1
|
Kwok E, Otto SC, Khuu P, Carpenter AP, Codding SJ, Reardon PN, Vanegas J, Kumar TM, Kuykendall CJ, Mehl RA, Baio J, Johnson CP. The Dysferlin C2A Domain Binds PI(4,5)P2 and Penetrates Membranes. J Mol Biol 2023; 435:168193. [PMID: 37406927 PMCID: PMC10699586 DOI: 10.1016/j.jmb.2023.168193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Dysferlin is a large membrane protein found most prominently in striated muscle. Loss of dysferlin activity is associated with reduced exocytosis, abnormal intracellular Ca2+ and the muscle diseases limb-girdle muscular dystrophy and Miyoshi myopathy. The cytosolic region of dysferlin consists of seven C2 domains with mutations in the C2A domain at the N-terminus resulting in pathology. Despite the importance of Ca2+ and membrane binding activities of the C2A domain for dysferlin function, the mechanism of the domain remains poorly characterized. In this study we find that the C2A domain preferentially binds membranes containing PI(4,5)P2 through an interaction mediated by residues Y23, K32, K33, and R77 on the concave face of the domain. We also found that subsequent to membrane binding, the C2A domain inserts residues on the Ca2+ binding loops into the membrane. Analysis of solution NMR measurements indicate that the domain inhabits two distinct structural states, with Ca2+ shifting the population between states towards a more rigid structure with greater affinity for PI(4,5)P2. Based on our results, we propose a mechanism where Ca2+ converts C2A from a structurally dynamic, low PI(4,5)P2 affinity state to a high affinity state that targets dysferlin to PI(4,5)P2 enriched membranes through interaction with Tyr23, K32, K33, and R77. Binding also involves changes in lipid packing and insertion by the third Ca2+ binding loop of the C2 domain into the membrane, which would contribute to dysferlin function in exocytosis and Ca2+ regulation.
Collapse
Affiliation(s)
- Ethiene Kwok
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Shauna C Otto
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Patricia Khuu
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Andrew P Carpenter
- Department of Chemical Engineering, Oregon State University, Corvallis, OR 97331, USA
| | - Sara J Codding
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | | | - Juan Vanegas
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Tanushri M Kumar
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Chapman J Kuykendall
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Ryan A Mehl
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Joe Baio
- Department of Chemical Engineering, Oregon State University, Corvallis, OR 97331, USA
| | - Colin P Johnson
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
2
|
Carpenter AP, Khuu P, Weidner T, Johnson CP, Roeters SJ, Baio JE. Orientation of the Dysferlin C2A Domain is Responsive to the Composition of Lipid Membranes. J Phys Chem B 2023; 127:577-589. [PMID: 36608331 DOI: 10.1021/acs.jpcb.2c06716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Dysferlin is a 230 kD protein that plays a critical function in the active resealing of micron-sized injuries to the muscle sarcolemma by recruiting vesicles to patch the injured site via vesicle fusion. Muscular dystrophy is observed in humans when mutations disrupt this repair process or dysferlin is absent. While lipid binding by dysferlin's C2A domain (dysC2A) is considered fundamental to the membrane resealing process, the molecular mechanism of this interaction is not fully understood. By applying nonlinear surface-specific vibrational spectroscopy, we have successfully demonstrated that dysferlin's N-terminal C2A domain (dysC2A) alters its binding orientation in response to a membrane's lipid composition. These experiments reveal that dysC2A utilizes a generic electrostatic binding interaction to bind to most anionic lipid surfaces, inserting its calcium binding loops into the lipid surface while orienting its β-sheets 30-40° from surface normal. However, at lipid surfaces, where PI(4,5)P2 is present, dysC2A tilts its β-sheets more than 60° from surface normal to expose a polybasic face, while it binds to the PI(4,5)P2 surface. Both lipid binding mechanisms are shown to occur alongside dysC2A-induced lipid clustering. These different binding mechanisms suggest that dysC2A could provide a molecular cue to the larger dysferlin protein as to signal whether it is bound to the sarcolemma or another lipid surface.
