1
|
Zhong M, Karma A. Role of ryanodine receptor cooperativity in Ca 2+-wave-mediated triggered activity in cardiomyocytes. J Physiol 2024; 602:6745-6787. [PMID: 39565684 DOI: 10.1113/jp286145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 09/23/2024] [Indexed: 11/22/2024] Open
Abstract
Ca2+ waves are known to trigger delayed after-depolarizations that can cause malignant cardiac arrhythmias. However, modelling Ca2+ waves using physiologically realistic models has remained a major challenge. Existing models with low Ca2+ sensitivity of ryanodine receptors (RyRs) necessitate large release currents, leading to an unrealistically large Ca2+ transient amplitude incompatible with the experimental observations. Consequently, current physiologically detailed models of delayed after-depolarizations resort to unrealistic cell architectures to produce Ca2+ waves with a normal Ca2+ transient amplitude. Here, we address these challenges by incorporating RyR cooperativity into a physiologically detailed model with a realistic cell architecture. We represent RyR cooperativity phenomenologically through a Hill coefficient within the sigmoid function of RyR open probability. Simulations in permeabilized myocytes with high Ca2+ sensitivity reveal that a sufficiently large Hill coefficient is required for Ca2+ wave propagation via the fire-diffuse-fire mechanism. In intact myocytes, propagating Ca2+ waves can occur only within an intermediate Hill coefficient range. Within this range, the spark rate is neither too low, enabling Ca2+ wave propagation, nor too high, allowing for the maintenance of a high sarcoplasmic reticulum load during diastole of the action potential. Moreover, this model successfully replicates other experimentally observed manifestations of Ca2+-wave-mediated triggered activity, including phase 2 and phase 3 early after-depolarizations and high-frequency voltage-Ca2+ oscillations. These oscillations feature an elevated take-off potential with depolarization mediated by the L-type Ca2+ current. The model also sheds light on the roles of luminal gating of RyRs and the mobile buffer ATP in the genesis of these arrhythmogenic phenomena. KEY POINTS: Existing mathematical models of Ca2+ waves use an excessively large Ca2+-release current or unrealistic diffusive coupling between release units. Our physiologically realistic model, using a Hill coefficient in the ryanodine receptor (RyR) gating function to represent RyR cooperativity, addresses these limitations and generates organized Ca2+ waves at Hill coefficients ranging from ∼5 to 10, as opposed to the traditional value of 2. This range of Hill coefficients gives a spark rate neither too low, thereby enabling Ca2+ wave propagation, nor too high, allowing for the maintenance of a high sarcoplasmic reticulum load during the plateau phase of the action potential. Additionally, the model generates Ca2+-wave-mediated phase 2 and phase 3 early after-depolarizations, and coupled membrane voltage with Ca2+ oscillations mediated by the L-type Ca2+ current. This study suggests that pharmacologically targeting RyR cooperativity could be a promising strategy for treating cardiac arrhythmias linked to Ca2+-wave-mediated triggered activity.
Collapse
Affiliation(s)
- Mingwang Zhong
- Physics Department and Center for Interdisciplinary Research in Complex Systems, Northeastern University, Boston, MA, USA
| | - Alain Karma
- Physics Department and Center for Interdisciplinary Research in Complex Systems, Northeastern University, Boston, MA, USA
| |
Collapse
|
2
|
Maltsev AV, Ventura Subirachs V, Monfredi O, Juhaszova M, Ajay Warrier P, Rakshit S, Tagirova S, Maltsev AV, Stern MD, Lakatta EG, Maltsev VA. Structure-Function Relationship of the Ryanodine Receptor Cluster Network in Sinoatrial Node Cells. Cells 2024; 13:1885. [PMID: 39594633 PMCID: PMC11592670 DOI: 10.3390/cells13221885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
The rate of spontaneous action potentials (APs) generated by sinoatrial node cells (SANC) is regulated by local Ca2+ release (LCR) from the sarcoplasmic reticulum via Ca2+ release channels (ryanodine receptors, RyRs). LCR events propagate and self-organize within the network of RyR clusters (Ca release units, CRUs) via Ca-induced-Ca-release (CICR) that depends on CRU sizes and locations: While larger CRUs generate stronger release signals, the network's topology governs signal diffusion and propagation. This study used super-resolution structured illumination microscopy to image the 3D network of CRUs in rabbit SANC. The peripheral CRUs formed a spatial mesh, reflecting the cell surface geometry. Two distinct subpopulations of CRUs were identified within each cell, with size distributions conforming to a two-component Gamma mixture model. Furthermore, neighboring CRUs exhibited repulsive behavior. Functional properties of the CRU network were further examined in a novel numerical SANC model developed using our experimental data. Model simulations revealed that heterogeneities in both CRU sizes and locations facilitate CICR and increase the AP firing rate in a cooperative manner. However, these heterogeneities reduce the effect of β-adrenergic stimulation in terms of its relative change in AP firing rate. The presence of heterogeneities in both sizes and locations allows SANC to reach higher absolute AP firing rates during β-adrenergic stimulation. Thus, the CICR facilitation by heterogeneities in CRU sizes and locations regulates and optimizes cardiac pacemaker cell operation under various physiological conditions. Dysfunction of this optimization could be a key factor in heart rate reserve decline in aging and disease.
Collapse
Affiliation(s)
- Alexander V. Maltsev
- National Institute on Aging, NIH, Baltimore, MD 21224, USA; (A.V.M.); (S.R.); (S.T.); (M.D.S.); (E.G.L.)
| | - Valeria Ventura Subirachs
- National Institute on Aging, NIH, Baltimore, MD 21224, USA; (A.V.M.); (S.R.); (S.T.); (M.D.S.); (E.G.L.)
| | - Oliver Monfredi
- National Institute on Aging, NIH, Baltimore, MD 21224, USA; (A.V.M.); (S.R.); (S.T.); (M.D.S.); (E.G.L.)
- Department of Cardiovascular Electrophysiology, The Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Magdalena Juhaszova
- National Institute on Aging, NIH, Baltimore, MD 21224, USA; (A.V.M.); (S.R.); (S.T.); (M.D.S.); (E.G.L.)
| | - Pooja Ajay Warrier
- National Institute on Aging, NIH, Baltimore, MD 21224, USA; (A.V.M.); (S.R.); (S.T.); (M.D.S.); (E.G.L.)
| | - Shardul Rakshit
- National Institute on Aging, NIH, Baltimore, MD 21224, USA; (A.V.M.); (S.R.); (S.T.); (M.D.S.); (E.G.L.)
| | - Syevda Tagirova
- National Institute on Aging, NIH, Baltimore, MD 21224, USA; (A.V.M.); (S.R.); (S.T.); (M.D.S.); (E.G.L.)
| | - Anna V. Maltsev
- School of Mathematics, Queen Mary University of London, London E1 4NS, UK;
| | - Michael D. Stern
- National Institute on Aging, NIH, Baltimore, MD 21224, USA; (A.V.M.); (S.R.); (S.T.); (M.D.S.); (E.G.L.)
| | - Edward G. Lakatta
- National Institute on Aging, NIH, Baltimore, MD 21224, USA; (A.V.M.); (S.R.); (S.T.); (M.D.S.); (E.G.L.)
| | - Victor A. Maltsev
- National Institute on Aging, NIH, Baltimore, MD 21224, USA; (A.V.M.); (S.R.); (S.T.); (M.D.S.); (E.G.L.)
| |
Collapse
|
3
|
Yu H, Wang W. Modulation of heteromeric glycine receptor function through high concentration clustering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618879. [PMID: 39464082 PMCID: PMC11507885 DOI: 10.1101/2024.10.17.618879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Ion channels are targeted by many drugs for treating neurological, musculoskeletal, renal and other diseases. These drugs bind to and alter the function of individual channels to achieve desired therapeutic effects. However, many ion channels function in high concentration clusters in their native environment. It is unclear if and how clustering modulates ion channel function. Human heteromeric glycine receptors (GlyRs) are the major inhibitory neurotransmitter receptors in the spinal cord and are active targets for developing chronic pain medications. We show that the α2β heteromeric GlyR assembles with the master postsynaptic scaffolding gephyrin (GPHN) into micron-sized clustered at the plasma membrane after heterologous expression. The inhibitory trans- synaptic adhesion protein neuroligin-2 (NL2) further increases both the cluster sizes and GlyR concentration. The apparent glycine affinity increases monotonically as a function of GlyR concentration but not with cluster size. We also show that ligand re-binding to adjacent GlyRs alters kinetics but not chemical equilibrium. A positively charged N- terminus sequence of the GlyR β subunit was further identified essential for glycine affinity modulation through clustering. Taken together, we propose a mechanism where clustering enhances local electrostatic potential, which in turn concentrates ions and ligands, modulating the function of GlyR. This mechanism is likely universal across ion channel clusters found ubiquitously in biology and provides new perspectives in possible pharmaceutical development.
