1
|
Haas‐Neill L, Joron K, Lerner E, Rauscher S. PEG-mCherry interactions beyond classical macromolecular crowding. Protein Sci 2025; 34:e5235. [PMID: 39968832 PMCID: PMC11836898 DOI: 10.1002/pro.5235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/12/2024] [Accepted: 11/09/2024] [Indexed: 02/20/2025]
Abstract
The dense cellular environment influences bio-macromolecular structure, dynamics, interactions, and function. Despite advancements in understanding protein-crowder interactions, predicting their precise effects on protein structure and function remains challenging. Here, we elucidate the effects of PEG-induced crowding on the fluorescent protein mCherry using molecular dynamics simulations and fluorescence-based experiments. We identify and characterize specific PEG-induced structural and dynamical changes in mCherry. Importantly, we find interactions in which PEG molecules wrap around specific surface-exposed residues in a binding mode previously observed in protein crystal structures. Fluorescence correlation spectroscopy experiments capture PEG-induced changes, including aggregation, suggesting a potential role for the specific PEG-mCherry interactions identified in simulations. Additionally, mCherry fluorescence lifetimes are influenced by PEG and not by the bulkier crowder dextran or by another linear polymer, polyvinyl alcohol, highlighting the importance of crowder-protein soft interactions. This work augments our understanding of macromolecular crowding effects on protein structure and dynamics.
Collapse
Affiliation(s)
- Liam Haas‐Neill
- Department of PhysicsUniversity of TorontoTorontoOntarioCanada
- Department of Chemical and Physical SciencesUniversity of Toronto MississaugaMississaugaOntarioCanada
| | - Khalil Joron
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra CampusThe Hebrew University of JerusalemJerusalemIsrael
| | - Eitan Lerner
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra CampusThe Hebrew University of JerusalemJerusalemIsrael
- The Center for Nanoscience and NanotechnologyThe Hebrew University of JerusalemJerusalemIsrael
| | - Sarah Rauscher
- Department of PhysicsUniversity of TorontoTorontoOntarioCanada
- Department of Chemical and Physical SciencesUniversity of Toronto MississaugaMississaugaOntarioCanada
- Department of ChemistryUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
2
|
Choi W, Mangal U, Yu JH, Ryu JH, Kim JY, Jun T, Lee Y, Cho H, Choi M, Lee M, Ryu DY, Lee SY, Jung SY, Cha JK, Cha JY, Lee KJ, Lee S, Choi SH, Hong J. Viscoelastic and antimicrobial dental care bioplastic with recyclable life cycle. Nat Commun 2024; 15:9205. [PMID: 39448605 PMCID: PMC11502779 DOI: 10.1038/s41467-024-53489-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Medical plastic-appliance-based healthcare services, especially in dentistry, generate tremendous amounts of plastic waste. Given the physiological features of our mouth, it is desirable to substitute dental care plastics with viscoelastic and antimicrobial bioplastics. Herein, we develop a medical-grade and sustainable bioplastic that is viscoelastic enough to align the tooth positions, resists microbial contamination, and exhibits recyclable life cycles. In particular, we devise a molecular template involving entanglement-inducing and antimicrobial groups and prepare a silk fibroin-based dental care bioplastic. The generated compactly entangled structure endows great flexibility, toughness, and viscoelasticity. Therefore, a satisfactory orthodontic outcome is accomplished, as demonstrated by the progressive alignment of male rabbit incisors within the 2.5 mm range. Moreover, the prepared bioplastic exhibits resistance to pathogenic colonization of intraoral microbes such as Streptococcaceae and Veillonellaceae. Because the disentanglement of entangled domains enables selective separation and extraction of the components, the bioplastic can be recycled into a mechanically identical one. The proposed medical-grade and sustainable bioplastic could potentially contribute to a green healthcare future.
Collapse
Affiliation(s)
- Woojin Choi
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, Republic of Korea
| | - Utkarsh Mangal
- BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Jae-Hun Yu
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Jeong-Hyun Ryu
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Ji-Yeong Kim
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Taesuk Jun
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, Republic of Korea
| | - Yoojin Lee
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, Republic of Korea
| | - Heesu Cho
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, Republic of Korea
| | - Moonhyun Choi
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, Republic of Korea
| | - Milae Lee
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, Republic of Korea
| | - Du Yeol Ryu
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, Republic of Korea
| | - Sang-Young Lee
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, Republic of Korea
| | - Se Yong Jung
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-Kook Cha
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Republic of Korea
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, USA
| | - Jung Yul Cha
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Kee-Joon Lee
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Sangmin Lee
- School of Mechanical Engineering, Chung-ang University, 84, Heukserok-ro, Dongjak-gu, Seoul, Republic of Korea
| | - Sung-Hwan Choi
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, Republic of Korea.
| | - Jinkee Hong
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Zarubin M, Murugova T, Ryzhykau Y, Ivankov O, Uversky VN, Kravchenko E. Structural study of the intrinsically disordered tardigrade damage suppressor protein (Dsup) and its complex with DNA. Sci Rep 2024; 14:22910. [PMID: 39358423 PMCID: PMC11447161 DOI: 10.1038/s41598-024-74335-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024] Open
Abstract
Studies of proteins, found in one of the most stress-resistant animals tardigrade Ramazzottius varieornatus, aim to reveal molecular principles of extreme tolerance to various types of stress and developing applications based on them for medicine, biotechnology, pharmacy, and space research. Tardigrade DNA/RNA-binding damage suppressor protein (Dsup) reduces DNA damage caused by reactive oxygen spices (ROS) produced upon irradiation and oxidative stresses in Dsup-expressing transgenic organisms. This work is focused on the determination of structural features of Dsup protein and Dsup-DNA complex, which refines details of protective mechanism. For the first time, intrinsically disordered nature of Dsup protein with highly flexible structure was experimentally proven and characterized by the combination of small angle X-ray scattering (SAXS) technique, circular dichroism spectroscopy, and computational methods. Low resolution models of Dsup protein and an ensemble of conformations were presented. In addition, we have shown that Dsup forms fuzzy complex with DNA.
Collapse
Affiliation(s)
- Mikhail Zarubin
- Dzhelepov Laboratory of Nuclear Problems, Joint Institute for Nuclear Research, Dubna, Russia
| | - Tatiana Murugova
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Yury Ryzhykau
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Oleksandr Ivankov
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Vladimir N Uversky
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Russia
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, USA
| | - Elena Kravchenko
- Dzhelepov Laboratory of Nuclear Problems, Joint Institute for Nuclear Research, Dubna, Russia.
| |
Collapse
|
4
|
Bian Y, Lv F, Pan H, Ren W, Zhang W, Wang Y, Cao Y, Li W, Wang W. Fusion Dynamics and Size-Dependence of Droplet Microstructure in ssDNA-Mediated Protein Phase Separation. JACS AU 2024; 4:3690-3704. [PMID: 39328748 PMCID: PMC11423313 DOI: 10.1021/jacsau.4c00690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024]
Abstract
Biomolecular condensation involving proteins and nucleic acids has been recognized to play crucial roles in genome organization and transcriptional regulation. However, the biophysical mechanisms underlying the droplet fusion dynamics and microstructure evolution during the early stage of liquid-liquid phase separation (LLPS) remain elusive. In this work, we study the phase separation of linker histone H1, which is among the most abundant chromatin proteins, in the presence of single-stranded DNA (ssDNA) capable of forming a G-quadruplex by using molecular simulations and experimental characterization. We found that droplet fusion is a rather stochastic and kinetically controlled process. Productive fusion events are triggered by the formation of ssDNA-mediated electrostatic bridges within the droplet contacting zone. The droplet microstructure is size-dependent and evolves driven by maximizing the number of electrostatic contacts. We also showed that the folding of ssDNA to the G-quadruplex promotes LLPS by increasing the multivalency and strength of protein-DNA interactions. These findings provide deep mechanistic insights into the growth dynamics of biomolecular droplets and highlight the key role of kinetic control during the early stage of ssDNA-protein condensation.
Collapse
Affiliation(s)
- Yunqiang Bian
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, Zhejiang, China
| | - Fangyi Lv
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, Zhejiang, China
- Department of Physics, Wenzhou University, Wenzhou 325035, China
| | - Hai Pan
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, Zhejiang, China
| | - Weitong Ren
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, Zhejiang, China
| | - Weiwei Zhang
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, Zhejiang, China
| | - Yanwei Wang
- Department of Physics, Wenzhou University, Wenzhou 325035, China
| | - Yi Cao
- Department of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, Zhejiang, China
| | - Wenfei Li
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, Zhejiang, China
- Department of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
| | - Wei Wang
- Department of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
| |
Collapse
|
5
|
Hernández‐Sánchez I, Rindfleisch T, Alpers J, Dulle M, Garvey CJ, Knox‐Brown P, Miettinen MS, Nagy G, Pusterla JM, Rekas A, Shou K, Stadler AM, Walther D, Wolff M, Zuther E, Thalhammer A. Functional in vitro diversity of an intrinsically disordered plant protein during freeze-thawing is encoded by its structural plasticity. Protein Sci 2024; 33:e4989. [PMID: 38659213 PMCID: PMC11043620 DOI: 10.1002/pro.4989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/09/2024] [Accepted: 03/31/2024] [Indexed: 04/26/2024]
Abstract
Intrinsically disordered late embryogenesis abundant (LEA) proteins play a central role in the tolerance of plants and other organisms to dehydration brought upon, for example, by freezing temperatures, high salt concentration, drought or desiccation, and many LEA proteins have been found to stabilize dehydration-sensitive cellular structures. Their conformational ensembles are highly sensitive to the environment, allowing them to undergo conformational changes and adopt ordered secondary and quaternary structures and to participate in formation of membraneless organelles. In an interdisciplinary approach, we discovered how the functional diversity of the Arabidopsis thaliana LEA protein COR15A found in vitro is encoded in its structural repertoire, with the stabilization of membranes being achieved at the level of secondary structure and the stabilization of enzymes accomplished by the formation of oligomeric complexes. We provide molecular details on intra- and inter-monomeric helix-helix interactions, demonstrate how oligomerization is driven by an α-helical molecular recognition feature (α-MoRF) and provide a rationale that the formation of noncanonical, loosely packed, right-handed coiled-coils might be a recurring theme for homo- and hetero-oligomerization of LEA proteins.
