1
|
Callaway DJE, Nicholl ID, Shi B, Reyes G, Farago B, Bu Z. Nanoscale dynamics of the cadherin-catenin complex bound to vinculin revealed by neutron spin echo spectroscopy. Proc Natl Acad Sci U S A 2024; 121:e2408459121. [PMID: 39298480 PMCID: PMC11441495 DOI: 10.1073/pnas.2408459121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/12/2024] [Indexed: 09/21/2024] Open
Abstract
We report a neutron spin echo (NSE) study of the nanoscale dynamics of the cell-cell adhesion cadherin-catenin complex bound to vinculin. Our measurements and theoretical physics analyses of the NSE data reveal that the dynamics of full-length α-catenin, β-catenin, and vinculin residing in the cadherin-catenin-vinculin complex become activated, involving nanoscale motions in this complex. The cadherin-catenin complex is the central component of the cell-cell adherens junction (AJ) and is fundamental to embryogenesis, tissue wound healing, neuronal plasticity, cancer metastasis, and cardiovascular health and disease. A highly dynamic cadherin-catenin-vinculin complex provides the molecular dynamics basis for the flexibility and elasticity that are necessary for the AJs to function as force transducers. Our theoretical physics analysis provides a way to elucidate these driving nanoscale motions within the complex without requiring large-scale numerical simulations, providing insights not accessible by other techniques. We propose a three-way "motorman" entropic spring model for the dynamic cadherin-catenin-vinculin complex, which allows the complex to function as a flexible and elastic force transducer.
Collapse
Affiliation(s)
- David J. E. Callaway
- Department of Chemistry and Biochemistry, City College of New York, City University of New York, New York, NY10031
| | - Iain D. Nicholl
- Department of Biomedical Science and Physiology, Faculty of Science and Engineering, University of Wolverhampton, WolverhamptonWV1 1LY, United Kingdom
| | - Bright Shi
- Department of Chemistry and Biochemistry, City College of New York, City University of New York, New York, NY10031
- Ph.D. Programs in Chemistry and Biochemistry, City University of New York Graduate Center, New York, NY10016
| | - Gilbert Reyes
- Department of Chemistry and Biochemistry, City College of New York, City University of New York, New York, NY10031
- Ph.D. Programs in Chemistry and Biochemistry, City University of New York Graduate Center, New York, NY10016
| | - Bela Farago
- High-Resolution Spectroscopy Group, Institut Laue-Langevin, F-38042 Grenoble Cedex 9, France
| | - Zimei Bu
- Department of Chemistry and Biochemistry, City College of New York, City University of New York, New York, NY10031
- Ph.D. Programs in Chemistry and Biochemistry, City University of New York Graduate Center, New York, NY10016
| |
Collapse
|
2
|
Raab JE, Hamilton DJ, Harju TB, Huynh TN, Russo BC. Pushing boundaries: mechanisms enabling bacterial pathogens to spread between cells. Infect Immun 2024; 92:e0052423. [PMID: 38661369 PMCID: PMC11385730 DOI: 10.1128/iai.00524-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
For multiple intracellular bacterial pathogens, the ability to spread directly into adjacent epithelial cells is an essential step for disease in humans. For pathogens such as Shigella, Listeria, Rickettsia, and Burkholderia, this intercellular movement frequently requires the pathogens to manipulate the host actin cytoskeleton and deform the plasma membrane into structures known as protrusions, which extend into neighboring cells. The protrusion is then typically resolved into a double-membrane vacuole (DMV) from which the pathogen quickly escapes into the cytosol, where additional rounds of intercellular spread occur. Significant progress over the last few years has begun to define the mechanisms by which intracellular bacterial pathogens spread. This review highlights the interactions of bacterial and host factors that drive mechanisms required for intercellular spread with a focus on how protrusion structures form and resolve.