Collapse
|
4
|
Sanders KM, Drumm BT, Cobine CA, Baker SA. Ca 2+ dynamics in interstitial cells: foundational mechanisms for the motor patterns in the gastrointestinal tract. Physiol Rev 2024; 104:329-398. [PMID: 37561138 PMCID: PMC11281822 DOI: 10.1152/physrev.00036.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/29/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023] Open
Abstract
The gastrointestinal (GI) tract displays multiple motor patterns that move nutrients and wastes through the body. Smooth muscle cells (SMCs) provide the forces necessary for GI motility, but interstitial cells, electrically coupled to SMCs, tune SMC excitability, transduce inputs from enteric motor neurons, and generate pacemaker activity that underlies major motor patterns, such as peristalsis and segmentation. The interstitial cells regulating SMCs are interstitial cells of Cajal (ICC) and PDGF receptor (PDGFR)α+ cells. Together these cells form the SIP syncytium. ICC and PDGFRα+ cells express signature Ca2+-dependent conductances: ICC express Ca2+-activated Cl- channels, encoded by Ano1, that generate inward current, and PDGFRα+ cells express Ca2+-activated K+ channels, encoded by Kcnn3, that generate outward current. The open probabilities of interstitial cell conductances are controlled by Ca2+ release from the endoplasmic reticulum. The resulting Ca2+ transients occur spontaneously in a stochastic manner. Ca2+ transients in ICC induce spontaneous transient inward currents and spontaneous transient depolarizations (STDs). Neurotransmission increases or decreases Ca2+ transients, and the resulting depolarizing or hyperpolarizing responses conduct to other cells in the SIP syncytium. In pacemaker ICC, STDs activate voltage-dependent Ca2+ influx, which initiates a cluster of Ca2+ transients and sustains activation of ANO1 channels and depolarization during slow waves. Regulation of GI motility has traditionally been described as neurogenic and myogenic. Recent advances in understanding Ca2+ handling mechanisms in interstitial cells and how these mechanisms influence motor patterns of the GI tract suggest that the term "myogenic" should be replaced by the term "SIPgenic," as this review discusses.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada-Reno, Reno, Nevada, United States
| | - Bernard T Drumm
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Caroline A Cobine
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Salah A Baker
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada-Reno, Reno, Nevada, United States
| |
Collapse
|
5
|
Waddell HMM, Mereacre V, Alvarado FJ, Munro ML. Clustering properties of the cardiac ryanodine receptor in health and heart failure. J Mol Cell Cardiol 2023; 185:38-49. [PMID: 37890552 PMCID: PMC10717225 DOI: 10.1016/j.yjmcc.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/09/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
The cardiac ryanodine receptor (RyR2) is an intracellular Ca2+ release channel vital for the function of the heart. Physiologically, RyR2 is triggered to release Ca2+ from the sarcoplasmic reticulum (SR) which enables cardiac contraction; however, spontaneous Ca2+ leak from RyR2 has been implicated in the pathophysiology of heart failure (HF). RyR2 channels have been well documented to assemble into clusters within the SR membrane, with the organisation of RyR2 clusters recently gaining interest as a mechanism by which the occurrence of pathological Ca2+ leak is regulated, including in HF. In this review, we explain the terminology relating to key nanoscale RyR2 clustering properties as both single clusters and functionally grouped Ca2+ release units, with a focus on the advancements in super-resolution imaging approaches which have enabled the detailed study of cluster organisation. Further, we discuss proposed mechanisms for modulating RyR2 channel organisation and the debate regarding the potential impact of cluster organisation on Ca2+ leak activity. Finally, recent experimental evidence investigating the nanoscale remodelling and functional alterations of RyR2 clusters in HF is discussed with consideration of the clinical implications.
Collapse
Affiliation(s)
- Helen M M Waddell
- Department of Physiology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Valeria Mereacre
- Department of Physiology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Francisco J Alvarado
- Department of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Michelle L Munro
- Department of Physiology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
6
|
Veron G, Maltsev VA, Stern MD, Maltsev AV. Elementary intracellular Ca signals approximated as a transition of release channel system from a metastable state. JOURNAL OF APPLIED PHYSICS 2023; 134:124701. [PMID: 37744735 PMCID: PMC10517864 DOI: 10.1063/5.0151255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/04/2023] [Indexed: 09/26/2023]
Abstract
Cardiac muscle contraction is initiated by an elementary Ca signal (called Ca spark) which is achieved by collective action of Ca release channels in a cluster. The mechanism of this synchronization remains uncertain. We approached Ca spark activation as an emergent phenomenon of an interactive system of release channels. We constructed a weakly lumped Markov chain that applies an Ising model formalism to such release channel clusters and probable open channel configurations and demonstrated that spark activation is described as a system transition from a metastable to an absorbing state, analogous to the pressure required to overcome surface tension in bubble formation. This yielded quantitative estimates of the spark generation probability as a function of various system parameters. We performed numerical simulations to find spark probabilities as a function of sarcoplasmic reticulum Ca concentration, obtaining similar values for spark activation threshold as our analytic model, as well as those reported in experimental studies. Our parametric sensitivity analyses also showed that the spark activation threshold decreased as Ca sensitivity of RyR activation and RyR cluster size increased.
Collapse
Affiliation(s)
- Guillermo Veron
- Cellular Biophysics Section, Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, Maryland 21224, USA
| | - Victor A. Maltsev
- Cellular Biophysics Section, Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, Maryland 21224, USA
| | - Michael D. Stern
- Cellular Biophysics Section, Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, Maryland 21224, USA
| | - Anna V. Maltsev
- School of Mathematical Sciences, Queen Mary University of London, London E14NS, United Kingdom
| |
Collapse
|
7
|
Kong CHT, Cannell MB. Ca 2+ spark latency and control of intrinsic Ca 2+ release dyssynchrony in rat cardiac ventricular muscle cells. J Mol Cell Cardiol 2023; 182:44-53. [PMID: 37433391 PMCID: PMC7616665 DOI: 10.1016/j.yjmcc.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/12/2023] [Accepted: 07/06/2023] [Indexed: 07/13/2023]
Abstract
Cardiac excitation-contraction coupling (ECC) depends on Ca2+ release from intracellular stores via ryanodine receptors (RyRs) triggered by L-type Ca2+ channels (LCCs). Uncertain numbers of RyRs and LCCs form 'couplons' whose activation produces Ca2+ sparks, which summate to form a cell-wide Ca2+ transient that switches on contraction. Voltage (Vm) changes during the action potential (AP) and stochasticity in channel gating should create variability in Ca2+ spark timing, but Ca2+ transient wavefronts have remarkable uniformity. To examine how this is achieved, we measured the Vm-dependence of evoked Ca2+ spark probability (Pspark) and latency over a wide voltage range in rat ventricular cells. With depolarising steps, Ca2+ spark latency showed a U-shaped Vm-dependence, while repolarising steps from 50 mV produced Ca2+ spark latencies that increased monotonically with Vm. A computer model based on reported channel gating and geometry reproduced our experimental data and revealed a likely RyR:LCC stoichiometry of ∼ 5:1 for the Ca2+ spark initiating complex (IC). Using the experimental AP waveform, the model revealed a high coupling fidelity (Pcpl ∼ 0.5) between each LCC opening and IC activation. The presence of ∼ 4 ICs per couplon reduced Ca2+ spark latency and increased Pspark to match experimental data. Variability in AP release timing is less than that seen with voltage steps because the AP overshoot and later repolarization decrease Pspark due to effects on LCC flux and LCC deactivation respectively. This work provides a framework for explaining the Vm- and time-dependence of Pspark, and indicates how ion channel dispersion in disease can contribute to dyssynchrony in Ca2+ release.
Collapse
Affiliation(s)
- Cherrie H T Kong
- School of Physiology, Pharmacology and Neuroscience, Faculty of Biomedical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom.
| | - Mark B Cannell
- School of Physiology, Pharmacology and Neuroscience, Faculty of Biomedical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom.
| |
Collapse
|
8
|
Dries E, Gilbert G, Roderick HL, Sipido KR. The ryanodine receptor microdomain in cardiomyocytes. Cell Calcium 2023; 114:102769. [PMID: 37390591 DOI: 10.1016/j.ceca.2023.102769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 07/02/2023]
Abstract
The ryanodine receptor type 2 (RyR) is a key player in Ca2+ handling during excitation-contraction coupling. During each heartbeat, RyR channels are responsible for linking the action potential with the contractile machinery of the cardiomyocyte by releasing Ca2+ from the sarcoplasmic reticulum. RyR function is fine-tuned by associated signalling molecules, arrangement in clusters and subcellular localization. These parameters together define RyR function within microdomains and are subject to disease remodelling. This review describes the latest findings on RyR microdomain organization, the alterations with disease which result in increased subcellular heterogeneity and emergence of microdomains with enhanced arrhythmogenic potential, and presents novel technologies that guide future research to study and target RyR channels within specific microdomains.
