1
|
Saporiti S, Bianchi D, Ben Mariem O, Rossi M, Guerrini U, Eberini I, Centola F. In silico evaluation of the role of Fab glycosylation in cetuximab antibody dynamics. Front Immunol 2024; 15:1429600. [PMID: 39185413 PMCID: PMC11342397 DOI: 10.3389/fimmu.2024.1429600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024] Open
Abstract
Introduction N-glycosylation is a post-translational modification that is highly important for the development of monoclonal antibodies (mAbs), as it regulates their biological activity, particularly in terms of immune effector functions. While typically added at the Fc level, approximately 15-25% of circulating antibodies exhibit glycosylation in the Fab domains as well. To the best of our knowledge, cetuximab (Erbitux®) is the only therapeutic antibody presenting Fab glycosylation approved world-wide targeting the epidermal growth factor receptor for the treatment of metastatic-colorectal and head and neck cancers. Additionally, it can trigger antibody-dependent cell cytotoxicity (ADCC), a response that typically is influenced by N-glycosylation at Fc level. However, the role of Fab glycosylation in cetuximab remains poorly understood. Hence, this study aims to investigate the structural role of Fab glycosylation on the conformational behavior of cetuximab. Methods The study was performed in silico via accelerated molecular dynamics simulations. The commercial cetuximab was compared to its form without Fab glycosylation and structural descriptors were evaluated to establish conformational differences. Results The results clearly show a correlation between the Fab glycosylation and structural descriptors that may modulate the conformational freedom of the antibody, potentially affecting Fc effector functions, and suggesting a negative role of Fab glycosylation on the interaction with FcγRIIIa. Conclusion Fab glycosylation of cetuximab is the most critical challenge for biosimilar development, but the differences highlighted in this work with respect to its aglycosylated form can improve the knowledge and represent also a great opportunity to develop novel strategies of biotherapeutics.
Collapse
Affiliation(s)
- Simona Saporiti
- Analytical Excellence and Program Management, Merck Serono S.p.A., Rome, Italy
| | - Davide Bianchi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Omar Ben Mariem
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Mara Rossi
- Analytical Excellence and Program Management, Merck Serono S.p.A., Rome, Italy
| | - Uliano Guerrini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Ivano Eberini
- Dipartimento di Scienze Farmacologiche e Biomolecolari & Data Science Research Center (DSRC), Università degli Studi di Milano, Milan, Italy
| | - Fabio Centola
- Analytical Excellence and Program Management, Merck Serono S.p.A., Rome, Italy
| |
Collapse
|
2
|
Pasala C, Sharma S, Roychowdhury T, Moroni E, Colombo G, Chiosis G. N-Glycosylation as a Modulator of Protein Conformation and Assembly in Disease. Biomolecules 2024; 14:282. [PMID: 38540703 PMCID: PMC10968129 DOI: 10.3390/biom14030282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 05/01/2024] Open
Abstract
Glycosylation, a prevalent post-translational modification, plays a pivotal role in regulating intricate cellular processes by covalently attaching glycans to macromolecules. Dysregulated glycosylation is linked to a spectrum of diseases, encompassing cancer, neurodegenerative disorders, congenital disorders, infections, and inflammation. This review delves into the intricate interplay between glycosylation and protein conformation, with a specific focus on the profound impact of N-glycans on the selection of distinct protein conformations characterized by distinct interactomes-namely, protein assemblies-under normal and pathological conditions across various diseases. We begin by examining the spike protein of the SARS virus, illustrating how N-glycans regulate the infectivity of pathogenic agents. Subsequently, we utilize the prion protein and the chaperone glucose-regulated protein 94 as examples, exploring instances where N-glycosylation transforms physiological protein structures into disease-associated forms. Unraveling these connections provides valuable insights into potential therapeutic avenues and a deeper comprehension of the molecular intricacies that underlie disease conditions. This exploration of glycosylation's influence on protein conformation effectively bridges the gap between the glycome and disease, offering a comprehensive perspective on the therapeutic implications of targeting conformational mutants and their pathologic assemblies in various diseases. The goal is to unravel the nuances of these post-translational modifications, shedding light on how they contribute to the intricate interplay between protein conformation, assembly, and disease.