Collapse
Affiliation(s)
- Julie E. Raab
- Department of Immunology and Microbiology, School of Medicine, University of Colorado—Anschutz Medical Campus, Denver, Colorado, USA
| | - Desmond J. Hamilton
- Department of Immunology and Microbiology, School of Medicine, University of Colorado—Anschutz Medical Campus, Denver, Colorado, USA
| | - Tucker B. Harju
- Department of Immunology and Microbiology, School of Medicine, University of Colorado—Anschutz Medical Campus, Denver, Colorado, USA
| | - Thao N. Huynh
- Department of Immunology and Microbiology, School of Medicine, University of Colorado—Anschutz Medical Campus, Denver, Colorado, USA
| | - Brian C. Russo
- Department of Immunology and Microbiology, School of Medicine, University of Colorado—Anschutz Medical Campus, Denver, Colorado, USA
| |
Collapse
|
3
|
Zhang M, Xiong S, Gao D, Liu C, Xiao L. Tension regulates the cartilage phenotypic expression of endplate chondrocytes through the α-catenin/actin skeleton/Hippo pathway. J Cell Mol Med 2024; 28:e18133. [PMID: 38332509 PMCID: PMC10853574 DOI: 10.1111/jcmm.18133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/15/2023] [Accepted: 11/09/2023] [Indexed: 02/10/2024] Open
Abstract
The study aimed to investigate the regulatory mechanism of intracellular tension signaling in endplate chondrocytes and its impact on extracellular matrix synthesis. Human endplate chondrocytes were subjected to tension load using Flexcell FX-5000™, and changes in phenotype, morphology, and the expression of Hippo signaling pathway and α-Catenin were assessed through various techniques. Through the overexpression of YAP and inhibition of α-Catenin, the study clarified the intracellular tension signaling pathway and its regulation of extracellular matrix synthesis in endplate cartilage. In vitro-cultured human endplate chondrocytes significantly suppressed phenotype-related genes and proteins, accompanied by distinct changes in cytoskeleton morphology. Tension activation resulted in the substantial activation of the Hippo pathway, increased phosphorylation of YAP, and reduced nuclear translocation of YAP. YAP overexpression alleviated the inhibitory effect of tension on extracellular matrix synthesis in endplate chondrocytes. Tension also upregulated the expression of α-Catenin in endplate chondrocytes, which was attenuated by inhibiting α-Catenin expression, thereby reducing the impact of tension on cytoskeletal morphology and YAP nuclear translocation. Taken together, the α-Catenin/actin skeleton/Hippo-coupled network is a crucial signaling pathway for tension signaling in endplate chondrocytes, providing potential therapeutic targets for the treatment of endplate cartilage degeneration.
Collapse
Affiliation(s)
- Min Zhang
- Department of OrthopedicsYijishan Hospital, The First Affiliated Hospital of Wannan Medical CollegeWuhuChina
| | - Shouliang Xiong
- Department of OrthopedicsYijishan Hospital, The First Affiliated Hospital of Wannan Medical CollegeWuhuChina
| | - Daokuan Gao
- Department of Spine SurgeryYijishan Hospital, The First Affiliated Hospital of Wannan Medical CollegeWuhuChina
| | - Chen Liu
- Department of OrthopedicsYijishan Hospital, The First Affiliated Hospital of Wannan Medical CollegeWuhuChina
| | - Liang Xiao
- Department of Spine SurgeryYijishan Hospital, The First Affiliated Hospital of Wannan Medical CollegeWuhuChina
| |
Collapse
|
4
|
Yang Y, Li S, Li Y, Lv L, Ye D, Kang J, Yu T, Wang Y, Wu H. α-Catenin acetylation is essential for its stability and blocks its tumor suppressor effects in breast cancer through Yap1. Cancer Gene Ther 2023; 30:1624-1635. [PMID: 37679528 DOI: 10.1038/s41417-023-00665-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
α-Catenin plays a critical role in tissue integrity, repair, and embryonic development. However, the post-translational modifications of α-catenin and the correlative roles in regulating cancer progression remain unclear. Here, we report that α-catenin is acetylated by p300, and identify three acetylation sites, K45, K866, and K881. Conversely, α-catenin acetylation can be reversed by deacetylase HDAC6. Mechanistically, α-catenin acetylation releases the transcriptional coactivator Yes-associated protein 1 (Yap1) by blocking the interaction between α-catenin and Yap1, and promotes the accumulation of Yap1 in the nucleus. Through this mechanism, acetylation weakens the capacity of α-catenin to inhibit breast cancer cell proliferation and tumor growth in mice. Meanwhile, we show that CDDP induces acetylation of α-catenin, and acetylated α-catenin resists the apoptosis under CDDP conditions. Additionally, acetylation inhibits the proteasome-dependent degradation of α-catenin, thus enhancing the stability of α-catenin for storage. Taken together, our results demonstrate that α-catenin can be acetylated, an event that is key for the subcellular distribution of Yap1 and subsequent facilitation of breast tumorigenesis.
