1
|
Zhou HX, Kota D, Qin S, Prasad R. Fundamental Aspects of Phase-Separated Biomolecular Condensates. Chem Rev 2024; 124:8550-8595. [PMID: 38885177 PMCID: PMC11260227 DOI: 10.1021/acs.chemrev.4c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Biomolecular condensates, formed through phase separation, are upending our understanding in much of molecular, cell, and developmental biology. There is an urgent need to elucidate the physicochemical foundations of the behaviors and properties of biomolecular condensates. Here we aim to fill this need by writing a comprehensive, critical, and accessible review on the fundamental aspects of phase-separated biomolecular condensates. We introduce the relevant theoretical background, present the theoretical basis for the computation and experimental measurement of condensate properties, and give mechanistic interpretations of condensate behaviors and properties in terms of interactions at the molecular and residue levels.
Collapse
Affiliation(s)
- Huan-Xiang Zhou
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
- Department of Physics, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Divya Kota
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Sanbo Qin
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Ramesh Prasad
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
2
|
Modic M, Adamek M, Ule J. The impact of IDR phosphorylation on the RNA binding profiles of proteins. Trends Genet 2024; 40:580-586. [PMID: 38705823 DOI: 10.1016/j.tig.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024]
Abstract
Due to their capacity to mediate repetitive protein interactions, intrinsically disordered regions (IDRs) are crucial for the formation of various types of protein-RNA complexes. The functions of IDRs are strongly modulated by post-translational modifications (PTMs). Phosphorylation is the most common and well-studied modification of IDRs, which can alter homomeric or heteromeric interactions of proteins and impact their ability to phase separate. Moreover, phosphorylation can influence the RNA-binding properties of proteins, and recent studies demonstrated its selective impact on the global profiles of protein-RNA binding and regulation. These findings highlight the need for further integrative approaches to understand how signalling remodels protein-RNA networks in cells.
Collapse
Affiliation(s)
- Miha Modic
- National Institute of Chemistry, Ljubljana, Slovenia; The Francis Crick Institute, London, UK; UK Dementia Research Institute at King's College London, London, UK.
| | - Maksimiljan Adamek
- National Institute of Chemistry, Ljubljana, Slovenia; PhD Program 'Biosciences', Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Ule
- National Institute of Chemistry, Ljubljana, Slovenia; The Francis Crick Institute, London, UK; UK Dementia Research Institute at King's College London, London, UK.
| |
Collapse
|
3
|
Yang X, Wang Y, Yang G. Molecular dynamics simulation on regulation of liquid-liquid phase separation of repetitive peptides. Sci Rep 2024; 14:13382. [PMID: 38862770 PMCID: PMC11167010 DOI: 10.1038/s41598-024-64327-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024] Open
Abstract
Understanding the intricate interactions governing protein and peptide behavior in liquid-liquid phase separation (LLPS) is crucial for unraveling biological functions and dysfunctions. This study employs a residue-leveled coarse-grained molecular dynamics approach to simulate the phase separation of repetitive polyproline and polyarginine peptides (poly PR) with varying lengths and sequences in solution, considering different concentrations and temperatures. Our findings highlight the crucial role of sequence order in promoting LLPS in peptides with identical lengths of repetitive sequences. Interestingly, repetitive peptides containing fewer than 10 polyarginine repeats exhibit no LLPS, even at salt concentrations up to 3 M. Notably, our simulations align with experimental observations, pinpointing a salt concentration of 2.7 M for PR25-induced LLPS. Utilizing the same methodology, we predict the required salt concentrations for LLPS induction as 1.2 M, 1.5 M, and 2.7 M for PR12, PR15, and PR35, respectively. These predictions demonstrate good agreement with experimental results. Extending our investigation to include the peptide glutamine and arginine (GR15) in DNA solution, our simulations mirror experimental observations of phase separation. To unveil the molecular forces steering peptide phase separation, we introduce a dielectric constant modifier and hydrophobicity disruptor into poly PR systems. Our coarse-grained analysis includes an examination of temperature effects, leading to the inference that both hydrophobic and electrostatic interactions drive phase separation in peptide systems.
Collapse
Affiliation(s)
- Xiaojun Yang
- Department of Physics, Wenzhou University, Wenzhou, 325035, China
| | - Yanwei Wang
- Department of Physics, Wenzhou University, Wenzhou, 325035, China.
| | - Guangcan Yang
- Department of Physics, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
4
|
Ginell GM, Emenecker RJ, Lotthammer JM, Usher ET, Holehouse AS. Direct prediction of intermolecular interactions driven by disordered regions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597104. [PMID: 38895487 PMCID: PMC11185574 DOI: 10.1101/2024.06.03.597104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Intrinsically disordered regions (IDRs) are critical for a wide variety of cellular functions, many of which involve interactions with partner proteins. Molecular recognition is typically considered through the lens of sequence-specific binding events. However, a growing body of work has shown that IDRs often interact with partners in a manner that does not depend on the precise order of the amino acid order, instead driven by complementary chemical interactions leading to disordered bound-state complexes. Despite this emerging paradigm, we lack tools to describe, quantify, predict, and interpret these types of structurally heterogeneous interactions from the underlying amino acid sequences. Here, we repurpose the chemical physics developed originally for molecular simulations to develop an approach for predicting intermolecular interactions between IDRs and partner proteins. Our approach enables the direct prediction of phase diagrams, the identification of chemically-specific interaction hotspots on IDRs, and a route to develop and test mechanistic hypotheses regarding IDR function in the context of molecular recognition. We use our approach to examine a range of systems and questions to highlight its versatility and applicability.
Collapse
Affiliation(s)
- Garrett M. Ginell
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
- Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO
| | - Ryan. J Emenecker
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
- Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO
| | - Jeffrey M. Lotthammer
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
- Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO
| | - Emery T. Usher
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
- Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO
| | - Alex S. Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
- Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
5
|
Khorsand FR, Uversky VN. Liquid-liquid phase separation as triggering factor of fibril formation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:143-182. [PMID: 38811080 DOI: 10.1016/bs.pmbts.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Liquid-liquid phase separation (LLPS) refers to the phenomenon, where a homogeneous solution spontaneously undergoes a transition into two or more immiscible phases. Through transient weak multivalent macromolecular interactions, a homogeneous solution can spontaneously separate into two phases: one rich in biomolecules and the other poor in biomolecules. Phase separation is believed to serve as the physicochemical foundation for the formation of membrane-less organelles (MLOs) and bio-molecular condensates within cells. Moreover, numerous biological processes depend on LLPS, such as transcription, immunological response, chromatin architecture, DNA damage response, stress granule formation, viral infection, etc. Abnormalities in phase separation can lead to diseases, such as cancer, neurodegeneration, and metabolic disorders. LLPS is regulated by various factors, such as concentration of molecules undergoing LLPS, salt concentration, pH, temperature, post-translational modifications, and molecular chaperones. Recent research on LLPS of biomolecules has progressed rapidly and led to the development of databases containing information pertaining to various aspects of the biomolecule separation analysis. However, more comprehensive research is still required to fully comprehend the specific molecular mechanisms and biological effects of LLPS.
Collapse
Affiliation(s)
| | - Vladimir N Uversky
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Pushchino, Moscow, Russia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| |
Collapse
|
6
|
Rosa E Silva I, Smetana JHC, de Oliveira JF. A comprehensive review on DDX3X liquid phase condensation in health and neurodevelopmental disorders. Int J Biol Macromol 2024; 259:129330. [PMID: 38218270 DOI: 10.1016/j.ijbiomac.2024.129330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/22/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
DEAD-box helicases are global regulators of liquid-liquid phase separation (LLPS), a process that assembles membraneless organelles inside cells. An outstanding member of the DEAD-box family is DDX3X, a multi-functional protein that plays critical roles in RNA metabolism, including RNA transcription, splicing, nucleocytoplasmic export, and translation. The diverse functions of DDX3X result from its ability to bind and remodel RNA in an ATP-dependent manner. This capacity enables the protein to act as an RNA chaperone and an RNA helicase, regulating ribonucleoprotein complex assembly. DDX3X and its orthologs from mouse, yeast (Ded1), and C. elegans (LAF-1) can undergo LLPS, driving the formation of neuronal granules, stress granules, processing bodies or P-granules. DDX3X has been related to several human conditions, including neurodevelopmental disorders, such as intellectual disability and autism spectrum disorder. Although the research into the pathogenesis of aberrant biomolecular condensation in neurodegenerative diseases is increasing rapidly, the role of LLPS in neurodevelopmental disorders is underexplored. This review summarizes current findings relevant for DDX3X phase separation in neurodevelopment and examines how disturbances in the LLPS process can be related to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ivan Rosa E Silva
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials, Campinas, SP, Brazil
| | | | | |
Collapse
|
7
|
Lee Y, Park S, Yuan F, Hayden CC, Wang L, Lafer EM, Choi SQ, Stachowiak JC. Transmembrane coupling of liquid-like protein condensates. Nat Commun 2023; 14:8015. [PMID: 38049424 PMCID: PMC10696066 DOI: 10.1038/s41467-023-43332-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 11/06/2023] [Indexed: 12/06/2023] Open
Abstract
Liquid-liquid phase separation of proteins occurs on both surfaces of cellular membranes during diverse physiological processes. In vitro reconstitution could provide insight into the mechanisms underlying these events. However, most existing reconstitution techniques provide access to only one membrane surface, making it difficult to probe transmembrane phenomena. To study protein phase separation simultaneously on both membrane surfaces, we developed an array of freestanding planar lipid membranes. Interestingly, we observed that liquid-like protein condensates on one side of the membrane colocalized with those on the other side, resulting in transmembrane coupling. Our results, based on lipid probe partitioning and mobility of lipids, suggest that protein condensates locally reorganize membrane lipids, a process which could be explained by multiple effects. These findings suggest a mechanism by which signals originating on one side of a biological membrane, triggered by protein phase separation, can be transferred to the opposite side.
