018; 122:1417-1426. [PMID: 29307192 DOI: 10.1021/acs.jpcb.7b12568] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In Gram-negative bacteria, the lack or quenching of antibiotic translocation across the outer membrane is one of the main factors for acquiring antibiotic resistance. An atomic-level comprehension of the key features governing the transport of drugs by outer-membrane protein channels would be very helpful in developing the next generation of antibiotics. In a previous study [ J. D. Prajapati et al. J. Chem. Theory Comput. 2017 , 13 , 4553 ], we characterized the diffusion pathway of a ciprofloxacin molecule through the outer membrane porin OmpC of Escherichia coli by combining metadynamics and a zero-temperature string method. Here, we evaluate the diffusion route through the OmpC porin for a similar fluoroquinolone, that is, the enrofloxacin molecule, using the previously developed protocol. As a result, it was found that the lowest-energy pathway was similar to that for ciprofloxacin; namely, a reorientation was required on the extracellular side with the carboxyl group ahead before enrofloxacin reached the constriction region. In turn, the free-energy basins for both antibiotics are located at similar positions in the space defined by selected reaction coordinates, and their affinity sites share a wide number of porin residues. However, there are some important deviations due to the chemical differences of these two drugs. On the one hand, a slower diffusion process is expected for enrofloxacin, as the permeation pathway exhibits higher overall energy barriers, mainly in the constriction region. On the other hand, enrofloxacin needs to replace some polar interactions in its affinity sites with nonpolar ones. This study demonstrates how minor chemical modifications can qualitatively affect the translocation mechanism of an antibiotic molecule.
Collapse
Affiliation(s)
- Jigneshkumar Dahyabhai Prajapati
- Department of Physics and Earth Sciences and ‡Department of Life Sciences and Chemistry, Jacobs University Bremen , 28759 Bremen, Germany
| | - Carlos José Fernández Solano
- Department of Physics and Earth Sciences and ‡Department of Life Sciences and Chemistry, Jacobs University Bremen , 28759 Bremen, Germany
| | - Mathias Winterhalter
- Department of Physics and Earth Sciences and ‡Department of Life Sciences and Chemistry, Jacobs University Bremen , 28759 Bremen, Germany
| | - Ulrich Kleinekathöfer
- Department of Physics and Earth Sciences and ‡Department of Life Sciences and Chemistry, Jacobs University Bremen , 28759 Bremen, Germany
| |
Collapse
|
45
|
Smart M, Rajagopal A, Liu WK, Ha BY. Opposing effects of cationic antimicrobial peptides and divalent cations on bacterial lipopolysaccharides. Phys Rev E 2017; 96:042405. [PMID: 29347628 DOI: 10.1103/physreve.96.042405] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Indexed: 12/15/2022]
Abstract
The permeability of the bacterial outer membrane, enclosing Gram-negative bacteria, depends on the interactions of the outer, lipopolysaccharide (LPS) layer, with surrounding ions and molecules. We present a coarse-grained model for describing how cationic amphiphilic molecules (e.g., antimicrobial peptides) interact with and perturb the LPS layer in a biologically relevant medium, containing monovalent and divalent salt ions (e.g., Mg^{2+}). In our approach, peptide binding is driven by electrostatic and hydrophobic interactions and is assumed to expand the LPS layer, eventually priming it for disruption. Our results suggest that in parameter ranges of biological relevance (e.g., at micromolar concentrations) the antimicrobial peptide magainin 2 effectively disrupts the LPS layer, even though it has to compete with Mg^{2+} for the layer. They also show how the integrity of LPS is restored with an increasing concentration of Mg^{2+}. Using the approach, we make a number of predictions relevant for optimizing peptide parameters against Gram-negative bacteria and for understanding bacterial strategies to develop resistance against cationic peptides.
Collapse
Affiliation(s)
- Matthew Smart
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Aruna Rajagopal
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Wing-Ki Liu
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Bae-Yeun Ha
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
46
|
Prajapati JD, Fernández Solano CJ, Winterhalter M, Kleinekathöfer U. Characterization of Ciprofloxacin Permeation Pathways across the Porin OmpC Using Metadynamics and a String Method. J Chem Theory Comput 2017; 13:4553-4566. [PMID: 28816443 DOI: 10.1021/acs.jctc.7b00467] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The rapid spreading of antimicrobial resistance in Gram-negative bacteria has become a major threat for humans as well as animals. As one of the main factors involved, the permeability of the outer membrane has attracted a great deal of attention recently. However, the knowledge regarding the translocation mechanisms for most available antibiotics is so far rather limited. Here, a theoretical study concerning the diffusion route of ciprofloxacin across the outer membrane porin OmpC from E. coli is presented. To this end, we establish a protocol to characterize meaningful permeation pathways by combining metadynamics with the zero-temperature string method. It was found that the lowest-energy pathway requires a reorientation of ciprofloxacin in the extracellular side of the porin before reaching the constriction region with its carboxyl group ahead. Several affinity sites have been identified, and their metastability has been evaluated using unbiased simulations. Such a detailed understanding is potentially very helpful in guiding the development of next generation antibiotics.
