1
|
Chen J, Mirvis M, Ekman A, Vanslembrouck B, Le Gros M, Larabell C, Marshall WF. Automated segmentation of soft X-ray tomography: native cellular structure with sub-micron resolution at high throughput for whole-cell quantitative imaging in yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621371. [PMID: 39554159 PMCID: PMC11565976 DOI: 10.1101/2024.10.31.621371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Soft X-ray tomography (SXT) is an invaluable tool for quantitatively analyzing cellular structures at sub-optical isotropic resolution. However, it has traditionally depended on manual segmentation, limiting its scalability for large datasets. Here, we leverage a deep learning-based auto-segmentation pipeline to segment and label cellular structures in hundreds of cells across three Saccharomyces cerevisiae strains. This task-based pipeline employs manual iterative refinement to improve segmentation accuracy for key structures, including the cell body, nucleus, vacuole, and lipid droplets, enabling high-throughput and precise phenotypic analysis. Using this approach, we quantitatively compared the 3D whole-cell morphometric characteristics of wild-type, VPH1-GFP, and vac14 strains, uncovering detailed strain-specific cell and organelle size and shape variations. We show the utility of SXT data for precise 3D curvature analysis of entire organelles and cells and detection of fine morphological features using surface meshes. Our approach facilitates comparative analyses with high spatial precision and statistical throughput, uncovering subtle morphological features at the single cell and population level. This workflow significantly enhances our ability to characterize cell anatomy and supports scalable studies on the mesoscale, with applications in investigating cellular architecture, organelle biology, and genetic research across diverse biological contexts. Significance Statement Soft X-ray tomography offers many powerful features for whole-cell multi-organelle imaging, but, like other high resolution volumetric imaging modalities, is typically limited by low throughput due to laborious segmentation.Auto-segmentation for soft X-ray tomography overcomes this limitation, enabling statistical 3D morphometric analysis of multiple organelles in whole cells across cell populations. The combination of high 3D resolution of SXT data with statistically useful throughput represents an avenue for more thorough characterizations of cells in toto and opens new mesoscale biological questions and statistical whole-cell modeling of organelle and cell morphology, interactions, and responses to perturbations.
Collapse
|
2
|
Alimohamadi H, Luo EWC, Gupta S, de Anda J, Yang R, Mandal T, Wong GCL. Comparing Multifunctional Viral and Eukaryotic Proteins for Generating Scission Necks in Membranes. ACS NANO 2024; 18:15545-15556. [PMID: 38838261 DOI: 10.1021/acsnano.4c00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Deterministic formation of membrane scission necks by protein machinery with multiplexed functions is critical in biology. A microbial example is M2 viroporin, a proton pump from the influenza A virus that is multiplexed with membrane remodeling activity to induce budding and scission in the host membrane during viral maturation. In comparison, the dynamin family constitutes a class of eukaryotic proteins implicated in mitochondrial fission, as well as various budding and endocytosis pathways. In the case of Dnm1, the mitochondrial fission protein in yeast, the membrane remodeling activity is multiplexed with mechanoenzyme activity to create fission necks. It is not clear why these functions are combined in these scission processes, which occur in drastically different compositions and solution conditions. In general, direct experimental access to changing neck sizes induced by individual proteins or peptide fragments is challenging due to the nanoscale dimensions and influence of thermal fluctuations. Here, we use a mechanical model to estimate the size of scission necks by leveraging small-angle X-ray scattering structural data of protein-lipid systems under different conditions. The influence of interfacial tension, lipid composition, and membrane budding morphology on the size of the induced scission necks is systematically investigated using our data and molecular dynamic simulations. We find that the M2 budding protein from the influenza A virus has robust pH-dependent membrane activity that induces nanoscopic necks within the range of spontaneous hemifission for a broad range of lipid compositions. In contrast, the sizes of scission necks generated by mitochondrial fission proteins strongly depend on lipid composition, which suggests a role for mechanical constriction.
Collapse
Affiliation(s)
- Haleh Alimohamadi
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90025, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Elizabeth Wei-Chia Luo
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90025, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Shivam Gupta
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Jaime de Anda
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90025, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Rena Yang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90025, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Taraknath Mandal
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90025, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
3
|
Lee CT, Rangamani P. Modeling the mechanochemical feedback for membrane-protein interactions using a continuum mesh model. Methods Enzymol 2024; 701:387-424. [PMID: 39025577 DOI: 10.1016/bs.mie.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The Helfrich free energy is widely used to model the generation of membrane curvature due to different physical and chemical components. The governing equations resulting from the energy minimization procedure are a system of coupled higher order partial differential equations. Simulations of membrane deformation for obtaining quantitative comparisons against experimental observations require computational schemes that will allow us to solve these equations without restrictions to axisymmetric coordinates. Here, we describe one such tool that we developed in our group based on discrete differential geometry to solve these equations along with examples.
Collapse
Affiliation(s)
- Christopher T Lee
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, United States.