Collapse
Affiliation(s)
- Yuxi Yang
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, China
| | - Shujing Li
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, China
| | - Yulin Li
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, China
| | - Linlin Lv
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, China
- The first affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dongman Ye
- Cancer Hospital of Dalian University of Technology, Shenyang, China
| | - Jie Kang
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, China
| | - Tao Yu
- Cancer Hospital of Dalian University of Technology, Shenyang, China.
| | - Yaming Wang
- The first affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Huijian Wu
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, China.
| |
Collapse
|
5
|
Shi B, Matsui T, Qian S, Weiss TM, Nicholl ID, Callaway DJE, Bu Z. An ensemble of cadherin-catenin-vinculin complex employs vinculin as the major F-actin binding mode. Biophys J 2023; 122:2456-2474. [PMID: 37147801 PMCID: PMC10323030 DOI: 10.1016/j.bpj.2023.04.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/14/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023] Open
Abstract
The cell-cell adhesion cadherin-catenin complexes recruit vinculin to the adherens junction (AJ) to modulate the mechanical couplings between neighboring cells. However, it is unclear how vinculin influences the AJ structure and function. Here, we identified two patches of salt bridges that lock vinculin in the head-tail autoinhibited conformation and reconstituted the full-length vinculin activation mimetics bound to the cadherin-catenin complex. The cadherin-catenin-vinculin complex contains multiple disordered linkers and is highly dynamic, which poses a challenge for structural studies. We determined the ensemble conformation of this complex using small-angle x-ray and selective deuteration/contrast variation small-angle neutron scattering. In the complex, both α-catenin and vinculin adopt an ensemble of flexible conformations, but vinculin has fully open conformations with the vinculin head and actin-binding tail domains well separated from each other. F-actin binding experiments show that the cadherin-catenin-vinculin complex binds and bundles F-actin. However, when the vinculin actin-binding domain is removed from the complex, only a minor fraction of the complex binds to F-actin. The results show that the dynamic cadherin-catenin-vinculin complex employs vinculin as the primary F-actin binding mode to strengthen AJ-cytoskeleton interactions.
Collapse
Affiliation(s)
- Bright Shi
- Department of Chemistry and Biochemistry, City College of New York, City University of New York (CUNY), New York; PhD Programs in Chemistry and Biochemistry, CUNY Graduate Center, New York
| | - Tsutomu Matsui
- Stanford Synchrotron Radiation Light Source, Menlo Park, California
| | - Shuo Qian
- Second Target Station Project, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Thomas M Weiss
- Stanford Synchrotron Radiation Light Source, Menlo Park, California
| | - Iain D Nicholl
- Department of Biomedical Science and Physiology, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom
| | - David J E Callaway
- Department of Chemistry and Biochemistry, City College of New York, City University of New York (CUNY), New York.
| | - Zimei Bu
- Department of Chemistry and Biochemistry, City College of New York, City University of New York (CUNY), New York; PhD Programs in Chemistry and Biochemistry, CUNY Graduate Center, New York.
| |
Collapse
|
6
|
Rangarajan ES, Smith EW, Izard T. Distinct inter-domain interactions of dimeric versus monomeric α-catenin link cell junctions to filaments. Commun Biol 2023; 6:276. [PMID: 36928388 PMCID: PMC10020564 DOI: 10.1038/s42003-023-04610-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/17/2023] [Indexed: 03/18/2023] Open
Abstract
Attachment between cells is crucial for almost all aspects of the life of cells. These inter-cell adhesions are mediated by the binding of transmembrane cadherin receptors of one cell to cadherins of a neighboring cell. Inside the cell, cadherin binds β-catenin, which interacts with α-catenin. The transitioning of cells between migration and adhesion is modulated by α-catenin, which links cell junctions and the plasma membrane to the actin cytoskeleton. At cell junctions, a single β-catenin/α-catenin heterodimer slips along filamentous actin in the direction of cytoskeletal tension which unfolds clustered heterodimers to form catch bonds with F-actin. Outside cell junctions, α-catenin dimerizes and links the plasma membrane to F-actin. Under cytoskeletal tension, α-catenin unfolds and forms an asymmetric catch bond with F-actin. To understand the mechanism of this important α-catenin function, we determined the 2.7 Å cryogenic electron microscopy (cryoEM) structures of filamentous actin alone and bound to human dimeric α-catenin. Our structures provide mechanistic insights into the role of the α-catenin interdomain interactions in directing α-catenin function and suggest a bivalent mechanism. Further, our cryoEM structure of human monomeric α-catenin provides mechanistic insights into α-catenin autoinhibition. Collectively, our structures capture the initial α-catenin interaction with F-actin before the sensing of force, which is a crucial event in cell adhesion and human disease.