Collapse
Affiliation(s)
- Jigneshkumar Dahyabhai Prajapati
- Department of Physics and Earth Sciences and ‡Department of Life Sciences and Chemistry, Jacobs University Bremen , 28759 Bremen, Germany
| | - Carlos José Fernández Solano
- Department of Physics and Earth Sciences and ‡Department of Life Sciences and Chemistry, Jacobs University Bremen , 28759 Bremen, Germany
| | - Mathias Winterhalter
- Department of Physics and Earth Sciences and ‡Department of Life Sciences and Chemistry, Jacobs University Bremen , 28759 Bremen, Germany
| | - Ulrich Kleinekathöfer
- Department of Physics and Earth Sciences and ‡Department of Life Sciences and Chemistry, Jacobs University Bremen , 28759 Bremen, Germany
| |
Collapse
|
47
|
Hsu PC, Bruininks BMH, Jefferies D, Cesar Telles de Souza P, Lee J, Patel DS, Marrink SJ, Qi Y, Khalid S, Im W. CHARMM-GUI Martini Maker for modeling and simulation of complex bacterial membranes with lipopolysaccharides. J Comput Chem 2017; 38:2354-2363. [PMID: 28776689 DOI: 10.1002/jcc.24895] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 07/03/2017] [Accepted: 07/09/2017] [Indexed: 12/18/2022]
Abstract
A complex cell envelope, composed of a mixture of lipid types including lipopolysaccharides, protects bacteria from the external environment. Clearly, the proteins embedded within the various components of the cell envelope have an intricate relationship with their local environment. Therefore, to obtain meaningful results, molecular simulations need to mimic as far as possible this chemically heterogeneous system. However, setting up such systems for computational studies is far from trivial, and consequently the vast majority of simulations of outer membrane proteins still rely on oversimplified phospholipid membrane models. This work presents an update of CHARMM-GUI Martini Maker for coarse-grained modeling and simulation of complex bacterial membranes with lipopolysaccharides. The qualities of the outer membrane systems generated by Martini Maker are validated by simulating them in bilayer, vesicle, nanodisc, and micelle environments (with and without outer membrane proteins) using the Martini force field. We expect this new feature in Martini Maker to be a useful tool for modeling large, complicated bacterial outer membrane systems in a user-friendly manner. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Pin-Chia Hsu
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Bart M H Bruininks
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, Groningen, AG, 9747, The Netherlands
| | - Damien Jefferies
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Paulo Cesar Telles de Souza
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, Groningen, AG, 9747, The Netherlands
| | - Jumin Lee
- Departments of Biological Sciences and Bioengineering, Lehigh University, Pennsylvania
| | - Dhilon S Patel
- Departments of Biological Sciences and Bioengineering, Lehigh University, Pennsylvania
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, Groningen, AG, 9747, The Netherlands
| | - Yifei Qi
- College of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Syma Khalid
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Wonpil Im
- Departments of Biological Sciences and Bioengineering, Lehigh University, Pennsylvania
| |
Collapse
|
48
|
Matthias KA, Strader MB, Nawar HF, Gao YS, Lee J, Patel DS, Im W, Bash MC. Heterogeneity in non-epitope loop sequence and outer membrane protein complexes alters antibody binding to the major porin protein PorB in serogroup B Neisseria meningitidis. Mol Microbiol 2017; 105:934-953. [PMID: 28708335 DOI: 10.1111/mmi.13747] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2017] [Indexed: 12/11/2022]
Abstract
PorB is a well-characterized outer membrane protein that is common among Neisseria species and is required for survival. A vaccine candidate, PorB induces antibody responses that are directed against six variable surface-exposed loops that differ in sequence depending on serotype. Although Neisseria meningitidis is naturally competent and porB genetic mosaicism provides evidence for strong positive selection, the sequences of PorB serotypes commonly associated with invasive disease are often conserved, calling into question the interaction of specific PorB loop sequences in immune engagement. In this report, we provide evidence that antibody binding to a PorB epitope can be altered by sequence mutations in non-epitope loops. Through the construction of hybrid PorB types and PorB molecular dynamics simulations, we demonstrate that loops both adjacent and non-adjacent to the epitope loop can enhance or diminish antibody binding, a phenotype that correlates with serum bactericidal activity. We further examine the interaction of PorB with outer membrane-associated proteins, including PorA and RmpM. Deletion of these proteins alters the composition of PorB-containing native complexes and reduces antibody binding and serum killing relative to the parental strain, suggesting that both intramolecular and intermolecular PorB interactions contribute to host adaptive immune evasion.