Collapse
Affiliation(s)
- Andrew P Carpenter
- The School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon97331, United States
| | - Patricia Khuu
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon97331, United States
| | - Tobias Weidner
- Department of Chemistry, Aarhus University, 8000Aarhus C, Denmark
| | - Colin P Johnson
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon97331, United States
| | - Steven J Roeters
- Department of Chemistry, Aarhus University, 8000Aarhus C, Denmark
| | - Joe E Baio
- The School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon97331, United States
| |
Collapse
|
3
|
Golbek TW, Harper BJ, Harper SL, Baio JE. Shape-dependent gold nanoparticle interactions with a model cell membrane. Biointerphases 2022; 17:061003. [PMID: 36347646 PMCID: PMC9646251 DOI: 10.1116/6.0002183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2022] Open
Abstract
Customizable gold nanoparticle platforms are motivating innovations in drug discovery with massive therapeutic potential due to their biocompatibility, stability, and imaging capabilities. Further development requires the understanding of how discrete differences in shape, charge, or surface chemistry affect the drug delivery process of the nanoparticle. The nanoparticle shape can have a significant impact on nanoparticle function as this can, for example, drastically change the surface area available for modifications, such as surface ligand density. In order to investigate the effects of nanoparticle shape on the structure of cell membranes, we directly probed nanoparticle-lipid interactions with an interface sensitive technique termed sum frequency generation (SFG) vibrational spectroscopy. Both gold nanostars and gold nanospheres with positively charged ligands were allowed to interact with a model cell membrane and changes in the membrane structure were directly observed by specific SFG vibrational modes related to molecular bonds within the lipids. The SFG results demonstrate that the +Au nanostars both penetrated and impacted the ordering of the lipids that made up the membrane, while very little structural changes to the model membrane were observed by SFG for the +Au nanospheres interacting with the model membrane. This suggests that the +Au nanostars, compared to the +Au nanospheres, are more disruptive to a cell membrane. Our findings indicate the importance of shape in nanomaterial design and provide strong evidence that shape does play a role in defining nanomaterial-biological interactions.
Collapse
Affiliation(s)
| | - Bryan J Harper
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97330
| | - Stacey L Harper
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97330
| | - Joe E Baio
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97330
| |
Collapse
|
4
|
Tutorials in vibrational sum frequency generation spectroscopy. III. Collecting, processing, and analyzing vibrational sum frequency generation spectra. Biointerphases 2022; 17:041201. [PMID: 35931562 DOI: 10.1116/6.0001951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In this Tutorial series, we aim to provide an accessible introduction to vibrational sum frequency generation (VSFG) spectroscopy, targeted toward people entering the VSFG world without a rigorous formal background in optical physics or nonlinear spectroscopy. In this article, we discuss in detail the processes of collecting and processing VSFG data, and user-friendly processing software (sfgtools) is provided for use by people new to the field. Some discussion of analyzing VSFG spectra is also given, specifically with a discussion of fitting homodyne VSFG spectra, and a discussion of what can be learned (both qualitatively and quantitatively) from VSFG spectra.