Collapse
Affiliation(s)
- Itzell Hernández‐Sánchez
- Max‐Planck Institute of Molecular Plant PhysiologyPotsdamGermany
- Present address:
Center for Desert Agriculture, Biological and Environmental Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Tobias Rindfleisch
- Max‐Planck Institute of Molecular Plant PhysiologyPotsdamGermany
- Physical BiochemistryUniversity of PotsdamPotsdamGermany
- Department of ChemistryUniversity of BergenBergenNorway
- Computational Biology Unit, Department of InformaticsUniversity of BergenBergenNorway
| | - Jessica Alpers
- Max‐Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | - Martin Dulle
- Jülich Centre for Neutron Science (JCNS‐1) and Institute of Biological Information Processing (IBI‐8: Neutron Scattering and Biological Matter)Forschungszentrum Jülich GmbHJülichGermany
| | | | - Patrick Knox‐Brown
- Physical BiochemistryUniversity of PotsdamPotsdamGermany
- Present address:
Department of Discovery Pharmaceutical SciencesMerck & Co., Inc.South San FranciscoCaliforniaUSA
| | - Markus S. Miettinen
- Department of ChemistryUniversity of BergenBergenNorway
- Computational Biology Unit, Department of InformaticsUniversity of BergenBergenNorway
- Department of Theory and Bio‐SystemsMax Planck Institute of Colloids and InterfacesPotsdamGermany
| | - Gergely Nagy
- Neutron Scattering DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | - Julio M. Pusterla
- Jülich Centre for Neutron Science (JCNS‐1) and Institute of Biological Information Processing (IBI‐8: Neutron Scattering and Biological Matter)Forschungszentrum Jülich GmbHJülichGermany
| | - Agata Rekas
- Australian Nuclear Science and Technology Organization (ANSTO)KirraweeNew South WalesAustralia
| | - Keyun Shou
- Jülich Centre for Neutron Science (JCNS‐1) and Institute of Biological Information Processing (IBI‐8: Neutron Scattering and Biological Matter)Forschungszentrum Jülich GmbHJülichGermany
- Australian Nuclear Science and Technology Organization (ANSTO)KirraweeNew South WalesAustralia
- Institute of Physical Chemistry, RWTH Aachen UniversityAachenGermany
| | - Andreas M. Stadler
- Jülich Centre for Neutron Science (JCNS‐1) and Institute of Biological Information Processing (IBI‐8: Neutron Scattering and Biological Matter)Forschungszentrum Jülich GmbHJülichGermany
- Institute of Physical Chemistry, RWTH Aachen UniversityAachenGermany
| | - Dirk Walther
- Max‐Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | - Martin Wolff
- Physical BiochemistryUniversity of PotsdamPotsdamGermany
| | - Ellen Zuther
- Max‐Planck Institute of Molecular Plant PhysiologyPotsdamGermany
- Present address:
Center of Artificial Intelligence in Public Health Research (ZKI‐PH)Robert Koch InstituteBerlinGermany
| | | |
Collapse
|
6
|
Moses D, Guadalupe K, Yu F, Flores E, Perez AR, McAnelly R, Shamoon NM, Kaur G, Cuevas-Zepeda E, Merg AD, Martin EW, Holehouse AS, Sukenik S. Structural biases in disordered proteins are prevalent in the cell. Nat Struct Mol Biol 2024; 31:283-292. [PMID: 38177684 PMCID: PMC10873198 DOI: 10.1038/s41594-023-01148-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/04/2023] [Indexed: 01/06/2024]
Abstract
Intrinsically disordered proteins and protein regions (IDPs) are prevalent in all proteomes and are essential to cellular function. Unlike folded proteins, IDPs exist in an ensemble of dissimilar conformations. Despite this structural plasticity, intramolecular interactions create sequence-specific structural biases that determine an IDP ensemble's three-dimensional shape. Such structural biases can be key to IDP function and are often measured in vitro, but whether those biases are preserved inside the cell is unclear. Here we show that structural biases in IDP ensembles found in vitro are recapitulated inside human-derived cells. We further reveal that structural biases can change in a sequence-dependent manner due to changes in the intracellular milieu, subcellular localization, and intramolecular interactions with tethered well-folded domains. We propose that the structural sensitivity of IDP ensembles can be leveraged for biological function, can be the underlying cause of IDP-driven pathology or can be used to design disorder-based biosensors and actuators.
Collapse
Affiliation(s)
- David Moses
- Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA, USA
- Center for Cellular and Biomolecular Machines, University of California, Merced, Merced, CA, USA
| | - Karina Guadalupe
- Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA, USA
- Center for Cellular and Biomolecular Machines, University of California, Merced, Merced, CA, USA
| | - Feng Yu
- Center for Cellular and Biomolecular Machines, University of California, Merced, Merced, CA, USA
- Quantitative and Systems Biology Program, University of California, Merced, Merced, CA, USA
| | - Eduardo Flores
- Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA, USA
- Center for Cellular and Biomolecular Machines, University of California, Merced, Merced, CA, USA
| | - Anthony R Perez
- Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA, USA
- Center for Cellular and Biomolecular Machines, University of California, Merced, Merced, CA, USA
| | - Ralph McAnelly
- Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA, USA
| | - Nora M Shamoon
- Center for Cellular and Biomolecular Machines, University of California, Merced, Merced, CA, USA
- California State University, Stanislaus, Turlock, CA, USA
| | - Gagandeep Kaur
- Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA, USA
| | | | - Andrea D Merg
- Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA, USA
- Center for Cellular and Biomolecular Machines, University of California, Merced, Merced, CA, USA
| | - Erik W Martin
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA
- Dewpoint Therapeutics, Boston, MA, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Science and Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO, USA
| | - Shahar Sukenik
- Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA, USA.
- Center for Cellular and Biomolecular Machines, University of California, Merced, Merced, CA, USA.
- Quantitative and Systems Biology Program, University of California, Merced, Merced, CA, USA.
- Health Sciences Research Institute, University of California, Merced, Merced, CA, USA.
| |
Collapse
|
7
|
Moses D, Ginell GM, Holehouse AS, Sukenik S. Intrinsically disordered regions are poised to act as sensors of cellular chemistry. Trends Biochem Sci 2023; 48:1019-1034. [PMID: 37657994 PMCID: PMC10840941 DOI: 10.1016/j.tibs.2023.08.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 09/03/2023]
Abstract
Intrinsically disordered proteins and protein regions (IDRs) are abundant in eukaryotic proteomes and play a wide variety of essential roles. Instead of folding into a stable structure, IDRs exist in an ensemble of interconverting conformations whose structure is biased by sequence-dependent interactions. The absence of a stable 3D structure, combined with high solvent accessibility, means that IDR conformational biases are inherently sensitive to changes in their environment. Here, we argue that IDRs are ideally poised to act as sensors and actuators of cellular physicochemistry. We review the physical principles that underlie IDR sensitivity, the molecular mechanisms that translate this sensitivity to function, and recent studies where environmental sensing by IDRs may play a key role in their downstream function.
Collapse
Affiliation(s)
- David Moses
- Department of Chemistry and Biochemistry, University of California, Merced, CA, USA
| | - Garrett M Ginell
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA; Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA; Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO, USA.
| | - Shahar Sukenik
- Department of Chemistry and Biochemistry, University of California, Merced, CA, USA; Quantitative Systems Biology Program, University of California, Merced, CA, USA.
| |
Collapse
|
8
|
Tripathi K, Garg H, Rajesh R, Vemparala S. The conformational phase diagram of charged polymers in the presence of attractive bridging crowders. J Chem Phys 2023; 159:204903. [PMID: 38010332 DOI: 10.1063/5.0172696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/05/2023] [Indexed: 11/29/2023] Open
Abstract
Using extensive molecular dynamics simulations, we obtain the conformational phase diagram of a charged polymer in the presence of oppositely charged counterions and neutral attractive crowders for monovalent, divalent, and trivalent counterion valencies. We demonstrate that the charged polymer can exist in three phases: (1) an extended phase for low charge densities and weak polymer-crowder attractive interactions [Charged Extended (CE)]; (2) a collapsed phase for high charge densities and weak polymer-crowder attractive interactions, primarily driven by counterion condensation [Charged Collapsed due to Intra-polymer interactions [(CCI)]; and (3) a collapsed phase for strong polymer-crowder attractive interactions, irrespective of the charge density, driven by crowders acting as bridges or cross-links [Charged Collapsed due to Bridging interactions [(CCB)]. Importantly, simulations reveal that the interaction with crowders can induce collapse, despite the presence of strong repulsive electrostatic interactions, and can replace condensed counterions to facilitate a direct transition from the CCI and CE phases to the CCB phase.
Collapse
Affiliation(s)
- Kamal Tripathi
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
- Univ. Grenoble Alpes, CNRS, Grenoble INP, 3SR, F-38000 Grenoble, France
| | - Hitesh Garg
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - R Rajesh
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Satyavani Vemparala
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
9
|
Robles-Hernández B, González-Burgos M, Malo de Molina P, Asenjo-Sanz I, Radulescu A, Pomposo JA, Arbe A, Colmenero J. Structure of Single-Chain Nanoparticles under Crowding Conditions: A Random Phase Approximation Approach. Macromolecules 2023; 56:8971-8979. [PMID: 38024156 PMCID: PMC10654932 DOI: 10.1021/acs.macromol.3c01333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
The conformation of poly(methyl methacrylate) (PMMA)-based single-chain nanoparticles (SCNPs) and their corresponding linear precursors in the presence of deuterated linear PMMA in deuterated dimethylformamide (DMF) solutions has been studied by small-angle neutron scattering (SANS). The SANS profiles were analyzed in terms of a three-component random phase approximation (RPA) model. The RPA approach described well the scattering profiles in dilute and crowded solutions. Considering all the contributions of the RPA leads to an accurate estimation of the single chain form factor parameters and the Flory-Huggins interaction parameter between PMMA and DMF. The value of the latter in the dilute regime indicates that the precursors and the SCNPs are in good solvent conditions, while in crowding conditions, the polymer becomes less soluble.
Collapse
Affiliation(s)
| | - Marina González-Burgos
- Centro
de Física de Materiales/Materials Physics Center (CFM/MPC), 20018 Donostia-San
Sebastián, Spain
| | - Paula Malo de Molina
- Centro
de Física de Materiales/Materials Physics Center (CFM/MPC), 20018 Donostia-San
Sebastián, Spain
- IKERBASQUE—Basque
Foundation for Science, 48009 Bilbao, Spain
| | - Isabel Asenjo-Sanz
- Centro
de Física de Materiales/Materials Physics Center (CFM/MPC), 20018 Donostia-San
Sebastián, Spain
| | - Aurel Radulescu
- Jülich
Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum
(MLZ), Forschungszentrum Jülich GmbH, 85748 Garching, Germany
| | - José A. Pomposo
- Centro
de Física de Materiales/Materials Physics Center (CFM/MPC), 20018 Donostia-San
Sebastián, Spain
- IKERBASQUE—Basque
Foundation for Science, 48009 Bilbao, Spain
- Department
of Polymers and Advanced Materials: Physics, Chemistry and Technology, University of the Basque Country UPV/EHU, 20018 Donostia-San
Sebastián, Spain
| | - Arantxa Arbe
- Centro
de Física de Materiales/Materials Physics Center (CFM/MPC), 20018 Donostia-San
Sebastián, Spain
| | - Juan Colmenero
- Donostia
International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain
- Centro
de Física de Materiales/Materials Physics Center (CFM/MPC), 20018 Donostia-San
Sebastián, Spain
- Department
of Polymers and Advanced Materials: Physics, Chemistry and Technology, University of the Basque Country UPV/EHU, 20018 Donostia-San
Sebastián, Spain
| |
Collapse
|
10
|
Chen SH, Weiss KL, Stanley C, Bhowmik D. Structural characterization of an intrinsically disordered protein complex using integrated small-angle neutron scattering and computing. Protein Sci 2023; 32:e4772. [PMID: 37646172 PMCID: PMC10503416 DOI: 10.1002/pro.4772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/22/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023]
Abstract
Characterizing structural ensembles of intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) of proteins is essential for studying structure-function relationships. Due to the different neutron scattering lengths of hydrogen and deuterium, selective labeling and contrast matching in small-angle neutron scattering (SANS) becomes an effective tool to study dynamic structures of disordered systems. However, experimental timescales typically capture measurements averaged over multiple conformations, leaving complex SANS data for disentanglement. We hereby demonstrate an integrated method to elucidate the structural ensemble of a complex formed by two IDRs. We use data from both full contrast and contrast matching with residue-specific deuterium labeling SANS experiments, microsecond all-atom molecular dynamics (MD) simulations with four molecular mechanics force fields, and an autoencoder-based deep learning (DL) algorithm. From our combined approach, we show that selective deuteration provides additional information that helps characterize structural ensembles. We find that among the four force fields, a99SB-disp and CHARMM36m show the strongest agreement with SANS and NMR experiments. In addition, our DL algorithm not only complements conventional structural analysis methods but also successfully differentiates NMR and MD structures which are indistinguishable on the free energy surface. Lastly, we present an ensemble that describes experimental SANS and NMR data better than MD ensembles generated by one single force field and reveal three clusters of distinct conformations. Our results demonstrate a new integrated approach for characterizing structural ensembles of IDPs.
