1
|
Bruns H, Czajka TS, Sztucki M, Brandenburg S, Salditt T. Sarcomere, troponin, and myosin X-ray diffraction signals can be resolved in single cardiomyocytes. Biophys J 2024; 123:3024-3037. [PMID: 38956875 PMCID: PMC11427778 DOI: 10.1016/j.bpj.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/18/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024] Open
Abstract
Cardiac function relies on the autonomous molecular contraction mechanisms in the ventricular wall. Contraction is driven by ordered motor proteins acting in parallel to generate a macroscopic force. The averaged structure can be investigated by diffraction from model tissues such as trabecular and papillary cardiac muscle using collimated synchrotron beams, offering high resolution in reciprocal space. In the ventricular wall, however, the muscle tissue is compartmentalized into smaller branched cardiomyocytes, with a higher degree of disorder. We show that X-ray diffraction is now also capable of resolving the structural organization of actomyosin in single isolated cardiomyocytes of the ventricular wall. In addition to the hexagonal arrangement of thick and thin filaments, the diffraction signal of the hydrated and fixated cardiomyocytes was sufficient to reveal the myosin motor repeat (M3), the troponin complex repeat (Tn), and the sarcomere length. The sarcomere length signal comprised up to 13 diffraction orders, which were used to compute the sarcomere density profile based on Fourier synthesis. The Tn and M3 spacings were found in the same range as previously reported for other muscle types. The approach opens up a pathway to record the structural dynamics of living cells during the contraction cycle, toward a more complete understanding of cardiac muscle function.
Collapse
Affiliation(s)
| | | | - Michael Sztucki
- ESRF - European Synchrotron Radiation Facility, Grenoble, France
| | - Sören Brandenburg
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Tim Salditt
- Institute for X-ray Physics, Göttingen, Germany.
| |
Collapse
|
2
|
van Dover G, Javor J, Ewoldt JK, Zhernenkov M, Wąsik P, Freychet G, Lee J, Brown D, Chen CS, Bishop DJ. Structural maturation of myofilaments in engineered 3D cardiac microtissues characterized using small angle x-ray scattering. Phys Biol 2024; 21:036001. [PMID: 38452380 DOI: 10.1088/1478-3975/ad310e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/07/2024] [Indexed: 03/09/2024]
Abstract
Understanding the structural and functional development of human-induced pluripotent stem-cell-derived cardiomyocytes (hiPSC-CMs) is essential to engineering cardiac tissue that enables pharmaceutical testing, modeling diseases, and designing therapies. Here we use a method not commonly applied to biological materials, small angle x-ray scattering, to characterize the structural development of hiPSC-CMs within three-dimensional engineered tissues during their preliminary stages of maturation. An x-ray scattering experimental method enables the reliable characterization of the cardiomyocyte myofilament spacing with maturation time. The myofilament lattice spacing monotonically decreases as the tissue matures from its initial post-seeding state over the span of 10 days. Visualization of the spacing at a grid of positions in the tissue provides an approach to characterizing the maturation and organization of cardiomyocyte myofilaments and has the potential to help elucidate mechanisms of pathophysiology, and disease progression, thereby stimulating new biological hypotheses in stem cell engineering.
Collapse
Affiliation(s)
| | - Josh Javor
- Boston University, Boston, MA 02215, United States of America
| | | | - Mikhail Zhernenkov
- Brookhaven National Laboratory, Upton, NY 11973, United States of America
| | - Patryk Wąsik
- Brookhaven National Laboratory, Upton, NY 11973, United States of America
| | - Guillaume Freychet
- Brookhaven National Laboratory, Upton, NY 11973, United States of America
| | - Josh Lee
- Boston University, Boston, MA 02215, United States of America
| | - Dana Brown
- Fort Valley State University, Fort Valley, GA 31030, United States of America
| | | | - David J Bishop
- Boston University, Boston, MA 02215, United States of America
| |
Collapse
|
3
|
A cell-based framework for modeling cardiac mechanics. Biomech Model Mechanobiol 2023; 22:515-539. [PMID: 36602715 PMCID: PMC10097778 DOI: 10.1007/s10237-022-01660-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/19/2022] [Indexed: 01/06/2023]
Abstract
Cardiomyocytes are the functional building blocks of the heart-yet most models developed to simulate cardiac mechanics do not represent the individual cells and their surrounding matrix. Instead, they work on a homogenized tissue level, assuming that cellular and subcellular structures and processes scale uniformly. Here we present a mathematical and numerical framework for exploring tissue-level cardiac mechanics on a microscale given an explicit three-dimensional geometrical representation of cells embedded in a matrix. We defined a mathematical model over such a geometry and parametrized our model using publicly available data from tissue stretching and shearing experiments. We then used the model to explore mechanical differences between the extracellular and the intracellular space. Through sensitivity analysis, we found the stiffness in the extracellular matrix to be most important for the intracellular stress values under contraction. Strain and stress values were observed to follow a normal-tangential pattern concentrated along the membrane, with substantial spatial variations both under contraction and stretching. We also examined how it scales to larger size simulations, considering multicellular domains. Our work extends existing continuum models, providing a new geometrical-based framework for exploring complex cell-cell and cell-matrix interactions.