Collapse
|
5
|
Sofińska K, Lupa D, Chachaj-Brekiesz A, Czaja M, Kobierski J, Seweryn S, Skirlińska-Nosek K, Szymonski M, Wilkosz N, Wnętrzak A, Lipiec E. Revealing local molecular distribution, orientation, phase separation, and formation of domains in artificial lipid layers: Towards comprehensive characterization of biological membranes. Adv Colloid Interface Sci 2022; 301:102614. [PMID: 35190313 DOI: 10.1016/j.cis.2022.102614] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 01/01/2023]
Abstract
Lipids, together with molecules such as DNA and proteins, are one of the most relevant systems responsible for the existence of life. Selected lipids are able to assembly into various organized structures, such as lipid membranes. The unique properties of lipid membranes determine their complex functions, not only to separate biological environments, but also to participate in regulatory functions, absorption of nutrients, cell-cell communication, endocytosis, cell signaling, and many others. Despite numerous scientific efforts, still little is known about the reason underlying the variability within lipid membranes, and its biochemical significance. In this review, we discuss the structural complexity of lipid membranes, as well as the importance to simplify studied systems in order to understand phenomena occurring in natural, complex membranes. Such systems require a model interface to be analyzed. Therefore, here we focused on analytical studies of artificial systems at various interfaces. The molecular structure of lipid membranes, specifically the nanometric thickens of molecular bilayer, limits in a major extent the choice of highly sensitive methods suitable to study such structures. Therefore, we focused on methods that combine high sensitivity, and/or chemical selectivity, and/or nanometric spatial resolution, such as atomic force microscopy, nanospectroscopy (tip-enhanced Raman spectroscopy, infrared nanospectroscopy), phase modulation infrared reflection-absorption spectroscopy, sum-frequency generation spectroscopy. We summarized experimental and theoretical approaches providing information about molecular structure and composition, lipid spatial distribution (phase separation), organization (domain shape, molecular orientation) of lipid membranes, and real-time visualization of the influence of various molecules (proteins, drugs) on their integrity. An integral part of this review discusses the latest achievements in the field of lipid layer-based biosensors.
Collapse
|
6
|
Tutorials in vibrational sum frequency generation spectroscopy. I. The foundations. Biointerphases 2022; 17:011201. [DOI: 10.1116/6.0001401] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
7
|
Schmüser L, Trefz M, Roeters SJ, Beckner W, Pfaendtner J, Otzen D, Woutersen S, Bonn M, Schneider D, Weidner T. Membrane Structure of Aquaporin Observed with Combined Experimental and Theoretical Sum Frequency Generation Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13452-13459. [PMID: 34729987 DOI: 10.1021/acs.langmuir.1c02206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
High-resolution structural information on membrane proteins is essential for understanding cell biology and for the structure-based design of new medical drugs and drug delivery strategies. X-ray diffraction (XRD) can provide angstrom-level information about the structure of membrane proteins, yet for XRD experiments, proteins are removed from their native membrane environment, chemically stabilized, and crystallized, all of which can compromise the conformation. Here, we describe how a combination of surface-sensitive vibrational spectroscopy and molecular dynamics simulations can account for the native membrane environment. We observe the structure of a glycerol facilitator channel (GlpF), an aquaporin membrane channel finely tuned to selectively transport water and glycerol molecules across the membrane barrier. We find subtle but significant differences between the XRD structure and the inferred in situ structure of GlpF.
Collapse
Affiliation(s)
- L Schmüser
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - M Trefz
- Department of Chemistry-Biochemistry, University of Mainz, Johann-Joachim-Becher-Weg 30, 55128 Mainz, Germany
| | - S J Roeters
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - W Beckner
- Department of Chemical Engineering, University of Washington, 105 Benson Hall, Seattle, Washington 98195-1750, United States
| | - J Pfaendtner
- Department of Chemical Engineering, University of Washington, 105 Benson Hall, Seattle, Washington 98195-1750, United States
| | - D Otzen
- iNANO, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - S Woutersen
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - M Bonn
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - D Schneider
- Department of Chemistry-Biochemistry, University of Mainz, Johann-Joachim-Becher-Weg 30, 55128 Mainz, Germany
| | - T Weidner
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
- Department of Chemical Engineering, University of Washington, 105 Benson Hall, Seattle, Washington 98195-1750, United States
| |
Collapse
|
8
|
Weidner T, Castner DG. Developments and Ongoing Challenges for Analysis of Surface-Bound Proteins. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:389-412. [PMID: 33979545 PMCID: PMC8522203 DOI: 10.1146/annurev-anchem-091520-010206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Proteins at surfaces and interfaces play important roles in the function and performance of materials in applications ranging from diagnostic assays to biomedical devices. To improve the performance of these materials, detailed molecular structure (conformation and orientation) along with the identity and concentrations of the surface-bound proteins on those materials must be determined. This article describes radiolabeling, surface plasmon resonance, quartz crystal microbalance with dissipation, X-ray photoelectron spectroscopy, secondary ion mass spectrometry, sum frequency generation spectroscopy, and computational techniques along with the information each technique provides for characterizing protein films. A multitechnique approach using both experimental and computation methods is required for these investigations. Although it is now possible to gain much insight into the structure of surface-bound proteins, it is still not possible to obtain the same level of structural detail about proteins on surfaces as can be obtained about proteins in crystals and solutions, especially for large, complex proteins. However, recent results have shown it is possible to obtain detailed structural information (e.g., backbone and side chain orientation) about small peptides (5-20 amino sequences) on surfaces. Current studies are extending these investigations to small proteins such as protein G B1 (∼6 kDa). Approaches for furthering the capabilities for characterizing the molecular structure of surface-bound proteins are proposed.