Collapse
Affiliation(s)
- Eef Dries
- Lab of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium.
| | - Guillaume Gilbert
- Lab of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; Laboratoire ORPHY EA 4324, Université de Brest, Brest, France
| | - H Llewelyn Roderick
- Lab of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Karin R Sipido
- Lab of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Smith CER, Grandi E. Unveiling the intricacies of intracellular Ca 2+ regulation in the heart. Biophys J 2023; 122:3019-3021. [PMID: 37478843 PMCID: PMC10432241 DOI: 10.1016/j.bpj.2023.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 07/23/2023] Open
Abstract
Recent studies have provided valuable insight into the key mechanisms contributing to the spatiotemporal regulation of intracellular Ca2+ release and Ca2+ signaling in the heart. In this research highlight, we focus on the latest findings published in Biophysical Journal examining the structural organization of Ca2+ handling proteins and assessing the functional aspects of intracellular Ca2+ regulation in health and the detrimental consequences of Ca2+ dysregulation in disease. These important studies pave the way for future mechanistic investigations and multiscale understanding of Ca2+ signaling in the heart.
Collapse
Affiliation(s)
- Charlotte E R Smith
- Department of Pharmacology, University of California Davis, Davis, California.
| | - Eleonora Grandi
- Department of Pharmacology, University of California Davis, Davis, California.
| |
Collapse
|
10
|
Grandi E, Navedo MF, Saucerman JJ, Bers DM, Chiamvimonvat N, Dixon RE, Dobrev D, Gomez AM, Harraz OF, Hegyi B, Jones DK, Krogh-Madsen T, Murfee WL, Nystoriak MA, Posnack NG, Ripplinger CM, Veeraraghavan R, Weinberg S. Diversity of cells and signals in the cardiovascular system. J Physiol 2023; 601:2547-2592. [PMID: 36744541 PMCID: PMC10313794 DOI: 10.1113/jp284011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/19/2023] [Indexed: 02/07/2023] Open
Abstract
This white paper is the outcome of the seventh UC Davis Cardiovascular Research Symposium on Systems Approach to Understanding Cardiovascular Disease and Arrhythmia. This biannual meeting aims to bring together leading experts in subfields of cardiovascular biomedicine to focus on topics of importance to the field. The theme of the 2022 Symposium was 'Cell Diversity in the Cardiovascular System, cell-autonomous and cell-cell signalling'. Experts in the field contributed their experimental and mathematical modelling perspectives and discussed emerging questions, controversies, and challenges in examining cell and signal diversity, co-ordination and interrelationships involved in cardiovascular function. This paper originates from the topics of formal presentations and informal discussions from the Symposium, which aimed to develop a holistic view of how the multiple cell types in the cardiovascular system integrate to influence cardiovascular function, disease progression and therapeutic strategies. The first section describes the major cell types (e.g. cardiomyocytes, vascular smooth muscle and endothelial cells, fibroblasts, neurons, immune cells, etc.) and the signals involved in cardiovascular function. The second section emphasizes the complexity at the subcellular, cellular and system levels in the context of cardiovascular development, ageing and disease. Finally, the third section surveys the technological innovations that allow the interrogation of this diversity and advancing our understanding of the integrated cardiovascular function and dysfunction.
Collapse
Affiliation(s)
- Eleonora Grandi
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Manuel F. Navedo
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Jeffrey J. Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Donald M. Bers
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Nipavan Chiamvimonvat
- Department of Pharmacology, University of California Davis, Davis, CA, USA
- Department of Internal Medicine, University of California Davis, Davis, CA, USA
| | - Rose E. Dixon
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Canada
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Ana M. Gomez
- Signaling and Cardiovascular Pathophysiology-UMR-S 1180, INSERM, Université Paris-Saclay, Orsay, France
| | - Osama F. Harraz
- Department of Pharmacology, Larner College of Medicine, and Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, VT, USA
| | - Bence Hegyi
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - David K. Jones
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Trine Krogh-Madsen
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, New York, USA
| | - Walter Lee Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Matthew A. Nystoriak
- Department of Medicine, Division of Environmental Medicine, Center for Cardiometabolic Science, University of Louisville, Louisville, KY, 40202, USA
| | - Nikki G. Posnack
- Department of Pediatrics, Department of Pharmacology and Physiology, The George Washington University, Washington, DC, USA
- Sheikh Zayed Institute for Pediatric and Surgical Innovation, Children’s National Heart Institute, Children’s National Hospital, Washington, DC, USA
| | | | - Rengasayee Veeraraghavan
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University – Wexner Medical Center, Columbus, OH, USA
| | - Seth Weinberg
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University – Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
11
|
Gao ZX, Li TT, Jiang HY, He J. Calcium oscillation on homogeneous and heterogeneous networks of ryanodine receptor. Phys Rev E 2023; 107:024402. [PMID: 36932487 DOI: 10.1103/physreve.107.024402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Calcium oscillation is an important calcium homeostasis, imbalance of which is the key mechanism of initiation and progression of many major diseases. The formation and maintenance of calcium homeostasis are closely related to the spatial distribution of calcium channels on endoplasmic reticulum, whose complex structure was unveiled by recent observations with superresolution imaging techniques. In the current paper, a theoretical framework is established by abstracting the spatial distribution of the calcium channels as a nonlinear biological complex network with calcium channels as nodes and Ca^{2+} as edges. A dynamical model for a ryanodine receptor (RyR) is adopted to investigate the effect of spatial distribution on calcium oscillation. The mean-field model can be well reproduced from the complete graph and dense Erdös-Rényi network. The synchronization of RyRs is found important to generate a global calcium oscillation. Below a critical density of the Erdös-Rényi or BaraBási-Albert network, the amplitude and interspike interval decrease rapidly with the end of disappearance of oscillation due to the desynchronization. The clique graph with a cluster structure cannot produce a global oscillation due to the failure of synchronization between clusters. A more realistic geometric network is constructed in a two-dimensional plane based on the experimental information about the RyR arrangement of clusters and the frequency distribution of cluster sizes. Different from the clique graph, the global oscillation can be generated with reasonable parameters on the geometric network. The simulation also suggests that existence of small clusters and rogue RyRs plays an important role in the maintenance of global calcium oscillation through keeping synchronization between large clusters. Such results support the heterogeneous distribution of RyRs with different-size clusters, which is helpful to understand recent observations with superresolution nanoscale imaging techniques. The current theoretical framework can also be extent to investigate other phenomena in calcium signal transduction.
Collapse
Affiliation(s)
- Zhong-Xue Gao
- School of Physics and Technology, Nanjing Normal University, Nanjing 210097, China
| | - Tian-Tian Li
- School of Physics and Technology, Nanjing Normal University, Nanjing 210097, China
| | - Han-Yu Jiang
- School of Physics and Technology, Nanjing Normal University, Nanjing 210097, China
| | - Jun He
- School of Physics and Technology, Nanjing Normal University, Nanjing 210097, China
| |
Collapse
|
12
|
Greene D, Luchko T, Shiferaw Y. The role of subunit cooperativity on ryanodine receptor 2 calcium signaling. Biophys J 2023; 122:215-229. [PMID: 36348625 PMCID: PMC9822801 DOI: 10.1016/j.bpj.2022.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/09/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
The ryanodine receptor type 2 (RyR2) is composed of four subunits that control calcium (Ca) release in cardiac cells. RyR2 serves primarily as a Ca sensor and can respond to rapid sub-millisecond pulses of Ca while remaining shut at resting concentrations. However, it is not known how the four subunits interact for the RyR2 to function as an effective Ca sensor. To address this question, and to understand the role of subunit cooperativity in Ca-mediated signal transduction, we have developed a computational model of the RyR2 composed of four interacting subunits. We first analyze the statistical properties of a single RyR2 tetramer, where each subunit can exist in a closed or open conformation. Our findings indicate that the number of subunits in the open state is a crucial parameter that dictates RyR2 kinetics. We find that three or four open subunits are required for the RyR2 to harness cooperative interactions to respond to sub-millisecond changes in Ca, while at the same time remaining shut at the resting Ca levels in the cardiac cell. If the required number of open subunits is lowered to one or two, the RyR2 cannot serve as a robust Ca sensor, as the large cooperativity required to stabilize the closed state prevents channel activation. Using this four-subunit model, we analyze the kinetics of Ca release from a RyR2 cluster. We show that the closure of a cluster of RyR2 channels is highly sensitive to the balance of cooperative interactions between closed and open subunits. Based on this result, we analyze how specific interactions between RyR2 subunits can induce persistent Ca leak from the sarcoplasmic reticulum (SR), which is believed to be arrhythmogenic. Thus, these results provide a framework to analyze how a pharmacologic or genetic modification of RyR2 subunit cooperativity can induce abnormal Ca cycling that can potentially lead to life-threatening arrhythmias.