Collapse
|
4
|
Liu J, Makowski L. Scanning x-ray microdiffraction: In situ molecular imaging of tissue and materials. Curr Opin Struct Biol 2022; 75:102421. [PMID: 35834949 PMCID: PMC11317818 DOI: 10.1016/j.sbi.2022.102421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/25/2022]
Abstract
Scanning x-ray microdiffraction of complex tissues and materials is an emerging method for the study of macromolecular structures in situ, providing information on the way molecular constituents are arranged and interact with their microenvironment. Acting as a bridge between high-resolution images of individual constituents and lower resolution microscopies that generate global views of material, scanning microdiffraction provides an approach to study the functioning of complex tissues across multiple length scales. Here, we discuss the methodology, summarize results from recent studies, and discuss the potential of the technique for future studies coordinated with other biophysical techniques.
Collapse
Affiliation(s)
- Jiliang Liu
- The European Radiation Synchrotron Facility (ESRF), Grenoble, France
| | - Lee Makowski
- Bioengineering Department, Northeastern University, Boston, MA, USA.
| |
Collapse
|
5
|
Nicolas JD, Khan A, Markus A, Mohamed BA, Toischer K, Alves F, Salditt T. X-ray diffraction and second harmonic imaging reveal new insights into structural alterations caused by pressure-overload in murine hearts. Sci Rep 2020; 10:19317. [PMID: 33168890 PMCID: PMC7653033 DOI: 10.1038/s41598-020-76163-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/13/2020] [Indexed: 12/28/2022] Open
Abstract
We demonstrate a label-free imaging approach to study cardiac remodeling of fibrotic and hypertrophic hearts, bridging scales from the whole organ down to the molecular level. To this end, we have used mice subjected to transverse aortic constriction and imaged adjacent cardiac tissue sections by microfocus X-ray diffraction and second harmonic generation (SHG) imaging. In this way, the acto-myosin structure was probed in a spatially resolved manner for entire heart sections. From the recorded diffraction data, spatial maps of diffraction intensity, anisotropy and orientation were obtained, and fully automated analysis depicted the acto-myosin filament spacing and direction. X-ray diffraction presented an overview of entire heart sections and revealed that in regions of severe cardiac remodeling the muscle mass is partly replaced by connective tissue and the acto-myosin lattice spacing is increased at these regions. SHG imaging revealed sub-cellular structure of cardiac tissue and complemented the findings from X-ray diffraction by revealing micro-level distortion of myofibrils, immune cell infiltration at regions of cardiac remodeling and the development of fibrosis down to the scale of a single collagen fibril. Overall, our results show that both X-ray diffraction and SHG imaging can be used for label-free and high-resolution visualization of cardiac remodeling and fibrosis progression at different stages in a cardiac pressure-overload mouse model that cannot be achieved by conventional histology.
Collapse
Affiliation(s)
- Jan-David Nicolas
- Institute for X-Ray Physics, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
| | - Amara Khan
- Translational Molecular Imaging, Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Straße 3, 37075, Göttingen, Germany
| | - Andrea Markus
- Translational Molecular Imaging, Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Straße 3, 37075, Göttingen, Germany
| | - Belal A Mohamed
- Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, 37075, Göttingen, Germany
| | - Karl Toischer
- Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, 37075, Göttingen, Germany
| | - Frauke Alves
- Translational Molecular Imaging, Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Straße 3, 37075, Göttingen, Germany.
- Clinic for Hematology and Medical Oncology, Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany.
| | - Tim Salditt
- Institute for X-Ray Physics, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells", University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany.
| |
Collapse
|