1
|
Meißner L, Niese L, Diez S. Helical motion and torque generation by microtubule motors. Curr Opin Cell Biol 2024; 88:102367. [PMID: 38735207 DOI: 10.1016/j.ceb.2024.102367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/14/2024]
Abstract
Microtubule motors play key roles in cellular functions, such as transport, mitosis and cell motility. Fueled by ATP hydrolysis, they convert chemical energy into mechanical work, which enables their movement on microtubules. While their motion along the long axis of microtubules has been studied extensively, some motors display an off-axis component, which results in helical motion around microtubules and the generation of torque in addition to linear forces. Understanding these nuanced movements expands our comprehension of motor protein dynamics and their impact on cellular processes.
Collapse
Affiliation(s)
- Laura Meißner
- B CUBE - Center for Molecular Bioengineering, TUD Dresden University of Technology, 01307 Dresden, Germany
| | - Lukas Niese
- B CUBE - Center for Molecular Bioengineering, TUD Dresden University of Technology, 01307 Dresden, Germany
| | - Stefan Diez
- B CUBE - Center for Molecular Bioengineering, TUD Dresden University of Technology, 01307 Dresden, Germany; Max Planck Institute for Molecular Cell Biology and Genetics, 01307 Dresden, Germany; Cluster of Excellence Physics of Life, TUD Dresden University of Technology, 01062 Dresden, Germany.
| |
Collapse
|
2
|
Sen A, Chowdhury D, Kunwar A. Coordination, cooperation, competition, crowding and congestion of molecular motors: Theoretical models and computer simulations. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:563-650. [PMID: 38960486 DOI: 10.1016/bs.apcsb.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Cytoskeletal motor proteins are biological nanomachines that convert chemical energy into mechanical work to carry out various functions such as cell division, cell motility, cargo transport, muscle contraction, beating of cilia and flagella, and ciliogenesis. Most of these processes are driven by the collective operation of several motors in the crowded viscous intracellular environment. Imaging and manipulation of the motors with powerful experimental probes have been complemented by mathematical analysis and computer simulations of the corresponding theoretical models. In this article, we illustrate some of the key theoretical approaches used to understand how coordination, cooperation and competition of multiple motors in the crowded intra-cellular environment drive the processes that are essential for biological function of a cell. In spite of the focus on theory, experimentalists will also find this article as an useful summary of the progress made so far in understanding multiple motor systems.
Collapse
Affiliation(s)
- Aritra Sen
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Debashish Chowdhury
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Ambarish Kunwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India.
| |
Collapse
|
3
|
Madariaga-Marcos J, Aldag P, Kauert DJ, Seidel R. Correlated Single-Molecule Magnetic Tweezers and Fluorescence Measurements of DNA-Enzyme Interactions. Methods Mol Biol 2024; 2694:421-449. [PMID: 37824016 DOI: 10.1007/978-1-0716-3377-9_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Combining force spectroscopy and fluorescence microscopy provides a substantial improvement to the single-molecule toolbox by allowing simultaneous manipulation and orthogonal characterizations of the conformations, interactions, and activity of biomolecular complexes. Here, we describe a combined magnetic tweezers and total internal reflection fluorescence microscopy setup to carry out correlated single-molecule fluorescence spectroscopy and force/twisting experiments. We apply the setup to reveal the DNA interactions of the CRISPR-Cas surveillance complex Cascade. Single-molecule fluorescence of a labeled Cascade allows to follow the DNA association and dissociation of the protein. Simultaneously, the magnetic tweezers probe the DNA unwinding during R-loop formation by the bound Cascade complexes. Furthermore, the setup supports observation of 1D diffusion of protein complexes on stretched DNA molecules. This technique can be applied to study a vast range of protein-DNA interactions.