Collapse
Affiliation(s)
- Kathryn A Matthias
- U.S. Food and Drug Administration, Center for Biologics Evaluation and Research, Silver Spring, MD, USA
| | - Michael Brad Strader
- U.S. Food and Drug Administration, Center for Biologics Evaluation and Research, Silver Spring, MD, USA
| | - Hesham F Nawar
- U.S. Food and Drug Administration, Center for Biologics Evaluation and Research, Silver Spring, MD, USA
| | - Yamei S Gao
- U.S. Food and Drug Administration, Center for Biologics Evaluation and Research, Silver Spring, MD, USA
| | - Joonseong Lee
- Department of Biological Sciences and Bioengineering Program, Lehigh University, PA, USA
| | - Dhilon S Patel
- Department of Biological Sciences and Bioengineering Program, Lehigh University, PA, USA
| | - Wonpil Im
- Department of Biological Sciences and Bioengineering Program, Lehigh University, PA, USA
| | - Margaret C Bash
- U.S. Food and Drug Administration, Center for Biologics Evaluation and Research, Silver Spring, MD, USA
| |
Collapse
|
49
|
Blasco P, Patel DS, Engström O, Im W, Widmalm G. Conformational Dynamics of the Lipopolysaccharide from Escherichia coli O91 Revealed by Nuclear Magnetic Resonance Spectroscopy and Molecular Simulations. Biochemistry 2017; 56:3826-3839. [DOI: 10.1021/acs.biochem.7b00106] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Pilar Blasco
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106
91 Stockholm, Sweden
| | - Dhilon S. Patel
- Department
of Biological Sciences and Bioengineering Program, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Olof Engström
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106
91 Stockholm, Sweden
| | - Wonpil Im
- Department
of Biological Sciences and Bioengineering Program, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Göran Widmalm
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106
91 Stockholm, Sweden
| |
Collapse
|
50
|
Kim S, Patel DS, Park S, Slusky J, Klauda JB, Widmalm G, Im W. Bilayer Properties of Lipid A from Various Gram-Negative Bacteria. Biophys J 2017; 111:1750-1760. [PMID: 27760361 DOI: 10.1016/j.bpj.2016.09.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/19/2016] [Accepted: 09/06/2016] [Indexed: 01/05/2023] Open
Abstract
Lipid A is the lipid anchor of a lipopolysaccharide in the outer leaflet of the outer membrane of Gram-negative bacteria. In general, lipid A consists of two phosphorylated N-acetyl glucosamine and several acyl chains that are directly linked to the two sugars. Depending on the bacterial species and environments, the acyl chain number and length vary, and lipid A can be chemically modified with phosphoethanolamine, aminoarabinose, or glycine residues, which are key to bacterial pathogenesis. In this work, homogeneous lipid bilayers of 21 distinct lipid A types from 12 bacterial species are modeled and simulated to investigate the differences and similarities of their membrane properties. In addition, different neutralizing ion types (Ca2+, K+, and Na+) are considered to examine the ion's influence on the membrane properties. The trajectory analysis shows that (1) the area per lipid is mostly correlated to the acyl chain number, and the area per lipid increases as a function of the acyl chain number; (2) the hydrophobic thickness is mainly determined by the average acyl chain length with slight dependence on the acyl chain number, and the hydrophobic thickness generally increases with the average acyl chain length; (3) a good correlation is observed among the area per lipid, hydrophobic thickness, and acyl chain order; and (4) although the influence of neutralizing ion types on the area per lipid and hydrophobic thickness is minimal, Ca2+ stays longer on the membrane surface than K+ or Na+, consequently leading to lower lateral diffusion and a higher compressibility modulus, which agrees well with available experiments.
Collapse
Affiliation(s)
- Seonghoon Kim
- Department of Biological Sciences and Bioengineering Program, Lehigh University, Bethlehem, Pennsylvania
| | - Dhilon S Patel
- Department of Biological Sciences and Bioengineering Program, Lehigh University, Bethlehem, Pennsylvania
| | - Soohyung Park
- Department of Biological Sciences and Bioengineering Program, Lehigh University, Bethlehem, Pennsylvania
| | - Joanna Slusky
- Department of Molecular Biosciences and Center for Computational Biology, The University of Kansas, Lawrence, Kansas
| | - Jeffery B Klauda
- Department of Chemical and Biomolecular Engineering and the Biophysics Program, University of Maryland, College Park, Maryland
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, Sweden
| | - Wonpil Im
- Department of Biological Sciences and Bioengineering Program, Lehigh University, Bethlehem, Pennsylvania.
| |
Collapse
|