Collapse
Affiliation(s)
| | - Emmanuel W Smith
- The Cell Adhesion Laboratory, UF Scripps, Jupiter, FL, 33458, USA
| | - Tina Izard
- The Cell Adhesion Laboratory, UF Scripps, Jupiter, FL, 33458, USA.
- The Skaggs Graduate School, The Scripps Research Institute, Jupiter, FL, 33458, USA.
| |
Collapse
|
7
|
Rangarajan ES, Smith EW, Izard T. The nematode α-catenin ortholog, HMP1, has an extended α-helix when bound to actin filaments. J Biol Chem 2023; 299:102817. [PMID: 36539037 PMCID: PMC9860117 DOI: 10.1016/j.jbc.2022.102817] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
The regulation of cell-cell junctions during epidermal morphogenesis ensures tissue integrity, a process regulated by α-catenin. This cytoskeletal protein connects the cadherin complex to filamentous actin at cell-cell junctions. The cadherin-catenin complex plays key roles in cell physiology, organism development, and disease. While mutagenesis of Caenorhabditis elegans cadherin and catenin shows that these proteins are key for embryonic morphogenesis, we know surprisingly little about their structure and attachment to the cytoskeleton. In contrast to mammalian α-catenin that functions as a dimer or monomer, the α-catenin ortholog from C. elegans, HMP1 for humpback, is a monomer. Our cryogenic electron microscopy (cryoEM) structure of HMP1/α-catenin reveals that the amino- and carboxy-terminal domains of HMP1/α-catenin are disordered and not in contact with the remaining HMP1/α-catenin middle domain. Since the carboxy-terminal HMP1/α-catenin domain is the F-actin-binding domain (FABD), this interdomain constellation suggests that HMP1/α-catenin is constitutively active, which we confirm biochemically. Our perhaps most surprising finding, given the high sequence similarity between the mammalian and nematode proteins, is our cryoEM structure of HMP1/α-catenin bound to F-actin. Unlike the structure of mammalian α-catenin bound to F-actin, binding to F-actin seems to allosterically convert a loop region of the HMP1/α-catenin FABD to extend an HMP1/α-catenin FABD α-helix. We use cryoEM and bundling assays to show for the first time how the FABD of HMP1/α-catenin bundles actin in the absence of force. Collectively, our data advance our understanding of α-catenin regulation of cell-cell contacts and additionally aid our understanding of the evolution of multicellularity in metazoans.
Collapse
Affiliation(s)
| | | | - Tina Izard
- Cell Adhesion Laboratory, UF Scripps, Jupiter, Florida, USA; The Skaggs Graduate School, The Scripps Research Institute, Jupiter, Florida, USA.
| |
Collapse
|
8
|
Brzyska A, Korycki P, Woliński K. The carbohydrate glycosylphosphatidylinositol anchor chain under mechanical stress. Carbohydr Res 2022; 522:108702. [DOI: 10.1016/j.carres.2022.108702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 11/02/2022]
|
9
|
Wang A, Dunn AR, Weis WI. Mechanism of the cadherin-catenin F-actin catch bond interaction. eLife 2022; 11:e80130. [PMID: 35913118 PMCID: PMC9402232 DOI: 10.7554/elife.80130] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Mechanotransduction at cell-cell adhesions is crucial for the structural integrity, organization, and morphogenesis of epithelia. At cell-cell junctions, ternary E-cadherin/β-catenin/αE-catenin complexes sense and transmit mechanical load by binding to F-actin. The interaction with F-actin, described as a two-state catch bond, is weak in solution but is strengthened by applied force due to force-dependent transitions between weak and strong actin-binding states. Here, we provide direct evidence from optical trapping experiments that the catch bond property principally resides in the αE-catenin actin-binding domain (ABD). Consistent with our previously proposed model, the deletion of the first helix of the five-helix ABD bundle enables stable interactions with F-actin under minimal load that are well described by a single-state slip bond, even when αE-catenin is complexed with β-catenin and E-cadherin. Our data argue for a conserved catch bond mechanism for adhesion proteins with structurally similar ABDs. We also demonstrate that a stably bound ABD strengthens load-dependent binding interactions between a neighboring complex and F-actin, but the presence of the other αE-catenin domains weakens this effect. These results provide mechanistic insight to the cooperative binding of the cadherin-catenin complex to F-actin, which regulate dynamic cytoskeletal linkages in epithelial tissues.