Collapse
Affiliation(s)
- Yohan Lee
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Sujin Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Feng Yuan
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Carl C Hayden
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Liping Wang
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Eileen M Lafer
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Siyoung Q Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
8
|
Joshi A, Walimbe A, Avni A, Rai SK, Arora L, Sarkar S, Mukhopadhyay S. Single-molecule FRET unmasks structural subpopulations and crucial molecular events during FUS low-complexity domain phase separation. Nat Commun 2023; 14:7331. [PMID: 37957147 PMCID: PMC10643395 DOI: 10.1038/s41467-023-43225-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Biomolecular condensates formed via phase separation of proteins and nucleic acids are thought to be associated with a wide range of cellular functions and dysfunctions. We dissect critical molecular events associated with phase separation of an intrinsically disordered prion-like low-complexity domain of Fused in Sarcoma by performing single-molecule studies permitting us to access the wealth of molecular information that is skewed in conventional ensemble experiments. Our single-molecule FRET experiments reveal the coexistence of two conformationally distinct subpopulations in the monomeric form. Single-droplet single-molecule FRET studies coupled with fluorescence correlation spectroscopy, picosecond time-resolved fluorescence anisotropy, and vibrational Raman spectroscopy indicate that structural unwinding switches intramolecular interactions into intermolecular contacts allowing the formation of a dynamic network within condensates. A disease-related mutation introduces enhanced structural plasticity engendering greater interchain interactions that can accelerate pathological aggregation. Our findings provide key mechanistic underpinnings of sequence-encoded dynamically-controlled structural unzipping resulting in biological phase separation.
Collapse
Affiliation(s)
- Ashish Joshi
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Mohali, Punjab, 140306, India
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Mohali, Punjab, 140306, India
| | - Anuja Walimbe
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Mohali, Punjab, 140306, India
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Mohali, Punjab, 140306, India
| | - Anamika Avni
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Mohali, Punjab, 140306, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Mohali, Punjab, 140306, India
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Sandeep K Rai
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Mohali, Punjab, 140306, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Mohali, Punjab, 140306, India
| | - Lisha Arora
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Mohali, Punjab, 140306, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Mohali, Punjab, 140306, India
| | - Snehasis Sarkar
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Mohali, Punjab, 140306, India
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Mohali, Punjab, 140306, India
| | - Samrat Mukhopadhyay
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Mohali, Punjab, 140306, India.
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Mohali, Punjab, 140306, India.
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Mohali, Punjab, 140306, India.
| |
Collapse
|
9
|
Szała-Mendyk B, Phan TM, Mohanty P, Mittal J. Challenges in studying the liquid-to-solid phase transitions of proteins using computer simulations. Curr Opin Chem Biol 2023; 75:102333. [PMID: 37267850 PMCID: PMC10527940 DOI: 10.1016/j.cbpa.2023.102333] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/24/2023] [Accepted: 04/30/2023] [Indexed: 06/04/2023]
Abstract
"Membraneless organelles," also referred to as biomolecular condensates, perform a variety of cellular functions and their dysregulation is implicated in cancer and neurodegeneration. In the last two decades, liquid-liquid phase separation (LLPS) of intrinsically disordered and multidomain proteins has emerged as a plausible mechanism underlying the formation of various biomolecular condensates. Further, the occurrence of liquid-to-solid transitions within liquid-like condensates may give rise to amyloid structures, implying a biophysical link between phase separation and protein aggregation. Despite significant advances, uncovering the microscopic details of liquid-to-solid phase transitions using experiments remains a considerable challenge and presents an exciting opportunity for the development of computational models which provide valuable, complementary insights into the underlying phenomenon. In this review, we first highlight recent biophysical studies which provide new insights into the molecular mechanisms underlying liquid-to-solid (fibril) phase transitions of folded, disordered and multi-domain proteins. Next, we summarize the range of computational models used to study protein aggregation and phase separation. Finally, we discuss recent computational approaches which attempt to capture the underlying physics of liquid-to-solid transitions along with their merits and shortcomings.
Collapse
Affiliation(s)
- Beata Szała-Mendyk
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, TAMU 3127, College Station, 77843, Texas, United States.
| | - Tien Minh Phan
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, TAMU 3127, College Station, 77843, Texas, United States.
| | - Priyesh Mohanty
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, TAMU 3127, College Station, 77843, Texas, United States.
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, TAMU 3127, College Station, 77843, Texas, United States; Department of Chemistry, Texas A&M University, TAMU 3255, College Station, 77843, Texas, United States; Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University, TAMU 3255, College Station, 77843, Texas, United States.
| |
Collapse
|
10
|
Sanchez-Burgos I, Herriott L, Collepardo-Guevara R, Espinosa JR. Surfactants or scaffolds? RNAs of varying lengths control the thermodynamic stability of condensates differently. Biophys J 2023; 122:2973-2987. [PMID: 36883003 PMCID: PMC10398262 DOI: 10.1016/j.bpj.2023.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Biomolecular condensates, thought to form via liquid-liquid phase separation of intracellular mixtures, are multicomponent systems that can include diverse types of proteins and RNAs. RNA is a critical modulator of RNA-protein condensate stability, as it induces an RNA concentration-dependent reentrant phase transition-increasing stability at low RNA concentrations and decreasing it at high concentrations. Beyond concentration, RNAs inside condensates can be heterogeneous in length, sequence, and structure. Here, we use multiscale simulations to understand how different RNA parameters interact with one another to modulate the properties of RNA-protein condensates. To do so, we perform residue/nucleotide resolution coarse-grained molecular dynamics simulations of multicomponent RNA-protein condensates containing RNAs of different lengths and concentrations, and either FUS or PR25 proteins. Our simulations reveal that RNA length regulates the reentrant phase behavior of RNA-protein condensates: increasing RNA length sensitively rises the maximum value that the critical temperature of the mixture reaches, and the maximum concentration of RNA that the condensate can incorporate before beginning to become unstable. Strikingly, RNAs of different lengths are organized heterogeneously inside condensates, which allows them to enhance condensate stability via two distinct mechanisms: shorter RNA chains accumulate at the condensate's surface acting as natural biomolecular surfactants, while longer RNA chains concentrate inside the core to saturate their bonds and enhance the density of molecular connections in the condensate. Using a patchy particle model, we additionally demonstrate that the combined impact of RNA length and concentration on condensate properties is dictated by the valency, binding affinity, and polymer length of the various biomolecules involved. Our results postulate that diversity on RNA parameters within condensates allows RNAs to increase condensate stability by fulfilling two different criteria: maximizing enthalpic gain and minimizing interfacial free energy; hence, RNA diversity should be considered when assessing the impact of RNA on biomolecular condensates regulation.
Collapse
Affiliation(s)
- Ignacio Sanchez-Burgos
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom
| | - Lara Herriott
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom
| | - Rosana Collepardo-Guevara
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom; Department of Genetics, University of Cambridge, Cambridge, United Kingdom.
| | - Jorge R Espinosa
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom; Departament of Chemical Physics, Faculty of Chemical Sciences, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
11
|
Li M, Chen G, Zhang Z. Modeling the effects of phosphorylation on phase separation of the FUS low-complexity domain. Biophys J 2023; 122:2636-2645. [PMID: 37211763 PMCID: PMC10397571 DOI: 10.1016/j.bpj.2023.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/13/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023] Open
Abstract
Aggregation of the RNA-binding protein fused in sarcoma (FUS) is a hallmark of neurodegenerative diseases. Phosphorylation of Ser/Thr in the FUS low-complexity domain (FUS-LC) may regulate phase separation of FUS and prevent pathological aggregation in cells. However, many details of this process remain elusive to date. In this work, we systematically investigated the phosphorylation of FUS-LC and the underlying molecular mechanism by molecular dynamics (MD) simulations and free energy calculations. The results clearly show that phosphorylation can destroy the fibril core structure of FUS-LC by breaking interchain interactions, particularly contacts involving residues like Tyr, Ser, and Gln. Among the six phosphorylation sites, Ser61 and Ser84 may have more important effects on the stability of the fibril core. Our study reveals structural and dynamic details of FUS-LC phase separation modulated by phosphorylation.
Collapse
Affiliation(s)
- Mingwei Li
- MOE Key Laboratory for Cellular Dynamics and Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Guanglin Chen
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Zhiyong Zhang
- MOE Key Laboratory for Cellular Dynamics and Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China; Department of Physics, University of Science and Technology of China, Hefei, Anhui, P.R. China.
| |
Collapse
|
12
|
Ranganathan S, Dasmeh P, Furniss S, Shakhnovich E. Phosphorylation sites are evolutionary checkpoints against liquid-solid transition in protein condensates. Proc Natl Acad Sci U S A 2023; 120:e2215828120. [PMID: 37155880 PMCID: PMC10193986 DOI: 10.1073/pnas.2215828120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/30/2023] [Indexed: 05/10/2023] Open
Abstract
Assemblies of multivalent RNA-binding protein fused in sarcoma (FUS) can exist in the functional liquid-like state as well as less dynamic and potentially toxic amyloid- and hydrogel-like states. How could then cells form liquid-like condensates while avoiding their transformation to amyloids? Here, we show how posttranslational phosphorylation can provide a "handle" that prevents liquid-solid transition of intracellular condensates containing FUS. Using residue-specific coarse-grained simulations, for 85 different mammalian FUS sequences, we show how the number of phosphorylation sites and their spatial arrangement affect intracluster dynamics preventing conversion to amyloids. All atom simulations further confirm that phosphorylation can effectively reduce the β-sheet propensity in amyloid-prone fragments of FUS. A detailed evolutionary analysis shows that mammalian FUS PLDs are enriched in amyloid-prone stretches compared to control neutrally evolved sequences, suggesting that mammalian FUS proteins evolved to self-assemble. However, in stark contrast to proteins that do not phase-separate for their function, mammalian sequences have phosphosites in close proximity to these amyloid-prone regions. These results suggest that evolution uses amyloid-prone sequences in prion-like domains to enhance phase separation of condensate proteins while enriching phosphorylation sites in close proximity to safeguard against liquid-solid transitions.
Collapse
Affiliation(s)
- Srivastav Ranganathan
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | - Pouria Dasmeh
- Center for Human Genetics, Marburg University, Marburg35033, Germany
| | - Seth Furniss
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, OxfordOX1 3QZ, United Kingdom
| | - Eugene Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| |
Collapse
|
13
|
Panagiotopoulos AZ. Phase separation and aggregation in multiblock chains. J Chem Phys 2023; 158:2882254. [PMID: 37094002 DOI: 10.1063/5.0146673] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/30/2023] [Indexed: 04/26/2023] Open
Abstract
This paper focuses on phase and aggregation behavior for linear chains composed of blocks of hydrophilic and hydrophobic segments. Phase and conformational transitions of patterned chains are relevant for understanding liquid-liquid separation of biomolecular condensates, which play a prominent role in cellular biophysics and for surfactant and polymer applications. Previous studies of simple models for multiblock chains have shown that, depending on the sequence pattern and chain length, such systems can fall into one of two categories: displaying either phase separation or aggregation into finite-size clusters. The key new result of this paper is that both formation of finite-size aggregates and phase separation can be observed for certain chain architectures at appropriate conditions of temperature and concentration. For such systems, a bulk dense liquid condenses from a dilute phase that already contains multi-chain finite-size aggregates. The computational approach used in this study involves several distinct steps using histogram-reweighting grand canonical Monte Carlo simulations, which are described in some level of detail.