Collapse
Affiliation(s)
- D'Artagnan Greene
- Department of Physics & Astronomy, California State University, Northridge
| | - Tyler Luchko
- Department of Physics & Astronomy, California State University, Northridge
| | - Yohannes Shiferaw
- Department of Physics & Astronomy, California State University, Northridge.
| |
Collapse
|
13
|
Smith CER, Pinali C, Eisner DA, Trafford AW, Dibb KM. Enhanced calcium release at specialised surface sites compensates for reduced t-tubule density in neonatal sheep atrial myocytes. J Mol Cell Cardiol 2022; 173:61-70. [PMID: 36038009 DOI: 10.1016/j.yjmcc.2022.08.360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/07/2022] [Accepted: 08/23/2022] [Indexed: 01/06/2023]
Abstract
Cardiac myocytes rely on transverse (t)-tubules to facilitate a rapid rise in calcium throughout the cell. However, despite their importance in triggering synchronous Ca2+ release, t-tubules are highly labile structures. They develop postnatally, increase in density during exercise training and are lost in diseases such as heart failure (HF). In the majority of settings, an absence of t-tubules decreases function. Here we show that despite reduced t-tubule density due to immature t-tubules, the newborn atrium is highly specialised to maintain Ca2+ release. To compensate for fewer t-tubules triggering a central rise in Ca2+, Ca2+ release at sites on the cell surface is enhanced in the newborn, exceeding that at all Ca2+ release sites in the adult. Using electron and super resolution microscopy to investigate myocyte ultrastructure, we found that newborn atrial cells had enlarged surface sarcoplasmic reticulum and larger, more closely spaced surface and central ryanodine receptor clusters. We suggest that these adaptations mediate enhanced Ca2+ release at the sarcolemma and aid propagation to compensate for reduced t-tubule density in the neonatal atrium.
Collapse
Affiliation(s)
- Charlotte E R Smith
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, 3.14 Core Technology Facility, 46 Grafton Street, Manchester M13 9NT, United Kingdom
| | - Christian Pinali
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, 3.14 Core Technology Facility, 46 Grafton Street, Manchester M13 9NT, United Kingdom
| | - David A Eisner
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, 3.14 Core Technology Facility, 46 Grafton Street, Manchester M13 9NT, United Kingdom
| | - Andrew W Trafford
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, 3.14 Core Technology Facility, 46 Grafton Street, Manchester M13 9NT, United Kingdom
| | - Katharine M Dibb
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, 3.14 Core Technology Facility, 46 Grafton Street, Manchester M13 9NT, United Kingdom.
| |
Collapse
|
14
|
Guarina L, Moghbel AN, Pourhosseinzadeh MS, Cudmore RH, Sato D, Clancy CE, Santana LF. Biological noise is a key determinant of the reproducibility and adaptability of cardiac pacemaking and EC coupling. J Gen Physiol 2022; 154:e202012613. [PMID: 35482009 PMCID: PMC9059386 DOI: 10.1085/jgp.202012613] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/16/2022] [Accepted: 04/07/2022] [Indexed: 12/23/2022] Open
Abstract
Each heartbeat begins with the generation of an action potential in pacemaking cells in the sinoatrial node. This signal triggers contraction of cardiac muscle through a process termed excitation-contraction (EC) coupling. EC coupling is initiated in dyadic structures of cardiac myocytes, where ryanodine receptors in the junctional sarcoplasmic reticulum come into close apposition with clusters of CaV1.2 channels in invaginations of the sarcolemma. Cooperative activation of CaV1.2 channels within these clusters causes a local increase in intracellular Ca2+ that activates the juxtaposed ryanodine receptors. A salient feature of healthy cardiac function is the reliable and precise beat-to-beat pacemaking and amplitude of Ca2+ transients during EC coupling. In this review, we discuss recent discoveries suggesting that the exquisite reproducibility of this system emerges, paradoxically, from high variability at subcellular, cellular, and network levels. This variability is attributable to stochastic fluctuations in ion channel trafficking, clustering, and gating, as well as dyadic structure, which increase intracellular Ca2+ variance during EC coupling. Although the effects of these large, local fluctuations in function and organization are sometimes negligible at the macroscopic level owing to spatial-temporal summation within and across cells in the tissue, recent work suggests that the "noisiness" of these intracellular Ca2+ events may either enhance or counterintuitively reduce variability in a context-dependent manner. Indeed, these noisy events may represent distinct regulatory features in the tuning of cardiac contractility. Collectively, these observations support the importance of incorporating experimentally determined values of Ca2+ variance in all EC coupling models. The high reproducibility of cardiac contraction is a paradoxical outcome of high Ca2+ signaling variability at subcellular, cellular, and network levels caused by stochastic fluctuations in multiple processes in time and space. This underlying stochasticity, which counterintuitively manifests as reliable, consistent Ca2+ transients during EC coupling, also allows for rapid changes in cardiac rhythmicity and contractility in health and disease.
Collapse
Affiliation(s)
- Laura Guarina
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA
| | - Ariana Neelufar Moghbel
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA
| | | | - Robert H. Cudmore
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA
| | - Daisuke Sato
- Department of Pharmacology, University of California Davis School of Medicine, Davis, CA
| | - Colleen E. Clancy
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA
| | - Luis Fernando Santana
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA
| |
Collapse
|
15
|
Zheng J, Dooge HC, Pérez-Hernández M, Zhao YT, Chen X, Hernandez JJ, Valdivia CR, Palomeque J, Rothenberg E, Delmar M, Valdivia HH, Alvarado FJ. Preserved cardiac performance and adrenergic response in a rabbit model with decreased ryanodine receptor 2 expression. J Mol Cell Cardiol 2022; 167:118-128. [PMID: 35413295 PMCID: PMC9610860 DOI: 10.1016/j.yjmcc.2022.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/11/2022] [Accepted: 04/06/2022] [Indexed: 11/19/2022]
Abstract
Ryanodine receptor 2 (RyR2) is an ion channel in the heart responsible for releasing into the cytosol most of the Ca2+ required for contraction. Proper regulation of RyR2 is critical, as highlighted by the association between channel dysfunction and cardiac arrhythmia. Lower RyR2 expression is also observed in some forms of heart disease; however, there is limited information on the impact of this change on excitation-contraction (e-c) coupling, Ca2+-dependent arrhythmias, and cardiac performance. We used a constitutive knock-out of RyR2 in rabbits (RyR2-KO) to assess the extent to which a stable decrease in RyR2 expression modulates Ca2+ handling in the heart. We found that homozygous knock-out of RyR2 in rabbits is embryonic lethal. Remarkably, heterozygotes (KO+/-) show ~50% loss of RyR2 protein without developing an overt phenotype at the intact animal and whole heart levels. Instead, we found that KO+/- myocytes show (1) remodeling of RyR2 clusters, favoring smaller groups in which channels are more densely arranged; (2) lower Ca2+ spark frequency and amplitude; (3) slower rate of Ca2+ release and mild but significant desynchronization of the Ca2+ transient; and (4) a significant decrease in the basal phosphorylation of S2031, likely due to increased association between RyR2 and PP2A. Our data show that RyR2 deficiency, although remarkable at the molecular and subcellular level, has only a modest impact on global Ca2+ release and is fully compensated at the whole-heart level. This highlights the redundancy of RyR2 protein expression and the plasticity of the e-c coupling apparatus.
