1
|
Tu G, Fu T, Zheng G, Xu B, Gou R, Luo D, Wang P, Xue W. Computational Chemistry in Structure-Based Solute Carrier Transporter Drug Design: Recent Advances and Future Perspectives. J Chem Inf Model 2024; 64:1433-1455. [PMID: 38294194 DOI: 10.1021/acs.jcim.3c01736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Solute carrier transporters (SLCs) are a class of important transmembrane proteins that are involved in the transportation of diverse solute ions and small molecules into cells. There are approximately 450 SLCs within the human body, and more than a quarter of them are emerging as attractive therapeutic targets for multiple complex diseases, e.g., depression, cancer, and diabetes. However, only 44 unique transporters (∼9.8% of the SLC superfamily) with 3D structures and specific binding sites have been reported. To design innovative and effective drugs targeting diverse SLCs, there are a number of obstacles that need to be overcome. However, computational chemistry, including physics-based molecular modeling and machine learning- and deep learning-based artificial intelligence (AI), provides an alternative and complementary way to the classical drug discovery approach. Here, we present a comprehensive overview on recent advances and existing challenges of the computational techniques in structure-based drug design of SLCs from three main aspects: (i) characterizing multiple conformations of the proteins during the functional process of transportation, (ii) identifying druggability sites especially the cryptic allosteric ones on the transporters for substrates and drugs binding, and (iii) discovering diverse small molecules or synthetic protein binders targeting the binding sites. This work is expected to provide guidelines for a deep understanding of the structure and function of the SLC superfamily to facilitate rational design of novel modulators of the transporters with the aid of state-of-the-art computational chemistry technologies including artificial intelligence.
Collapse
Affiliation(s)
- Gao Tu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Tingting Fu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | | | - Binbin Xu
- Chengdu Sintanovo Biotechnology Co., Ltd., Chengdu 610200, China
| | - Rongpei Gou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Ding Luo
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Panpan Wang
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China
| | - Weiwei Xue
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
2
|
Afshinpour M, Parsi P, Mahdiuni H. Investigation of molecular details of a bacterial cationic amino acid transporter (GkApcT) during arginine transportation using molecular dynamics simulation and umbrella sampling techniques. J Mol Model 2023; 29:260. [PMID: 37479900 DOI: 10.1007/s00894-023-05670-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
CONTEXT Cationic amino acid transporters (CATs) facilitate arginine transport across membranes and maintain its levels in various tissues and organs, but their overexpression has been associated with severe cancers. A recent study identified the alternating access mechanism and critical residues involved in arginine transportation in a cationic amino acid transporter from Geobacillus kaustophilus (GkApcT). Here, we used molecular dynamics (MD) simulation methods to investigate the transportation mechanism of arginine (Arg) through GkApcT. The results revealed that arginine strongly interacts with specific binding site residues (Thr43, Asp111, Glu115, Lys191, Phe231, Ile234, and Asp237). Based on the umbrella sampling, the main driving force for arginine transport is the polar interactions of the arginine with channel-lining residues. An in-depth description of the dissociation mechanism and binding energy analysis brings valuable insight into the interactions between arginine and transporter residues, facilitating the design of effective CAT inhibitors in cancer cells. METHODS The membrane-protein system was constructed by uploading the prokaryotic CAT (PDB ID: 6F34) to the CHARMM-GUI web server. Molecular dynamics simulations were done using the GROMACS package, version 5.1.4, with the CHARMM36 force field and TIP3P water model. The MM-PBSA approach was performed for determining the arginine binding free energy. Furthermore, the hotspot residues were identified through per-residue decomposition analysis. The characteristics of the channel such as bottleneck radius and channel length were analyzed using the CaverWeb 1.1 web server. The proton wire inside the transporter was investigated based on the classic Grotthuss mechanism. We also investigated the atomistic details of arginine transportation using the path-based free energy umbrella sampling technique (US).