Collapse
Affiliation(s)
- Serena H. Chen
- Computational Sciences and Engineering DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | - Kevin L. Weiss
- Neutron Scattering DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | - Christopher Stanley
- Computational Sciences and Engineering DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | - Debsindhu Bhowmik
- Computational Sciences and Engineering DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| |
Collapse
|
11
|
Blanco PM, Narambuena CF, Madurga S, Mas F, Garcés JL. Unusual Aspects of Charge Regulation in Flexible Weak Polyelectrolytes. Polymers (Basel) 2023; 15:2680. [PMID: 37376324 PMCID: PMC10302168 DOI: 10.3390/polym15122680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
This article reviews the state of the art of the studies on charge regulation (CR) effects in flexible weak polyelectrolytes (FWPE). The characteristic of FWPE is the strong coupling of ionization and conformational degrees of freedom. After introducing the necessary fundamental concepts, some unconventional aspects of the the physical chemistry of FWPE are discussed. These aspects are: (i) the extension of statistical mechanics techniques to include ionization equilibria and, in particular, the use of the recently proposed Site Binding-Rotational Isomeric State (SBRIS) model, which allows the calculation of ionization and conformational properties on the same foot; (ii) the recent progresses in the inclusion of proton equilibria in computer simulations; (iii) the possibility of mechanically induced CR in the stretching of FWPE; (iv) the non-trivial adsorption of FWPE on ionized surfaces with the same charge sign as the PE (the so-called "wrong side" of the isoelectric point); (v) the influence of macromolecular crowding on CR.
Collapse
Affiliation(s)
- Pablo M. Blanco
- Physical Chemistry Unit, Materials Science and Physical Chemistry Department & Research Institute of Theoretical and Computational Chemistry (IQTCUB), Barcelona University (UB), 08028 Barcelona, Catalonia, Spain;
| | - Claudio F. Narambuena
- Grupo de Bionanotecnologia y Sistemas Complejos, Infap-CONICET & Facultad Regional San Rafael, Universidad Tecnológica Nacional, San Rafael 5600, Argentina;
| | - Sergio Madurga
- Physical Chemistry Unit, Materials Science and Physical Chemistry Department & Research Institute of Theoretical and Computational Chemistry (IQTCUB), Barcelona University (UB), 08028 Barcelona, Catalonia, Spain;
| | - Francesc Mas
- Physical Chemistry Unit, Materials Science and Physical Chemistry Department & Research Institute of Theoretical and Computational Chemistry (IQTCUB), Barcelona University (UB), 08028 Barcelona, Catalonia, Spain;
| | - Josep L. Garcés
- Chemistry Department, Technical School of Agricultural Engineering & AGROTECNIO, Lleida University (UdL), 25003 Lleida, Catalonia, Spain;
| |
Collapse
|
12
|
Garg H, Rajesh R, Vemparala S. The conformational phase diagram of neutral polymers in the presence of attractive crowders. J Chem Phys 2023; 158:114903. [PMID: 36948827 DOI: 10.1063/5.0140721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Extensive coarse-grained molecular dynamics simulations are performed to investigate the conformational phase diagram of a neutral polymer in the presence of attractive crowders. We show that, for low crowder densities, the polymer predominantly shows three phases as a function of both intra-polymer and polymer-crowder interactions: (1) weak intra-polymer and weak polymer-crowder attractive interactions induce extended or coil polymer conformations (phase E), (2) strong intra-polymer and relatively weak polymer-crowder attractive interactions induce collapsed or globular conformations (phase CI), and (3) strong polymer-crowder attractive interactions, regardless of intra-polymer interactions, induce a second collapsed or globular conformation that encloses bridging crowders (phase CB). The detailed phase diagram is obtained by determining the phase boundaries delineating the different phases based on an analysis of the radius of gyration as well as bridging crowders. The dependence of the phase diagram on strength of crowder-crowder attractive interactions and crowder density is clarified. We also show that when the crowder density is increased, a third collapsed phase of the polymer emerges for weak intra-polymer attractive interactions. This crowder density-induced compaction is shown to be enhanced by stronger crowder-crowder attraction and is different from the depletion-induced collapse mechanism, which is primarily driven by repulsive interactions. We also provide a unified explanation of the observed re-entrant swollen/extended conformations of the earlier simulations of weak and strongly self-interacting polymers in terms of crowder-crowder attractive interactions.
Collapse
Affiliation(s)
- Hitesh Garg
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
| | - R Rajesh
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
| | - Satyavani Vemparala
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
| |
Collapse
|
13
|
Saurabh A, Safar M, Fazel M, Sgouralis I, Pressé S. Single-photon smFRET: II. Application to continuous illumination. BIOPHYSICAL REPORTS 2023; 3:100087. [PMID: 36582656 PMCID: PMC9792399 DOI: 10.1016/j.bpr.2022.100087] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/01/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
Here we adapt the Bayesian nonparametrics (BNP) framework presented in the first companion article to analyze kinetics from single-photon, single-molecule Förster resonance energy transfer (smFRET) traces generated under continuous illumination. Using our sampler, BNP-FRET, we learn the escape rates and the number of system states given a photon trace. We benchmark our method by analyzing a range of synthetic and experimental data. Particularly, we apply our method to simultaneously learn the number of system states and the corresponding kinetics for intrinsically disordered proteins using two-color FRET under varying chemical conditions. Moreover, using synthetic data, we show that our method can deduce the number of system states even when kinetics occur at timescales of interphoton intervals.
Collapse
Affiliation(s)
- Ayush Saurabh
- Center for Biological Physics, Arizona State University, Tempe, Arizona
- Department of Physics, Arizona State University, Tempe, Arizona
| | - Matthew Safar
- Center for Biological Physics, Arizona State University, Tempe, Arizona
- Department of Mathematics and Statistical Science, Arizona State University, Tempe, Arizona
| | - Mohamadreza Fazel
- Center for Biological Physics, Arizona State University, Tempe, Arizona
- Department of Physics, Arizona State University, Tempe, Arizona
| | - Ioannis Sgouralis
- Department of Mathematics, University of Tennessee Knoxville, Knoxville, Tennessee
| | - Steve Pressé
- Center for Biological Physics, Arizona State University, Tempe, Arizona
- Department of Physics, Arizona State University, Tempe, Arizona
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
| |
Collapse
|
14
|
Sun B, Kekenes-Huskey PM. Myofilament-associated proteins with intrinsic disorder (MAPIDs) and their resolution by computational modeling. Q Rev Biophys 2023; 56:e2. [PMID: 36628457 PMCID: PMC11070111 DOI: 10.1017/s003358352300001x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The cardiac sarcomere is a cellular structure in the heart that enables muscle cells to contract. Dozens of proteins belong to the cardiac sarcomere, which work in tandem to generate force and adapt to demands on cardiac output. Intriguingly, the majority of these proteins have significant intrinsic disorder that contributes to their functions, yet the biophysics of these intrinsically disordered regions (IDRs) have been characterized in limited detail. In this review, we first enumerate these myofilament-associated proteins with intrinsic disorder (MAPIDs) and recent biophysical studies to characterize their IDRs. We secondly summarize the biophysics governing IDR properties and the state-of-the-art in computational tools toward MAPID identification and characterization of their conformation ensembles. We conclude with an overview of future computational approaches toward broadening the understanding of intrinsic disorder in the cardiac sarcomere.
Collapse
Affiliation(s)
- Bin Sun
- Research Center for Pharmacoinformatics (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | | |
Collapse
|
15
|
Balu R, Wanasingha N, Mata JP, Rekas A, Barrett S, Dumsday G, Thornton AW, Hill AJ, Roy Choudhury N, Dutta NK. Crowder-directed interactions and conformational dynamics in multistimuli-responsive intrinsically disordered protein. SCIENCE ADVANCES 2022; 8:eabq2202. [PMID: 36542701 PMCID: PMC9770960 DOI: 10.1126/sciadv.abq2202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
The consequences of crowding on the dynamic conformational ensembles of intrinsically disordered proteins (IDPs) remain unresolved because of their ultrafast motion. Here, we report crowder-induced interactions and conformational dynamics of a prototypical multistimuli-responsive IDP, Rec1-resilin. The effects of a range of crowders of varying sizes, forms, topologies, and concentrations were examined using spectroscopic, spectrofluorimetric, and contrast-matching small- and ultrasmall-angle neutron scattering investigation. To achieve sufficient neutron contrast against the crowders, deuterium-labeled Rec1-resilin was biosynthesized successfully. Moreover, the ab initio "shape reconstruction" approach was used to obtain three-dimensional models of the conformational assemblies. The IDP revealed crowder-specific systematic extension and compaction with the level of macromolecular crowding. Last, a robust extension-contraction model has been postulated to capture the fundamental phenomena governing the observed behavior of IDPs. The study provides insights and fresh perspectives for understanding the interactions and structural dynamics of IDPs in crowded states.
Collapse
Affiliation(s)
- Rajkamal Balu
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Nisal Wanasingha
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Jitendra P. Mata
- Australian Center for Neutron Scattering, ANSTO, Lucas Heights, NSW 2234, Australia
| | - Agata Rekas
- National Deuteration Facility, ANSTO, Lucas Heights, NSW 2234, Australia
| | - Susan Barrett
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3168, Australia
| | - Geoff Dumsday
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3168, Australia
| | | | - Anita J. Hill
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3168, Australia
| | - Namita Roy Choudhury
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Naba K. Dutta
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
16
|
Monitoring the effect of SDS on the solvation dynamics and structural conformation of β-casein. J CHEM SCI 2022. [DOI: 10.1007/s12039-022-02092-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Zeng X, Ruff KM, Pappu RV. Competing interactions give rise to two-state behavior and switch-like transitions in charge-rich intrinsically disordered proteins. Proc Natl Acad Sci U S A 2022; 119:e2200559119. [PMID: 35512095 PMCID: PMC9171777 DOI: 10.1073/pnas.2200559119] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/12/2022] [Indexed: 11/18/2022] Open
Abstract
The most commonly occurring intrinsically disordered proteins (IDPs) are polyampholytes, which are defined by the duality of low net charge per residue and high fractions of charged residues. Recent experiments have uncovered nuances regarding sequence–ensemble relationships of model polyampholytic IDPs. These include differences in conformational preferences for sequences with lysine vs. arginine and the suggestion that well-mixed sequences form a range of conformations, including globules, conformations with ensemble averages that are reminiscent of ideal chains, or self-avoiding walks. Here, we explain these observations by analyzing results from atomistic simulations. We find that polyampholytic IDPs generally sample two distinct stable states, namely, globules and self-avoiding walks. Globules are favored by electrostatic attractions between oppositely charged residues, whereas self-avoiding walks are favored by favorable free energies of hydration of charged residues. We find sequence-specific temperatures of bistability at which globules and self-avoiding walks can coexist. At these temperatures, ensemble averages over coexisting states give rise to statistics that resemble ideal chains without there being an actual counterbalancing of intrachain and chain-solvent interactions. At equivalent temperatures, arginine-rich sequences tilt the preference toward globular conformations whereas lysine-rich sequences tilt the preference toward self-avoiding walks. We also identify differences between aspartate- and glutamate-containing sequences, whereby the shorter aspartate side chain engenders preferences for metastable, necklace-like conformations. Finally, although segregation of oppositely charged residues within the linear sequence maintains the overall two-state behavior, compact states are highly favored by such systems.