Collapse
Affiliation(s)
- Chiranjeevi Pasala
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (C.P.); (S.S.); (T.R.)
| | - Sahil Sharma
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (C.P.); (S.S.); (T.R.)
| | - Tanaya Roychowdhury
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (C.P.); (S.S.); (T.R.)
| | - Elisabetta Moroni
- The Institute of Chemical Sciences and Technologies (SCITEC), Italian National Research Council (CNR), 20131 Milano, Italy; (E.M.); (G.C.)
| | - Giorgio Colombo
- The Institute of Chemical Sciences and Technologies (SCITEC), Italian National Research Council (CNR), 20131 Milano, Italy; (E.M.); (G.C.)
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (C.P.); (S.S.); (T.R.)
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
3
|
Gstöttner C, Lippold S, Hook M, Yang F, Haberger M, Wuhrer M, Falck D, Schlothauer T, Domínguez-Vega E. Benchmarking glycoform-resolved affinity separation - mass spectrometry assays for studying FcγRIIIa binding. Front Immunol 2024; 15:1347871. [PMID: 38469305 PMCID: PMC10925690 DOI: 10.3389/fimmu.2024.1347871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/05/2024] [Indexed: 03/13/2024] Open
Abstract
The antibody- FcγRIIIa interaction triggers key immunological responses such as antibody dependent cellular cytotoxicity (ADCC), making it highly important for therapeutic mAbs. Due to the direct glycan-glycan interaction with FcγRIIIa receptor, differences in antibody glycosylation can drastically influence the binding affinity. Understanding the differential binding of mAb glycoforms is a very important, yet challenging task due to the co-existence of multiple glycoforms in a sample. Affinity liquid chromatography (AC) and affinity capillary electrophoresis (ACE) hyphenated with mass spectrometry (MS) can provide glycoform-resolved affinity profiles of proteins based on their differences in either dissociation (AC) or equilibrium (ACE) constants. To cross-validate the affinity ranking provided by these complementary novel approaches, both techniques were benchmarked using the same FcγRIIIa constructs. Both approaches were able to assess the mAb - FcγRIIIa interaction in a glycoform selective manner and showed a clear increase in binding for fully versus hemi-fucosylated mAbs. Also, other features, such as increasing affinity with elevated galactosylation or the binding affinity for high mannose glycoforms were consistent. We further applied these approaches to assess the binding towards the F158 allotype of FcγRIIIa, which was not reported before. The FcγRIIIa F158 allotype showed a very similar profile compared to the V158 receptor with the strongest increase in binding due to afucosylation and only a slight increase in binding with additional galactosylation. Both techniques showed a decrease of the binding affinity for high mannose glycoforms for FcγRIIIa F158 compared to the V158 variant. Overall, both approaches provided very comparable results in line with orthogonal methods proving the capabilities of separation-based affinity approaches to study FcγR binding of antibody glycoforms.
Collapse
Affiliation(s)
- Christoph Gstöttner
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Steffen Lippold
- Protein Analytical Chemistry, Genentech, A Member of the Roche Group, South San Francisco, CA, United States
| | - Michaela Hook
- Pharma Technical Development Penzberg, Roche Diagnostics GmbH, Penzberg, Germany
| | - Feng Yang
- Protein Analytical Chemistry, Genentech, A Member of the Roche Group, South San Francisco, CA, United States
| | - Markus Haberger
- Pharma Technical Development Penzberg, Roche Diagnostics GmbH, Penzberg, Germany
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - David Falck
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Tilman Schlothauer
- Pharma Research and Early Development, Roche Innovation Center, Munich, Germany
| | - Elena Domínguez-Vega
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
4
|
Guo D, De Sciscio ML, Chi-Fung Ng J, Fraternali F. Modelling the assembly and flexibility of antibody structures. Curr Opin Struct Biol 2024; 84:102757. [PMID: 38118364 DOI: 10.1016/j.sbi.2023.102757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/22/2023]
Abstract
Antibodies are large protein assemblies capable of both specifically recognising antigens and engaging with other proteins and receptors to coordinate immune action. Traditionally, structural studies have been dedicated to antibody variable regions, but efforts to determine and model full-length antibody structures are emerging. Here we review the current knowledge on modelling the structures of antibody assemblies, focusing on their conformational flexibility and the challenge this poses to obtaining and evaluating structural models. Integrative modelling approaches, combining experiments (cryo-electron microscopy, mass spectrometry, etc.) and computational methods (molecular dynamics simulations, deep-learning based approaches, etc.), hold the promise to map the complex conformational landscape of full-length antibody structures.