Collapse
Affiliation(s)
- Amy Wang
- Department of Chemical Engineering, Stanford University, School of EngineeringStanfordUnited States
- Departments of Structural Biology and Molecular & Cellular Physiology, School of Medicine, Stanford UniversityStanfordUnited States
| | - Alexander R Dunn
- Department of Chemical Engineering, Stanford University, School of EngineeringStanfordUnited States
| | - William I Weis
- Departments of Structural Biology and Molecular & Cellular Physiology, School of Medicine, Stanford UniversityStanfordUnited States
| |
Collapse
|
10
|
Fernandez-Gonzalez R, Peifer M. Powering morphogenesis: multiscale challenges at the interface of cell adhesion and the cytoskeleton. Mol Biol Cell 2022; 33. [PMID: 35696393 DOI: 10.1091/mbc.e21-09-0452] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Among the defining features of the animal kingdom is the ability of cells to change shape and move. This underlies embryonic and postembryonic development, tissue homeostasis, regeneration, and wound healing. Cell shape change and motility require linkage of the cell's force-generating machinery to the plasma membrane at cell-cell and cell-extracellular matrix junctions. Connections of the actomyosin cytoskeleton to cell-cell adherens junctions need to be both resilient and dynamic, preventing tissue disruption during the dramatic events of embryonic morphogenesis. In the past decade, new insights radically altered the earlier simple paradigm that suggested simple linear linkage via the cadherin-catenin complex as the molecular mechanism of junction-cytoskeleton interaction. In this Perspective we provide a brief overview of our current state of knowledge and then focus on selected examples highlighting what we view as the major unanswered questions in our field and the approaches that offer exciting new insights at multiple scales from atomic structure to tissue mechanics.
Collapse
Affiliation(s)
- Rodrigo Fernandez-Gonzalez
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G5, Canada.,Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5S 3G5, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada.,Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Mark Peifer
- Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599-3280.,Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| |
Collapse
|
11
|
Mukherjee A, Melamed S, Damouny-Khoury H, Amer M, Feld L, Nadjar-Boger E, Sheetz MP, Wolfenson H. α-Catenin links integrin adhesions to F-actin to regulate ECM mechanosensing and rigidity dependence. J Cell Biol 2022; 221:213257. [PMID: 35652786 PMCID: PMC9166284 DOI: 10.1083/jcb.202102121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 12/22/2021] [Accepted: 05/16/2022] [Indexed: 02/03/2023] Open
Abstract
Both cell-cell and cell-matrix adhesions are regulated by mechanical signals, but the mechanobiological processes that mediate the cross talk between these structures are poorly understood. Here we show that α-catenin, a mechanosensitive protein that is classically linked with cadherin-based adhesions, associates with and regulates integrin adhesions. α-Catenin is recruited to the edges of mesenchymal cells, where it interacts with F-actin. This is followed by mutual retrograde flow of α-catenin and F-actin from the cell edge, during which α-catenin interacts with vinculin within integrin adhesions. This interaction affects adhesion maturation, stress-fiber assembly, and force transmission to the matrix. In epithelial cells, α-catenin is present in cell-cell adhesions and absent from cell-matrix adhesions. However, when these cells undergo epithelial-to-mesenchymal transition, α-catenin transitions to the cell edge, where it facilitates proper mechanosensing. This is highlighted by the ability of α-catenin-depleted cells to grow on soft matrices. These results suggest a dual role of α-catenin in mechanosensing, through both cell-cell and cell-matrix adhesions.