Collapse
Affiliation(s)
- Xiangze Zeng
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130
- Center for Science & Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO 63130
| | - Kiersten M. Ruff
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130
- Center for Science & Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO 63130
| | - Rohit V. Pappu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130
- Center for Science & Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO 63130
| |
Collapse
|
18
|
Micsonai A, Moussong É, Murvai N, Tantos Á, Tőke O, Réfrégiers M, Wien F, Kardos J. Disordered-Ordered Protein Binary Classification by Circular Dichroism Spectroscopy. Front Mol Biosci 2022; 9:863141. [PMID: 35591946 PMCID: PMC9110821 DOI: 10.3389/fmolb.2022.863141] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/24/2022] [Indexed: 12/31/2022] Open
Abstract
Intrinsically disordered proteins lack a stable tertiary structure and form dynamic conformational ensembles due to their characteristic physicochemical properties and amino acid composition. They are abundant in nature and responsible for a large variety of cellular functions. While numerous bioinformatics tools have been developed for in silico disorder prediction in the last decades, there is a need for experimental methods to verify the disordered state. CD spectroscopy is widely used for protein secondary structure analysis. It is usable in a wide concentration range under various buffer conditions. Even without providing high-resolution information, it is especially useful when NMR, X-ray, or other techniques are problematic or one simply needs a fast technique to verify the structure of proteins. Here, we propose an automatized binary disorder-order classification method by analyzing far-UV CD spectroscopy data. The method needs CD data at only three wavelength points, making high-throughput data collection possible. The mathematical analysis applies the k-nearest neighbor algorithm with cosine distance function, which is independent of the spectral amplitude and thus free of concentration determination errors. Moreover, the method can be used even for strong absorbing samples, such as the case of crowded environmental conditions, if the spectrum can be recorded down to the wavelength of 212 nm. We believe the classification method will be useful in identifying disorder and will also facilitate the growth of experimental data in IDP databases. The method is implemented on a webserver and freely available for academic users.
Collapse
Affiliation(s)
- András Micsonai
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Éva Moussong
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Nikoletta Murvai
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Ágnes Tantos
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Orsolya Tőke
- Laboratory for NMR Spectroscopy, Research Centre for Natural Sciences, Budapest, Hungary
| | - Matthieu Réfrégiers
- Synchrotron SOLEIL, Gif-sur-Yvette, France
- Centre de Biophysique Moléculaire, CNRS UPR4301, Orléans, France
| | - Frank Wien
- Synchrotron SOLEIL, Gif-sur-Yvette, France
| | - József Kardos
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
19
|
Parray ZA, Shahid M, Islam A. Insights into Fluctuations of Structure of Proteins: Significance of Intermediary States in Regulating Biological Functions. Polymers (Basel) 2022; 14:polym14081539. [PMID: 35458289 PMCID: PMC9025146 DOI: 10.3390/polym14081539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 02/01/2023] Open
Abstract
Proteins are indispensable to cellular communication and metabolism. The structure on which cells and tissues are developed is deciphered from proteins. To perform functions, proteins fold into a three-dimensional structural design, which is specific and fundamentally determined by their characteristic sequence of amino acids. Few of them have structural versatility, allowing them to adapt their shape to the task at hand. The intermediate states appear momentarily, while protein folds from denatured (D) ⇔ native (N), which plays significant roles in cellular functions. Prolific effort needs to be taken in characterizing these intermediate species if detected during the folding process. Protein folds into its native structure through definite pathways, which involve a limited number of transitory intermediates. Intermediates may be essential in protein folding pathways and assembly in some cases, as well as misfolding and aggregation folding pathways. These intermediate states help to understand the machinery of proper folding in proteins. In this review article, we highlight the various intermediate states observed and characterized so far under in vitro conditions. Moreover, the role and significance of intermediates in regulating the biological function of cells are discussed clearly.
Collapse
Affiliation(s)
- Zahoor Ahmad Parray
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India;
- Department of Chemistry, Indian Institute of Technology Delhi, IIT Campus, Hauz Khas, New Delhi 110016, India
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, Al Kharj 11942, Saudi Arabia;
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India;
- Correspondence: ; Tel.: +91-93-1281-2007
| |
Collapse
|
20
|
Rajendran D, Mitra S, Oikawa H, Madhurima K, Sekhar A, Takahashi S, Naganathan AN. Quantification of Entropic Excluded Volume Effects Driving Crowding-Induced Collapse and Folding of a Disordered Protein. J Phys Chem Lett 2022; 13:3112-3120. [PMID: 35357183 PMCID: PMC7612738 DOI: 10.1021/acs.jpclett.2c00316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We investigate the conformational properties of the intrinsically disordered DNA-binding domain of CytR in the presence of the polymeric crowder polyethylene glycol (PEG). Integrating circular dichroism, nuclear magnetic resonance, and single-molecule Förster resonance energy transfer measurements, we demonstrate that disordered CytR populates a well-folded minor conformation in its native ensemble, while the unfolded ensemble collapses and folds with an increase in crowder density independent of the crowder size. Employing a statistical-mechanical model, the effective reduction in the accessible conformational space of a residue in the unfolded state is estimated to be 10% at 300 mg/mL PEG8000, relative to dilute conditions. The experimentally consistent PEG-temperature phase diagram thus constructed reveals that entropic effects can stabilize disordered CytR by 10 kJ mol-1, driving the equilibrium toward folded conformations under physiological conditions. Our work highlights the malleable conformational landscape of CytR, the presence of a folded conformation in the disordered ensemble, and proposes a scaling relation for quantifying excluded volume effects on protein stability.
Collapse
Affiliation(s)
- Divya Rajendran
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Shrutarshi Mitra
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Hiroyuki Oikawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Kulkarni Madhurima
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Ashok Sekhar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Satoshi Takahashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
21
|
Speer SL, Stewart CJ, Sapir L, Harries D, Pielak GJ. Macromolecular Crowding Is More than Hard-Core Repulsions. Annu Rev Biophys 2022; 51:267-300. [PMID: 35239418 DOI: 10.1146/annurev-biophys-091321-071829] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cells are crowded, but proteins are almost always studied in dilute aqueous buffer. We review the experimental evidence that crowding affects the equilibrium thermodynamics of protein stability and protein association and discuss the theories employed to explain these observations. In doing so, we highlight differences between synthetic polymers and biologically relevant crowders. Theories based on hard-core interactions predict only crowding-induced entropic stabilization. However, experiment-based efforts conducted under physiologically relevant conditions show that crowding can destabilize proteins and their complexes. Furthermore, quantification of the temperature dependence of crowding effects produced by both large and small cosolutes, including osmolytes, sugars, synthetic polymers, and proteins, reveals enthalpic effects that stabilize or destabilize proteins. Crowding-induced destabilization and the enthalpic component point to the role of chemical interactions between and among the macromolecules, cosolutes, and water. We conclude with suggestions for future studies. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Shannon L Speer
- Department of Chemistry, University of North Carolina at Chapel Hill, North Carolina, USA;
| | - Claire J Stewart
- Department of Chemistry, University of North Carolina at Chapel Hill, North Carolina, USA;
| | - Liel Sapir
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA
| | - Daniel Harries
- Institute of Chemistry and The Fritz Haber Research Center, The Hebrew University, Jerusalem, Israel
| | - Gary J Pielak
- Department of Chemistry, University of North Carolina at Chapel Hill, North Carolina, USA; .,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, North Carolina, USA.,Lineberger Cancer Research Center, University of North Carolina at Chapel Hill, North Carolina, USA
| |
Collapse
|
22
|
Fagerberg E, Lenton S, Nylander T, Seydel T, Skepö M. Self-Diffusive Properties of the Intrinsically Disordered Protein Histatin 5 and the Impact of Crowding Thereon: A Combined Neutron Spectroscopy and Molecular Dynamics Simulation Study. J Phys Chem B 2022; 126:789-801. [PMID: 35044776 PMCID: PMC8819652 DOI: 10.1021/acs.jpcb.1c08976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
Intrinsically disordered
proteins (IDPs) are proteins that, in
comparison with globular/structured proteins, lack a distinct tertiary
structure. Here, we use the model IDP, Histatin 5, for studying its
dynamical properties under self-crowding conditions with quasi-elastic
neutron scattering in combination with full atomistic molecular dynamics
(MD) simulations. The aim is to determine the effects of crowding
on the center-of-mass diffusion as well as the internal diffusive
behavior. The diffusion was found to decrease significantly, which
we hypothesize can be attributed to some degree of aggregation at
higher protein concentrations, (≥100 mg/mL), as indicated by
recent small-angle X-ray scattering studies. Temperature effects are
also considered and found to, largely, follow Stokes–Einstein
behavior. Simple geometric considerations fail to accurately predict
the rates of diffusion, while simulations show semiquantitative agreement
with experiments, dependent on assumptions of the ratio between translational
and rotational diffusion. A scaling law that previously was found
to successfully describe the behavior of globular proteins was found
to be inadequate for the IDP, Histatin 5. Analysis of the MD simulations
show that the width of the distribution with respect to diffusion
is not a simplistic mirroring of the distribution of radius of gyration,
hence, displaying the particular features of IDPs that need to be
accounted for.
Collapse
Affiliation(s)
- Eric Fagerberg
- Theoretical Chemistry, Lund University, POB 124, SE-221 00 Lund, Sweden
| | - Samuel Lenton
- Physical Chemistry, Lund University, POB 124, SE-221 00 Lund, Sweden
| | - Tommy Nylander
- Physical Chemistry, Lund University, POB 124, SE-221 00 Lund, Sweden
| | - Tilo Seydel
- Institut Max von Laue - Paul Langevin, 71 avenue des Martyrs, CS 20156, F-38042 Grenoble, France
| | - Marie Skepö
- Theoretical Chemistry, Lund University, POB 124, SE-221 00 Lund, Sweden.,LINXS - Lund Institute of Advanced Neutron and X-ray Science, Scheelevägen 19, SE-223 70 Lund, Sweden
| |
Collapse
|
23
|
Ostrowska N, Feig M, Trylska J. Crowding affects structural dynamics and contributes to membrane association of the NS3/4A complex. Biophys J 2021; 120:3795-3806. [PMID: 34270995 PMCID: PMC8456185 DOI: 10.1016/j.bpj.2021.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 06/14/2021] [Accepted: 07/07/2021] [Indexed: 01/01/2023] Open
Abstract
Using molecular dynamics simulations, we describe how crowded environments affect the internal dynamics and diffusion of the hepatitis C virus proteases NS3/4A. This protease plays a key role in viral replication and is successfully used as a target for antiviral treatment. The NS3 enzyme requires a peptide cofactor, called NS4A, with its central part interacting with the NS3 β-sheet, and flexible, protruding terminal tails that are unstructured in water solution. The simulations describe the enzyme and water molecules at atomistic resolution, whereas crowders are modeled via either all-atom or coarse-grained models to emphasize different aspects of crowding. Crowders reflect the polyethylene glycol (PEG) molecules used in the experiments to mimic the crowded surrounding. A bead-shell model of folded coarse-grained PEG molecules considers mainly the excluded volume effect, whereas all-atom PEG models afford more protein-like crowder interactions. Circular dichroism spectroscopy experiments of the NS4A N-terminal tail show that a helical structure is formed in the presence of PEG crowders. The simulations suggest that crowding may assist in the formation of an NS4A helical fragment, positioned exactly where a transmembrane helix would fold upon the NS4A contact with the membrane. In addition, partially interactive PEGs help the NS4A N-tail to detach from the protease surface, thus enabling the process of helix insertion and potentially helping the virus establish a replication machinery needed to produce new viruses. Results point to an active role of crowding in assisting structural changes in disordered protein fragments that are necessary for their biological function.