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, United States.
| |
Collapse
|
4
|
Bonilla-Quintana M, Rangamani P. Biophysical Modeling of Actin-Mediated Structural Plasticity Reveals Mechanical Adaptation in Dendritic Spines. eNeuro 2024; 11:ENEURO.0497-23.2024. [PMID: 38383589 DOI: 10.1523/eneuro.0497-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/13/2024] [Indexed: 02/23/2024] Open
Abstract
Synaptic plasticity is important for learning and memory formation; it describes the strengthening or weakening of connections between synapses. The postsynaptic part of excitatory synapses resides in dendritic spines, which are small protrusions on the dendrites. One of the key features of synaptic plasticity is its correlation with the size of these spines. A long-lasting synaptic strength increase [long-term potentiation (LTP)] is only possible through the reconfiguration of the actin spine cytoskeleton. Here, we develop an experimentally informed three-dimensional computational model in a moving boundary framework to investigate this reconfiguration. Our model describes the reactions between actin and actin-binding proteins leading to the cytoskeleton remodeling and their effect on the spine membrane shape to examine the spine enlargement upon LTP. Moreover, we find that the incorporation of perisynaptic elements enhances spine enlargement upon LTP, exhibiting the importance of accounting for these elements when studying structural LTP. Our model shows adaptation to repeated stimuli resulting from the interactions between spine proteins and mechanical forces.
Collapse
Affiliation(s)
- Mayte Bonilla-Quintana
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California 92093
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California 92093
| |
Collapse
|
5
|
Yuan F, Lee CT, Sangani A, Houser JR, Wang L, Lafer EM, Rangamani P, Stachowiak JC. The ins and outs of membrane bending by intrinsically disordered proteins. SCIENCE ADVANCES 2023; 9:eadg3485. [PMID: 37418523 PMCID: PMC10328403 DOI: 10.1126/sciadv.adg3485] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 06/07/2023] [Indexed: 07/09/2023]
Abstract
Membrane curvature is essential to diverse cellular functions. While classically attributed to structured domains, recent work illustrates that intrinsically disordered proteins are also potent drivers of membrane bending. Specifically, repulsive interactions among disordered domains drive convex bending, while attractive interactions drive concave bending, creating membrane-bound, liquid-like condensates. How might disordered domains that contain both repulsive and attractive domains affect curvature? Here, we examined chimeras that combined attractive and repulsive interactions. When the attractive domain was closer to the membrane, its condensation amplified steric pressure among repulsive domains, leading to convex curvature. In contrast, when the repulsive domain was closer to the membrane, attractive interactions dominated, resulting in concave curvature. Further, a transition from convex to concave curvature occurred with increasing ionic strength, which reduced repulsion while enhancing condensation. In agreement with a simple mechanical model, these results illustrate a set of design rules for membrane bending by disordered proteins.
Collapse
Affiliation(s)
- Feng Yuan
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Christopher T. Lee
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, USA
| | - Arjun Sangani
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Justin R. Houser
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Liping Wang
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Eileen M. Lafer
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, USA
| | - Jeanne C. Stachowiak
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
6
|
Mahapatra A, Rangamani P. Formation of protein-mediated bilayer tubes is governed by a snapthrough transition. SOFT MATTER 2023; 19:4345-4359. [PMID: 37255421 PMCID: PMC10330560 DOI: 10.1039/d2sm01676a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Plasma membrane tubes are ubiquitous in cellular membranes and in the membranes of intracellular organelles. They play crucial roles in trafficking, ion transport, and cellular motility. These tubes can be formed due to localized forces acting on the membrane or by the curvature induced by membrane-bound proteins. Here, we present a mathematical framework to model cylindrical tubular protrusions formed by proteins that induce anisotropic spontaneous curvature. Our analysis revealed that the tube radius depends on an effective tension that includes contributions from the bare membrane tension and the protein-induced curvature. We also found that the length of the tube undergoes an abrupt transition from a short, dome-shaped membrane to a long cylinder and this transition is characteristic of a snapthrough instability. Finally, we show that the snapthrough instability depends on the different parameters including coat area, bending modulus, and extent of protein-induced curvature. Our findings have implications for tube formation due to BAR-domain proteins in processes such as endocytosis, t-tubule formation in myocytes, and cristae formation in mitochondria.
Collapse
Affiliation(s)
- Arijit Mahapatra
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093, USA.
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
7
|
Fu Y, Johnson ME. Modeling membrane reshaping driven by dynamic protein assemblies. Curr Opin Struct Biol 2023; 78:102505. [PMID: 36528994 PMCID: PMC9908840 DOI: 10.1016/j.sbi.2022.102505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 12/23/2022]
Abstract
Remodeling of membranes in living systems is almost universally coupled to self-assembly of soluble proteins. Proteins assemble into semi-rigid shells that reshape attached membranes, and into filaments that protrude membranes. These assemblies are temporary, building from reversible protein and membrane interactions that must nucleate in the proper location. The interactions are strongly influenced by the nonequilibrium environment of the cell, such as gradients of components or active modifications by kinases. From a modeling perspective, understanding mechanisms and control thus requires 1. time-dependent approaches that ideally incorporate 2. macromolecular structure, 3. out-of-equilibrium processes, and 4. deformable membranes over microns and seconds. Realistically, tradeoffs must be made with these last three features. However, we see recent developments from the highly coarsened molecule-based scale, the continuum reaction-diffusion scale, and hybrid approaches as stimulating efforts in diverse applications. We discuss here methodological advances and progress towards simulating these processes as they occur physiologically.
Collapse
Affiliation(s)
- Yiben Fu
- T. C. Jenkins Department of Biophysics, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Margaret E Johnson
- T. C. Jenkins Department of Biophysics, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA.
| |
Collapse
|