Collapse
Affiliation(s)
- Maral Afshinpour
- Bioinformatics Lab, Department of Biology, School of Sciences, Razi University, P.O. Box, Kermanshah, 67149-67346, Iran
- Department of Chemistry and Biochemistry, South Dakota State University (SDSU), Brookings, SD, USA
| | - Parinaz Parsi
- Bioinformatics Lab, Department of Biology, School of Sciences, Razi University, P.O. Box, Kermanshah, 67149-67346, Iran
| | - Hamid Mahdiuni
- Bioinformatics Lab, Department of Biology, School of Sciences, Razi University, P.O. Box, Kermanshah, 67149-67346, Iran.
| |
Collapse
|
3
|
Afshinpour M, Mahdiuni H. Arginine transportation mechanism through cationic amino acid transporter 1: insights from molecular dynamics studies. J Biomol Struct Dyn 2023; 41:13580-13594. [PMID: 36762692 DOI: 10.1080/07391102.2023.2175374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/28/2023] [Indexed: 02/11/2023]
Abstract
Metabolic and signaling mechanisms in mammalian cells are facilitated by the transportation of L-arginine (Arg) across the plasma membrane through cationic amino acid transporter (CAT) proteins. Due to a lack of argininosuccinate synthase (ASS) activity in various tumor cells such as acute myeloid leukemia, acute lymphocytic leukemia, and chronic lymphocytic leukemia, these tumor entities are arginine-auxotrophic and therefore depend on the uptake of the amino acid arginine. Cationic amino acid transporter-1 (CAT-1) is the leading arginine importer expressed in the aforementioned tumor entities. Hence, in the present study, to investigate the transportation mechanism of arginine in CAT-1, we performed molecular dynamics (MD) simulation methods on the modeled human CAT-1. The MM-PBSA approach was conducted to determine the critical residues interacting with arginine within the corresponding binding site of CAT-1. In addition, we found out that the water molecules have the leading role in forming the transportation channel within CAT-1. The conductive structure of CAT-1 was formed only when the water molecules were continuously distributed across the channel. Steered molecular dynamics (SMD) simulation approach showed various energy barriers against arginine transportation through CAT-1, especially while crossing the bottlenecks of the related channel. These findings at the molecular level might shed light on identifying the crucial amino acids in the binding of arginine to eukaryotic CATs and also provide fundamental insights into the arginine transportation mechanisms through CAT-1. Understanding the transportation mechanism of arginine is essential to developing CAT-1 blockers, which can be potential medications for some types of cancers.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Maral Afshinpour
- Bioinformatics Lab., Department of Biology, School of Sciences, Razi University, Kermanshah, Iran
| | - Hamid Mahdiuni
- Bioinformatics Lab., Department of Biology, School of Sciences, Razi University, Kermanshah, Iran
| |
Collapse
|
4
|
Wu Z, Biggin PC. Correction Schemes for Absolute Binding Free Energies Involving Lipid Bilayers. J Chem Theory Comput 2022; 18:2657-2672. [PMID: 35315270 PMCID: PMC9082507 DOI: 10.1021/acs.jctc.1c01251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Absolute
binding free-energy (ABFE) calculations are playing an
increasing role in drug design, especially as they can be performed
on a range of disparate compounds and direct comparisons between them
can be made. It is, however, especially important to ensure that they
are as accurate as possible, as unlike relative binding free-energy
(RBFE) calculations, one does not benefit as much from a cancellation
of errors during the calculations. In most modern implementations
of ABFE calculations, a particle mesh Ewald scheme is typically used
to treat the electrostatic contribution to the free energy. A central
requirement of such schemes is that the box preserves neutrality throughout
the calculation. There are many ways to deal with this problem that
have been discussed over the years ranging from a neutralizing plasma
with a post hoc correction term through to a simple co-alchemical
ion within the same box. The post hoc correction approach is the most
widespread. However, the vast majority of these studies have been
applied to a soluble protein in a homogeneous solvent (water or salt
solution). In this work, we explore which of the more common approaches
would be the most suitable for a simulation box with a lipid bilayer
within it. We further develop the idea of the so-called Rocklin correction
for lipid-bilayer systems and show how such a correction could work.
However, we also show that it will be difficult to make this generalizable
in a practical way and thus we conclude that the use of a “co-alchemical
ion” is the most useful approach for simulations involving
lipid membrane systems.