Collapse
Affiliation(s)
- Dongjun Guo
- Institute of Structural and Molecular Biology, University College London, Darwin Building, Gower Street, London, WC1E 6BT, United Kingdom; Randall Centre for Cell & Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, United Kingdom
| | - Maria Laura De Sciscio
- Institute of Structural and Molecular Biology, University College London, Darwin Building, Gower Street, London, WC1E 6BT, United Kingdom; Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, Rome, 00185, Italy
| | - Joseph Chi-Fung Ng
- Institute of Structural and Molecular Biology, University College London, Darwin Building, Gower Street, London, WC1E 6BT, United Kingdom
| | - Franca Fraternali
- Institute of Structural and Molecular Biology, University College London, Darwin Building, Gower Street, London, WC1E 6BT, United Kingdom.
| |
Collapse
|
5
|
Prass T, Garidel P, Blech M, Schäfer LV. Viscosity Prediction of High-Concentration Antibody Solutions with Atomistic Simulations. J Chem Inf Model 2023; 63:6129-6140. [PMID: 37757589 PMCID: PMC10565822 DOI: 10.1021/acs.jcim.3c00947] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Indexed: 09/29/2023]
Abstract
The computational prediction of the viscosity of dense protein solutions is highly desirable, for example, in the early development phase of high-concentration biopharmaceutical formulations where the material needed for experimental determination is typically limited. Here, we use large-scale atomistic molecular dynamics (MD) simulations with explicit solvation to de novo predict the dynamic viscosities of solutions of a monoclonal IgG1 antibody (mAb) from the pressure fluctuations using a Green-Kubo approach. The viscosities at simulated mAb concentrations of 200 and 250 mg/mL are compared to the experimental values, which we measured with rotational rheometry. The computational viscosity of 24 mPa·s at the mAb concentration of 250 mg/mL matches the experimental value of 23 mPa·s obtained at a concentration of 213 mg/mL, indicating slightly different effective concentrations (or activities) in the MD simulations and in the experiments. This difference is assigned to a slight underestimation of the effective mAb-mAb interactions in the simulations, leading to a too loose dynamic mAb network that governs the viscosity. Taken together, this study demonstrates the feasibility of all-atom MD simulations for predicting the properties of dense mAb solutions and provides detailed microscopic insights into the underlying molecular interactions. At the same time, it also shows that there is room for further improvements and highlights challenges, such as the massive sampling required for computing collective properties of dense biomolecular solutions in the high-viscosity regime with reasonable statistical precision.
Collapse
Affiliation(s)
- Tobias
M. Prass
- Center
for Theoretical Chemistry, Ruhr University
Bochum, D-44780 Bochum, Germany
| | - Patrick Garidel
- Boehringer
Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, D-88397 Biberach
an der Riss, Germany
| | - Michaela Blech
- Boehringer
Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, D-88397 Biberach
an der Riss, Germany
| | - Lars V. Schäfer
- Center
for Theoretical Chemistry, Ruhr University
Bochum, D-44780 Bochum, Germany
| |
Collapse
|
6
|
Lippold S, Mistry K, Lenka S, Whang K, Liu P, Pitschi S, Kuhne F, Reusch D, Cadang L, Knaupp A, Izadi S, Dunkle A, Yang F, Schlothauer T. Function-structure approach reveals novel insights on the interplay of Immunoglobulin G 1 proteoforms and Fc gamma receptor IIa allotypes. Front Immunol 2023; 14:1260446. [PMID: 37790943 PMCID: PMC10544997 DOI: 10.3389/fimmu.2023.1260446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/30/2023] [Indexed: 10/05/2023] Open
Abstract
Human Fc gamma receptor IIa (FcγRIIa) or CD32a has two major allotypes with a single amino acid difference at position 131 (histidine or arginine). Differences in FcγRIIa allotypes are known to impact immunological responses such as the clinical outcome of therapeutic monoclonal antibodies (mAbs). FcγRIIa is involved in antibody-dependent cellular phagocytosis (ADCP), which is an important contributor to the mechanism-of-action of mAbs by driving phagocytic clearance of cancer cells. Hence, understanding the impact of individual mAb proteoforms on the binding to FcγRIIa, and its different allotypes, is crucial for defining meaningful critical quality attributes (CQAs). Here, we report a function-structure based approach guided by novel FcγRIIa affinity chromatography-mass spectrometry (AC-MS) assays to assess individual IgG1 proteoforms. This allowed to unravel allotype-specific differences of IgG1 proteoforms on FcγRIIa binding. FcγRIIa AC-MS confirmed and refined structure-function relationships of IgG1 glycoform interactions. For example, the positive impact of afucosylation was higher than galactosylation for FcγRIIa Arg compared to FcγRIIa His. Moreover, we observed FcγRIIa allotype-opposing and IgG1 proteoform integrity-dependent differences in the binding response of stress-induced IgG1 proteoforms comprising asparagine 325 deamidation. The FcγRIIa-allotype dependent binding differences resolved by AC-MS were in line with functional ADCP-surrogate bioassay models. The molecular basis of the observed allotype specificity and proteoform selectivity upon asparagine 325 deamidation was elucidated using molecular dynamics. The observed differences were attributed to the contributions of an inter-molecular salt bridge between IgG1 and FcγRIIa Arg and the contribution of an intra-molecular hydrophobic pocket in IgG1. Our work highlights the unprecedented structural and functional resolution of AC-MS approaches along with predictive biological significance of observed affinity differences within relevant cell-based methods. This makes FcγRIIa AC-MS an invaluable tool to streamline the CQA assessment of therapeutic mAbs.