Collapse
Affiliation(s)
- Natalia Ostrowska
- Centre of New Technologies, University of Warsaw, Warsaw, Poland,College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Warsaw, Poland
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Joanna Trylska
- Centre of New Technologies, University of Warsaw, Warsaw, Poland,Corresponding author
| |
Collapse
|
24
|
Jamecna D, Antonny B. Intrinsically disordered protein regions at membrane contact sites. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159020. [PMID: 34352388 DOI: 10.1016/j.bbalip.2021.159020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022]
Abstract
Membrane contact sites (MCS) are regions of close apposition between membrane-bound organelles. Proteins that occupy MCS display various domain organisation. Among them, lipid transfer proteins (LTPs) frequently contain both structured domains as well as regions of intrinsic disorder. In this review, we discuss the various roles of intrinsically disordered protein regions (IDPRs) in LTPs as well as in other proteins that are associated with organelle contact sites. We distinguish the following functions: (i) to act as flexible tethers between two membranes; (ii) to act as entropic barriers to prevent protein crowding and regulate membrane tethering geometry; (iii) to define the action range of catalytic domains. These functions are added to other functions of IDPRs in membrane environments, such as mediating protein-protein and protein-membrane interactions. We suggest that the overall efficiency and fidelity of contact sites might require fine coordination between all these IDPR activities.
Collapse
Affiliation(s)
- Denisa Jamecna
- Université Côte d'Azur et CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France; Biochemistry Center (BZH), Heidelberg, Germany
| | - Bruno Antonny
- Université Côte d'Azur et CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France.
| |
Collapse
|
25
|
Bonucci A, Palomino-Schätzlein M, Malo de Molina P, Arbe A, Pierattelli R, Rizzuti B, Iovanna JL, Neira JL. Crowding Effects on the Structure and Dynamics of the Intrinsically Disordered Nuclear Chromatin Protein NUPR1. Front Mol Biosci 2021; 8:684622. [PMID: 34291085 PMCID: PMC8287036 DOI: 10.3389/fmolb.2021.684622] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/22/2021] [Indexed: 01/02/2023] Open
Abstract
The intracellular environment is crowded with macromolecules, including sugars, proteins and nucleic acids. In the cytoplasm, crowding effects are capable of excluding up to 40% of the volume available to any macromolecule when compared to dilute conditions. NUPR1 is an intrinsically disordered protein (IDP) involved in cell-cycle regulation, stress-cell response, apoptosis processes, DNA binding and repair, chromatin remodeling and transcription. Simulations of molecular crowding predict that IDPs can adopt compact states, as well as more extended conformations under crowding conditions. In this work, we analyzed the conformation and dynamics of NUPR1 in the presence of two synthetic polymers, Ficoll-70 and Dextran-40, which mimic crowding effects in the cells, at two different concentrations (50 and 150 mg/ml). The study was carried out by using a multi-spectroscopic approach, including: site-directed spin labelling electron paramagnetic resonance spectroscopy (SDSL-EPR), nuclear magnetic resonance spectroscopy (NMR), circular dichroism (CD), small angle X-ray scattering (SAXS) and dynamic light scattering (DLS). SDSL-EPR spectra of two spin-labelled mutants indicate that there was binding with the crowders and that the local dynamics of the C and N termini of NUPR1 were partially affected by the crowders. However, the overall disordered nature of NUPR1 did not change substantially in the presence of the crowders, as shown by circular dichroism CD and NMR, and further confirmed by EPR. The changes in the dynamics of the paramagnetic probes appear to be related to preferred local conformations and thus crowding agents partially affect some specific regions, further pinpointing that NUPR1 flexibility has a key physiological role in its activity.
Collapse
Affiliation(s)
- Alessio Bonucci
- CERM & Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino (Florence), Italy
| | | | - Paula Malo de Molina
- Centro de Física de Materiales (CFM), CSIC-UPV/EHU, San Sebastián, Spain.,IKERBASQUE-Basque Foundation for Science, Bilbao, Spain
| | - Arantxa Arbe
- Centro de Física de Materiales (CFM), CSIC-UPV/EHU, San Sebastián, Spain
| | - Roberta Pierattelli
- CERM & Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino (Florence), Italy
| | - Bruno Rizzuti
- CNR-NANOTEC, Licryl-UOS Cosenza and CEMIF.Cal, Department of Physics, University of Calabria, Rende, Italy.,Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Joint Units IQFR-CSIC-BIFI and GBsC-CSIC-BIFI, Universidad de Zaragoza, Zaragoza, Spain
| | - Juan L Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - José L Neira
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Joint Units IQFR-CSIC-BIFI and GBsC-CSIC-BIFI, Universidad de Zaragoza, Zaragoza, Spain.,IDIBE, Universidad Miguel Hernández, Elche (Alicante), Spain
| |
Collapse
|
26
|
Henley MJ, Koehler AN. Advances in targeting 'undruggable' transcription factors with small molecules. Nat Rev Drug Discov 2021; 20:669-688. [PMID: 34006959 DOI: 10.1038/s41573-021-00199-0] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 02/07/2023]
Abstract
Transcription factors (TFs) represent key biological players in diseases including cancer, autoimmunity, diabetes and cardiovascular disease. However, outside nuclear receptors, TFs have traditionally been considered 'undruggable' by small-molecule ligands due to significant structural disorder and lack of defined small-molecule binding pockets. Renewed interest in the field has been ignited by significant progress in chemical biology approaches to ligand discovery and optimization, especially the advent of targeted protein degradation approaches, along with increasing appreciation of the critical role a limited number of collaborators play in the regulation of key TF effector genes. Here, we review current understanding of TF-mediated gene regulation, discuss successful targeting strategies and highlight ongoing challenges and emerging approaches to address them.
Collapse
Affiliation(s)
- Matthew J Henley
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA. .,The Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Angela N Koehler
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA. .,The Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
27
|
Sagar A, Jeffries CM, Petoukhov MV, Svergun DI, Bernadó P. Comment on the Optimal Parameters to Derive Intrinsically Disordered Protein Conformational Ensembles from Small-Angle X-ray Scattering Data Using the Ensemble Optimization Method. J Chem Theory Comput 2021; 17:2014-2021. [PMID: 33725442 DOI: 10.1021/acs.jctc.1c00014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Ensemble Optimization Method (EOM) is a popular approach to describe small-angle X-ray scattering (SAXS) data from highly disordered proteins. The EOM algorithm selects subensembles of coexisting states from large pools of randomized conformations to fit the SAXS data. Based on the unphysical bimodal radius of gyration (Rg) distribution of conformations resulting from the EOM analysis, a recent article (Fagerberg et al. J. Chem. Theory Comput. 2019, 15 (12), 6968-6983) concluded that this approach inadequately described the SAXS data measured for human Histatin 5 (Hst5), a peptide with antifungal properties. Using extensive experimental and synthetic data, we explored the origin of this observation. We found that the one-bead-per-residue coarse-grained representation with averaged scattering form factors (provided in the EOM as an add-on to represent disordered missing loops or domains) may not be appropriate for EOM analyses of scattering data from short (below 50 residues) proteins/peptides. The method of choice for these proteins is to employ atomistic models (e.g., from molecular dynamics simulations) to sample the protein conformational landscape. As a convenient alternative, we have also improved the coarse-grained approach by introducing amino acid specific form factors in the calculations. We also found that, for small proteins, the search for relatively large subensembles of 20-50 conformers (as implemented in the original EOM version) more adequately describes the conformational space sampled in solution than the procedures optimizing the ensemble size. Our observations have been added as recommendations into the information for EOM users to promote the proper utilization of the program for ensemble-based modeling of SAXS data for all types of disordered systems.
Collapse
Affiliation(s)
- Amin Sagar
- Centre de Biologie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 29, rue de Navacelles, 34090 Montpellier, France
| | - Cy M Jeffries
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 85, 22607 Hamburg, Germany
| | - Maxim V Petoukhov
- A.V. Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, 119333 Moscow, Russia
| | - Dmitri I Svergun
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 85, 22607 Hamburg, Germany
| | - Pau Bernadó
- Centre de Biologie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 29, rue de Navacelles, 34090 Montpellier, France
| |
Collapse
|
28
|
Clemens L, Kutuzov M, Bayer KV, Goyette J, Allard J, Dushek O. Determination of the molecular reach of the protein tyrosine phosphatase SHP-1. Biophys J 2021; 120:2054-2066. [PMID: 33781765 PMCID: PMC8204385 DOI: 10.1016/j.bpj.2021.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/05/2021] [Accepted: 03/23/2021] [Indexed: 12/26/2022] Open
Abstract
Immune receptors signal by recruiting (or tethering) enzymes to their cytoplasmic tails to catalyze reactions on substrates within reach. This is the case for the phosphatase SHP-1, which, upon tethering to inhibitory receptors, dephosphorylates diverse substrates to control T cell activation. Precisely how tethering regulates SHP-1 activity is incompletely understood. Here, we measure binding, catalysis, and molecular reach for tethered SHP-1 reactions. We determine the molecular reach of SHP-1 to be 13.0 nm, which is longer than the estimate from the allosterically active structure (5.3 nm), suggesting that SHP-1 can achieve a longer reach by exploring multiple active conformations. Using modeling, we show that when uniformly distributed, receptor-SHP-1 complexes can only reach 15% of substrates, but this increases to 90% when they are coclustered. When within reach, we show that membrane recruitment increases the activity of SHP-1 by a 1000-fold increase in local concentration. The work highlights how molecular reach regulates the activity of membrane-recruited SHP-1 with insights applicable to other membrane-tethered reactions.
Collapse
Affiliation(s)
- Lara Clemens
- Center for Complex Biological Systems, University of California Irvine, Irvine, California
| | - Mikhail Kutuzov
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | - Jesse Goyette
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences University of New South Wales, Sydney, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, Australia
| | - Jun Allard
- Center for Complex Biological Systems, University of California Irvine, Irvine, California.
| | - Omer Dushek
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
29
|
Appadurai R, Nagesh J, Srivastava A. High resolution ensemble description of metamorphic and intrinsically disordered proteins using an efficient hybrid parallel tempering scheme. Nat Commun 2021; 12:958. [PMID: 33574233 PMCID: PMC7878814 DOI: 10.1038/s41467-021-21105-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 01/08/2021] [Indexed: 12/26/2022] Open
Abstract
Mapping free energy landscapes of complex multi-funneled metamorphic proteins and weakly-funneled intrinsically disordered proteins (IDPs) remains challenging. While rare-event sampling molecular dynamics simulations can be useful, they often need to either impose restraints or reweigh the generated data to match experiments. Here, we present a parallel-tempering method that takes advantage of accelerated water dynamics and allows efficient and accurate conformational sampling across a wide variety of proteins. We demonstrate the improved sampling efficiency by benchmarking against standard model systems such as alanine di-peptide, TRP-cage and β-hairpin. The method successfully scales to large metamorphic proteins such as RFA-H and to highly disordered IDPs such as Histatin-5. Across the diverse proteins, the calculated ensemble averages match well with the NMR, SAXS and other biophysical experiments without the need to reweigh. By allowing accurate sampling across different landscapes, the method opens doors for sampling free energy landscape of complex uncharted proteins.