Collapse
|
14
|
Tan C, Niitsu A, Sugita Y. Highly Charged Proteins and Their Repulsive Interactions Antagonize Biomolecular Condensation. JACS AU 2023; 3:834-848. [PMID: 37006777 PMCID: PMC10052238 DOI: 10.1021/jacsau.2c00646] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 06/19/2023]
Abstract
Biomolecular condensation is involved in various cellular processes; therefore, regulation of condensation is crucial to prevent deleterious protein aggregation and maintain a stable cellular environment. Recently, a class of highly charged proteins, known as heat-resistant obscure (Hero) proteins, was shown to protect other client proteins from pathological aggregation. However, the molecular mechanisms by which Hero proteins protect other proteins from aggregation remain unknown. In this study, we performed multiscale molecular dynamics (MD) simulations of Hero11, a Hero protein, and the C-terminal low-complexity domain (LCD) of the transactive response DNA-binding protein 43 (TDP-43), a client protein of Hero11, under various conditions to examine their interactions with each other. We found that Hero11 permeates into the condensate formed by the LCD of TDP-43 (TDP-43-LCD) and induces changes in conformation, intermolecular interactions, and dynamics of TDP-43-LCD. We also examined possible Hero11 structures in atomistic and coarse-grained MD simulations and found that Hero11 with a higher fraction of disordered region tends to assemble on the surface of the condensates. Based on the simulation results, we have proposed three possible mechanisms for Hero11's regulatory function: (i) In the dense phase, TDP-43-LCD reduces contact with each other and shows faster diffusion and decondensation due to the repulsive Hero11-Hero11 interactions. (ii) In the dilute phase, the saturation concentration of TDP-43-LCD is increased, and its conformation is relatively more extended and variant, induced by the attractive Hero11-TDP-43-LCD interactions. (iii) Hero11 on the surface of small TDP-43-LCD condensates can contribute to avoiding their fusion due to repulsive interactions. The proposed mechanisms provide new insights into the regulation of biomolecular condensation in cells under various conditions.
Collapse
Affiliation(s)
- Cheng Tan
- Computational
Biophysics Research Team, RIKEN Center for
Computational Science, Kobe, Hyogo 650-0047, Japan
| | - Ai Niitsu
- Theoretical
Molecular Science Laboratory, RIKEN Cluster
for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Yuji Sugita
- Computational
Biophysics Research Team, RIKEN Center for
Computational Science, Kobe, Hyogo 650-0047, Japan
- Theoretical
Molecular Science Laboratory, RIKEN Cluster
for Pioneering Research, Wako, Saitama 351-0198, Japan
- Laboratory
for Biomolecular Function Simulation, RIKEN
Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
15
|
Chen Y, Lv J, Zu G, Yang F, Geng J, You Z, Jiang C, Sheng Q, Nie Z. BmCBP Catalyzes the Acetylation of BmApoLp-II Protein and Regulates Its Stability in Silkworm, Bombyx mori. INSECTS 2023; 14:309. [PMID: 37103124 PMCID: PMC10146067 DOI: 10.3390/insects14040309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Acetylation is an important and reversible post-translational modification (PTM) of protein, which is involved in many cellular physiological processes. In previous studies, lots of nutrient storage proteins were found to be highly acetylated in silkworms, and acetylation can improve the stability of these proteins. However, the related acetyltransferase was not involved. In the present work, a Bombyx mori nutrient storage protein, apolipophorin II (BmApoLp-II), was further confirmed to be acetylated, and the acetylation could improve its protein expression. Furthermore, RNAi and Co-IP showed that the acetyltransferase BmCBP was found to catalyze the acetylation modification of BmApoLp-II, and thus affect its protein expression. Meanwhile, it was proved that acetylation could improve the stability of the BmApoLp-II protein by completing its ubiquitination. These results lay a foundation for further study on the mechanism of regulating nutrition storage and hydrolysis utilization of storage proteins by BmCBP and the acetylation in the silkworm Bombyx mori.
Collapse
|
16
|
Li L, Paloni M, Finney AR, Barducci A, Salvalaglio M. Nucleation of Biomolecular Condensates from Finite-Sized Simulations. J Phys Chem Lett 2023; 14:1748-1755. [PMID: 36758221 PMCID: PMC9940850 DOI: 10.1021/acs.jpclett.2c03512] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
The nucleation of protein condensates is a concentration-driven process of assembly. When modeled in the canonical ensemble, condensation is affected by finite-size effects. Here, we present a general and efficient route for obtaining ensemble properties of protein condensates in the macroscopic limit from finite-sized nucleation simulations. The approach is based on a theoretical description of droplet nucleation in the canonical ensemble and enables estimation of thermodynamic and kinetic parameters, such as the macroscopic equilibrium density of the dilute protein phase, the surface tension of the condensates, and nucleation free energy barriers. We apply the method to coarse-grained simulations of NDDX4 and FUS-LC, two phase-separating disordered proteins with different physicochemical characteristics. Our results show that NDDX4 condensate droplets, characterized by lower surface tension, higher solubility, and faster monomer exchange dynamics compared to those of FUS-LC, form with negligible nucleation barriers. In contrast, FUS-LC condensates form via an activated process over a wide range of concentrations.
Collapse
Affiliation(s)
- Lunna Li
- Thomas
Young Centre and Department of Chemical Engineering, University College London, London WC1E 7JE, U.K.
| | - Matteo Paloni
- Université
de Montpellier, Centre de Biologie Structurale
(CBS), CNRS, INSERM, 34090 Montpellier, France
| | - Aaron R. Finney
- Thomas
Young Centre and Department of Chemical Engineering, University College London, London WC1E 7JE, U.K.
| | - Alessandro Barducci
- Université
de Montpellier, Centre de Biologie Structurale
(CBS), CNRS, INSERM, 34090 Montpellier, France
| | - Matteo Salvalaglio
- Thomas
Young Centre and Department of Chemical Engineering, University College London, London WC1E 7JE, U.K.
| |
Collapse
|
17
|
Bhattacharjee R, Hall AR, Mangione MC, Igarashi MG, Roberts-Galbraith RH, Chen JS, Vavylonis D, Gould KL. Multiple polarity kinases inhibit phase separation of F-BAR protein Cdc15 and antagonize cytokinetic ring assembly in fission yeast. eLife 2023; 12:83062. [PMID: 36749320 PMCID: PMC9904764 DOI: 10.7554/elife.83062] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/16/2022] [Indexed: 02/08/2023] Open
Abstract
The F-BAR protein Cdc15 is essential for cytokinesis in Schizosaccharomyces pombe and plays a key role in attaching the cytokinetic ring (CR) to the plasma membrane (PM). Cdc15's abilities to bind to the membrane and oligomerize via its F-BAR domain are inhibited by phosphorylation of its intrinsically disordered region (IDR). Multiple cell polarity kinases regulate Cdc15 IDR phosphostate, and of these the DYRK kinase Pom1 phosphorylation sites on Cdc15 have been shown in vivo to prevent CR formation at cell tips. Here, we compared the ability of Pom1 to control Cdc15 phosphostate and cortical localization to that of other Cdc15 kinases: Kin1, Pck1, and Shk1. We identified distinct but overlapping cohorts of Cdc15 phosphorylation sites targeted by each kinase, and the number of sites correlated with each kinases' abilities to influence Cdc15 PM localization. Coarse-grained simulations predicted that cumulative IDR phosphorylation moves the IDRs of a dimer apart and toward the F-BAR tips. Further, simulations indicated that the overall negative charge of phosphorylation masks positively charged amino acids necessary for F-BAR oligomerization and membrane interaction. Finally, simulations suggested that dephosphorylated Cdc15 undergoes phase separation driven by IDR interactions. Indeed, dephosphorylated but not phosphorylated Cdc15 undergoes liquid-liquid phase separation to form droplets in vitro that recruit Cdc15 binding partners. In cells, Cdc15 phosphomutants also formed PM-bound condensates that recruit other CR components. Together, we propose that a threshold of Cdc15 phosphorylation by assorted kinases prevents Cdc15 condensation on the PM and antagonizes CR assembly.
Collapse
Affiliation(s)
- Rahul Bhattacharjee
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Aaron R Hall
- Department of Physics, Lehigh UniversityBethlehemUnited States
| | - MariaSanta C Mangione
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Maya G Igarashi
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Rachel H Roberts-Galbraith
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Dimitrios Vavylonis
- Department of Physics, Lehigh UniversityBethlehemUnited States,Center for Computational Biology, Flatiron InstituteNew YorkUnited States
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| |
Collapse
|
18
|
Her C, Phan TM, Jovic N, Kapoor U, Ackermann BE, Rizuan A, Kim Y, Mittal J, Debelouchina G. Molecular interactions underlying the phase separation of HP1α: role of phosphorylation, ligand and nucleic acid binding. Nucleic Acids Res 2022; 50:12702-12722. [PMID: 36537242 PMCID: PMC9825191 DOI: 10.1093/nar/gkac1194] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 11/04/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Heterochromatin protein 1α (HP1α) is a crucial element of chromatin organization. It has been proposed that HP1α functions through liquid-liquid phase separation (LLPS), which allows it to compact chromatin into transcriptionally repressed heterochromatin regions. In vitro, HP1α can undergo phase separation upon phosphorylation of its N-terminus extension (NTE) and/or through interactions with DNA and chromatin. Here, we combine computational and experimental approaches to elucidate the molecular interactions that drive these processes. In phosphorylation-driven LLPS, HP1α can exchange intradimer hinge-NTE interactions with interdimer contacts, which also leads to a structural change from a compacted to an extended HP1α dimer conformation. This process can be enhanced by the presence of positively charged HP1α peptide ligands and disrupted by the addition of negatively charged or neutral peptides. In DNA-driven LLPS, both positively and negatively charged peptide ligands can perturb phase separation. Our findings demonstrate the importance of electrostatic interactions in HP1α LLPS where binding partners can modulate the overall charge of the droplets and screen or enhance hinge region interactions through specific and non-specific effects. Our study illuminates the complex molecular framework that can fine-tune the properties of HP1α and that can contribute to heterochromatin regulation and function.