Collapse
Affiliation(s)
- Jingjing Zheng
- Department of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA; Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Holly C Dooge
- Department of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Marta Pérez-Hernández
- Leon H Charney Division of Cardiology, New York University Grossman School of Medicine,. New York, NY, United States of America
| | - Yan-Ting Zhao
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI, United States of America
| | - Xi Chen
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Jonathan J Hernandez
- Department of Pediatrics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States of America
| | - Carmen R Valdivia
- Department of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Julieta Palomeque
- Centro de Investigaciones Cardiovasculares, CCT-La Plata-CONICET, Facultad de Ciencias Médicas, UNLP, La Plata, Argentina
| | - Eli Rothenberg
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, United States of America
| | - Mario Delmar
- Leon H Charney Division of Cardiology, New York University Grossman School of Medicine,. New York, NY, United States of America
| | - Héctor H Valdivia
- Department of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Francisco J Alvarado
- Department of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
16
|
Demydenko K, Roderick HL. The cardiomyocyte firestarter-RyR clusters ignite their neighbours after augmentation of Ca 2+ release by β-stimulation. Acta Physiol (Oxf) 2022; 234:e13798. [PMID: 35147280 DOI: 10.1111/apha.13798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Kateryna Demydenko
- Laboratory of Experimental Cardiology Department of Cardiovascular Sciences KU Leuven Leuven Belgium
| | - H. Llewelyn Roderick
- Laboratory of Experimental Cardiology Department of Cardiovascular Sciences KU Leuven Leuven Belgium
| |
Collapse
|
17
|
Dixon RE. Nanoscale Organization, Regulation, and Dynamic Reorganization of Cardiac Calcium Channels. Front Physiol 2022; 12:810408. [PMID: 35069264 PMCID: PMC8769284 DOI: 10.3389/fphys.2021.810408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 11/30/2021] [Indexed: 12/19/2022] Open
Abstract
The architectural specializations and targeted delivery pathways of cardiomyocytes ensure that L-type Ca2+ channels (CaV1.2) are concentrated on the t-tubule sarcolemma within nanometers of their intracellular partners the type 2 ryanodine receptors (RyR2) which cluster on the junctional sarcoplasmic reticulum (jSR). The organization and distribution of these two groups of cardiac calcium channel clusters critically underlies the uniform contraction of the myocardium. Ca2+ signaling between these two sets of adjacent clusters produces Ca2+ sparks that in health, cannot escalate into Ca2+ waves because there is sufficient separation of adjacent clusters so that the release of Ca2+ from one RyR2 cluster or supercluster, cannot activate and sustain the release of Ca2+ from neighboring clusters. Instead, thousands of these Ca2+ release units (CRUs) generate near simultaneous Ca2+ sparks across every cardiomyocyte during the action potential when calcium induced calcium release from RyR2 is stimulated by depolarization induced Ca2+ influx through voltage dependent CaV1.2 channel clusters. These sparks summate to generate a global Ca2+ transient that activates the myofilaments and thus the electrical signal of the action potential is transduced into a functional output, myocardial contraction. To generate more, or less contractile force to match the hemodynamic and metabolic demands of the body, the heart responds to β-adrenergic signaling by altering activity of calcium channels to tune excitation-contraction coupling accordingly. Recent accumulating evidence suggests that this tuning process also involves altered expression, and dynamic reorganization of CaV1.2 and RyR2 channels on their respective membranes to control the amplitude of Ca2+ entry, SR Ca2+ release and myocardial function. In heart failure and aging, altered distribution and reorganization of these key Ca2+ signaling proteins occurs alongside architectural remodeling and is thought to contribute to impaired contractile function. In the present review we discuss these latest developments, their implications, and future questions to be addressed.
Collapse
Affiliation(s)
- Rose E Dixon
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
18
|
Dixon RE, Navedo MF, Binder MD, Santana LF. Mechanisms and Physiological Implications of Cooperative Gating of Ion Channels Clusters. Physiol Rev 2021; 102:1159-1210. [PMID: 34927454 DOI: 10.1152/physrev.00022.2021] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ion channels play a central role in the regulation of nearly every cellular process. Dating back to the classic 1952 Hodgkin-Huxley model of the generation of the action potential, ion channels have always been thought of as independent agents. A myriad of recent experimental findings exploiting advances in electrophysiology, structural biology, and imaging techniques, however, have posed a serious challenge to this long-held axiom as several classes of ion channels appear to open and close in a coordinated, cooperative manner. Ion channel cooperativity ranges from variable-sized oligomeric cooperative gating in voltage-gated, dihydropyridine-sensitive Cav1.2 and Cav1.3 channels to obligatory dimeric assembly and gating of voltage-gated Nav1.5 channels. Potassium channels, transient receptor potential channels, hyperpolarization cyclic nucleotide-activated channels, ryanodine receptors (RyRs), and inositol trisphosphate receptors (IP3Rs) have also been shown to gate cooperatively. The implications of cooperative gating of these ion channels range from fine tuning excitation-contraction coupling in muscle cells to regulating cardiac function and vascular tone, to modulation of action potential and conduction velocity in neurons and cardiac cells, and to control of pace-making activity in the heart. In this review, we discuss the mechanisms leading to cooperative gating of ion channels, their physiological consequences and how alterations in cooperative gating of ion channels may induce a range of clinically significant pathologies.
Collapse
Affiliation(s)
- Rose Ellen Dixon
- Department of Physiology and Membrane Biology, University of California, Davis, CA, United States
| | - Manuel F Navedo
- Department of Pharmacology, University of California, Davis, CA, United States
| | - Marc D Binder
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
| | - L Fernando Santana
- Department of Physiology and Membrane Biology, University of California, Davis, CA, United States
| |
Collapse
|
19
|
Setterberg IE, Le C, Frisk M, Li J, Louch WE. The Physiology and Pathophysiology of T-Tubules in the Heart. Front Physiol 2021; 12:718404. [PMID: 34566684 PMCID: PMC8458775 DOI: 10.3389/fphys.2021.718404] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022] Open
Abstract
In cardiomyocytes, invaginations of the sarcolemmal membrane called t-tubules are critically important for triggering contraction by excitation-contraction (EC) coupling. These structures form functional junctions with the sarcoplasmic reticulum (SR), and thereby enable close contact between L-type Ca2+ channels (LTCCs) and Ryanodine Receptors (RyRs). This arrangement in turn ensures efficient triggering of Ca2+ release, and contraction. While new data indicate that t-tubules are capable of exhibiting compensatory remodeling, they are also widely reported to be structurally and functionally compromised during disease, resulting in disrupted Ca2+ homeostasis, impaired systolic and/or diastolic function, and arrhythmogenesis. This review summarizes these findings, while highlighting an emerging appreciation of the distinct roles of t-tubules in the pathophysiology of heart failure with reduced and preserved ejection fraction (HFrEF and HFpEF). In this context, we review current understanding of the processes underlying t-tubule growth, maintenance, and degradation, underscoring the involvement of a variety of regulatory proteins, including junctophilin-2 (JPH2), amphiphysin-2 (BIN1), caveolin-3 (Cav3), and newer candidate proteins. Upstream regulation of t-tubule structure/function by cardiac workload and specifically ventricular wall stress is also discussed, alongside perspectives for novel strategies which may therapeutically target these mechanisms.
Collapse
Affiliation(s)
- Ingunn E Setterberg
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Christopher Le
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Michael Frisk
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Jia Li
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| |
Collapse
|
20
|
Sato D, Uchinoumi H, Bers DM. Increasing SERCA function promotes initiation of calcium sparks and breakup of calcium waves. J Physiol 2021; 599:3267-3278. [PMID: 33963531 PMCID: PMC8249358 DOI: 10.1113/jp281579] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/04/2021] [Indexed: 01/16/2023] Open
Abstract
KEY POINTS Increasing sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA) pump activity enhances sarcoplasmic reticulum calcium (Ca) load, which increases both ryanodine receptor opening and driving force of Ca release flux. Both of these effects promote Ca spark formation and wave propagation. However, increasing SERCA activity also accelerates local cytosolic Ca decay as the wave front travels to the next cluster, which limits wave propagation. As a result, increasing SERCA pump activity has a biphasic effect on the propensity of arrhythmogenic Ca waves, but a monotonic effect to increase Ca spark frequency and amplitude. ABSTRACT Waves of sarcoplasmic reticulum (SR) calcium (Ca) release can cause arrhythmogenic afterdepolarizations in cardiac myocytes. Ca waves propagate when Ca sparks at one Ca release unit (CRU) recruit new Ca sparks in neighbouring CRUs. Under normal conditions, Ca sparks are too small to recruit neighbouring Ca sparks where Ca sensitivity is also low. However, under pathological conditions such as a Ca overload or ryanodine receptor (RyR) sensitization, Ca sparks can be larger and propagate more readily as macro-sparks or full Ca waves. Increasing SERCA pump activity promotes SR Ca load, which promotes RyR opening and increases driving force of the Ca release flux from SR to cytosol, promoting Ca waves. However, high sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA) activity can also decrease local cytosolic [Ca] as it approaches the next CRU, thereby reducing wave appearance and propagation. In this study, we use a physiologically detailed model of subcellular Ca cycling and experiments in phospholamban-knockout mice, to show how Ca waves are initiated and propagate and how different conditions contribute to the generation and propagation of Ca waves. We show that reducing diffusive coupling between Ca sparks by increasing SERCA activity prevents Ca waves by reducing [Ca] at the next CRU, as do Ca buffers, low intra-SR Ca diffusion and distance between CRUs. Increasing SR Ca uptake rate has a biphasic effect on Ca wave propagation; initially it enhances Ca spark probability and amplitude and CRU coupling, thereby promoting arrhythmogenic Ca wave propagation, but at higher levels SR Ca uptake can abort those arrhythmogenic Ca waves.