Collapse
Affiliation(s)
- Rajeswari Appadurai
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Jayashree Nagesh
- Solid State & Structural Chemistry Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Anand Srivastava
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India.
| |
Collapse
|
30
|
Blanco PM, Madurga S, Garcés JL, Mas F, Dias RS. Influence of macromolecular crowding on the charge regulation of intrinsically disordered proteins. SOFT MATTER 2021; 17:655-669. [PMID: 33215185 DOI: 10.1039/d0sm01475c] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work we study the coupling between ionization and conformational properties of two IDPs, histatin-5 and β-amyloid 42, in the presence of neutral and charged crowders. The latter is modeled to resemble bovine serum albumin (BSA). With this aim, semi-grand canonical Monte Carlo simulations are performed, so that the IDP charge is a dynamic property, undergoing protonation/deprotonation processes. Both ionization properties (global and specific amino acid charge and binding capacitance) and radius of gyration are analyzed in a large range of pH values and salt concentrations. Without crowder agents, the titration curve of histatin-5, a polycation, is salt-dependent while that of β-amyloid 42, a polyampholyte, is almost unaffected. The salt concentration is found to be particularly relevant at pH values where the protein binding capacitance (directly linked with charge fluctuation) is larger. Upon addition of neutral crowders, charge regulation is observed in histatin-5, while for β-amyloid 42 this effect is very small. The main mechanism for charge regulation is found to be the effective increase in the ionic strength due to the excluded volume. In the presence of charged crowders, a significant increase in the charge of both IDPs is observed in almost all the pH range. In this case, the IDP charge is altered not only by the increase in the effective ionic strength but also by its direct electrostatic interaction with the charged crowders.
Collapse
Affiliation(s)
- Pablo M Blanco
- Physical Chemistry Unit, Materials Science and Physical Chemistry Department & Research Institute of Theoretical and Computational Chemistry (IQTCUB) of Barcelona University (UB), Barcelona, Catalonia, Spain.
| | - Sergio Madurga
- Physical Chemistry Unit, Materials Science and Physical Chemistry Department & Research Institute of Theoretical and Computational Chemistry (IQTCUB) of Barcelona University (UB), Barcelona, Catalonia, Spain.
| | - Josep L Garcés
- Chemistry Department, Technical School of Agricultural Engineering & AGROTECNIO of Lleida University (UdL), Lleida, Catalonia, Spain
| | - Francesc Mas
- Physical Chemistry Unit, Materials Science and Physical Chemistry Department & Research Institute of Theoretical and Computational Chemistry (IQTCUB) of Barcelona University (UB), Barcelona, Catalonia, Spain.
| | - Rita S Dias
- Department of Physics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| |
Collapse
|
31
|
Bai Q, Zhang Q, Jing H, Chen J, Liang D. Liquid-Liquid Phase Separation of Peptide/Oligonucleotide Complexes in Crowded Macromolecular Media. J Phys Chem B 2020; 125:49-57. [PMID: 33373232 DOI: 10.1021/acs.jpcb.0c09225] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The membraneless organelles (MLOs) and coacervates of oppositely charged polyelectrolytes are both formed by liquid-liquid phase separation. To reveal how the crowded cell interior regulates the MLOs, we chose the coacervates formed by peptide S5 and single-stranded oligonucleotide (ss-oligo) at 1:1 charge ratio and investigated the phase separation processes in polyacrylamide (PAM) and poly(ethylene oxide) (PEO) media at varying concentrations. Results show that the droplet formation unit is the neutral primary complex, instead of individual S5 or ss-oligo. Therefore, the coacervation process can be described by the classic theory of nucleation and growth. The dynamic scaling relationships show that S5/ss-oligo coacervation undergoes in sequence the heterogeneous nucleation, diffusion-limited growth, and Brownian motion coalescence with time. The inert crowders generate multiple effects, including accelerating the growth of droplets, weakening the electrostatic attraction, and slowing down or even trapping the droplets in the crowder network. The overall effect is that both the size and size distribution of the droplets decrease with increasing crowder concentration, and the effect of PEO is stronger than that of PAM. Our study provides a further step toward a deeper understanding of the kinetics of MLOs in crowded living cells.
Collapse
Affiliation(s)
- Qingwen Bai
- Beijing National Laboratory for Molecular Sciences, Department of Polymer Science and Engineering and the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Qiufen Zhang
- Beijing National Laboratory for Molecular Sciences, Department of Polymer Science and Engineering and the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Hairong Jing
- Beijing National Laboratory for Molecular Sciences, Department of Polymer Science and Engineering and the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Jiaxin Chen
- Beijing National Laboratory for Molecular Sciences, Department of Polymer Science and Engineering and the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Dehai Liang
- Beijing National Laboratory for Molecular Sciences, Department of Polymer Science and Engineering and the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
32
|
Fagerberg E, Månsson LK, Lenton S, Skepö M. The Effects of Chain Length on the Structural Properties of Intrinsically Disordered Proteins in Concentrated Solutions. J Phys Chem B 2020; 124:11843-11853. [PMID: 33337879 PMCID: PMC7872433 DOI: 10.1021/acs.jpcb.0c09635] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Intrinsically disordered proteins (IDP) are proteins that sample
a heterogeneous ensemble of conformers in solution. An estimated 25–30%
of all eukaryotic proteins belong to this class. In vivo, IDPs function under conditions that are highly crowded by other
biological macromolecules. Previous research has highlighted that
the presence of crowding agents can influence the conformational ensemble
sampled by IDPs, resulting in either compaction or expansion. The
effects of self-crowding of the disordered protein Histatin 5 has,
in an earlier study, been found to have limited influence on the conformational
ensemble. In this study, it is examined whether the short chain length
of Histatin 5 can explain the limited effects of crowding observed,
by introducing (Histatin 5)2, a tandem repeat of Histatin
5. By utilizing small-angle X-ray scattering, it is shown that the
conformational ensemble is conserved at high protein concentrations,
in resemblance with Histatin 5, although with a lowered protein concentration
at which aggregation arises. Under dilute conditions, atomistic molecular
dynamics and coarse-grained Monte Carlo simulations, as well as an
established scaling law, predicted more extended conformations than
indicated by experimental data, hence implying that (Histatin 5)2 does not behave as a self-avoiding random walk.
Collapse
Affiliation(s)
- Eric Fagerberg
- Theoretical Chemistry, Lund University, P.O. Box 124, Lund SE-221 00, Sweden
| | - Linda K Månsson
- Theoretical Chemistry, Lund University, P.O. Box 124, Lund SE-221 00, Sweden
| | - Samuel Lenton
- Theoretical Chemistry, Lund University, P.O. Box 124, Lund SE-221 00, Sweden.,LINXS - Lund Institute of Advanced Neutron and X-ray Science, Scheelevägen 19, Lund SE-223 70, Sweden
| | - Marie Skepö
- Theoretical Chemistry, Lund University, P.O. Box 124, Lund SE-221 00, Sweden.,LINXS - Lund Institute of Advanced Neutron and X-ray Science, Scheelevägen 19, Lund SE-223 70, Sweden
| |
Collapse
|
33
|
Schnatwinkel J, Herrmann C. The interaction strength of an intrinsically disordered protein domain with its binding partner is little affected by very different cosolutes. Phys Chem Chem Phys 2020; 22:27903-27911. [PMID: 33284914 DOI: 10.1039/d0cp03040f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A common feature of intrinsically disordered proteins (IDPs) is a disorder-to-order transition upon binding to other proteins, which has been tied to multiple benefits, including accelerated association rates or binding with low affinity, yet high specificity. Given the balanced equilibrium concentrations of folded and unfolded state of an IDP we asked the question if changes in the chemical environment, such as the presence of osmolytes or crowding agents, have a strong influence on the interaction of an IDP. Here, we demonstrate the impact of cosolutes on the interaction of the intrinsically disordered transcription factor c-Myb and its binding partner, the kinase-inducible interaction domain (KIX) of the CREB-binding protein. Temperature jump relaxation kinetics and microscale thermophoresis were employed in order to quantify the rate constants and the binding affinity of the c-Myb/KIX complex, respectively, in the presence of various cosolutes. We find the binding free energy of the c-Myb/KIX complex only marginally modulated by cosolutes, whereas the enthalpy and entropy of the interaction are very sensitive to the respective solvent conditions. For different cosolutes we observe substantial changes in enthalpy, both favorable and unfavorable, which are going with entropy changes largely compensating the enthalpy effects in each case. These characteristics might reflect a potential mechanism by which c-Myb offsets changes in the physico-chemical environment to maintain a roughly unaltered binding affinity.
Collapse
Affiliation(s)
- Jan Schnatwinkel
- Physical Chemistry I, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, D-44780 Bochum, Germany.
| | | |
Collapse
|
34
|
Moses D, Yu F, Ginell GM, Shamoon NM, Koenig PS, Holehouse AS, Sukenik S. Revealing the Hidden Sensitivity of Intrinsically Disordered Proteins to their Chemical Environment. J Phys Chem Lett 2020; 11:10131-10136. [PMID: 33191750 PMCID: PMC8092420 DOI: 10.1021/acs.jpclett.0c02822] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Intrinsically disordered protein-regions (IDRs) make up roughly 30% of the human proteome and are central to a wide range of biological processes. Given a lack of persistent tertiary structure, all residues in IDRs are, to some extent, solvent exposed. This extensive surface area, coupled with the absence of strong intramolecular contacts, makes IDRs inherently sensitive to their chemical environment. We report a combined experimental, computational, and analytical framework for high-throughput characterization of IDR sensitivity. Our framework reveals that IDRs can expand or compact in response to changes in their solution environment. Importantly, the direction and magnitude of conformational change depend on both protein sequence and cosolute identity. For example, some solutes such as short polyethylene glycol chains exert an expanding effect on some IDRs and a compacting effect on others. Despite this complex behavior, we can rationally interpret IDR responsiveness to solution composition changes using relatively simple polymer models. Our results imply that solution-responsive IDRs are ubiquitous and can provide an additional layer of regulation to biological systems.
Collapse
Affiliation(s)
- David Moses
- Chemistry and Chemical Biology Program, University of California, Merced, CA
- Center for Cellular and Biomolecular Machines (CCBM), University of California, Merced, CA
| | - Feng Yu
- Center for Cellular and Biomolecular Machines (CCBM), University of California, Merced, CA
- Quantitative Systems Biology Program, University of California, Merced, CA
| | - Garrett M. Ginell
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | | | - Patrick S. Koenig
- Quantitative Systems Biology Program, University of California, Merced, CA
| | - Alex S. Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO
| | - Shahar Sukenik
- Chemistry and Chemical Biology Program, University of California, Merced, CA
- Center for Cellular and Biomolecular Machines (CCBM), University of California, Merced, CA
- Quantitative Systems Biology Program, University of California, Merced, CA
| |
Collapse
|
35
|
Pittas T, Zuo W, Boersma AJ. Engineering crowding sensitivity into protein linkers. Methods Enzymol 2020; 647:51-81. [PMID: 33482994 DOI: 10.1016/bs.mie.2020.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The intracellular environment contains a high concentration of biomacromolecules that present steric barriers and ample surface area for weak chemical interactions. Consequently, these forces influence protein conformations and protein self-assembly, with an outcome that depends on the sum of the effects resulting from crowding. Linkers are disordered domains that lack tertiary structure, and this flexible nature would render them susceptible to compression or extension under crowded conditions, compared to the equilibrium conformation in a dilute buffer. The change in distance between the linked proteins can become essential where it attenuates protein activity. In this chapter, we first discuss the experimental findings in vitro and in the cell on how linkers and other relevant macromolecules are affected by crowding. We focus on the dependence on the linker's size, flexibility, and the intra- and intermolecular interactions. Although the experimental data on the systematic variation of proteins in a buffer and cells is limited, extrapolating the available insights allows us to propose a protocol on how to engineer the directionality of crowding effects in the linker. Finally, we describe a straightforward experimental protocol on the determination of crowding sensitivity in a buffer and cell.