Collapse
Affiliation(s)
- Tobias Weidner
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark;
| | - David G Castner
- National ESCA and Surface Analysis Center for Biomedical Problems, Departments of Bioengineering and Chemical Engineering, University of Washington, Seattle, Washington 98195, USA;
| |
Collapse
|
9
|
Carpenter AP, Christoffersen EL, Mapile AN, Richmond GL. Assessing the Impact of Solvent Selection on Vibrational Sum-Frequency Scattering Spectroscopy Experiments. J Phys Chem B 2021; 125:3216-3229. [PMID: 33739105 DOI: 10.1021/acs.jpcb.1c00188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The development of vibrational sum-frequency scattering (S-VSF) spectroscopy has opened the door to directly probing nanoparticle surfaces with an interfacial and chemical specificity that was previously reserved for planar interfacial systems. Despite its potential, challenges remain in the application of S-VSF spectroscopy beyond simplified chemical systems. One such challenge includes infrared absorption by an absorptive continuous phase, which will alter the spectral lineshapes within S-VSF spectra. In this study, we investigate how solvent vibrational modes manifest in S-VSF spectra of surfactant stabilized nanoemulsions and demonstrate how corrections for infrared absorption can recover the spectral features of interfacial solvent molecules. We also investigate infrared absorption for systems with the absorptive phase dispersed in a nonabsorptive continuous phase to show that infrared absorption, while reduced, will still impact the S-VSF spectra. These studies are then used to provide practical recommendations for anyone wishing to use S-VSF to study nanoparticle surfaces where absorptive solvents are present.
Collapse
Affiliation(s)
- Andrew P Carpenter
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| | - Evan L Christoffersen
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| | - Ashley N Mapile
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| | - Geraldine L Richmond
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| |
Collapse
|
10
|
Windowless detection geometry for sum frequency scattering spectroscopy in the C-D and amide I regions. Biointerphases 2021; 16:011201. [PMID: 33706523 DOI: 10.1116/6.0000419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Understanding the structure and chemistry of nanoscopic surfaces is an important challenge for biointerface sciences. Sum frequency scattering (SFS) spectroscopy can specifically probe the surfaces of nanoparticles, vesicles, liposomes, and other materials relevant to biomaterial research, and, as a vibrational spectroscopy method, it can provide molecular level information about the surface chemistry. SFS is particularly promising to probe the structure of proteins, and other biological molecules, at nanoparticle surfaces. Here, amide I spectra can provide information about protein folding and orientation, while spectra in the C-D and C-H stretching regions allow experiments to determine the mode of interaction between particle surfaces and proteins. Methods used currently employ a closed liquid cell or cuvette, which works extremely well for C-H and phosphate regions but is often impeded in the amide I and C-D regions by a strong background signal that originates from the window material of the sample cells. Here, we discuss a windowless geometry for collecting background-free and high-fidelity SFS spectra in the amide I and C-D regions. We demonstrate the improvement in spectra quality by comparing SFS spectra of unextruded, multilamellar vesicles in a sample cuvette with those recorded using the windowless geometry. The sample geometry we propose will enable new experiments using SFS as a probe for protein-particle interactions.