Collapse
Affiliation(s)
- Daisuke Sato
- Department of Pharmacology, University of California, Davis School of Medicine, California, USA
| | - Hitoshi Uchinoumi
- Department of Pharmacology, University of California, Davis School of Medicine, California, USA.,Department of Cardiology, Yamaguchi University School of Medicine, Yamaguchi, Japan
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis School of Medicine, California, USA
| |
Collapse
|
21
|
Vermot A, Petit-Härtlein I, Smith SME, Fieschi F. NADPH Oxidases (NOX): An Overview from Discovery, Molecular Mechanisms to Physiology and Pathology. Antioxidants (Basel) 2021; 10:890. [PMID: 34205998 PMCID: PMC8228183 DOI: 10.3390/antiox10060890] [Citation(s) in RCA: 297] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 01/17/2023] Open
Abstract
The reactive oxygen species (ROS)-producing enzyme NADPH oxidase (NOX) was first identified in the membrane of phagocytic cells. For many years, its only known role was in immune defense, where its ROS production leads to the destruction of pathogens by the immune cells. NOX from phagocytes catalyzes, via one-electron trans-membrane transfer to molecular oxygen, the production of the superoxide anion. Over the years, six human homologs of the catalytic subunit of the phagocyte NADPH oxidase were found: NOX1, NOX3, NOX4, NOX5, DUOX1, and DUOX2. Together with the NOX2/gp91phox component present in the phagocyte NADPH oxidase assembly itself, the homologs are now referred to as the NOX family of NADPH oxidases. NOX are complex multidomain proteins with varying requirements for assembly with combinations of other proteins for activity. The recent structural insights acquired on both prokaryotic and eukaryotic NOX open new perspectives for the understanding of the molecular mechanisms inherent to NOX regulation and ROS production (superoxide or hydrogen peroxide). This new structural information will certainly inform new investigations of human disease. As specialized ROS producers, NOX enzymes participate in numerous crucial physiological processes, including host defense, the post-translational processing of proteins, cellular signaling, regulation of gene expression, and cell differentiation. These diversities of physiological context will be discussed in this review. We also discuss NOX misregulation, which can contribute to a wide range of severe pathologies, such as atherosclerosis, hypertension, diabetic nephropathy, lung fibrosis, cancer, or neurodegenerative diseases, giving this family of membrane proteins a strong therapeutic interest.
Collapse
Affiliation(s)
- Annelise Vermot
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France; (A.V.); (I.P.-H.)
| | - Isabelle Petit-Härtlein
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France; (A.V.); (I.P.-H.)
| | - Susan M. E. Smith
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA;
| | - Franck Fieschi
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France; (A.V.); (I.P.-H.)
| |
Collapse
|
22
|
Munro ML, van Hout I, Aitken-Buck HM, Sugunesegran R, Bhagwat K, Davis PJ, Lamberts RR, Coffey S, Soeller C, Jones PP. Human Atrial Fibrillation Is Not Associated With Remodeling of Ryanodine Receptor Clusters. Front Cell Dev Biol 2021; 9:633704. [PMID: 33718369 PMCID: PMC7947344 DOI: 10.3389/fcell.2021.633704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/08/2021] [Indexed: 12/02/2022] Open
Abstract
The release of Ca2+ by ryanodine receptor (RyR2) channels is critical for cardiac function. However, abnormal RyR2 activity has been linked to the development of arrhythmias, including increased spontaneous Ca2+ release in human atrial fibrillation (AF). Clustering properties of RyR2 have been suggested to alter the activity of the channel, with remodeling of RyR2 clusters identified in pre-clinical models of AF and heart failure. Whether such remodeling occurs in human cardiac disease remains unclear. This study aimed to investigate the nanoscale organization of RyR2 clusters in AF patients – the first known study to examine this potential remodeling in diseased human cardiomyocytes. Right atrial appendage from cardiac surgery patients with paroxysmal or persistent AF, or without AF (non-AF) were examined using super-resolution (dSTORM) imaging. Significant atrial dilation and cardiomyocyte hypertrophy was observed in persistent AF patients compared to non-AF, with these two parameters significantly correlated. Interestingly, the clustering properties of RyR2 were remarkably unaltered in the AF patients. No significant differences were identified in cluster size (mean ∼18 RyR2 channels), density or channel packing within clusters between patient groups. The spatial organization of clusters throughout the cardiomyocyte was also unchanged across the groups. RyR2 clustering properties did not significantly correlate with patient characteristics. In this first study to examine nanoscale RyR2 organization in human cardiac disease, these findings indicate that RyR2 cluster remodeling is not an underlying mechanism contributing to altered channel function and subsequent arrhythmogenesis in human AF.
Collapse
Affiliation(s)
- Michelle L Munro
- Department of Physiology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Isabelle van Hout
- Department of Physiology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Hamish M Aitken-Buck
- Department of Physiology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | | | - Krishna Bhagwat
- Department of Cardiothoracic Surgery, Dunedin Hospital, Dunedin, New Zealand
| | - Philip J Davis
- Department of Cardiothoracic Surgery, Dunedin Hospital, Dunedin, New Zealand
| | - Regis R Lamberts
- Department of Physiology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sean Coffey
- Department of Medicine and HeartOtago, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Christian Soeller
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - Peter P Jones
- Department of Physiology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
23
|
Fill M, Gillespie D. Simulating cardiac Ca 2+ release units: effects of RyR cluster size and Ca 2+ buffers on diastolic Ca 2+ leak. Pflugers Arch 2021; 473:435-446. [PMID: 33608799 DOI: 10.1007/s00424-021-02539-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/27/2021] [Accepted: 02/05/2021] [Indexed: 10/22/2022]
Abstract
Leak of Ca2+ out of the cardiac sarcoplasmic reticulum (SR) via ryanodine receptors (RyRs) during diastole is vital to regulate SR Ca2+ levels. This leak can become deleterious when large spontaneous RyR-mediated Ca2+ release events evoke proarrhythmic Ca2+ waves that can lead to delayed after-depolarizations. Here, we model diastolic SR Ca2+ leak at individual SR Ca2+ release sites using computer simulations of RyR arrays like those in the dyadic cleft. The results show that RyR arrays size has a significant effect on SR Ca2+ leak, with bigger arrays producing larger and more frequent Ca2+ release events. Moreover, big RyR arrays are more susceptible to small changes in the levels of dyadic Ca2+ buffers. Such changes in buffering shift Ca2+ leak from small Ca2+ release events (involving few open RyRs) to larger events (with many open RyRs). Moreover, by analyzing a large parameter space of possible buffering and SR Ca2+ loads, we find further evidence for the hypothesis that SR Ca2+ leak by RyR arrays can undergo a sudden phase transition.
Collapse
Affiliation(s)
- Michael Fill
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL, USA
| | - Dirk Gillespie
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
24
|
Maltsev AV, Kokoz YM. Cardiomyocytes generating spontaneous Ca2+-transients as tools for precise estimation of sarcoplasmic reticulum Ca2+ transport. Arch Biochem Biophys 2020; 693:108542. [DOI: 10.1016/j.abb.2020.108542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/19/2020] [Accepted: 08/07/2020] [Indexed: 01/05/2023]
|
25
|
Phadumdeo VM, Weinberg SH. Dual regulation by subcellular calcium heterogeneity and heart rate variability on cardiac electromechanical dynamics. CHAOS (WOODBURY, N.Y.) 2020; 30:093129. [PMID: 33003911 PMCID: PMC7502019 DOI: 10.1063/5.0019313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Heart rate constantly varies under physiological conditions, termed heart rate variability (HRV), and in clinical studies, low HRV is associated with a greater risk of cardiac arrhythmias. Prior work has shown that HRV influences the temporal patterns of electrical activity, specifically the formation of pro-arrhythmic alternans, a beat-to-beat alternation in the action potential duration (APD), or intracellular calcium (Ca) levels. We previously showed that HRV may be anti-arrhythmic by disrupting APD and Ca alternations in a homogeneous cardiac myocyte. Here, we expand on our previous work, incorporating variation in subcellular Ca handling (also known to influence alternans) into a nonlinear map model of a cardiac myocyte composed of diffusively coupled Ca release units (CRUs). Ca-related parameters and initial conditions of each CRU are varied to mimic subcellular Ca heterogeneity, and a stochastic pacing sequence reproduces HRV. We find that subcellular Ca heterogeneity promotes the formation of spatially discordant subcellular alternans patterns, which decreases whole cell Ca and APD alternation for low and moderate HRV, while high subcellular Ca heterogeneity and HRV both promote electromechanical desynchronization. Finally, we find that for low and moderate HRV, both the specific subcellular Ca-related parameters and the pacing sequences influence measures of electromechanical dynamics, while for high HRV, these measures depend predominantly on the pacing sequence. Our results suggest that pro-arrhythmic subcellular discordant alternans tend to form for low levels of HRV, while high HRV may be anti-arrhythmic due to mitigated influence from subcellular Ca heterogeneity and desynchronization of APD from Ca instabilities.