Collapse
Affiliation(s)
| | | | - Nina Jovic
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Utkarsh Kapoor
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Bryce E Ackermann
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Azamat Rizuan
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Young C Kim
- Center for Materials Physics and Technology, Naval Research Laboratory, WA, DC, USA
| | | | | |
Collapse
|
19
|
Amankwaa B, Schoborg T, Labrador M. Drosophila insulator proteins exhibit in vivo liquid-liquid phase separation properties. Life Sci Alliance 2022; 5:5/12/e202201536. [PMID: 35853678 PMCID: PMC9297610 DOI: 10.26508/lsa.202201536] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022] Open
Abstract
Drosophila insulator proteins and the cohesin subunit Rad21 coalesce in vivo to form liquid-droplet condensates, suggesting that liquid–liquid phase separation mediates their function in 3D genome organization. Mounting evidence implicates liquid–liquid phase separation (LLPS), the condensation of biomolecules into liquid-like droplets in the formation and dissolution of membraneless intracellular organelles (MLOs). Cells use MLOs or condensates for various biological processes, including emergency signaling and spatiotemporal control over steady-state biochemical reactions and heterochromatin formation. Insulator proteins are architectural elements involved in establishing independent domains of transcriptional activity within eukaryotic genomes. In Drosophila, insulator proteins form nuclear foci known as insulator bodies in response to osmotic stress. However, the mechanism through which insulator proteins assemble into bodies is yet to be investigated. Here, we identify signatures of LLPS by insulator bodies, including high disorder tendency in insulator proteins, scaffold–client–dependent assembly, extensive fusion behavior, sphericity, and sensitivity to 1,6-hexanediol. We also show that the cohesin subunit Rad21 is a component of insulator bodies, adding to the known insulator protein constituents and γH2Av. Our data suggest a concerted role of cohesin and insulator proteins in insulator body formation and under physiological conditions. We propose a mechanism whereby these architectural proteins modulate 3D genome organization through LLPS.
Collapse
Affiliation(s)
- Bright Amankwaa
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, USA
| | - Todd Schoborg
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, USA
| | - Mariano Labrador
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
20
|
Mohanty P, Kapoor U, Sundaravadivelu Devarajan D, Phan TM, Rizuan A, Mittal J. Principles Governing the Phase Separation of Multidomain Proteins. Biochemistry 2022; 61:2443-2455. [PMID: 35802394 PMCID: PMC9669140 DOI: 10.1021/acs.biochem.2c00210] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A variety of membraneless organelles, often termed "biological condensates", play an important role in the regulation of cellular processes such as gene transcription, translation, and protein quality control. On the basis of experimental and theoretical investigations, liquid-liquid phase separation (LLPS) has been proposed as a possible mechanism for the origin of biological condensates. LLPS requires multivalent macromolecules that template the formation of long-range, intermolecular interaction networks and results in the formation of condensates with defined composition and material properties. Multivalent interactions driving LLPS exhibit a wide range of modes from highly stereospecific to nonspecific and involve both folded and disordered regions. Multidomain proteins serve as suitable macromolecules for promoting phase separation and achieving disparate functions due to their potential for multivalent interactions and regulation. Here, we aim to highlight the influence of the domain architecture and interdomain interactions on the phase separation of multidomain protein condensates. First, the general principles underlying these interactions are illustrated on the basis of examples of multidomain proteins that are predominantly associated with nucleic acid binding and protein quality control and contain both folded and disordered regions. Next, the examples showcase how LLPS properties of folded and disordered regions can be leveraged to engineer multidomain constructs that form condensates with the desired assembly and functional properties. Finally, we highlight the need for improvements in coarse-grained computational models that can provide molecular-level insights into multidomain protein condensates in conjunction with experimental efforts.
Collapse
Affiliation(s)
- Priyesh Mohanty
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843
| | - Utkarsh Kapoor
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843
| | | | - Tien Minh Phan
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843
| | - Azamat Rizuan
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843
| |
Collapse
|
21
|
Devarajan DS, Rekhi S, Nikoubashman A, Kim YC, Howard MP, Mittal J. Effect of Charge Distribution on the Dynamics of Polyampholytic Disordered Proteins. Macromolecules 2022; 55:8987-8997. [PMID: 38250712 PMCID: PMC10798675 DOI: 10.1021/acs.macromol.2c01390] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The stability and physiological function of many biomolecular coacervates depend on the structure and dynamics of intrinsically disordered proteins (IDPs) that typically contain a significant fraction of charged residues. Although the effect of relative arrangement of charged residues on IDP conformation is a well-studied problem, the associated changes in dynamics are far less understood. In this work, we systematically interrogate the effects of charge distribution on the chain-level and segmental dynamics of polyampholytic IDPs in dilute solutions. We study a coarse-grained model polyampholyte consisting of an equal fraction of two oppositely charged residues (glutamic acid and lysine) that undergoes a transition from an ideal chain-like conformation for uniformly charge-patterned sequences to a semi-compact conformation for highly charge-segregated sequences. Changes in the chain-level dynamics with increasing charge segregation correlate with changes in conformation. The chain-level and segmental dynamics conform to simple homopolymer models for uniformly charge-patterned sequences but deviate with increasing charge segregation, both in the presence and absence of hydrodynamic interactions. We discuss the significance of these findings, obtained for a model polyampholyte, in the context of a charge-rich intrinsically disordered region of the naturally occurring protein LAF-1. Our findings have important implications for understanding the effects of charge patterning on the dynamics of polyampholytic IDPs in dilute conditions using polymer scaling theories.
Collapse
Affiliation(s)
| | - Shiv Rekhi
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, United States
| | - Arash Nikoubashman
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - Young C. Kim
- Center for Materials Physics and Technology, Naval Research Laboratory, Washington, DC 20375, United States
| | - Michael P. Howard
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, United States
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, United States
| |
Collapse
|
22
|
Lenard AJ, Mulder FAA, Madl T. Solvent paramagnetic relaxation enhancement as a versatile method for studying structure and dynamics of biomolecular systems. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:113-139. [PMID: 36496256 DOI: 10.1016/j.pnmrs.2022.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 06/17/2023]
Abstract
Solvent paramagnetic relaxation enhancement (sPRE) is a versatile nuclear magnetic resonance (NMR)-based method that allows characterization of the structure and dynamics of biomolecular systems through providing quantitative experimental information on solvent accessibility of NMR-active nuclei. Addition of soluble paramagnetic probes to the solution of a biomolecule leads to paramagnetic relaxation enhancement in a concentration-dependent manner. Here we review recent progress in the sPRE-based characterization of structural and dynamic properties of biomolecules and their complexes, and aim to deliver a comprehensive illustration of a growing number of applications of the method to various biological systems. We discuss the physical principles of sPRE measurements and provide an overview of available co-solute paramagnetic probes. We then explore how sPRE, in combination with complementary biophysical techniques, can further advance biomolecular structure determination, identification of interaction surfaces within protein complexes, and probing of conformational changes and low-population transient states, as well as deliver insights into weak, nonspecific, and transient interactions between proteins and co-solutes. In addition, we present examples of how the incorporation of solvent paramagnetic probes can improve the sensitivity of NMR experiments and discuss the prospects of applying sPRE to NMR metabolomics, drug discovery, and the study of intrinsically disordered proteins.
Collapse
Affiliation(s)
- Aneta J Lenard
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Ageing, Molecular Biology and Biochemistry, Research Unit Integrative Structural Biology, Medical University of Graz, 8010 Graz, Austria.
| | - Frans A A Mulder
- Interdisciplinary Nanoscience Center and Department of Chemistry, University of Aarhus, DK-8000 Aarhus, Denmark; Institute of Biochemistry, Johannes Kepler Universität Linz, 4040 Linz, Austria.
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Ageing, Molecular Biology and Biochemistry, Research Unit Integrative Structural Biology, Medical University of Graz, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria.
| |
Collapse
|
23
|
Zhang Y, Liu X, Chen J. Toward Accurate Coarse-Grained Simulations of Disordered Proteins and Their Dynamic Interactions. J Chem Inf Model 2022; 62:4523-4536. [PMID: 36083825 PMCID: PMC9910785 DOI: 10.1021/acs.jcim.2c00974] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intrinsically disordered proteins (IDPs) play crucial roles in cellular regulatory networks and are now recognized to often remain highly dynamic even in specific interactions and assemblies. Accurate description of these dynamic interactions is extremely challenging using atomistic simulations because of the prohibitive computational cost. Efficient coarse-grained approaches could offer an effective solution to overcome this bottleneck if they could provide an accurate description of key local and global properties of IDPs in both unbound and bound states. The recently developed hybrid-resolution (HyRes) protein model has been shown to be capable of providing a semiquantitative description of the secondary structure propensities of IDPs. Here, we show that greatly improved description of global structures and transient interactions can be achieved by introducing a solvent-accessible surface area-based implicit solvent term followed by reoptimization of effective interaction strengths. The new model, termed HyRes II, can semiquantitatively reproduce a wide range of local and global structural properties of a set of IDPs of various lengths and complexities. It can also distinguish the level of compaction between folded proteins and IDPs. In particular, applied to the disordered N-terminal transactivation domain (TAD) of tumor suppressor p53, HyRes II is able to recapitulate various nontrivial structural properties compared to experimental results, some of them to a level of accuracy that is almost comparable to results from atomistic explicit solvent simulations. Furthermore, we demonstrate that HyRes II can be used to simulate the dynamic interactions of TAD with the DNA-binding domain of p53, generating structural ensembles that are highly consistent with existing NMR data. We anticipate that HyRes II will provide an efficient and relatively reliable tool toward accurate coarse-grained simulations of dynamic protein interactions.