Collapse
|
11
|
Golbek TW, Otto SC, Roeters SJ, Weidner T, Johnson CP, Baio JE. Direct Evidence That Mutations within Dysferlin's C2A Domain Inhibit Lipid Clustering. J Phys Chem B 2021; 125:148-157. [PMID: 33355462 DOI: 10.1021/acs.jpcb.0c07143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mechanical stress on sarcolemma can create small tears in the muscle cell membrane. Within the sarcolemma resides the multidomain dysferlin protein. Mutations in this protein render it unable to repair the sarcolemma and have been linked to muscular dystrophy. A key step in dysferlin-regulated repair is the binding of the C2A domain to the lipid membrane upon increased intracellular calcium. Mutations mapped to this domain cause loss of binding ability of the C2A domain. There is a crucial need to understand the geometry of dysferlin C2A at a membrane interface as well as cell membrane lipid reorientation when compared to that of a mutant. Here, we describe a comparison between the wild-type dysferlin C2A and a mutation to the conserved aspartic acids in the domain binding loops. To identify both the geometry and the cell membrane lipid reorientation, we applied sum frequency generation (SFG) vibrational spectroscopy and coupled it with simulated SFG spectra to observe and quantify the interaction with a model cell membrane composed of phosphotidylserine and phosphotidylcholine. Observed changes in surface pressure demonstrate that calcium-bridged electrostatic interactions govern the initial interaction of the C2A domains docking with a lipid membrane. SFG spectra taken from the amide-I region for the wild type and variant contain features near 1642, 1663, and 1675 cm-1 related to the C2A domain β-sandwich secondary structure, indicating that the domain binds in a specific orientation. Mapping simulated SFG spectra to the experimentally collected spectra indicated that both wild-type and variant domains have nearly the same orientation to the membrane surface. However, examining the ordering of the lipids that make up a model membrane using SFG, we find that the wild type clusters the lipids as seen by the increase in the ratio of the CD3 and CD2 symmetric intensities by 170% for the wild type and by 120% for the variant. This study highlights the capabilities of SFG to probe with great detail biological mutations in proteins at cell membrane interfaces.
Collapse
Affiliation(s)
| | - Shauna C Otto
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Steven J Roeters
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| | - Tobias Weidner
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| | - Colin P Johnson
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Joe E Baio
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
12
|
Baio JE, Graham DJ, Castner DG. Surface analysis tools for characterizing biological materials. Chem Soc Rev 2020; 49:3278-3296. [PMID: 32390029 PMCID: PMC7337324 DOI: 10.1039/d0cs00181c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surfaces represent a unique state of matter that typically have significantly different compositions and structures from the bulk of a material. Since surfaces are the interface between a material and its environment, they play an important role in how a material interacts with its environment. Thus, it is essential to characterize, in as much detail as possible, the surface structure and composition of a material. However, this can be challenging since the surface region typically is only minute portion of the entire material, requiring specialized techniques to selectively probe the surface region. This tutorial will provide a brief review of several techniques used to characterize the surface and interface regions of biological materials. For each technique we provide a description of the key underlying physics and chemistry principles, the information provided, strengths and weaknesses, the types of samples that can be analyzed, and an example application. Given the surface analysis challenges for biological materials, typically there is never just one technique that can provide a complete surface characterization. Thus, a multi-technique approach to biological surface analysis is always required.
Collapse
Affiliation(s)
- Joe E Baio
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331, USA
| | - Daniel J Graham
- National ESCA and Surface Analysis Center for Biomedical Problems, Box 351653, University of Washington, Seattle, WA 98195, USA. and Department of Bioengineering, Box 351653, University of Washington, Seattle, WA 98195, USA
| | - David G Castner
- National ESCA and Surface Analysis Center for Biomedical Problems, Box 351653, University of Washington, Seattle, WA 98195, USA. and Department of Bioengineering, Box 351653, University of Washington, Seattle, WA 98195, USA and Department of Chemical Engineering, Box 351653, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|