Collapse
Affiliation(s)
- Vrishti M. Phadumdeo
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
26
|
Eiringhaus J, Wünsche CM, Tirilomis P, Herting J, Bork N, Nikolaev VO, Hasenfuss G, Sossalla S, Fischer TH. Sacubitrilat reduces pro-arrhythmogenic sarcoplasmic reticulum Ca 2+ leak in human ventricular cardiomyocytes of patients with end-stage heart failure. ESC Heart Fail 2020; 7:2992-3002. [PMID: 32710603 PMCID: PMC7586991 DOI: 10.1002/ehf2.12918] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 05/20/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Abstract
Aims Inhibition of neprilysin and angiotensin II receptor by sacubitril/valsartan (Val) (LCZ696) reduces mortality in heart failure (HF) patients compared with sole inhibition of renin–angiotensin system. Beneficial effects of increased natriuretic peptide levels upon neprilysin inhibition have been proposed, whereas direct effects of sacubitrilat (Sac) (LBQ657) on myocardial Ca2+ cycling remain elusive. Methods and results Confocal microscopy (Fluo‐4 AM) was used to investigate pro‐arrhythmogenic sarcoplasmic reticulum (SR) Ca2+ leak in freshly isolated murine and human ventricular cardiomyocytes (CMs) upon Sac (40 μmol/L)/Val (13 μmol/L) treatment. The concentrations of Sac and Val equalled plasma concentrations of LCZ696 treatment used in PARADIGM‐HF trial. Epifluorescence microscopy measurements (Fura‐2 AM) were performed to investigate effects on systolic Ca2+ release, SR Ca2+ load, and Ca2+‐transient kinetics in freshly isolated murine ventricular CMs. The impact of Sac on myocardial contractility was evaluated using in toto‐isolated, isometrically twitching ventricular trabeculae from human hearts with end‐stage HF. Under basal conditions, the combination of Sac/Val did not influence diastolic Ca2+‐spark frequency (CaSpF) nor pro‐arrhythmogenic SR Ca2 leak in isolated murine ventricular CMs (n CMs/hearts = 80/7 vs. 100/7, P = 0.91/0.99). In contrast, Sac/Val treatment reduced CaSpF by 35 ± 9% and SR Ca2+ leak by 45 ± 9% in CMs put under catecholaminergic stress (isoproterenol 30 nmol/L, n = 81/7 vs. 62/7, P < 0.001 each). This could be attributed to Sac, as sole Sac treatment also reduced both parameters by similar degrees (reduction of CaSpF by 57 ± 7% and SR Ca2+ leak by 76 ± 5%; n = 101/4 vs. 108/4, P < 0.01 each), whereas sole Val treatment did not. Systolic Ca2+ release, SR Ca2+ load, and Ca2+‐transient kinetics including SERCA activity (kSERCA) were not compromised by Sac in isolated murine CMs (n = 41/6 vs. 39/6). Importantly, the combination of Sac/Val and Sac alone also reduced diastolic CaSpF and SR Ca2+ leak (reduction by 74 ± 7%) in human left ventricular CMs from patients with end‐stage HF (n = 71/8 vs. 78/8, P < 0.05 each). Myocardial contractility of human ventricular trabeculae was not acutely affected by Sac treatment as the developed force remained unchanged over a time course of 30 min (n trabeculae/hearts = 3/3 vs. 4/3). Conclusion This study demonstrates that neprilysin inhibitor Sac directly improves Ca2+ homeostasis in human end‐stage HF by reducing pro‐arrhythmogenic SR Ca2+ leak without acutely affecting systolic Ca2+ release and inotropy. These effects might contribute to the mortality benefits observed in the PARADIGM‐HF trial.
Collapse
Affiliation(s)
- Jörg Eiringhaus
- Abt. Kardiologie und Pneumologie/Herzzentrum, Georg-August-Universität Göttingen, Göttingen, Germany.,Deutsches Zentrum für Herz-Kreislauf Forschung (DZHK), Standort Göttingen, Göttingen, Germany.,Abt. Kardiologie und Angiologie, Medizinische Hochschule Hannover, Hanover, Germany
| | - Christoph M Wünsche
- Abt. Kardiologie und Pneumologie/Herzzentrum, Georg-August-Universität Göttingen, Göttingen, Germany.,Deutsches Zentrum für Herz-Kreislauf Forschung (DZHK), Standort Göttingen, Göttingen, Germany
| | - Petros Tirilomis
- Abt. Kardiologie und Pneumologie/Herzzentrum, Georg-August-Universität Göttingen, Göttingen, Germany.,Deutsches Zentrum für Herz-Kreislauf Forschung (DZHK), Standort Göttingen, Göttingen, Germany
| | - Jonas Herting
- Abt. Kardiologie und Pneumologie/Herzzentrum, Georg-August-Universität Göttingen, Göttingen, Germany.,Deutsches Zentrum für Herz-Kreislauf Forschung (DZHK), Standort Göttingen, Göttingen, Germany
| | - Nadja Bork
- Institut für Experimentelle Herz-Kreislaufforschung, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Viacheslav O Nikolaev
- Institut für Experimentelle Herz-Kreislaufforschung, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Gerd Hasenfuss
- Abt. Kardiologie und Pneumologie/Herzzentrum, Georg-August-Universität Göttingen, Göttingen, Germany.,Deutsches Zentrum für Herz-Kreislauf Forschung (DZHK), Standort Göttingen, Göttingen, Germany
| | - Samuel Sossalla
- Abt. Kardiologie und Pneumologie/Herzzentrum, Georg-August-Universität Göttingen, Göttingen, Germany.,Deutsches Zentrum für Herz-Kreislauf Forschung (DZHK), Standort Göttingen, Göttingen, Germany.,Klinik und Poliklinik für Innere Medizin II, Universitätsklinikum Regensburg, Regensburg, Germany
| | - Thomas H Fischer
- Abt. Kardiologie und Pneumologie/Herzzentrum, Georg-August-Universität Göttingen, Göttingen, Germany.,Deutsches Zentrum für Herz-Kreislauf Forschung (DZHK), Standort Göttingen, Göttingen, Germany.,Abt. Kardiologie, Medizinische Klinik und Poliklinik I, Universitätsklinikum Würzburg, Oberdürrbacher Straße 6, Würzburg, 97080, Germany
| |
Collapse
|
27
|
Miranda ÉGA, Araujo-Chaves JC, Kawai C, Brito AMM, Dias IWR, Arantes JT, Nantes-Cardoso IL. Cardiolipin Structure and Oxidation Are Affected by Ca 2+ at the Interface of Lipid Bilayers. Front Chem 2020; 7:930. [PMID: 32039150 PMCID: PMC6986261 DOI: 10.3389/fchem.2019.00930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022] Open
Abstract
Ca2+-overload contributes to the oxidation of mitochondrial membrane lipids and associated events such as the permeability transition pore (MPTP) opening. Numerous experimental studies about the Ca2+/cardiolipin (CL) interaction are reported in the literature, but there are few studies in conjunction with theoretical approaches based on ab initio calculations. In the present study, the lipid fraction of the inner mitochondrial membrane was modeled as POPC/CL large unilamellar vesicles (LUVs). POPC/CL and, comparatively, POPC, and CL LUVs were challenged by singlet molecular oxygen using the anionic porphyrin TPPS4 as a photosensitizer and by free radicals produced by Fe2+-citrate. Calcium ion favored both types of lipid oxidation in a lipid composition-dependent manner. In membranes containing predominantly or exclusively POPC, Ca2+ increased the oxidation at later reaction times while the oxidation of CL membranes was exacerbated at the early times of reaction. Considering that Ca2+ interaction affects the lipid structure and packing, density functional theory (DFT) calculations were applied to the Ca2+ association with totally and partially protonated and deprotonated CL, in the presence of water. The interaction of totally and partially protonated CL head groups with Ca2+ decreased the intramolecular P-P distance and increased the hydrophobic volume of the acyl chains. Consistently with the theoretically predicted effect of Ca2+ on CL, in the absence of pro-oxidants, giant unilamellar vesicles (GUVs) challenged by Ca2+ formed buds and many internal vesicles. Therefore, Ca2+ induces changes in CL packing and increases the susceptibility of CL to the oxidation promoted by free radicals and excited species.