Collapse
Affiliation(s)
- Steffen Lippold
- Protein Analytical Chemistry, Genentech, A Member of the Roche Group, South San Francisco, CA, United States
| | - Karishma Mistry
- Biological Technologies, Genentech, A Member of the Roche Group, South San Francisco, CA, United States
| | - Sunidhi Lenka
- Pharmaceutical Development, Genentech, A Member of The Roche Group, South San Francisco, CA, United States
| | - Kevin Whang
- Biological Technologies, Genentech, A Member of the Roche Group, South San Francisco, CA, United States
| | - Peilu Liu
- Protein Analytical Chemistry, Genentech, A Member of the Roche Group, South San Francisco, CA, United States
| | - Sebastian Pitschi
- Pharma Technical Development Europe, Roche Diagnostics GmbH, Penzberg, Germany
| | - Felix Kuhne
- Pharma Technical Development Europe, Roche Diagnostics GmbH, Penzberg, Germany
| | - Dietmar Reusch
- Pharma Technical Development Europe, Roche Diagnostics GmbH, Penzberg, Germany
| | - Lance Cadang
- Protein Analytical Chemistry, Genentech, A Member of the Roche Group, South San Francisco, CA, United States
| | - Alexander Knaupp
- Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Saeed Izadi
- Pharmaceutical Development, Genentech, A Member of The Roche Group, South San Francisco, CA, United States
| | - Alexis Dunkle
- Biological Technologies, Genentech, A Member of the Roche Group, South San Francisco, CA, United States
| | - Feng Yang
- Protein Analytical Chemistry, Genentech, A Member of the Roche Group, South San Francisco, CA, United States
| | - Tilman Schlothauer
- Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
7
|
Natesan R, Agrawal NJ. IgG1 and IgG4 antibodies sample initial structure dependent local conformational states and exhibit non-identical Fab dynamics. Sci Rep 2023; 13:4791. [PMID: 36959284 PMCID: PMC10036467 DOI: 10.1038/s41598-023-32067-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/22/2023] [Indexed: 03/25/2023] Open
Abstract
We have investigated the dynamics of two [Formula: see text]-immunoglobulin molecules, IgG1 and IgG4, using long all atom molecular dynamics simulations. We first show that the de novo structures of IgG1 and IgG4 predicted using AlphaFold, with no interactions between the fragment crystallizable (Fc) domain and the antigen fragment binding domain (Fab), eventually relaxes to a state with persistent Fc-Fab interactions that mirrors experimentally resolved structures. We quantified the conformational space sampled by antibody trajectories spawned from six different initial structures and show that the individual trajectories only sample states bound by a local minimum and display very little mixing in their conformational states. Furthermore, the dynamics of the individual Fab domains are strongly dependent on the initial crystal structure and isotype. In all conditions, we observe non-identical dynamics between the Fab arms in an antibody. For a six-bead coarse grained model, we show that non-covalent Fc-Fab interactions can modulate the stiffnesses associated with Fc-Fab distances, angles, and dihedral angles by up to three orders of magnitude. Our results clearly illustrate the inherent complexities in studying antibody dynamics and highlight the need to include non-identical Fab dynamics as an inherent feature in computational models of therapeutic antibodies.