Collapse
Affiliation(s)
- Yumeng Zhang
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Xiaorong Liu
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
24
|
Shillcock JC, Lagisquet C, Alexandre J, Vuillon L, Ipsen JH. Model biomolecular condensates have heterogeneous structure quantitatively dependent on the interaction profile of their constituent macromolecules. SOFT MATTER 2022; 18:6674-6693. [PMID: 36004748 DOI: 10.1039/d2sm00387b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Biomolecular condensates play numerous roles in cells by selectively concentrating client proteins while excluding others. These functions are likely to be sensitive to the spatial organization of the scaffold proteins forming the condensate. We use coarse-grained molecular simulations to show that model intrinsically-disordered proteins phase separate into a heterogeneous, structured fluid characterized by a well-defined length scale. The proteins are modelled as semi-flexible polymers with punctate, multifunctional binding sites in good solvent conditions. Their dense phase is highly solvated with a spatial structure that is more sensitive to the separation of the binding sites than their affinity. We introduce graph theoretic measures to quantify their heterogeneity, and find that it increases with increasing binding site number, and exhibits multi-timescale dynamics. The model proteins also swell on passing from the dilute solution to the dense phase. The simulations predict that the structure of the dense phase is modulated by the location and affinity of binding sites distant from the termini of the proteins, while sites near the termini more strongly affect its phase behaviour. The relations uncovered between the arrangement of weak interaction sites on disordered proteins and the material properties of their dense phase can be experimentally tested to give insight into the biophysical properties, pathological effects, and rational design of biomolecular condensates.
Collapse
Affiliation(s)
- Julian C Shillcock
- Blue Brain Project and Laboratory of Molecular and Chemical Biology of Neurodegeneration, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| | - Clément Lagisquet
- LAMA, Univ. Savoie Mont Blanc, CNRS, LAMA, 73376 Le Bourget du Lac, France.
| | - Jérémy Alexandre
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Laurent Vuillon
- LAMA, Univ. Savoie Mont Blanc, CNRS, LAMA, 73376 Le Bourget du Lac, France.
| | - John H Ipsen
- Dept. of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
25
|
Garabedian MV, Su Z, Dabdoub J, Tong M, Deiters A, Hammer DA, Good MC. Protein Condensate Formation via Controlled Multimerization of Intrinsically Disordered Sequences. Biochemistry 2022; 61:2470-2481. [PMID: 35918061 DOI: 10.1021/acs.biochem.2c00250] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Many proteins harboring low complexity or intrinsically disordered sequences (IDRs) are capable of undergoing liquid-liquid phase separation to form mesoscale condensates that function as biochemical niches with the ability to concentrate or sequester macromolecules and regulate cellular activity. Engineered disordered proteins have been used to generate programmable synthetic membraneless organelles in cells. Phase separation is governed by the strength of interactions among polypeptides with multivalency enhancing phase separation at lower concentrations. Previously, we and others demonstrated enzymatic control of IDR valency from multivalent precursors to dissolve condensed phases. Here, we develop noncovalent strategies to multimerize an individual IDR, the RGG domain of LAF-1, using protein interaction domains to regulate condensate formation in vitro and in living cells. First, we characterize modular dimerization of RGG domains at either terminus using cognate high-affinity coiled-coil pairs to form stable condensates in vitro. Second, we demonstrate temporal control over phase separation of RGG domains fused to FRB and FKBP in the presence of dimerizer. Further, using a photocaged dimerizer, we achieve optically induced condensation both in cell-sized emulsions and within live cells. Collectively, these modular tools allow multiple strategies to promote phase separation of a common core IDR for tunable control of condensate assembly.
Collapse
Affiliation(s)
- Mikael V Garabedian
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Zhihui Su
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jorge Dabdoub
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Michelle Tong
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Philadelphia, Pennsylvania 15260, United States
| | - Daniel A Hammer
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.,Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Matthew C Good
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.,Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
26
|
Lao Z, Dong X, Liu X, Li F, Chen Y, Tang Y, Wei G. Insights into the Atomistic Mechanisms of Phosphorylation in Disrupting Liquid-Liquid Phase Separation and Aggregation of the FUS Low-Complexity Domain. J Chem Inf Model 2022; 62:3227-3238. [PMID: 35709363 DOI: 10.1021/acs.jcim.2c00414] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fused in sarcoma (FUS), a nuclear RNA binding protein, can not only undergo liquid-liquid phase separation (LLPS) to form dynamic biomolecular condensates but also aggregate into solid amyloid fibrils which are associated with the pathology of amyotrophic lateral sclerosis and frontotemporal lobar degeneration diseases. Phosphorylation in the FUS low-complexity domain (FUS-LC) inhibits FUS LLPS and aggregation. However, it remains largely elusive what are the underlying atomistic mechanisms of this inhibitory effect and whether phosphorylation can disrupt preformed FUS fibrils, reversing the FUS gel/solid phase toward the liquid phase. Herein, we systematically investigate the impacts of phosphorylation on the conformational ensemble of the FUS37-97 monomer and dimer and the structure of the FUS37-97 fibril by performing extensive all-atom molecular dynamics simulations. Our simulations reveal three key findings: (1) phosphorylation shifts the conformations of FUS37-97 from the β-rich, fibril-competent state toward a helix-rich, fibril-incompetent state; (2) phosphorylation significantly weakens protein-protein interactions and enhances protein-water interactions, which disfavor FUS-LC LLPS as well as aggregation and facilitate the dissolution of the preformed FUS-LC fibril; and (3) the FUS37-97 peptide displays a high β-strand probability in the region spanning residues 52-67, and phosphorylation at S54 and S61 residues located in this region is crucial for the disruption of LLPS and aggregation of FUS-LC. This study may pave the way for ameliorating phase-separation-related pathologies via site-specific phosphorylation.
Collapse
Affiliation(s)
- Zenghui Lao
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200433, People's Republic of China
| | - Xuewei Dong
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200433, People's Republic of China
| | - Xianshi Liu
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200433, People's Republic of China
| | - Fangying Li
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200433, People's Republic of China
| | - Yujie Chen
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200433, People's Republic of China
| | - Yiming Tang
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200433, People's Republic of China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
27
|
Li J, Zhang M, Ma W, Yang B, Lu H, Zhou F, Zhang L. Post-translational modifications in liquid-liquid phase separation: a comprehensive review. MOLECULAR BIOMEDICINE 2022; 3:13. [PMID: 35543798 PMCID: PMC9092326 DOI: 10.1186/s43556-022-00075-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/25/2022] [Indexed: 11/23/2022] Open
Abstract
Liquid-liquid phase separation (LLPS) has received significant attention in recent biological studies. It refers to a phenomenon that biomolecule exceeds the solubility, condensates and separates itself from solution in liquid like droplets formation. Our understanding of it has also changed from memebraneless organelles to compartmentalization, muti-functional crucibles, and reaction regulators. Although this phenomenon has been employed for a variety of biological processes, recent studies mainly focus on its physiological significance, and the comprehensive research of the underlying physical mechanism is limited. The characteristics of side chains of amino acids and the interaction tendency of proteins function importantly in regulating LLPS thus should be pay more attention on. In addition, the importance of post-translational modifications (PTMs) has been underestimated, despite their abundance and crucial functions in maintaining the electrostatic balance. In this review, we first introduce the driving forces and protein secondary structures involved in LLPS and their different physical functions in cell life processes. Subsequently, we summarize the existing reports on PTM regulation related to LLPS and analyze the underlying basic principles, hoping to find some common relations between LLPS and PTM. Finally, we speculate several unreported PTMs that may have a significant impact on phase separation basing on the findings.
Collapse
Affiliation(s)
- Jingxian Li
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Mengdi Zhang
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, Zhejiang, China
| | - Weirui Ma
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Bing Yang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Huasong Lu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Fangfang Zhou
- Institutes of Biology and Medical Science, Soochow University, Suzhou, 215123, P. R. China.
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
28
|
Blanco MA. Computational models for studying physical instabilities in high concentration biotherapeutic formulations. MAbs 2022; 14:2044744. [PMID: 35282775 PMCID: PMC8928847 DOI: 10.1080/19420862.2022.2044744] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Computational prediction of the behavior of concentrated protein solutions is particularly advantageous in early development stages of biotherapeutics when material availability is limited and a large set of formulation conditions needs to be explored. This review provides an overview of the different computational paradigms that have been successfully used in modeling undesirable physical behaviors of protein solutions with a particular emphasis on high-concentration drug formulations. This includes models ranging from all-atom simulations, coarse-grained representations to macro-scale mathematical descriptions used to study physical instability phenomena of protein solutions such as aggregation, elevated viscosity, and phase separation. These models are compared and summarized in the context of the physical processes and their underlying assumptions and limitations. A detailed analysis is also given for identifying protein interaction processes that are explicitly or implicitly considered in the different modeling approaches and particularly their relations to various formulation parameters. Lastly, many of the shortcomings of existing computational models are discussed, providing perspectives and possible directions toward an efficient computational framework for designing effective protein formulations.
Collapse
Affiliation(s)
- Marco A. Blanco
- Materials and Biophysical Characterization, Analytical R & D, Merck & Co., Inc, Kenilworth, NJ USA
| |
Collapse
|
29
|
Gruijs da Silva LA, Simonetti F, Hutten S, Riemenschneider H, Sternburg EL, Pietrek LM, Gebel J, Dötsch V, Edbauer D, Hummer G, Stelzl LS, Dormann D. Disease-linked TDP-43 hyperphosphorylation suppresses TDP-43 condensation and aggregation. EMBO J 2022; 41:e108443. [PMID: 35112738 PMCID: PMC9016352 DOI: 10.15252/embj.2021108443] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 12/23/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Post‐translational modifications (PTMs) have emerged as key modulators of protein phase separation and have been linked to protein aggregation in neurodegenerative disorders. The major aggregating protein in amyotrophic lateral sclerosis and frontotemporal dementia, the RNA‐binding protein TAR DNA‐binding protein (TDP‐43), is hyperphosphorylated in disease on several C‐terminal serine residues, a process generally believed to promote TDP‐43 aggregation. Here, we however find that Casein kinase 1δ‐mediated TDP‐43 hyperphosphorylation or C‐terminal phosphomimetic mutations reduce TDP‐43 phase separation and aggregation, and instead render TDP‐43 condensates more liquid‐like and dynamic. Multi‐scale molecular dynamics simulations reveal reduced homotypic interactions of TDP‐43 low‐complexity domains through enhanced solvation of phosphomimetic residues. Cellular experiments show that phosphomimetic substitutions do not affect nuclear import or RNA regulatory functions of TDP‐43, but suppress accumulation of TDP‐43 in membrane‐less organelles and promote its solubility in neurons. We speculate that TDP‐43 hyperphosphorylation may be a protective cellular response to counteract TDP‐43 aggregation.