Collapse
Affiliation(s)
- Abhishek Mukherjee
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa, Israel
| | - Shay Melamed
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa, Israel
| | - Hana Damouny-Khoury
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa, Israel
| | - Malak Amer
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa, Israel
| | - Lea Feld
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa, Israel
| | - Elisabeth Nadjar-Boger
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa, Israel
| | - Michael P. Sheetz
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX
| | - Haguy Wolfenson
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa, Israel,Correspondence to Haguy Wolfenson:
| |
Collapse
|
12
|
Troyanovsky RB, Sergeeva AP, Indra I, Chen CS, Kato R, Shapiro L, Honig B, Troyanovsky SM. Sorting of cadherin-catenin-associated proteins into individual clusters. Proc Natl Acad Sci U S A 2021; 118:e2105550118. [PMID: 34272290 PMCID: PMC8307379 DOI: 10.1073/pnas.2105550118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The cytoplasmic tails of classical cadherins form a multiprotein cadherin-catenin complex (CCC) that constitutes the major structural unit of adherens junctions (AJs). The CCC in AJs forms junctional clusters, "E clusters," driven by cis and trans interactions in the cadherin ectodomain and stabilized by α-catenin-actin interactions. Additional proteins are known to bind to the cytoplasmic region of the CCC. Here, we analyze how these CCC-associated proteins (CAPs) integrate into cadherin clusters and how they affect the clustering process. Using a cross-linking approach coupled with mass spectrometry, we found that the majority of CAPs, including the force-sensing protein vinculin, interact with CCCs outside of AJs. Accordingly, structural modeling shows that there is not enough space for CAPs the size of vinculin to integrate into E clusters. Using two CAPs, scribble and erbin, as examples, we provide evidence that these proteins form separate clusters, which we term "C clusters." As proof of principle, we show, by using cadherin ectodomain monoclonal antibodies (mAbs), that mAb-bound E-cadherin forms separate clusters that undergo trans interactions. Taken together, our data suggest that, in addition to its role in cell-cell adhesion, CAP-driven CCC clustering serves to organize cytoplasmic proteins into distinct domains that may synchronize signaling networks of neighboring cells within tissues.
Collapse
Affiliation(s)
- Regina B Troyanovsky
- Department of Dermatology, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Alina P Sergeeva
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032
| | - Indrajyoti Indra
- Department of Dermatology, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Chi-Shuo Chen
- Department of Dermatology, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Rei Kato
- Department of Dermatology, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027
| | - Barry Honig
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032;
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027
- Department of Medicine, Columbia University, New York, NY 10032
| | - Sergey M Troyanovsky
- Department of Dermatology, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611;
- Department of Cell and Developmental Biology, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| |
Collapse
|
13
|
Donets S, Guskova O, Sommer JU. Searching for Aquamelt Behavior among Silklike Biomimetics during Fibrillation under Flow. J Phys Chem B 2021; 125:3238-3250. [PMID: 33750140 DOI: 10.1021/acs.jpcb.1c00647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this paper, we elucidate a generic mechanism behind strain-induced phase transition in aqueous solutions of silk-inspired biomimetics by atomistic molecular dynamics simulations. We show the results of modeling of homopeptides polyglycine Gly30 and polyalanine Ala30 and a heteropeptide (Gly-Ala-Gly-Ala-Gly-Ser)5, i.e., the simplest and yet relevant sequences that could mimic the behavior of natural silk under stress conditions. First, we analyze hydrophobicities of the sequences by calculating the Gibbs free energy of hydration and inspecting the interchain hydrogen bonding and hydration by water. Second, the force-extension profiles are scanned and compared with the results for poly(ethylene oxide), the synthetic polymer for which the aquamelt behavior has been proved recently. Additionally, the conformational transitions of oligopeptides from coiled to extended states are characterized by a generalized order parameter and by the dependence of the solvent-accessible surface area of the chains on applied stretching. Fibrillation itself is surveyed using both the two-dimensional interchain pair correlation function and the SAXS/WAXS patterns for the aggregates formed under stress. These are compared with experimental data found in the literature on fibril structure of silk composite materials doped with oligoalanine peptides. Our results show that tensile stress introduced into aqueous oligopeptide solutions facilitates interchain interactions. The oligopeptides display both a greater resistance to extension as compared to poly(ethylene oxide) and a reduced ability for hydrogen bonding of the stretched chains between oligomers and with water. Fiber formation is proved for all simulated objects, but the most structured one is made of a heteropeptide (Gly-Ala-Gly-Ala-Gly-Ser)5: For this sequence, we obtain the highest degree of the secondary structure motifs in the fiber. We conclude that this is the most promising candidate among considered sequences to find the aquamelt behavior in further experimental studies.