Collapse
Affiliation(s)
| | - Neeraj J Agrawal
- Process Development, Amgen Inc., 360 Binney St, Cambridge, MA, 02141, USA.
| |
Collapse
|
8
|
Saporiti S, Laurenzi T, Guerrini U, Coppa C, Palinsky W, Benigno G, Palazzolo L, Ben Mariem O, Montavoci L, Rossi M, Centola F, Eberini I. Effect of Fc core fucosylation and light chain isotype on IgG1 flexibility. Commun Biol 2023; 6:237. [PMID: 36869088 PMCID: PMC9982779 DOI: 10.1038/s42003-023-04622-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/21/2023] [Indexed: 03/05/2023] Open
Abstract
N-glycosylation plays a key role in modulating the bioactivity of monoclonal antibodies (mAbs), as well as the light chain (LC) isotype can influence their physicochemical properties. However, investigating the impact of such features on mAbs conformational behavior is a big challenge, due to the very high flexibility of these biomolecules. In this work we investigate, by accelerated molecular dynamics (aMD), the conformational behavior of two commercial immunoglobulins G1 (IgG1), representative of κ and λ LCs antibodies, in both their fucosylated and afucosylated forms. Our results show, through the identification of a stable conformation, how the combination of fucosylation and LC isotype modulates the hinge behavior, the Fc conformation and the position of the glycan chains, all factors potentially affecting the binding to the FcγRs. This work also represents a technological enhancement in the conformational exploration of mAbs, making aMD a suitable approach to clarify experimental results.
Collapse
Affiliation(s)
- Simona Saporiti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti, 9, 20133, Milan, Italy
| | - Tommaso Laurenzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti, 9, 20133, Milan, Italy
| | - Uliano Guerrini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti, 9, 20133, Milan, Italy
| | - Crescenzo Coppa
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Sezione di Chimica Generale e Organica "A. Marchesini", Via Venezian, 21, 20133, Milano, Italy
| | - Wolf Palinsky
- Biotech Development Programme, Merck Biopharma, Aubonne, Switzerland
| | - Giulia Benigno
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti, 9, 20133, Milan, Italy
| | - Luca Palazzolo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti, 9, 20133, Milan, Italy
| | - Omar Ben Mariem
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti, 9, 20133, Milan, Italy
| | - Linda Montavoci
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti, 9, 20133, Milan, Italy
| | - Mara Rossi
- Global Analytical Pharmaceutical Science and Innovation, Merck Serono S.p.A., Rome, Italy
| | - Fabio Centola
- Global Analytical Pharmaceutical Science and Innovation, Merck Serono S.p.A., Rome, Italy.
| | - Ivano Eberini
- Dipartimento di Scienze Farmacologiche e Biomolecolari & DSRC, Università degli Studi di Milano, Via Balzaretti, 9, 20133, Milan, Italy
| |
Collapse
|
9
|
Ben Mariem O, Saporiti S, Guerrini U, Laurenzi T, Palazzolo L, Indiveri C, Barile M, De Fabiani E, Eberini I. In silico investigation on structure-function relationship of members belonging to the human SLC52 transporter family. Proteins 2022; 91:619-633. [PMID: 36511838 DOI: 10.1002/prot.26453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/18/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Riboflavin is an essential water-soluble vitamin that needs to be provided through the diet because of the conversion into flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN), important cofactors in hundreds of flavoenzymes. The adsorption and distribution of riboflavin is mediated by transmembrane transporters of the SLC52 family, namely RFVT1-3, whose mutations are mainly associated with two diseases, MADD and the Brown-Vialetto-Van Laere syndrome. Interest in RFVTs as pharmacological targets has increased in the last few years due to their overexpression in several cancer cells, which can be exploited both by blocking the uptake of riboflavin into the cancerous cells, and by performing cancer targeted delivery of drugs with a high affinity for RFVTs. In this work, we propose three-dimensional structural models for all three human riboflavin transporters obtained by state-of-the-art artificial intelligence-based methods, which were then further refined with molecular dynamics simulations. Furthermore, two of the most notable mutations concerning RFVT2 and RFVT3 (W31S and N21S, respectively) were investigated studying the interactions between the wild-type and mutated transporters with riboflavin.
Collapse
Affiliation(s)
- Omar Ben Mariem
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Giuseppe Balzaretti 9, Milan, Italy
| | - Simona Saporiti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Giuseppe Balzaretti 9, Milan, Italy
| | - Uliano Guerrini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Giuseppe Balzaretti 9, Milan, Italy
| | - Tommaso Laurenzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Giuseppe Balzaretti 9, Milan, Italy
| | - Luca Palazzolo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Giuseppe Balzaretti 9, Milan, Italy
| | - Cesare Indiveri
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy.,Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci cubo 4C, Arcavacata di Rende, Italy
| | - Maria Barile
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari A.Moro, Bari, Italy
| | - Emma De Fabiani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Giuseppe Balzaretti 9, Milan, Italy
| | - Ivano Eberini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Giuseppe Balzaretti 9, Milan, Italy.,DSRC, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|