Collapse
Affiliation(s)
- Julene Madariaga-Marcos
- Molecular Biophysics Group, Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig, Germany
| | - Pierre Aldag
- Molecular Biophysics Group, Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig, Germany
| | - Dominik J Kauert
- Molecular Biophysics Group, Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig, Germany
| | - Ralf Seidel
- Molecular Biophysics Group, Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig, Germany.
| |
Collapse
|
4
|
Motor generated torque drives coupled yawing and orbital rotations of kinesin coated gold nanorods. Commun Biol 2022; 5:1368. [PMID: 36539506 PMCID: PMC9767927 DOI: 10.1038/s42003-022-04304-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Kinesin motor domains generate impulses of force and movement that have both translational and rotational (torque) components. Here, we ask how the torque component influences function in cargo-attached teams of weakly processive kinesins. Using an assay in which kinesin-coated gold nanorods (kinesin-GNRs) translocate on suspended microtubules, we show that for both single-headed KIF1A and dimeric ZEN-4, the intensities of polarized light scattered by the kinesin-GNRs in two orthogonal directions periodically oscillate as the GNRs crawl towards microtubule plus ends, indicating that translocating kinesin-GNRs unidirectionally rotate about their short (yaw) axes whilst following an overall left-handed helical orbit around the microtubule axis. For orientations of the GNR that generate a signal, the period of this short axis rotation corresponds to two periods of the overall helical trajectory. Torque force thus drives both rolling and yawing of near-spherical cargoes carrying rigidly-attached weakly processive kinesins, with possible relevance to intracellular transport.
Collapse
|
5
|
Dey R, Kundu A, Das B, Banerjee A. Experimental verification of arcsine laws in mesoscopic nonequilibrium systems. Phys Rev E 2022; 106:054113. [PMID: 36559344 DOI: 10.1103/physreve.106.054113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/04/2022] [Indexed: 06/17/2023]
Abstract
A large number of processes in the mesoscopic world occur out of equilibrium, where the time evolution of a system becomes immensely important since it is driven principally by dissipative effects. Nonequilibrium steady states (NESS) represent a crucial category in such systems, where relaxation timescales are comparable to the operational timescales. In this study, we employ a model NESS stochastic system, which is comprised of a colloidal microparticle optically trapped in a viscous fluid, externally driven by a temporally correlated noise, and show that time-integrated observables such as the entropic current, the work done on the system or the work dissipated by it, follow the three Lévy arcsine laws [A. C. Barato et al., Phys. Rev. Lett. 121, 090601 (2018)0031-900710.1103/PhysRevLett.121.090601], in the large time limit. We discover that cumulative distributions converge faster to arcsine distributions when it is near equilibrium and the rate of entropy production is small, because in that case the entropic current has weaker temporal autocorrelation. We study this phenomenon by changing the strength of the added noise as well as by perturbing our system with a flow field produced by a microbubble at close proximity to the trapped particle. We confirm our experimental findings with theoretical simulations of the systems. Our work provides an interesting insight into the NESS statistics of the meso-regime, where stochastic fluctuations play a pivotal role.
Collapse
Affiliation(s)
- Raunak Dey
- Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, West Bengal 741246, India and School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Avijit Kundu
- Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, West Bengal 741246, India
| | - Biswajit Das
- Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, West Bengal 741246, India
| | - Ayan Banerjee
- Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, West Bengal 741246, India
| |
Collapse
|
6
|
Ciorîță A, Bugiel M, Sudhakar S, Schäffer E, Jannasch A. Single depolymerizing and transport kinesins stabilize microtubule ends. Cytoskeleton (Hoboken) 2021; 78:177-184. [PMID: 34310069 DOI: 10.1002/cm.21681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 11/07/2022]
Abstract
Microtubules are highly dynamic cellular filaments and an accurate control of their length is important for many intracellular processes like cell division. Among other factors, microtubule length is actively modulated by motors from the kinesin superfamily. For example, yeast kinesin-8, Kip3, motors depolymerize microtubules by a cooperative, force- and length-dependent mechanism. However, whether single motors can also depolymerize microtubules is unclear. Here, we measured how single kinesin motors influenced the stability of microtubules in an in vitro assay. Using label-free interference reflection microscopy, we determined the spontaneous microtubule depolymerization rate of stabilized microtubules in the presence of kinesins. Surprisingly, we found that both single Kip3 and nondepolymerizing kinesin-1 transport motors, used as a control, stabilized microtubules further. For Kip3, this behavior is contrary to the collective force-dependent depolymerization activity of multiple motors. Because of the control measurement, the finding may hint at a more general stabilization mechanism. The complex, concentration-dependent interaction with microtubule ends provides new insights into the molecular mechanism of kinesin-8 and its regulatory function of microtubule length.