Collapse
Affiliation(s)
- Sergii Donets
- Institute Theory of Polymers, Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | - Olga Guskova
- Institute Theory of Polymers, Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany.,Dresden Center for Computational Materials Science (DCMS), Technische Universität Dresden, 01062 Dresden, Germany
| | - Jens-Uwe Sommer
- Institute Theory of Polymers, Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany.,Institute of Theoretical Physics, Technische Universität Dresden, Zellescher Weg 17, 01069 Dresden, Germany
| |
Collapse
|
14
|
Activated nanoscale actin-binding domain motion in the catenin-cadherin complex revealed by neutron spin echo spectroscopy. Proc Natl Acad Sci U S A 2021; 118:2025012118. [PMID: 33753508 DOI: 10.1073/pnas.2025012118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As the core component of the adherens junction in cell-cell adhesion, the cadherin-catenin complex transduces mechanical tension between neighboring cells. Structural studies have shown that the cadherin-catenin complex exists as an ensemble of flexible conformations, with the actin-binding domain (ABD) of α-catenin adopting a variety of configurations. Here, we have determined the nanoscale protein domain dynamics of the cadherin-catenin complex using neutron spin echo spectroscopy (NSE), selective deuteration, and theoretical physics analyses. NSE reveals that, in the cadherin-catenin complex, the motion of the entire ABD becomes activated on nanosecond to submicrosecond timescales. By contrast, in the α-catenin homodimer, only the smaller disordered C-terminal tail of ABD is moving. Molecular dynamics (MD) simulations also show increased mobility of ABD in the cadherin-catenin complex, compared to the α-catenin homodimer. Biased MD simulations further reveal that the applied external forces promote the transition of ABD in the cadherin-catenin complex from an ensemble of diverse conformational states to specific states that resemble the actin-bound structure. The activated motion and an ensemble of flexible configurations of the mechanosensory ABD suggest the formation of an entropic trap in the cadherin-catenin complex, serving as negative allosteric regulation that impedes the complex from binding to actin under zero force. Mechanical tension facilitates the reduction in dynamics and narrows the conformational ensemble of ABD to specific configurations that are well suited to bind F-actin. Our results provide a protein dynamics and entropic explanation for the observed force-sensitive binding behavior of a mechanosensitive protein complex.
Collapse
|
15
|
Donets S, Guskova O, Sommer JU. Flow-Induced Formation of Thin PEO Fibers in Water and Their Stability After the Strain Release. J Phys Chem B 2020; 124:9224-9229. [PMID: 32935989 DOI: 10.1021/acs.jpcb.0c05627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Recently, we have shown that a tensile stress applied to chains of poly(ethylene oxide) (PEO) in water reduces the solubility and leads to phase separation of PEO chains from water with the formation of a two-phase region. In this work, we further elucidate the generic mechanism behind strain-induced phase transitions in aqueous PEO solutions with concentrations of 50-60 wt % by performing all-atom molecular dynamics simulations. In particular, we study the stability of oriented PEO fibers after removing stretching forces. We found that the size of the PEO bundle increased with time, which is associated with the dissolution of PEO chains on the fiber surface due to the reformation of hydrogen bonds between the outer PEO molecules and water. For precise characterization of the fibers, the scattering patterns (small- and wide-angle X-ray spectra) for configurations taken at different relaxation times are calculated. The tendency of the oligomer chains to be peeled off from the surface of the bundle eventually might lead to a complete dissolution of the PEO fiber. We conclude that either entanglement constraints or a quick drying process are necessary to conserve the fiber structure in a quiescent state. The scattering results show that external strain induced a liquid-liquid phase separation first. On long time scales, this can be a precursor for crystallization of the fiber.