Collapse
Affiliation(s)
- Érica G A Miranda
- Laboratory of Nanostructures for Biology and Advanced Materials, NanoBioMAv, Center of Natural Sciences and Humanities, Federal University of ABC, Santo André, Brazil
| | - Juliana C Araujo-Chaves
- Laboratory of Nanostructures for Biology and Advanced Materials, NanoBioMAv, Center of Natural Sciences and Humanities, Federal University of ABC, Santo André, Brazil
| | - Cintia Kawai
- Laboratory of Nanostructures for Biology and Advanced Materials, NanoBioMAv, Center of Natural Sciences and Humanities, Federal University of ABC, Santo André, Brazil
| | - Adrianne M M Brito
- Laboratory of Nanostructures for Biology and Advanced Materials, NanoBioMAv, Center of Natural Sciences and Humanities, Federal University of ABC, Santo André, Brazil
| | - Igor W R Dias
- Center of Engineering, Modeling, and Applied Social Sciences, Federal University of ABC, Santo André, Brazil
| | - Jeverson T Arantes
- Center of Engineering, Modeling, and Applied Social Sciences, Federal University of ABC, Santo André, Brazil
| | - Iseli L Nantes-Cardoso
- Laboratory of Nanostructures for Biology and Advanced Materials, NanoBioMAv, Center of Natural Sciences and Humanities, Federal University of ABC, Santo André, Brazil
| |
Collapse
|
28
|
Asghari P, Scriven DR, Ng M, Panwar P, Chou KC, van Petegem F, Moore ED. Cardiac ryanodine receptor distribution is dynamic and changed by auxiliary proteins and post-translational modification. eLife 2020; 9:51602. [PMID: 31916935 PMCID: PMC6994221 DOI: 10.7554/elife.51602] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/09/2020] [Indexed: 12/14/2022] Open
Abstract
The effects of the immunophilins, FKBP12 and FKBP12.6, and phosphorylation on type II ryanodine receptor (RyR2) arrangement and function were examined using correlation microscopy (line scan confocal imaging of Ca2+ sparks and dual-tilt electron tomography) and dSTORM imaging of permeabilized Wistar rat ventricular myocytes. Saturating concentrations (10 µmol/L) of either FKBP12 or 12.6 significantly reduced the frequency, spread, amplitude and Ca2+ spark mass relative to control, while the tomograms revealed both proteins shifted the tetramers into a largely side-by-side configuration. Phosphorylation of immunophilin-saturated RyR2 resulted in structural and functional changes largely comparable to phosphorylation alone. dSTORM images of myocyte surfaces demonstrated that both FKBP12 and 12.6 significantly reduced RyR2 cluster sizes, while phosphorylation, even of immunophilin-saturated RyR2, increased them. We conclude that both RyR2 cluster size and the arrangement of tetramers within clusters is dynamic and respond to changes in the cellular environment. Further, these changes affect Ca2+ spark formation.
Collapse
Affiliation(s)
- Parisa Asghari
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - David Rl Scriven
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Myles Ng
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Pankaj Panwar
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Keng C Chou
- Department of Chemistry, University of British Columbia, Vancouver, Canada
| | - Filip van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Edwin Dw Moore
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| |
Collapse
|
29
|
Kim JC, Pérez-Hernández M, Alvarado FJ, Maurya SR, Montnach J, Yin Y, Zhang M, Lin X, Vasquez C, Heguy A, Liang FX, Woo SH, Morley GE, Rothenberg E, Lundby A, Valdivia HH, Cerrone M, Delmar M. Disruption of Ca 2+i Homeostasis and Connexin 43 Hemichannel Function in the Right Ventricle Precedes Overt Arrhythmogenic Cardiomyopathy in Plakophilin-2-Deficient Mice. Circulation 2019; 140:1015-1030. [PMID: 31315456 DOI: 10.1161/circulationaha.119.039710] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Plakophilin-2 (PKP2) is classically defined as a desmosomal protein. Mutations in PKP2 associate with most cases of gene-positive arrhythmogenic right ventricular cardiomyopathy. A better understanding of PKP2 cardiac biology can help elucidate the mechanisms underlying arrhythmic and cardiomyopathic events consequent to PKP2 deficiency. Here, we sought to capture early molecular/cellular events that can act as nascent arrhythmic/cardiomyopathic substrates. METHODS We used multiple imaging, biochemical and high-resolution mass spectrometry methods to study functional/structural properties of cells/tissues derived from cardiomyocyte-specific, tamoxifen-activated, PKP2 knockout mice (PKP2cKO) 14 days post-tamoxifen injection, a time point preceding overt electrical or structural phenotypes. Myocytes from right or left ventricular free wall were studied separately. RESULTS Most properties of PKP2cKO left ventricular myocytes were not different from control; in contrast, PKP2cKO right ventricular (RV) myocytes showed increased amplitude and duration of Ca2+ transients, increased Ca2+ in the cytoplasm and sarcoplasmic reticulum, increased frequency of spontaneous Ca2+ release events (sparks) even at comparable sarcoplasmic reticulum load, and dynamic Ca2+ accumulation in mitochondria. We also observed early- and delayed-after transients in RV myocytes and heightened susceptibility to arrhythmias in Langendorff-perfused hearts. In addition, ryanodine receptor 2 in PKP2cKO-RV cells presented enhanced Ca2+ sensitivity and preferential phosphorylation in a domain known to modulate Ca2+ gating. RNAseq at 14 days post-tamoxifen showed no relevant difference in transcript abundance between RV and left ventricle, neither in control nor in PKP2cKO cells. Instead, we found an RV-predominant increase in membrane permeability that can permit Ca2+ entry into the cell. Connexin 43 ablation mitigated the membrane permeability increase, accumulation of cytoplasmic Ca2+, increased frequency of sparks and early stages of RV dysfunction. Connexin 43 hemichannel block with GAP19 normalized [Ca2+]i homeostasis. Similarly, protein kinase C inhibition normalized spark frequency at comparable sarcoplasmic reticulum load levels. CONCLUSIONS Loss of PKP2 creates an RV-predominant arrhythmogenic substrate (Ca2+ dysregulation) that precedes the cardiomyopathy; this is, at least in part, mediated by a Connexin 43-dependent membrane conduit and repressed by protein kinase C inhibitors. Given that asymmetric Ca2+ dysregulation precedes the cardiomyopathic stage, we speculate that abnormal Ca2+ handling in RV myocytes can be a trigger for gross structural changes observed at a later stage.
Collapse
Affiliation(s)
- Joon-Chul Kim
- The Leon H. Charney Division of Cardiology (J.C.K., M.P.H., M.Z., X.L., C.V., M.C., M.D.), New York University School of Medicine
| | - Marta Pérez-Hernández
- The Leon H. Charney Division of Cardiology (J.C.K., M.P.H., M.Z., X.L., C.V., M.C., M.D.), New York University School of Medicine
| | - Francisco J Alvarado
- Department of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health (F.J.A., H.H.V.)
| | - Svetlana R Maurya
- Department of Biomedical Sciences (S.R.M., A.L.), Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jerome Montnach
- Institut du Thorax, Nouvelle Universite a Nantes, INSERM, Nantes Cedex 1, France (J.M.)
| | - Yandong Yin
- Department of Pharmacology and Biochemistry (Y.Y., E.R.), New York University School of Medicine
| | - Mingliang Zhang
- The Leon H. Charney Division of Cardiology (J.C.K., M.P.H., M.Z., X.L., C.V., M.C., M.D.), New York University School of Medicine
| | - Xianming Lin
- The Leon H. Charney Division of Cardiology (J.C.K., M.P.H., M.Z., X.L., C.V., M.C., M.D.), New York University School of Medicine
| | - Carolina Vasquez
- The Leon H. Charney Division of Cardiology (J.C.K., M.P.H., M.Z., X.L., C.V., M.C., M.D.), New York University School of Medicine
| | - Adriana Heguy
- Department of Pathology and Genome Technology Center (A.H., G.E.M.), New York University School of Medicine
| | - Feng-Xia Liang
- Microscopy Laboratory, Division of Advanced Research Technologies (F.X.L.), New York University School of Medicine
| | - Sun-Hee Woo
- Laboratory of Physiology, College of Pharmacy, Chungam National University, Daejeon, South Korea (S.H.W.)
| | - Gregory E Morley
- Department of Pathology and Genome Technology Center (A.H., G.E.M.), New York University School of Medicine
| | - Eli Rothenberg
- Department of Pharmacology and Biochemistry (Y.Y., E.R.), New York University School of Medicine
| | - Alicia Lundby
- Department of Biomedical Sciences (S.R.M., A.L.), Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.,NNF Center for Protein Research (A.L.), Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Hector H Valdivia
- Department of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health (F.J.A., H.H.V.)
| | - Marina Cerrone
- The Leon H. Charney Division of Cardiology (J.C.K., M.P.H., M.Z., X.L., C.V., M.C., M.D.), New York University School of Medicine
| | - Mario Delmar
- The Leon H. Charney Division of Cardiology (J.C.K., M.P.H., M.Z., X.L., C.V., M.C., M.D.), New York University School of Medicine
| |
Collapse
|