Collapse
Affiliation(s)
- Alexandra Ciorîță
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany.,National Institute for Research and Development of Isotopic and Molecular Technologies, Integrated Electron Microscopy Laboratory, Cluj-Napoca, Romania
| | - Michael Bugiel
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Swathi Sudhakar
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany.,MRC London Institute of Medical Science, Imperial College London, London, UK
| | - Erik Schäffer
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Anita Jannasch
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| |
Collapse
|
7
|
Maruyama Y, Sugawa M, Yamaguchi S, Davies T, Osaki T, Kobayashi T, Yamagishi M, Takeuchi S, Mishima M, Yajima J. CYK4 relaxes the bias in the off-axis motion by MKLP1 kinesin-6. Commun Biol 2021; 4:180. [PMID: 33568771 PMCID: PMC7876049 DOI: 10.1038/s42003-021-01704-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 01/14/2021] [Indexed: 12/18/2022] Open
Abstract
Centralspindlin, a complex of the MKLP1 kinesin-6 and CYK4 GAP subunits, plays key roles in metazoan cytokinesis. CYK4-binding to the long neck region of MKLP1 restricts the configuration of the two MKLP1 motor domains in the centralspindlin. However, it is unclear how the CYK4-binding modulates the interaction of MKLP1 with a microtubule. Here, we performed three-dimensional nanometry of a microbead coated with multiple MKLP1 molecules on a freely suspended microtubule. We found that beads driven by dimeric MKLP1 exhibited persistently left-handed helical trajectories around the microtubule axis, indicating torque generation. By contrast, centralspindlin, like monomeric MKLP1, showed similarly left-handed but less persistent helical movement with occasional rightward movements. Analysis of the fluctuating helical movement indicated that the MKLP1 stochastically makes off-axis motions biased towards the protofilament on the left. CYK4-binding to the neck domains in MKLP1 enables more flexible off-axis motion of centralspindlin, which would help to avoid obstacles along crowded spindle microtubules. Analysing the 3D movement of MKLP1 motors, Maruyama et al. find that dimeric C. elegans MKLP1 drives a left-handed helical motion around the microtubule with minimum protofilament switching to the right side whereas less persistent motions are driven by monomers or by heterotetramers with CYK4. These findings suggest how obstacles along crowded spindle microtubules may be avoided by CYK4 binding to MKLP1.
Collapse
Affiliation(s)
- Yohei Maruyama
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Mitsuhiro Sugawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan.,Komaba Institute for Science, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Shin Yamaguchi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Tim Davies
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.,Department of Biosciences, Durham University, Durham, UK
| | - Toshihisa Osaki
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Takuya Kobayashi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Masahiko Yamagishi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan.,Komaba Institute for Science, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Shoji Takeuchi
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo, Japan.,Research Center for complex Systems Biology, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Masanori Mishima
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.
| | - Junichiro Yajima
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan. .,Komaba Institute for Science, The University of Tokyo, Meguro-ku, Tokyo, Japan. .,Research Center for complex Systems Biology, The University of Tokyo, Meguro-ku, Tokyo, Japan.
| |
Collapse
|
8
|
Wedler V, Strauß F, Sudhakar S, Hermsdorf GL, Stierhof YD, Schäffer E. Polycationic gold nanorods as multipurpose in vitro microtubule markers. NANOSCALE ADVANCES 2020; 2:4003-4010. [PMID: 36132798 PMCID: PMC9417852 DOI: 10.1039/d0na00406e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/12/2020] [Indexed: 06/16/2023]
Abstract
Gold nanoparticles are intriguing because of their unique size- and shape-dependent chemical, electronic and optical properties. Gold nanorods (AuNRs) are particularly promising for various sensor applications due to their tip-enhanced plasmonic fields. For biomolecule attachment, AuNRs are often functionalized with proteins. However, by their intrinsic size such molecules block the most sensitive near-field region of the AuNRs. Here, we used short cationic thiols to functionalize AuNRs. We show that the functionalization layer is thin and that these polycationic AuNRs bind in vitro to negatively charged microtubules. Furthermore, we can plasmonically stimulate light emission from single AuNRs in the absence of any fluorophores and, therefore, use them as bleach- and blinkfree microtubule markers. We expect that polycationic AuNRs may be applicable to in vivo systems and other negatively charged molecules like DNA. In the long-term, microtubule-bound AuNRs can be used as ultrasensitive single-molecule sensors for molecular machines that interact with microtubules.