Collapse
Affiliation(s)
- Sergii Donets
- Institute Theory of Polymers, Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | - Olga Guskova
- Institute Theory of Polymers, Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany.,Dresden Center for Computational Materials Science (DCMS), Technische Universität Dresden, 01062 Dresden, Germany
| | - Jens-Uwe Sommer
- Institute Theory of Polymers, Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany.,Institute of Theoretical Physics, Technische Universität Dresden, Zellescher Weg 17, 01069 Dresden, Germany
| |
Collapse
|
16
|
Terekhova K, Pokutta S, Kee YS, Li J, Tajkhorshid E, Fuller G, Dunn AR, Weis WI. Binding partner- and force-promoted changes in αE-catenin conformation probed by native cysteine labeling. Sci Rep 2019; 9:15375. [PMID: 31653927 PMCID: PMC6814714 DOI: 10.1038/s41598-019-51816-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022] Open
Abstract
Adherens Junctions (AJs) are cell-cell adhesion complexes that sense and propagate mechanical forces by coupling cadherins to the actin cytoskeleton via β-catenin and the F-actin binding protein αE-catenin. When subjected to mechanical force, the cadherin•catenin complex can tightly link to F-actin through αE-catenin, and also recruits the F-actin-binding protein vinculin. In this study, labeling of native cysteines combined with mass spectrometry revealed conformational changes in αE-catenin upon binding to the E-cadherin•β-catenin complex, vinculin and F-actin. A method to apply physiologically meaningful forces in solution revealed force-induced conformational changes in αE-catenin when bound to F-actin. Comparisons of wild-type αE-catenin and a mutant with enhanced vinculin affinity using cysteine labeling and isothermal titration calorimetry provide evidence for allosteric coupling of the N-terminal β-catenin-binding and the middle (M) vinculin-binding domain of αE-catenin. Cysteine labeling also revealed possible crosstalk between the actin-binding domain and the rest of the protein. The data provide insight into how binding partners and mechanical stress can regulate the conformation of full-length αE-catenin, and identify the M domain as a key transmitter of conformational changes.
Collapse
Affiliation(s)
- Ksenia Terekhova
- Departments of Structural Biology and Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sabine Pokutta
- Departments of Structural Biology and Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Yee S Kee
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA.,Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080 (Y.S.K.); Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637 (J.L.), USA
| | - Jing Li
- Departments of Chemistry, Chemical and Biomolecular Engineering, and Center for Biophysics and Quantitative Biology, University of Illinois, Urbana, IL, USA.,Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080 (Y.S.K.); Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637 (J.L.), USA
| | - Emad Tajkhorshid
- Departments of Chemistry, Chemical and Biomolecular Engineering, and Center for Biophysics and Quantitative Biology, University of Illinois, Urbana, IL, USA
| | - Gerald Fuller
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Alexander R Dunn
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA.,Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - William I Weis
- Departments of Structural Biology and Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
17
|
An ensemble of flexible conformations underlies mechanotransduction by the cadherin-catenin adhesion complex. Proc Natl Acad Sci U S A 2019; 116:21545-21555. [PMID: 31591245 PMCID: PMC6815173 DOI: 10.1073/pnas.1911489116] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Adherens junctions are specialized cell–cell adhesion complexes found in epithelial, endothelial, and neuronal tissues of multicellular organism. The cadherin–catenin complex is the core component of the adherens junction and transmits mechanical stress from cell to cell. This study reveals that the cadherin–catenin complex displays a wide spectrum of flexible structures, which suggests a dynamic mechanism for this complex in mechanotransduction for cell–cell adhesion. The cadherin–catenin adhesion complex is the central component of the cell–cell adhesion adherens junctions that transmit mechanical stress from cell to cell. We have determined the nanoscale structure of the adherens junction complex formed by the α-catenin•β-catenin•epithelial cadherin cytoplasmic domain (ABE) using negative stain electron microscopy, small-angle X-ray scattering, and selective deuteration/small-angle neutron scattering. The ABE complex is highly pliable and displays a wide spectrum of flexible structures that are facilitated by protein-domain motions in α- and β-catenin. Moreover, the 107-residue intrinsically disordered N-terminal segment of β-catenin forms a flexible “tongue” that is inserted into α-catenin and participates in the assembly of the ABE complex. The unanticipated ensemble of flexible conformations of the ABE complex suggests a dynamic mechanism for sensitivity and reversibility when transducing mechanical signals, in addition to the catch/slip bond behavior displayed by the ABE complex under mechanical tension. Our results provide mechanistic insight into the structural dynamics for the cadherin–catenin adhesion complex in mechanotransduction.
Collapse
|