Collapse
Affiliation(s)
- Theodoros Pittas
- DWI-Leibniz Institute for Interactive Materials, Aachen, Germany; Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany
| | - Weiyan Zuo
- DWI-Leibniz Institute for Interactive Materials, Aachen, Germany; Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany
| | - Arnold J Boersma
- DWI-Leibniz Institute for Interactive Materials, Aachen, Germany; Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
36
|
Stadmiller SS, Aguilar JS, Parnham S, Pielak GJ. Protein–Peptide Binding Energetics under Crowded Conditions. J Phys Chem B 2020; 124:9297-9309. [DOI: 10.1021/acs.jpcb.0c05578] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Samantha S. Stadmiller
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Jhoan S. Aguilar
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Stuart Parnham
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Gary J. Pielak
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
37
|
Liquid-Liquid Phase Separation in Crowded Environments. Int J Mol Sci 2020; 21:ijms21165908. [PMID: 32824618 PMCID: PMC7460619 DOI: 10.3390/ijms21165908] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 08/13/2020] [Indexed: 12/23/2022] Open
Abstract
Biomolecular condensates play a key role in organizing cellular fluids such as the cytoplasm and nucleoplasm. Most of these non-membranous organelles show liquid-like properties both in cells and when studied in vitro through liquid–liquid phase separation (LLPS) of purified proteins. In general, LLPS of proteins is known to be sensitive to variations in pH, temperature and ionic strength, but the role of crowding remains underappreciated. Several decades of research have shown that macromolecular crowding can have profound effects on protein interactions, folding and aggregation, and it must, by extension, also impact LLPS. However, the precise role of crowding in LLPS is far from trivial, as most condensate components have a disordered nature and exhibit multiple weak attractive interactions. Here, we discuss which factors determine the scope of LLPS in crowded environments, and we review the evidence for the impact of macromolecular crowding on phase boundaries, partitioning behavior and condensate properties. Based on a comparison of both in vivo and in vitro LLPS studies, we propose that phase separation in cells does not solely rely on attractive interactions, but shows important similarities to segregative phase separation.
Collapse
|
38
|
Murvai N, Kalmar L, Szalaine Agoston B, Szabo B, Tantos A, Csikos G, Micsonai A, Kardos J, Vertommen D, Nguyen PN, Hristozova N, Lang A, Kovacs D, Buday L, Han KH, Perczel A, Tompa P. Interplay of Structural Disorder and Short Binding Elements in the Cellular Chaperone Function of Plant Dehydrin ERD14. Cells 2020; 9:E1856. [PMID: 32784707 PMCID: PMC7465474 DOI: 10.3390/cells9081856] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/16/2020] [Accepted: 07/30/2020] [Indexed: 12/23/2022] Open
Abstract
Details of the functional mechanisms of intrinsically disordered proteins (IDPs) in living cells is an area not frequently investigated. Here, we dissect the molecular mechanism of action of an IDP in cells by detailed structural analyses based on an in-cell nuclear magnetic resonance experiment. We show that the ID stress protein (IDSP) A. thaliana Early Response to Dehydration (ERD14) is capable of protecting E. coli cells under heat stress. The overexpression of ERD14 increases the viability of E. coli cells from 38.9% to 73.9% following heat stress (50 °C × 15 min). We also provide evidence that the protection is mainly achieved by protecting the proteome of the cells. In-cell NMR experiments performed in E. coli cells show that the protective activity is associated with a largely disordered structural state with conserved, short sequence motifs (K- and H-segments), which transiently sample helical conformations in vitro and engage in partner binding in vivo. Other regions of the protein, such as its S segment and its regions linking and flanking the binding motifs, remain unbound and disordered in the cell. Our data suggest that the cellular function of ERD14 is compatible with its residual structural disorder in vivo.
Collapse
Affiliation(s)
- Nikoletta Murvai
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (N.M.); (L.K.); (B.S.A.); (B.S.); (A.T.); (L.B.)
| | - Lajos Kalmar
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (N.M.); (L.K.); (B.S.A.); (B.S.); (A.T.); (L.B.)
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Bianka Szalaine Agoston
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (N.M.); (L.K.); (B.S.A.); (B.S.); (A.T.); (L.B.)
- MTA-ELTE Protein Modelling Research Group and Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös L. University, 1117 Budapest, Hungary; (A.L.); (A.P.)
| | - Beata Szabo
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (N.M.); (L.K.); (B.S.A.); (B.S.); (A.T.); (L.B.)
| | - Agnes Tantos
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (N.M.); (L.K.); (B.S.A.); (B.S.); (A.T.); (L.B.)
| | - Gyorgy Csikos
- Department of General Zoology, Eötvös Loránd University, 1117 Budapest, Hungary;
| | - András Micsonai
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary; (A.M.); (J.K.)
| | - József Kardos
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary; (A.M.); (J.K.)
| | - Didier Vertommen
- Faculty of Medicine and de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Phuong N. Nguyen
- Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium; (P.N.N.); (N.H.); (D.K.)
- VIB-VUB Center for Structural Biology (CSB), Vlaams Instituut voor Biotechnologie (VIB), 1050 Brussels, Belgium
| | - Nevena Hristozova
- Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium; (P.N.N.); (N.H.); (D.K.)
- VIB-VUB Center for Structural Biology (CSB), Vlaams Instituut voor Biotechnologie (VIB), 1050 Brussels, Belgium
| | - Andras Lang
- MTA-ELTE Protein Modelling Research Group and Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös L. University, 1117 Budapest, Hungary; (A.L.); (A.P.)
| | - Denes Kovacs
- Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium; (P.N.N.); (N.H.); (D.K.)
- VIB-VUB Center for Structural Biology (CSB), Vlaams Instituut voor Biotechnologie (VIB), 1050 Brussels, Belgium
| | - Laszlo Buday
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (N.M.); (L.K.); (B.S.A.); (B.S.); (A.T.); (L.B.)
| | - Kyou-Hoon Han
- Gene Editing Research Center, Division of Convergent Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
- Biomedical Translational Research Center, Division of Convergent Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Andras Perczel
- MTA-ELTE Protein Modelling Research Group and Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös L. University, 1117 Budapest, Hungary; (A.L.); (A.P.)
| | - Peter Tompa
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (N.M.); (L.K.); (B.S.A.); (B.S.); (A.T.); (L.B.)
- Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium; (P.N.N.); (N.H.); (D.K.)
- VIB-VUB Center for Structural Biology (CSB), Vlaams Instituut voor Biotechnologie (VIB), 1050 Brussels, Belgium
| |
Collapse
|
39
|
Martin EW, Hopkins JB, Mittag T. Small-angle X-ray scattering experiments of monodisperse intrinsically disordered protein samples close to the solubility limit. Methods Enzymol 2020; 646:185-222. [PMID: 33453925 PMCID: PMC8370720 DOI: 10.1016/bs.mie.2020.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The condensation of biomolecules into biomolecular condensates via liquid-liquid phase separation (LLPS) is a ubiquitous mechanism that drives cellular organization. To enable these functions, biomolecules have evolved to drive LLPS and facilitate partitioning into biomolecular condensates. Determining the molecular features of proteins that encode LLPS will provide critical insights into a plethora of biological processes. Problematically, probing biomolecular dense phases directly is often technologically difficult or impossible. By capitalizing on the symmetry between the conformational behavior of biomolecules in dilute solution and dense phases, it is possible to infer details critical to phase separation by precise measurements of the dilute phase thus circumventing complicated characterization of dense phases. The symmetry between dilute and dense phases is found in the size and shape of the conformational ensemble of a biomolecule-parameters that small-angle X-ray scattering (SAXS) is ideally suited to probe. Recent technological advances have made it possible to accurately characterize samples of intrinsically disordered protein regions at low enough concentration to avoid interference from intermolecular attraction, oligomerization or aggregation, all of which were previously roadblocks to characterizing self-assembling proteins. Herein, we describe the pitfalls inherent to measuring such samples, the experimental details required for circumventing these issues and analysis methods that place the results of SAXS measurements into the theoretical framework of LLPS.
Collapse
Affiliation(s)
- Erik W Martin
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Jesse B Hopkins
- The Biophysics Collaborative Access Team (BioCAT), Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL, United States
| | - Tanja Mittag
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, United States.
| |
Collapse
|
40
|
Hicks A, Escobar CA, Cross TA, Zhou HX. Sequence-Dependent Correlated Segments in the Intrinsically Disordered Region of ChiZ. Biomolecules 2020; 10:biom10060946. [PMID: 32585849 PMCID: PMC7355643 DOI: 10.3390/biom10060946] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022] Open
Abstract
How sequences of intrinsically disordered proteins (IDPs) code for their conformational dynamics is poorly understood. Here, we combined NMR spectroscopy, small-angle X-ray scattering (SAXS), and molecular dynamics (MD) simulations to characterize the conformations and dynamics of ChiZ1-64. MD simulations, first validated by SAXS and secondary chemical shift data, found scant α-helices or β-strands but a considerable propensity for polyproline II (PPII) torsion angles. Importantly, several blocks of residues (e.g., 11–29) emerge as “correlated segments”, identified by their frequent formation of PPII stretches, salt bridges, cation-π interactions, and sidechain-backbone hydrogen bonds. NMR relaxation experiments showed non-uniform transverse relaxation rates (R2s) and nuclear Overhauser enhancements (NOEs) along the sequence (e.g., high R2s and NOEs for residues 11–14 and 23–28). MD simulations further revealed that the extent of segmental correlation is sequence-dependent; segments where internal interactions are more prevalent manifest elevated “collective” motions on the 5–10 ns timescale and suppressed local motions on the sub-ns timescale. Amide proton exchange rates provides corroboration, with residues in the most correlated segment exhibiting the highest protection factors. We propose the correlated segment as a defining feature for the conformations and dynamics of IDPs.
Collapse
Affiliation(s)
- Alan Hicks
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA; (A.H.); (C.A.E.)
- Department of Physics, Florida State University, Tallahassee, FL 32306, USA
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
| | - Cristian A. Escobar
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA; (A.H.); (C.A.E.)
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Timothy A. Cross
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA; (A.H.); (C.A.E.)