Collapse
Affiliation(s)
- Zhiyi Wu
- Department of Biochemistry, South Parks Road, Oxford OX1 3QU, U.K
| | - Philip C Biggin
- Department of Biochemistry, South Parks Road, Oxford OX1 3QU, U.K
| |
Collapse
|
5
|
Parker JL, Deme JC, Kuteyi G, Wu Z, Huo J, Goldman ID, Owens RJ, Biggin PC, Lea SM, Newstead S. Structural basis of antifolate recognition and transport by PCFT. Nature 2021; 595:130-134. [PMID: 34040256 PMCID: PMC9990147 DOI: 10.1038/s41586-021-03579-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/23/2021] [Indexed: 12/20/2022]
Abstract
Folates (also known as vitamin B9) have a critical role in cellular metabolism as the starting point in the synthesis of nucleic acids, amino acids and the universal methylating agent S-adenylsmethionine1,2. Folate deficiency is associated with a number of developmental, immune and neurological disorders3-5. Mammals cannot synthesize folates de novo; several systems have therefore evolved to take up folates from the diet and distribute them within the body3,6. The proton-coupled folate transporter (PCFT) (also known as SLC46A1) mediates folate uptake across the intestinal brush border membrane and the choroid plexus4,7, and is an important route for the delivery of antifolate drugs in cancer chemotherapy8-10. How PCFT recognizes folates or antifolate agents is currently unclear. Here we present cryo-electron microscopy structures of PCFT in a substrate-free state and in complex with a new-generation antifolate drug (pemetrexed). Our results provide a structural basis for understanding antifolate recognition and provide insights into the pH-regulated mechanism of folate transport mediated by PCFT.
Collapse
Affiliation(s)
- Joanne L Parker
- Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Justin C Deme
- Dunn School of Pathology, University of Oxford, Oxford, UK
- Central Oxford Structural Molecular Imaging Centre, University of Oxford, Oxford, UK
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Gabriel Kuteyi
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Zhiyi Wu
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Jiandong Huo
- Structural Biology, The Rosalind Franklin Institute, Didcot, UK
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Protein Production UK, The Research Complex at Harwell, Didcot, UK
| | - I David Goldman
- Departments of Molecular Pharmacology and Medicine, Albert Einstein College of Medicine, New York, NY, USA
| | - Raymond J Owens
- Structural Biology, The Rosalind Franklin Institute, Didcot, UK
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Protein Production UK, The Research Complex at Harwell, Didcot, UK
| | - Philip C Biggin
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Susan M Lea
- Dunn School of Pathology, University of Oxford, Oxford, UK.
- Central Oxford Structural Molecular Imaging Centre, University of Oxford, Oxford, UK.
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
| | - Simon Newstead
- Department of Biochemistry, University of Oxford, Oxford, UK.
- The Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK.
| |
Collapse
|
6
|
Gerondopoulos A, Bräuer P, Sobajima T, Wu Z, Parker JL, Biggin PC, Barr FA, Newstead S. A signal capture and proofreading mechanism for the KDEL-receptor explains selectivity and dynamic range in ER retrieval. eLife 2021; 10:68380. [PMID: 34137369 PMCID: PMC8248988 DOI: 10.7554/elife.68380] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/16/2021] [Indexed: 12/03/2022] Open
Abstract
ER proteins of widely differing abundance are retrieved from the Golgi by the KDEL-receptor. Abundant ER proteins tend to have KDEL rather than HDEL signals, whereas ADEL and DDEL are not used in most organisms. Here, we explore the mechanism of selective retrieval signal capture by the KDEL-receptor and how HDEL binds with 10-fold higher affinity than KDEL. Our results show the carboxyl-terminus of the retrieval signal moves along a ladder of arginine residues as it enters the binding pocket of the receptor. Gatekeeper residues D50 and E117 at the entrance of this pocket exclude ADEL and DDEL sequences. D50N/E117Q mutation of human KDEL-receptors changes the selectivity to ADEL and DDEL. However, further analysis of HDEL, KDEL, and RDEL-bound receptor structures shows that affinity differences are explained by interactions between the variable −4 H/K/R position of the signal and W120, rather than D50 or E117. Together, these findings explain KDEL-receptor selectivity, and how signal variants increase dynamic range to support efficient ER retrieval of low and high abundance proteins.