Collapse
Affiliation(s)
- Lara A Gruijs da Silva
- Biocenter, Institute of Molecular Physiology, Johannes Gutenberg-Universität (JGU), Mainz, Germany.,Graduate School of Systemic Neurosciences (GSN), Planegg-Martinsried, Germany
| | - Francesca Simonetti
- Biocenter, Institute of Molecular Physiology, Johannes Gutenberg-Universität (JGU), Mainz, Germany.,Graduate School of Systemic Neurosciences (GSN), Planegg-Martinsried, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Saskia Hutten
- Biocenter, Institute of Molecular Physiology, Johannes Gutenberg-Universität (JGU), Mainz, Germany
| | | | - Erin L Sternburg
- Biocenter, Institute of Molecular Physiology, Johannes Gutenberg-Universität (JGU), Mainz, Germany
| | - Lisa M Pietrek
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Jakob Gebel
- Institute for Biophysical Chemistry, Goethe-Universität, Frankfurt am Main, Germany
| | - Volker Dötsch
- Institute for Biophysical Chemistry, Goethe-Universität, Frankfurt am Main, Germany
| | - Dieter Edbauer
- Graduate School of Systemic Neurosciences (GSN), Planegg-Martinsried, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy) Munich, Munich, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.,Institute for Biophysics, Goethe-Universität, Frankfurt am Main, Germany
| | - Lukas S Stelzl
- Biocenter, Institute of Molecular Physiology, Johannes Gutenberg-Universität (JGU), Mainz, Germany.,Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.,KOMET1, Institute of Physics, Johannes Gutenberg-Universität (JGU), Mainz, Germany.,Institute of Molecular Biology (IMB), Mainz, Germany
| | - Dorothee Dormann
- Biocenter, Institute of Molecular Physiology, Johannes Gutenberg-Universität (JGU), Mainz, Germany.,Munich Cluster for Systems Neurology (SyNergy) Munich, Munich, Germany.,Institute of Molecular Biology (IMB), Mainz, Germany
| |
Collapse
|
30
|
Sanchez-Burgos I, Espinosa JR, Joseph JA, Collepardo-Guevara R. RNA length has a non-trivial effect in the stability of biomolecular condensates formed by RNA-binding proteins. PLoS Comput Biol 2022; 18:e1009810. [PMID: 35108264 PMCID: PMC8896709 DOI: 10.1371/journal.pcbi.1009810] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/04/2022] [Accepted: 01/06/2022] [Indexed: 12/29/2022] Open
Abstract
Biomolecular condensates formed via liquid-liquid phase separation (LLPS) play a crucial role in the spatiotemporal organization of the cell material. Nucleic acids can act as critical modulators in the stability of these protein condensates. To unveil the role of RNA length in regulating the stability of RNA binding protein (RBP) condensates, we present a multiscale computational strategy that exploits the advantages of a sequence-dependent coarse-grained representation of proteins and a minimal coarse-grained model wherein proteins are described as patchy colloids. We find that for a constant nucleotide/protein ratio, the protein fused in sarcoma (FUS), which can phase separate on its own-i.e., via homotypic interactions-only exhibits a mild dependency on the RNA strand length. In contrast, the 25-repeat proline-arginine peptide (PR25), which does not undergo LLPS on its own at physiological conditions but instead exhibits complex coacervation with RNA-i.e., via heterotypic interactions-shows a strong dependence on the length of the RNA strands. Our minimal patchy particle simulations suggest that the strikingly different effect of RNA length on homotypic LLPS versus RBP-RNA complex coacervation is general. Phase separation is RNA-length dependent whenever the relative contribution of heterotypic interactions sustaining LLPS is comparable or higher than those stemming from protein homotypic interactions. Taken together, our results contribute to illuminate the intricate physicochemical mechanisms that influence the stability of RBP condensates through RNA inclusion.
Collapse
Affiliation(s)
- Ignacio Sanchez-Burgos
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, United Kingdom
| | - Jorge R. Espinosa
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, United Kingdom
| | - Jerelle A. Joseph
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, United Kingdom
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, United Kingdom
| | - Rosana Collepardo-Guevara
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, United Kingdom
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, United Kingdom
| |
Collapse
|
31
|
Tejedor AR, Garaizar A, Ramírez J, Espinosa JR. 'RNA modulation of transport properties and stability in phase-separated condensates. Biophys J 2021; 120:5169-5186. [PMID: 34762868 DOI: 10.1101/2021.03.05.434111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/03/2021] [Accepted: 10/03/2021] [Indexed: 05/25/2023] Open
Abstract
One of the key mechanisms employed by cells to control their spatiotemporal organization is the formation and dissolution of phase-separated condensates. The balance between condensate assembly and disassembly can be critically regulated by the presence of RNA. In this work, we use a chemically-accurate sequence-dependent coarse-grained model for proteins and RNA to unravel the impact of RNA in modulating the transport properties and stability of biomolecular condensates. We explore the phase behavior of several RNA-binding proteins such as FUS, hnRNPA1, and TDP-43 proteins along with that of their corresponding prion-like domains and RNA recognition motifs from absence to moderately high RNA concentration. By characterizing the phase diagram, key molecular interactions, surface tension, and transport properties of the condensates, we report a dual RNA-induced behavior: on the one hand, RNA enhances phase separation at low concentration as long as the RNA radius of gyration is comparable to that of the proteins, whereas at high concentration, it inhibits the ability of proteins to self-assemble independently of its length. On the other hand, along with the stability modulation, the viscosity of the condensates can be considerably reduced at high RNA concentration as long as the length of the RNA chains is shorter than that of the proteins. Conversely, long RNA strands increase viscosity even at high concentration, but barely modify protein self-diffusion which mainly depends on RNA concentration and on the effect RNA has on droplet density. On the whole, our work rationalizes the different routes by which RNA can regulate phase separation and condensate dynamics, as well as the subsequent aberrant rigidification implicated in the emergence of various neuropathologies and age-related diseases.
Collapse
Affiliation(s)
- Andrés R Tejedor
- Department of Chemical Engineering, Universidad Politécnica de Madrid, Madrid, Spain
| | - Adiran Garaizar
- Cavendish Laboratory, Maxwell Centre, Department of Physics, University of Cambridge, Cambridge, United Kingdom
| | - Jorge Ramírez
- Department of Chemical Engineering, Universidad Politécnica de Madrid, Madrid, Spain.
| | - Jorge R Espinosa
- Cavendish Laboratory, Maxwell Centre, Department of Physics, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
32
|
Tejedor AR, Garaizar A, Ramírez J, Espinosa JR. 'RNA modulation of transport properties and stability in phase-separated condensates. Biophys J 2021; 120:5169-5186. [PMID: 34762868 PMCID: PMC8715277 DOI: 10.1016/j.bpj.2021.11.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/03/2021] [Accepted: 10/03/2021] [Indexed: 12/29/2022] Open
Abstract
One of the key mechanisms employed by cells to control their spatiotemporal organization is the formation and dissolution of phase-separated condensates. The balance between condensate assembly and disassembly can be critically regulated by the presence of RNA. In this work, we use a chemically-accurate sequence-dependent coarse-grained model for proteins and RNA to unravel the impact of RNA in modulating the transport properties and stability of biomolecular condensates. We explore the phase behavior of several RNA-binding proteins such as FUS, hnRNPA1, and TDP-43 proteins along with that of their corresponding prion-like domains and RNA recognition motifs from absence to moderately high RNA concentration. By characterizing the phase diagram, key molecular interactions, surface tension, and transport properties of the condensates, we report a dual RNA-induced behavior: on the one hand, RNA enhances phase separation at low concentration as long as the RNA radius of gyration is comparable to that of the proteins, whereas at high concentration, it inhibits the ability of proteins to self-assemble independently of its length. On the other hand, along with the stability modulation, the viscosity of the condensates can be considerably reduced at high RNA concentration as long as the length of the RNA chains is shorter than that of the proteins. Conversely, long RNA strands increase viscosity even at high concentration, but barely modify protein self-diffusion which mainly depends on RNA concentration and on the effect RNA has on droplet density. On the whole, our work rationalizes the different routes by which RNA can regulate phase separation and condensate dynamics, as well as the subsequent aberrant rigidification implicated in the emergence of various neuropathologies and age-related diseases.
Collapse
Affiliation(s)
- Andrés R Tejedor
- Department of Chemical Engineering, Universidad Politécnica de Madrid, Madrid, Spain
| | - Adiran Garaizar
- Cavendish Laboratory, Maxwell Centre, Department of Physics, University of Cambridge, Cambridge, United Kingdom
| | - Jorge Ramírez
- Department of Chemical Engineering, Universidad Politécnica de Madrid, Madrid, Spain.
| | - Jorge R Espinosa
- Cavendish Laboratory, Maxwell Centre, Department of Physics, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
33
|
Martin IM, Aponte-Santamaría C, Schmidt L, Hedtfeld M, Iusupov A, Musacchio A, Gräter F. Phosphorylation tunes elongation propensity and cohesiveness of INCENP's intrinsically disordered region. J Mol Biol 2021; 434:167387. [PMID: 34883116 DOI: 10.1016/j.jmb.2021.167387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022]
Abstract
The inner centromere protein, INCENP, is crucial for correct chromosome segregation during mitosis. It connects the kinase Aurora B to the inner centromere allowing this kinase to dynamically access its kinetochore targets. However, the function of its central, 440-residue long intrinsically disordered region (IDR) and its multiple phosphorylation sites is unclear. Here, we determined the conformational ensemble of INCENP's IDR, systematically varying the level of phosphorylation, using all-atom and coarse-grain molecular dynamics simulations. Our simulations show that phosphorylation expands INCENP's IDR, both locally and globally, mainly by increasing its overall net charge. The disordered region undergoes critical globule-to-coil conformational transitions and the transition temperature non-monotonically depends on the degree of phosphorylation, with a mildly phosphorylated case of neutral net charge featuring the highest collapse propensity. The IDR transitions from a multitude of globular states, accompanied by several specific internal contacts that reduce INCENP length by loop formation, to weakly interacting and highly extended coiled conformations. Phosphorylation critically shifts the population between these two regimes. It thereby influences cohesiveness and phase behavior of INCENP IDR assemblies, a feature presumably relevant for INCENP's function in the chromosomal passenger complex. Overall, we propose the disordered region of INCENP to act as a phosphorylation-regulated and length-variable component, within the previously defined "dog-leash" model, that thereby regulates how Aurora B reaches its targets for proper chromosome segregation.