Collapse
Affiliation(s)
- Viktoria Wedler
- Eberhard Karls Universität Tübingen, Cellular Nanoscience (ZMBP) Auf der Morgenstelle 32 72076 Tübingen Germany +49 7071 295042 +49 7071 2978831
| | - Fabian Strauß
- Eberhard Karls Universität Tübingen, Cellular Nanoscience (ZMBP) Auf der Morgenstelle 32 72076 Tübingen Germany +49 7071 295042 +49 7071 2978831
| | - Swathi Sudhakar
- Eberhard Karls Universität Tübingen, Cellular Nanoscience (ZMBP) Auf der Morgenstelle 32 72076 Tübingen Germany +49 7071 295042 +49 7071 2978831
| | - Gero Lutz Hermsdorf
- Eberhard Karls Universität Tübingen, Cellular Nanoscience (ZMBP) Auf der Morgenstelle 32 72076 Tübingen Germany +49 7071 295042 +49 7071 2978831
| | - York-Dieter Stierhof
- Eberhard Karls Universität Tübingen, Cellular Nanoscience (ZMBP) Auf der Morgenstelle 32 72076 Tübingen Germany +49 7071 295042 +49 7071 2978831
| | - Erik Schäffer
- Eberhard Karls Universität Tübingen, Cellular Nanoscience (ZMBP) Auf der Morgenstelle 32 72076 Tübingen Germany +49 7071 295042 +49 7071 2978831
| |
Collapse
|
9
|
Yamagishi M, Fujimura S, Sugawa M, Nishizaka T, Yajima J. N‐terminal β‐strand of single‐headed kinesin‐1 can modulate the off‐axis force‐generation and resultant rotation pitch. Cytoskeleton (Hoboken) 2020; 77:351-361. [DOI: 10.1002/cm.21630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/08/2020] [Accepted: 08/20/2020] [Indexed: 02/04/2023]
Affiliation(s)
- Masahiko Yamagishi
- Department of Life Sciences, Graduate School of Arts and Sciences The University of Tokyo Tokyo Japan
- Komaba Institute for Science The University of Tokyo Tokyo Japan
| | | | - Mitsuhiro Sugawa
- Department of Life Sciences, Graduate School of Arts and Sciences The University of Tokyo Tokyo Japan
- Komaba Institute for Science The University of Tokyo Tokyo Japan
| | | | - Junichiro Yajima
- Department of Life Sciences, Graduate School of Arts and Sciences The University of Tokyo Tokyo Japan
- Komaba Institute for Science The University of Tokyo Tokyo Japan
- Research Center for Complex Systems Biology The University of Tokyo Tokyo Japan
| |
Collapse
|
10
|
Bigman LS, Levy Y. Protein Diffusion on Charged Biopolymers: DNA versus Microtubule. Biophys J 2020; 118:3008-3018. [PMID: 32492371 DOI: 10.1016/j.bpj.2020.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/28/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
Protein diffusion in lower-dimensional spaces is used for various cellular functions. For example, sliding on DNA is essential for proteins searching for their target sites, and protein diffusion on microtubules is important for proper cell division and neuronal development. On the one hand, these linear diffusion processes are mediated by long-range electrostatic interactions between positively charged proteins and negatively charged biopolymers and have similar characteristic diffusion coefficients. On the other hand, DNA and microtubules have different structural properties. Here, using computational approaches, we studied the mechanism of protein diffusion along DNA and microtubules by exploring the diffusion of both protein types on both biopolymers. We found that DNA-binding and microtubule-binding proteins can diffuse on each other's substrates; however, the adopted diffusion mechanism depends on the molecular properties of the diffusing proteins and the biopolymers. On the protein side, only DNA-binding proteins can perform rotation-coupled diffusion along DNA, with this being due to their higher net charge and its spatial organization at the DNA recognition helix. By contrast, the lower net charge on microtubule-binding proteins enables them to diffuse more quickly than DNA-binding proteins on both biopolymers. On the biopolymer side, microtubules possess intrinsically disordered, negatively charged C-terminal tails that interact with microtubule-binding proteins, thus supporting their diffusion. Thus, although both DNA-binding and microtubule-binding proteins can diffuse on the negatively charged biopolymers, the unique molecular features of the biopolymers and of their natural substrates are essential for function.