Collapse
Affiliation(s)
| | - Philipp Bräuer
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Tomoaki Sobajima
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Zhiyi Wu
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Joanne L Parker
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Philip C Biggin
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Francis A Barr
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Simon Newstead
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Ellingsen S, Narawane S, Fjose A, Verri T, Rønnestad I. Sequence analysis and spatiotemporal developmental distribution of the Cat-1-type transporter slc7a1a in zebrafish (Danio rerio). FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:2281-2298. [PMID: 32980952 PMCID: PMC7584565 DOI: 10.1007/s10695-020-00873-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
Cationic amino acid transporter 1 (Cat-1 alias Slc7a1) is a Na+-independent carrier system involved in transport and absorption of the cationic amino acids lysine, arginine, histidine, and ornithine and has also been shown to be indispensable in a large variety of biological processes. Starting from isolated full-length zebrafish (Danio rerio) cDNA for slc7a1a, we performed comparative and phylogenetic sequence analysis, investigated the conservation of the gene during vertebrate evolution, and defined tissue expression during zebrafish development. Whole mount in situ hybridization first detected slc7a1a transcripts in somites, eyes, and brain at 14 h post-fertilization (hpf) with additional expression in the distal nephron at 24 hpf and in branchial arches at 3 days post-fertilization (dpf), with significant increase by 5 dpf. Taken together, the expression analysis of the zebrafish Cat-1 system gene slc7a1a suggests a functional role(s) during the early development of the central nervous system, muscle, gills, and kidney. Graphical abstract.
Collapse
Affiliation(s)
- Ståle Ellingsen
- Department of Molecular Biology, University of Bergen, Postbox 7803, NO-5020, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Postbox 7803, NO-5020, Bergen, Norway
| | - Shailesh Narawane
- Department of Molecular Biology, University of Bergen, Postbox 7803, NO-5020, Bergen, Norway
| | - Anders Fjose
- Department of Molecular Biology, University of Bergen, Postbox 7803, NO-5020, Bergen, Norway
| | - Tiziano Verri
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Prov.le Lecce-Monteroni, I-73100, Lecce, Italy
| | - Ivar Rønnestad
- Department of Biological Sciences, University of Bergen, Postbox 7803, NO-5020, Bergen, Norway.
| |
Collapse
|
8
|
Wu Z, Newstead S, Biggin PC. The KDEL trafficking receptor exploits pH to tune the strength of an unusual short hydrogen bond. Sci Rep 2020; 10:16903. [PMID: 33037300 PMCID: PMC7547670 DOI: 10.1038/s41598-020-73906-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/23/2020] [Indexed: 12/27/2022] Open
Abstract
The endoplasmic reticulum (ER) is the main site of protein synthesis in eukaryotic cells and requires a high concentration of luminal chaperones to function. During protein synthesis, ER luminal chaperones are swept along the secretory pathway and must be retrieved to maintain cell viability. ER protein retrieval is achieved by the KDEL receptor, which recognises a C-terminal Lys-Asp-Glu-Leu (KDEL) sequence. Recognition of ER proteins by the KDEL receptor is pH dependent, with binding occurring under acidic conditions in the Golgi and release under conditions of higher pH in the ER. Recent crystal structures of the KDEL receptor in the apo and peptide bound state suggested that peptide binding drives the formation of a short-hydrogen bond that locks the KDEL sequence in the receptor and activates the receptor for COPI binding in the cytoplasm. Using quantum mechanical calculations we demonstrate that the strength of this short hydrogen bond is reinforced following protonation of a nearby histidine, providing a conceptual link between receptor protonation and KDEL peptide binding. Protonation also controls the water networks adjacent to the peptide binding site, leading to a conformational change that ultimately allows the receptor-complex to be recognized by the COPI system.
Collapse
Affiliation(s)
- Zhiyi Wu
- Department of Biochemistry, South Parks Road, Oxford, OX1 3QU, UK
| | - Simon Newstead
- Department of Biochemistry, South Parks Road, Oxford, OX1 3QU, UK.
| | - Philip C Biggin
- Department of Biochemistry, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|