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
- Correspondence: (T.A.C.); (H.-X.Z.)
| | - Huan-Xiang Zhou
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA
- Correspondence: (T.A.C.); (H.-X.Z.)
| |
Collapse
|
41
|
Simpson LW, Good TA, Leach JB. Protein folding and assembly in confined environments: Implications for protein aggregation in hydrogels and tissues. Biotechnol Adv 2020; 42:107573. [PMID: 32512220 DOI: 10.1016/j.biotechadv.2020.107573] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 05/03/2020] [Accepted: 05/30/2020] [Indexed: 12/20/2022]
Abstract
In the biological milieu of a cell, soluble crowding molecules and rigid confined environments strongly influence whether the protein is properly folded, intrinsically disordered proteins assemble into distinct phases, or a denatured or aggregated protein species is favored. Such crowding and confinement factors act to exclude solvent volume from the protein molecules, resulting in an increased local protein concentration and decreased protein entropy. A protein's structure is inherently tied to its function. Examples of processes where crowding and confinement may strongly influence protein function include transmembrane protein dimerization, enzymatic activity, assembly of supramolecular structures (e.g., microtubules), nuclear condensates containing transcriptional machinery, protein aggregation in the contexts of disease and protein therapeutics. Historically, most protein structures have been determined from pure, dilute protein solutions or pure crystals. However, these are not the environments in which these proteins function. Thus, there has been an increased emphasis on analyzing protein structure and dynamics in more "in vivo-like" environments. Complex in vitro models using hydrogel scaffolds to study proteins may better mimic features of the in vivo environment. Therefore, analytical techniques need to be optimized for real-time analysis of proteins within hydrogel scaffolds.
Collapse
Affiliation(s)
- Laura W Simpson
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Eng 314, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Theresa A Good
- Division of Molecular and Cellular Biosciences, National Science Foundation, 2415 Eisenhower Ave, Alexandria, VA 22314, USA
| | - Jennie B Leach
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Eng 314, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| |
Collapse
|
42
|
Holehouse AS, Sukenik S. Controlling Structural Bias in Intrinsically Disordered Proteins Using Solution Space Scanning. J Chem Theory Comput 2020; 16:1794-1805. [DOI: 10.1021/acs.jctc.9b00604] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Alex S. Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Center for Science and Engineering of Living Systems, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Shahar Sukenik
- Department of Chemistry and Chemical Biology, UC Merced, Merced, California 95340, United States
| |
Collapse
|
43
|
Fagerberg E, Lenton S, Skepö M. Evaluating Models of Varying Complexity of Crowded Intrinsically Disordered Protein Solutions Against SAXS. J Chem Theory Comput 2019; 15:6968-6983. [DOI: 10.1021/acs.jctc.9b00723] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Eric Fagerberg
- Theoretical Chemistry, Lund University, POB 124, SE-221 00 Lund, Sweden
| | - Samuel Lenton
- Theoretical Chemistry, Lund University, POB 124, SE-221 00 Lund, Sweden
- LINXS - Lund Institute of Advanced Neutron and X-ray Science, Scheelevägen 19, 223 70 Lund, Sweden
| | - Marie Skepö
- Theoretical Chemistry, Lund University, POB 124, SE-221 00 Lund, Sweden
- LINXS - Lund Institute of Advanced Neutron and X-ray Science, Scheelevägen 19, 223 70 Lund, Sweden
| |
Collapse
|
44
|
Yang J, Gao M, Xiong J, Su Z, Huang Y. Features of molecular recognition of intrinsically disordered proteins via coupled folding and binding. Protein Sci 2019; 28:1952-1965. [PMID: 31441158 PMCID: PMC6798136 DOI: 10.1002/pro.3718] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022]
Abstract
The sequence-structure-function paradigm of proteins has been revolutionized by the discovery of intrinsically disordered proteins (IDPs) or intrinsically disordered regions (IDRs). In contrast to traditional ordered proteins, IDPs/IDRs are unstructured under physiological conditions. The absence of well-defined three-dimensional structures in the free state of IDPs/IDRs is fundamental to their function. Folding upon binding is an important mode of molecular recognition for IDPs/IDRs. While great efforts have been devoted to investigating the complex structures and binding kinetics and affinities, our knowledge on the binding mechanisms of IDPs/IDRs remains very limited. Here, we review recent advances on the binding mechanisms of IDPs/IDRs. The structures and kinetic parameters of IDPs/IDRs can vary greatly, and the binding mechanisms can be highly dependent on the structural properties of IDPs/IDRs. IDPs/IDRs can employ various combinations of conformational selection and induced fit in a binding process, which can be templated by the target and/or encoded by the IDP/IDR. Further studies should provide deeper insights into the molecular recognition of IDPs/IDRs and enable the rational design of IDP/IDR binding mechanisms in the future.
Collapse
Affiliation(s)
- Jing Yang
- Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education)Hubei University of TechnologyWuhanHubeiChina
- Institute of Biomedical and Pharmaceutical SciencesHubei University of TechnologyWuhanHubeiChina
| | - Meng Gao
- Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education)Hubei University of TechnologyWuhanHubeiChina
- Institute of Biomedical and Pharmaceutical SciencesHubei University of TechnologyWuhanHubeiChina
| | - Junwen Xiong
- Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education)Hubei University of TechnologyWuhanHubeiChina
- Institute of Biomedical and Pharmaceutical SciencesHubei University of TechnologyWuhanHubeiChina
| | - Zhengding Su
- Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education)Hubei University of TechnologyWuhanHubeiChina
- Institute of Biomedical and Pharmaceutical SciencesHubei University of TechnologyWuhanHubeiChina
| | - Yongqi Huang
- Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education)Hubei University of TechnologyWuhanHubeiChina
- Institute of Biomedical and Pharmaceutical SciencesHubei University of TechnologyWuhanHubeiChina
| |
Collapse
|
45
|
Abstract
Comprehensive data about the composition and structure of cellular components have enabled the construction of quantitative whole-cell models. While kinetic network-type models have been established, it is also becoming possible to build physical, molecular-level models of cellular environments. This review outlines challenges in constructing and simulating such models and discusses near- and long-term opportunities for developing physical whole-cell models that can connect molecular structure with biological function.
Collapse
Affiliation(s)
- Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA;
- Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Yuji Sugita
- Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| |
Collapse
|
46
|
Brosey CA, Tainer JA. Evolving SAXS versatility: solution X-ray scattering for macromolecular architecture, functional landscapes, and integrative structural biology. Curr Opin Struct Biol 2019; 58:197-213. [PMID: 31204190 PMCID: PMC6778498 DOI: 10.1016/j.sbi.2019.04.004] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 11/27/2022]
Abstract
Small-angle X-ray scattering (SAXS) has emerged as an enabling integrative technique for comprehensive analyses of macromolecular structures and interactions in solution. Over the past two decades, SAXS has become a mainstay of the structural biologist's toolbox, supplying multiplexed measurements of molecular shape and dynamics that unveil biological function. Here, we discuss evolving SAXS theory, methods, and applications that extend the field of small-angle scattering beyond simple shape characterization. SAXS, coupled with size-exclusion chromatography (SEC-SAXS) and time-resolved (TR-SAXS) methods, is now providing high-resolution insight into macromolecular flexibility and ensembles, delineating biophysical landscapes, and facilitating high-throughput library screening to assess macromolecular properties and to create opportunities for drug discovery. Looking forward, we consider SAXS in the integrative era of hybrid structural biology methods, its potential for illuminating cellular supramolecular and mesoscale structures, and its capacity to complement high-throughput bioinformatics sequencing data. As advances in the field continue, we look forward to proliferating uses of SAXS based upon its abilities to robustly produce mechanistic insights for biology and medicine.
Collapse
Affiliation(s)
- Chris A Brosey
- Molecular and Cellular Oncology and Cancer Biology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA.
| | - John A Tainer
- Molecular and Cellular Oncology and Cancer Biology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
47
|
Generation of the configurational ensemble of an intrinsically disordered protein from unbiased molecular dynamics simulation. Proc Natl Acad Sci U S A 2019; 116:20446-20452. [PMID: 31548393 DOI: 10.1073/pnas.1907251116] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) are abundant in eukaryotic proteomes, play a major role in cell signaling, and are associated with human diseases. To understand IDP function it is critical to determine their configurational ensemble, i.e., the collection of 3-dimensional structures they adopt, and this remains an immense challenge in structural biology. Attempts to determine this ensemble computationally have been hitherto hampered by the necessity of reweighting molecular dynamics (MD) results or biasing simulation in order to match ensemble-averaged experimental observables, operations that reduce the precision of the generated model because different structural ensembles may yield the same experimental observable. Here, by employing enhanced sampling MD we reproduce the experimental small-angle neutron and X-ray scattering profiles and the NMR chemical shifts of the disordered N terminal (SH4UD) of c-Src kinase without reweighting or constraining the simulations. The unbiased simulation results reveal a weakly funneled and rugged free energy landscape of SH4UD, which gives rise to a heterogeneous ensemble of structures that cannot be described by simple polymer theory. SH4UD adopts transient helices, which are found away from known phosphorylation sites and could play a key role in the stabilization of structural regions necessary for phosphorylation. Our findings indicate that adequately sampled molecular simulations can be performed to provide accurate physical models of flexible biosystems, thus rationalizing their biological function.
Collapse
|
48
|
Rhoades E. Proteins: Disorder, Folding, and Crowding. Biophys J 2019; 117:3-4. [PMID: 31230706 DOI: 10.1016/j.bpj.2019.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 12/27/2022] Open
Affiliation(s)
- Elizabeth Rhoades
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
49
|
Nguemaha V, Qin S, Zhou HX. Transfer Free Energies of Test Proteins Into Crowded Protein Solutions Have Simple Dependence on Crowder Concentration. Front Mol Biosci 2019; 6:39. [PMID: 31192219 PMCID: PMC6549383 DOI: 10.3389/fmolb.2019.00039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 05/07/2019] [Indexed: 01/14/2023] Open
Abstract
The effects of macromolecular crowding on the thermodynamic properties of test proteins are determined by the latter's transfer free energies from a dilute solution to a crowded solution. The transfer free energies in turn are determined by effective protein-crowder interactions. When these interactions are modeled at the all-atom level, the transfer free energies may defy simple predictions. Here we investigated the dependence of the transfer free energy (Δμ) on crowder concentration. We represented both the test protein and the crowder proteins atomistically, and used a general interaction potential consisting of hard-core repulsion, non-polar attraction, and solvent-screened electrostatic terms. The chemical potential was rigorously calculated by FMAP (Qin and Zhou, 2014), which entails expressing the protein-crowder interaction terms as correlation functions and evaluating them via fast Fourier transform (FFT). To high accuracy, the transfer free energy can be decomposed into an excluded-volume component (Δμe−v), arising from the hard-core repulsion, and a soft-attraction component (Δμs−a), arising from non-polar and electrostatic interactions. The decomposition provides physical insight into crowding effects, in particular why such effects are very modest on protein folding stability. Further decomposition of Δμs−a into non-polar and electrostatic components does not work, because these two types of interactions are highly correlated in contributing to Δμs−a. We found that Δμe−v fits well to the generalized fundamental measure theory (Qin and Zhou, 2010), which accounts for atomic details of the test protein but approximates the crowder proteins as spherical particles. Most interestingly, Δμs−a has a nearly linear dependence on crowder concentration. The latter result can be understood within a perturbed virial expansion of Δμ (in powers of crowder concentration), with Δμe−v as reference. Whereas the second virial coefficient deviates strongly from that of the reference system, higher virial coefficients are close to their reference counterparts, thus leaving the linear term to make the dominant contribution to Δμs−a.
Collapse
Affiliation(s)
- Valery Nguemaha
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, United States
| | - Sanbo Qin
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, United States
| | - Huan-Xiang Zhou
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, United States.,Department of Chemistry and Department of Physics, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
50
|
Does macromolecular crowding compatible with enzyme stem bromelain structure and stability? Int J Biol Macromol 2019; 131:527-535. [DOI: 10.1016/j.ijbiomac.2019.03.090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/06/2019] [Accepted: 03/14/2019] [Indexed: 01/21/2023]
|