Collapse
Affiliation(s)
- Isabel M Martin
- Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany. https://twitter.com/@IsabelMMartin
| | - Camilo Aponte-Santamaría
- Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany; Max Planck Tandem Group in Computational Biophysics, University of Los Andes, Cra. 1 #18a-12, 111711 Bogotá, Colombia. https://twitter.com/@camiloapontelab
| | - Lisa Schmidt
- Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
| | - Marius Hedtfeld
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany; International Max Planck Research School for Living Matter, Otto-Hahn-Straße 11, 44227 Dortmund, Germany; Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Adel Iusupov
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany; University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany; Max Planck School Matter to Life, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany; Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany. https://twitter.com/@AndreaMusacchi1
| | - Frauke Gräter
- Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany; Max Planck School Matter to Life, Jahnstrasse 29, 69120 Heidelberg, Germany; Interdisciplinary Center for Scientific Computing, Heidelberg University, INF 205, 69120 Heidelberg, Germany.
| |
Collapse
|
34
|
Tesei G, Schulze TK, Crehuet R, Lindorff-Larsen K. Accurate model of liquid-liquid phase behavior of intrinsically disordered proteins from optimization of single-chain properties. Proc Natl Acad Sci U S A 2021; 118:2111696118. [PMID: 34716273 DOI: 10.1101/2021.06.23.449550] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/15/2021] [Indexed: 05/25/2023] Open
Abstract
Many intrinsically disordered proteins (IDPs) may undergo liquid-liquid phase separation (LLPS) and participate in the formation of membraneless organelles in the cell, thereby contributing to the regulation and compartmentalization of intracellular biochemical reactions. The phase behavior of IDPs is sequence dependent, and its investigation through molecular simulations requires protein models that combine computational efficiency with an accurate description of intramolecular and intermolecular interactions. We developed a general coarse-grained model of IDPs, with residue-level detail, based on an extensive set of experimental data on single-chain properties. Ensemble-averaged experimental observables are predicted from molecular simulations, and a data-driven parameter-learning procedure is used to identify the residue-specific model parameters that minimize the discrepancy between predictions and experiments. The model accurately reproduces the experimentally observed conformational propensities of a set of IDPs. Through two-body as well as large-scale molecular simulations, we show that the optimization of the intramolecular interactions results in improved predictions of protein self-association and LLPS.
Collapse
Affiliation(s)
- Giulio Tesei
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark;
| | - Thea K Schulze
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Ramon Crehuet
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
- CSIC-Institute for Advanced Chemistry of Catalonia (IQAC), E-08034 Barcelona, Spain
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark;
| |
Collapse
|
35
|
Tesei G, Schulze TK, Crehuet R, Lindorff-Larsen K. Accurate model of liquid-liquid phase behavior of intrinsically disordered proteins from optimization of single-chain properties. Proc Natl Acad Sci U S A 2021; 118:e2111696118. [PMID: 34716273 PMCID: PMC8612223 DOI: 10.1073/pnas.2111696118] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/15/2021] [Indexed: 11/18/2022] Open
Abstract
Many intrinsically disordered proteins (IDPs) may undergo liquid-liquid phase separation (LLPS) and participate in the formation of membraneless organelles in the cell, thereby contributing to the regulation and compartmentalization of intracellular biochemical reactions. The phase behavior of IDPs is sequence dependent, and its investigation through molecular simulations requires protein models that combine computational efficiency with an accurate description of intramolecular and intermolecular interactions. We developed a general coarse-grained model of IDPs, with residue-level detail, based on an extensive set of experimental data on single-chain properties. Ensemble-averaged experimental observables are predicted from molecular simulations, and a data-driven parameter-learning procedure is used to identify the residue-specific model parameters that minimize the discrepancy between predictions and experiments. The model accurately reproduces the experimentally observed conformational propensities of a set of IDPs. Through two-body as well as large-scale molecular simulations, we show that the optimization of the intramolecular interactions results in improved predictions of protein self-association and LLPS.
Collapse
Affiliation(s)
- Giulio Tesei
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark;
| | - Thea K Schulze
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Ramon Crehuet
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
- CSIC-Institute for Advanced Chemistry of Catalonia (IQAC), E-08034 Barcelona, Spain
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark;
| |
Collapse
|
36
|
Fawzi NL, Parekh SH, Mittal J. Biophysical studies of phase separation integrating experimental and computational methods. Curr Opin Struct Biol 2021; 70:78-86. [PMID: 34144468 PMCID: PMC8530909 DOI: 10.1016/j.sbi.2021.04.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/10/2021] [Indexed: 11/18/2022]
Abstract
Biomolecular phase separation that contributes to the formation of membraneless organelles and biomolecular condensates has recently gained tremendous attention because of the importance of these assemblies in physiology, disease, and engineering applications. Understanding and directing biomolecular phase separation requires a multiscale view of the biophysical properties of these phases. Yet, many classic tools to characterize biomolecular properties do not apply in these condensed phases. Here, we discuss insights obtained from spectroscopic methods, in particular nuclear magnetic resonance and optical spectroscopy, in understanding the molecular and atomic interactions that underlie the formation of protein-rich condensates. We also review approaches closely coupling nuclear magnetic resonance data with computational methods especially coarse-grained and all-atom molecular simulations, which provide insight into molecular features of phase separation. Finally, we point to future methodolical developments, particularly visualizing biophysical properties of condensates in cells.
Collapse
Affiliation(s)
- Nicolas L Fawzi
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912, United States.
| | - Sapun H Parekh
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, United States
| | - Jeetain Mittal
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Drive, Bethlehem, PA, 18015, United States
| |
Collapse
|
37
|
Nassar R, Dignon GL, Razban RM, Dill KA. The Protein Folding Problem: The Role of Theory. J Mol Biol 2021; 433:167126. [PMID: 34224747 PMCID: PMC8547331 DOI: 10.1016/j.jmb.2021.167126] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/21/2021] [Accepted: 06/26/2021] [Indexed: 10/20/2022]
Abstract
The protein folding problem was first articulated as question of how order arose from disorder in proteins: How did the various native structures of proteins arise from interatomic driving forces encoded within their amino acid sequences, and how did they fold so fast? These matters have now been largely resolved by theory and statistical mechanics combined with experiments. There are general principles. Chain randomness is overcome by solvation-based codes. And in the needle-in-a-haystack metaphor, native states are found efficiently because protein haystacks (conformational ensembles) are funnel-shaped. Order-disorder theory has now grown to encompass a large swath of protein physical science across biology.
Collapse
Affiliation(s)
- Roy Nassar
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA; Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Gregory L Dignon
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
| | - Rostam M Razban
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
| | - Ken A Dill
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA; Department of Chemistry, Stony Brook University, Stony Brook, NY, USA; Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
38
|
Alston JJ, Soranno A, Holehouse AS. Integrating single-molecule spectroscopy and simulations for the study of intrinsically disordered proteins. Methods 2021; 193:116-135. [PMID: 33831596 PMCID: PMC8713295 DOI: 10.1016/j.ymeth.2021.03.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 12/21/2022] Open
Abstract
Over the last two decades, intrinsically disordered proteins and protein regions (IDRs) have emerged from a niche corner of biophysics to be recognized as essential drivers of cellular function. Various techniques have provided fundamental insight into the function and dysfunction of IDRs. Among these techniques, single-molecule fluorescence spectroscopy and molecular simulations have played a major role in shaping our modern understanding of the sequence-encoded conformational behavior of disordered proteins. While both techniques are frequently used in isolation, when combined they offer synergistic and complementary information that can help uncover complex molecular details. Here we offer an overview of single-molecule fluorescence spectroscopy and molecular simulations in the context of studying disordered proteins. We discuss the various means in which simulations and single-molecule spectroscopy can be integrated, and consider a number of studies in which this integration has uncovered biological and biophysical mechanisms.
Collapse
Affiliation(s)
- Jhullian J Alston
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis 63110, MO, USA; Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis 63130, MO, USA
| | - Andrea Soranno
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis 63110, MO, USA; Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis 63130, MO, USA.
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis 63110, MO, USA; Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis 63130, MO, USA.
| |
Collapse
|
39
|
Sternburg EL, Gruijs da Silva LA, Dormann D. Post-translational modifications on RNA-binding proteins: accelerators, brakes, or passengers in neurodegeneration? Trends Biochem Sci 2021; 47:6-22. [PMID: 34366183 DOI: 10.1016/j.tibs.2021.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023]
Abstract
RNA-binding proteins (RBPs) are critical players in RNA expression and metabolism, thus, the proper regulation of this class of proteins is critical for cellular health. Regulation of RBPs often occurs through post-translational modifications (PTMs), which allow the cell to quickly and efficiently respond to cellular and environmental stimuli. PTMs have recently emerged as important regulators of RBPs implicated in neurodegenerative disorders, in particular amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here, we summarize how disease-associated PTMs influence the biophysical properties, molecular interactions, subcellular localization, and function of ALS/FTD-linked RBPs, such as FUS and TDP-43. We will discuss how PTMs are believed to play pathological, protective, or ambiguous roles in these neurodegenerative disorders.
Collapse
Affiliation(s)
- Erin L Sternburg
- Johannes Gutenberg-Universität (JGU) Mainz, Faculty of Biology, Mainz, Germany
| | - Lara A Gruijs da Silva
- Johannes Gutenberg-Universität (JGU) Mainz, Faculty of Biology, Mainz, Germany; Graduate School of Systemic Neurosciences (GSN), Munich, Germany
| | - Dorothee Dormann
- Johannes Gutenberg-Universität (JGU) Mainz, Faculty of Biology, Mainz, Germany; Institute of Molecular Biology (IMB), Mainz, Germany.
| |
Collapse
|
40
|
Lichtinger SM, Garaizar A, Collepardo-Guevara R, Reinhardt A. Targeted modulation of protein liquid-liquid phase separation by evolution of amino-acid sequence. PLoS Comput Biol 2021; 17:e1009328. [PMID: 34428231 PMCID: PMC8415608 DOI: 10.1371/journal.pcbi.1009328] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/03/2021] [Accepted: 08/07/2021] [Indexed: 12/27/2022] Open
Abstract
Rationally and efficiently modifying the amino-acid sequence of proteins to control their ability to undergo liquid-liquid phase separation (LLPS) on demand is not only highly desirable, but can also help to elucidate which protein features are important for LLPS. Here, we propose a computational method that couples a genetic algorithm to a sequence-dependent coarse-grained protein model to evolve the amino-acid sequences of phase-separating intrinsically disordered protein regions (IDRs), and purposely enhance or inhibit their capacity to phase-separate. We validate the predicted critical solution temperatures of the mutated sequences with ABSINTH, a more accurate all-atom model. We apply the algorithm to the phase-separating IDRs of three naturally occurring proteins, namely FUS, hnRNPA1 and LAF1, as prototypes of regions that exist in cells and undergo homotypic LLPS driven by different types of intermolecular interaction, and we find that the evolution of amino-acid sequences towards enhanced LLPS is driven in these three cases, among other factors, by an increase in the average size of the amino acids. However, the direction of change in the molecular driving forces that enhance LLPS (such as hydrophobicity, aromaticity and charge) depends on the initial amino-acid sequence. Finally, we show that the evolution of amino-acid sequences to modulate LLPS is strongly coupled to the make-up of the medium (e.g. the presence or absence of RNA), which may have significant implications for our understanding of phase separation within the many-component mixtures of biological systems.