Collapse
Affiliation(s)
- Lavi S Bigman
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yaakov Levy
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
11
|
Tubulin tails and their modifications regulate protein diffusion on microtubules. Proc Natl Acad Sci U S A 2020; 117:8876-8883. [PMID: 32245812 DOI: 10.1073/pnas.1914772117] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Microtubules (MTs) are essential components of the eukaryotic cytoskeleton that serve as "highways" for intracellular trafficking. In addition to the well-known active transport of cargo by motor proteins, many MT-binding proteins seem to adopt diffusional motility as a transportation mechanism. However, because of the limited spatial resolution of current experimental techniques, the detailed mechanism of protein diffusion has not been elucidated. In particular, the precise role of tubulin tails and tail modifications in the diffusion process is unclear. Here, using coarse-grained molecular dynamics simulations validated against atomistic simulations, we explore the molecular mechanism of protein diffusion along MTs. We found that electrostatic interactions play a central role in protein diffusion; the disordered tubulin tails enhance affinity but slow down diffusion, and diffusion occurs in discrete steps. While diffusion along wild-type MT is performed in steps of dimeric tubulin, the removal of the tails results in a step of monomeric tubulin. We found that the energy barrier for diffusion is larger when diffusion on MTs is mediated primarily by the MT tails rather than the MT body. In addition, globular proteins (EB1 and PRC1) diffuse more slowly than an intrinsically disordered protein (Tau) on MTs. Finally, we found that polyglutamylation and polyglycylation of tubulin tails lead to slower protein diffusion along MTs, although polyglycylation leads to faster diffusion across MT protofilaments. Taken together, our results explain experimentally observed data and shed light on the roles played by disordered tubulin tails and tail modifications in the molecular mechanism of protein diffusion along MTs.
Collapse
|
12
|
Bugiel M, Chugh M, Jachowski TJ, Schäffer E, Jannasch A. The Kinesin-8 Kip3 Depolymerizes Microtubules with a Collective Force-Dependent Mechanism. Biophys J 2020; 118:1958-1967. [PMID: 32229316 DOI: 10.1016/j.bpj.2020.02.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/29/2020] [Accepted: 02/25/2020] [Indexed: 12/28/2022] Open
Abstract
Microtubules are highly dynamic filaments with dramatic structural rearrangements and length changes during the cell cycle. An accurate control of the microtubule length is essential for many cellular processes, in particular during cell division. Motor proteins from the kinesin-8 family depolymerize microtubules by interacting with their ends in a collective and length-dependent manner. However, it is still unclear how kinesin-8 depolymerizes microtubules. Here, we tracked the microtubule end-binding activity of yeast kinesin-8, Kip3, under varying loads and nucleotide conditions using high-precision optical tweezers. We found that single Kip3 motors spent up to 200 s at the microtubule end and were not stationary there but took several 8-nm forward and backward steps that were suppressed by loads. Interestingly, increased loads, similar to increased motor concentrations, also exponentially decreased the motors' residence time at the microtubule end. On the microtubule lattice, loads also exponentially decreased the run length and time. However, for the same load, lattice run times were significantly longer compared to end residence times, suggesting the presence of a distinct force-dependent detachment mechanism at the microtubule end. The force dependence of the end residence time enabled us to estimate what force must act on a single motor to achieve the microtubule depolymerization speed of a motor ensemble. This force is higher than the stall force of a single Kip3 motor, supporting a collective force-dependent depolymerization mechanism that unifies the so-called "bump-off" and "switching" models. Understanding the mechanics of kinesin-8's microtubule end activity will provide important insights into cell division with implications for cancer research.
Collapse
Affiliation(s)
- Michael Bugiel
- Cellular Nanoscience, Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Mayank Chugh
- Cellular Nanoscience, Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Tobias Jörg Jachowski
- Cellular Nanoscience, Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Erik Schäffer
- Cellular Nanoscience, Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany.
| | - Anita Jannasch
- Cellular Nanoscience, Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany.
| |
Collapse
|