Collapse
Affiliation(s)
- Simon M. Lichtinger
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Adiran Garaizar
- Department of Physics, Cavendish Laboratory, Maxwell Centre, University of Cambridge, Cambridge, United Kingdom
| | - Rosana Collepardo-Guevara
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
- Department of Physics, Cavendish Laboratory, Maxwell Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Aleks Reinhardt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
41
|
Regy RM, Thompson J, Kim YC, Mittal J. Improved coarse-grained model for studying sequence dependent phase separation of disordered proteins. Protein Sci 2021; 30:1371-1379. [PMID: 33934416 DOI: 10.1002/pro.4094] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 12/28/2022]
Abstract
We present improvements to the hydropathy scale (HPS) coarse-grained (CG) model for simulating sequence-specific behavior of intrinsically disordered proteins (IDPs), including their liquid-liquid phase separation (LLPS). The previous model based on an atomistic hydropathy scale by Kapcha and Rossky (KR scale) is not able to capture some well-known LLPS trends such as reduced phase separation propensity upon mutations (R-to-K and Y-to-F). Here, we propose to use the Urry hydropathy scale instead, which was derived from the inverse temperature transitions in a model polypeptide with guest residues X. We introduce two free parameters to shift (Δ) and scale (µ) the overall interaction strengths for the new model (HPS-Urry) and use the experimental radius of gyration for a diverse group of IDPs to find their optimal values. Interestingly, many possible (Δ, µ) combinations can be used for typical IDPs, but the phase behavior of a low-complexity (LC) sequence FUS is only well described by one of these models, which highlights the need for a careful validation strategy based on multiple proteins. The CG HPS-Urry model should enable accurate simulations of protein LLPS and provide a microscopically detailed view of molecular interactions.
Collapse
Affiliation(s)
- Roshan Mammen Regy
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Jacob Thompson
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Young C Kim
- Center for Materials Physics and Technology, Naval Research Laboratory, Washington, District of Columbia, USA
| | - Jeetain Mittal
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania, USA
| |
Collapse
|
42
|
Cao X, Tian P. "Dividing and Conquering" and "Caching" in Molecular Modeling. Int J Mol Sci 2021; 22:5053. [PMID: 34068835 PMCID: PMC8126232 DOI: 10.3390/ijms22095053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/17/2022] Open
Abstract
Molecular modeling is widely utilized in subjects including but not limited to physics, chemistry, biology, materials science and engineering. Impressive progress has been made in development of theories, algorithms and software packages. To divide and conquer, and to cache intermediate results have been long standing principles in development of algorithms. Not surprisingly, most important methodological advancements in more than half century of molecular modeling are various implementations of these two fundamental principles. In the mainstream classical computational molecular science, tremendous efforts have been invested on two lines of algorithm development. The first is coarse graining, which is to represent multiple basic particles in higher resolution modeling as a single larger and softer particle in lower resolution counterpart, with resulting force fields of partial transferability at the expense of some information loss. The second is enhanced sampling, which realizes "dividing and conquering" and/or "caching" in configurational space with focus either on reaction coordinates and collective variables as in metadynamics and related algorithms, or on the transition matrix and state discretization as in Markov state models. For this line of algorithms, spatial resolution is maintained but results are not transferable. Deep learning has been utilized to realize more efficient and accurate ways of "dividing and conquering" and "caching" along these two lines of algorithmic research. We proposed and demonstrated the local free energy landscape approach, a new framework for classical computational molecular science. This framework is based on a third class of algorithm that facilitates molecular modeling through partially transferable in resolution "caching" of distributions for local clusters of molecular degrees of freedom. Differences, connections and potential interactions among these three algorithmic directions are discussed, with the hope to stimulate development of more elegant, efficient and reliable formulations and algorithms for "dividing and conquering" and "caching" in complex molecular systems.
Collapse
Affiliation(s)
- Xiaoyong Cao
- School of Life Sciences, Jilin University, Changchun 130012, China;
| | - Pu Tian
- School of Life Sciences, Jilin University, Changchun 130012, China;
- School of Artificial Intelligence, Jilin University, Changchun 130012, China
| |
Collapse
|
43
|
Shea JE, Best RB, Mittal J. Physics-based computational and theoretical approaches to intrinsically disordered proteins. Curr Opin Struct Biol 2021; 67:219-225. [PMID: 33545530 PMCID: PMC8150118 DOI: 10.1016/j.sbi.2020.12.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 02/06/2023]
Abstract
Intrinsically disordered proteins (IDPs) are an important class of proteins that do not fold to a well-defined three-dimensional shape but rather adopt an ensemble of inter-converting conformations. This feature makes their experimental characterization challenging and invites a theoretical and computational approach to complement experimental studies. In this review, we highlight the recent progress in developing new computational and theoretical approaches to study the structure and dynamics of monomeric and order higher assemblies of IDPs, with a particular emphasis on their phase separation into protein-rich condensates.
Collapse
Affiliation(s)
- Joan-Emma Shea
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, CA 93106, United States; Department of Physics, University of California, Santa Barbara, CA 93106, United States.
| | - Robert B Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Jeetain Mittal
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, United States.
| |
Collapse
|
44
|
Kahn JD, Lemke EA, Pappu RV. Faces, facets, and functions of biomolecular condensates driven by multivalent proteins and nucleic acids. Biophys J 2021; 120:E1-E4. [PMID: 33730551 DOI: 10.1016/j.bpj.2021.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 01/17/2023] Open
Affiliation(s)
- Jason D Kahn
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland.
| | - Edward A Lemke
- Biocentre, Johannes Gutenberg University Mainz, Mainz, Germany; Institute of Molecular Biology, Mainz, Germany
| | - Rohit V Pappu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri; Center for Science & Engineering of Living Systems, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
45
|
Bock AS, Murthy AC, Tang WS, Jovic N, Shewmaker F, Mittal J, Fawzi NL. N-terminal acetylation modestly enhances phase separation and reduces aggregation of the low-complexity domain of RNA-binding protein fused in sarcoma. Protein Sci 2021; 30:1337-1349. [PMID: 33547841 DOI: 10.1002/pro.4029] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 12/22/2022]
Abstract
The RNA-binding protein fused in sarcoma (FUS) assembles via liquid-liquid phase separation (LLPS) into functional RNA granules and aggregates in amyotrophic lateral sclerosis associated neuronal inclusions. Several studies have demonstrated that posttranslational modification (PTM) can significantly alter FUS phase separation and aggregation, particularly charge-altering phosphorylation of the nearly uncharged N-terminal low complexity domain of FUS (FUS LC). However, the occurrence and impact of N-terminal acetylation on FUS phase separation remains unexplored, even though N-terminal acetylation is the most common PTM in mammals and changes the charge at the N-terminus. First, we find that FUS is predominantly acetylated in two human cell types and stress conditions. Next, we show that recombinant FUS LC can be acetylated when co-expressed with the NatA complex in Escherichia coli. Using NMR spectroscopy, we find that N-terminal acetylated FUS LC (FUS LC Nt-Ac) does not notably alter monomeric FUS LC structure or motions. Despite no difference in structure, Nt-Ac-FUS LC phase separates more avidly than unmodified FUS LC. More importantly, N-terminal acetylation of FUS LC reduces aggregation. Our findings highlight the importance of N-terminal acetylation of proteins that undergo physiological LLPS and pathological aggregation.
Collapse
Affiliation(s)
- Anna S Bock
- Graduate Program in Biotechnology, Brown University, Providence, Rhode Island, USA
| | - Anastasia C Murthy
- Graduate Program in Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Wai Shing Tang
- Graduate Program in Physics, Brown University, Providence, Rhode Island, USA
| | - Nina Jovic
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Frank Shewmaker
- Department of Biochemistry, Uniformed Services University, Bethesda, Maryland, USA
| | - Jeetain Mittal
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Nicolas L Fawzi
- The Robert J and Nancy D Carney Institute for Brain Science & Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
46
|
Schuster BS, Regy RM, Dolan EM, Kanchi Ranganath A, Jovic N, Khare SD, Shi Z, Mittal J. Biomolecular Condensates: Sequence Determinants of Phase Separation, Microstructural Organization, Enzymatic Activity, and Material Properties. J Phys Chem B 2021; 125:3441-3451. [PMID: 33661634 DOI: 10.1021/acs.jpcb.0c11606] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This perspective article highlights recent progress and emerging challenges in understanding the formation and function of membraneless organelles (MLOs). A long-term goal in the MLO field is to identify the sequence-encoded rules that dictate the formation of compositionally controlled biomolecular condensates, which cells utilize to perform a wide variety of functions. The molecular organization of the different components within a condensate can vary significantly, ranging from a homogeneous mixture to core-shell droplet structures. We provide many examples to highlight the richness of the observed behavior and potential research directions for improving our mechanistic understanding. The tunable environment within condensates can, in principle, alter enzymatic activity significantly. We examine recent examples where this was demonstrated, including applications in synthetic biology. An important question about MLOs is the role of liquid-like material properties in biological function. We discuss the need for improved quantitative characterization tools and the development of sequence-structure-dynamics relationships.
Collapse
Affiliation(s)
- Benjamin S Schuster
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Roshan Mammen Regy
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Elliott M Dolan
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States.,Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Aishwarya Kanchi Ranganath
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Nina Jovic
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Sagar D Khare
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States.,Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Zheng Shi
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Jeetain Mittal
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|