1
|
Scheffer M, Bockting CL, Borsboom D, Cools R, Delecroix C, Hartmann JA, Kendler KS, van de Leemput I, van der Maas HLJ, van Nes E, Mattson M, McGorry PD, Nelson B. A Dynamical Systems View of Psychiatric Disorders-Practical Implications: A Review. JAMA Psychiatry 2024; 81:624-630. [PMID: 38568618 DOI: 10.1001/jamapsychiatry.2024.0228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Importance Dynamical systems theory is widely used to explain tipping points, cycles, and chaos in complex systems ranging from the climate to ecosystems. It has been suggested that the same theory may be used to explain the nature and dynamics of psychiatric disorders, which may come and go with symptoms changing over a lifetime. Here we review evidence for the practical applicability of this theory and its quantitative tools in psychiatry. Observations Emerging results suggest that time series of mood and behavior may be used to monitor the resilience of patients using the same generic dynamical indicators that are now employed globally to monitor the risks of collapse of complex systems, such as tropical rainforest and tipping elements of the climate system. Other dynamical systems tools used in ecology and climate science open ways to infer personalized webs of causality for patients that may be used to identify targets for intervention. Meanwhile, experiences in ecological restoration help make sense of the occasional long-term success of short interventions. Conclusions and Relevance Those observations, while promising, evoke follow-up questions on how best to collect dynamic data, infer informative timescales, construct mechanistic models, and measure the effect of interventions on resilience. Done well, monitoring resilience to inform well-timed interventions may be integrated into approaches that give patients an active role in the lifelong challenge of managing their resilience and knowing when to seek professional help.
Collapse
|
2
|
John YJ, Sawyer KS, Srinivasan K, Müller EJ, Munn BR, Shine JM. It's about time: Linking dynamical systems with human neuroimaging to understand the brain. Netw Neurosci 2022; 6:960-979. [PMID: 36875012 PMCID: PMC9976648 DOI: 10.1162/netn_a_00230] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/04/2022] [Indexed: 11/04/2022] Open
Abstract
Most human neuroscience research to date has focused on statistical approaches that describe stationary patterns of localized neural activity or blood flow. While these patterns are often interpreted in light of dynamic, information-processing concepts, the static, local, and inferential nature of the statistical approach makes it challenging to directly link neuroimaging results to plausible underlying neural mechanisms. Here, we argue that dynamical systems theory provides the crucial mechanistic framework for characterizing both the brain's time-varying quality and its partial stability in the face of perturbations, and hence, that this perspective can have a profound impact on the interpretation of human neuroimaging results and their relationship with behavior. After briefly reviewing some key terminology, we identify three key ways in which neuroimaging analyses can embrace a dynamical systems perspective: by shifting from a local to a more global perspective, by focusing on dynamics instead of static snapshots of neural activity, and by embracing modeling approaches that map neural dynamics using "forward" models. Through this approach, we envisage ample opportunities for neuroimaging researchers to enrich their understanding of the dynamic neural mechanisms that support a wide array of brain functions, both in health and in the setting of psychopathology.
Collapse
Affiliation(s)
- Yohan J. John
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, USA
| | - Kayle S. Sawyer
- Departments of Anatomy and Neurobiology, Boston University, Boston University, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Boston VA Healthcare System, Boston, MA, USA
- Sawyer Scientific, LLC, Boston, MA, USA
| | - Karthik Srinivasan
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Eli J. Müller
- Brain and Mind Center, University of Sydney, Sydney, NSW, Australia
| | - Brandon R. Munn
- Brain and Mind Center, University of Sydney, Sydney, NSW, Australia
| | - James M. Shine
- Brain and Mind Center, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
3
|
Paulus MP, Thompson WK. Computational approaches and machine learning for individual-level treatment predictions. Psychopharmacology (Berl) 2021; 238:1231-1239. [PMID: 31134293 PMCID: PMC6879811 DOI: 10.1007/s00213-019-05282-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/17/2019] [Indexed: 12/24/2022]
Abstract
RATIONALE The impact of neuroscience-based approaches for psychiatry on pragmatic clinical decision-making has been limited. Although neuroscience has provided insights into basic mechanisms of neural function, these insights have not improved the ability to generate better assessments, prognoses, diagnoses, or treatment of psychiatric conditions. OBJECTIVES To integrate the emerging findings in machine learning and computational psychiatry to address the question: what measures that are not derived from the patient's self-assessment or the assessment by a trained professional can be used to make more precise predictions about the individual's current state, the individual's future disease trajectory, or the probability to respond to a particular intervention? RESULTS Currently, the ability to use individual differences to predict differential outcomes is very modest possibly related to the fact that the effect sizes of interventions are small. There is emerging evidence of genetic and neuroimaging-based heterogeneity of psychiatric disorders, which contributes to imprecise predictions. Although the use of machine learning tools to generate clinically actionable predictions is still in its infancy, these approaches may identify subgroups enabling more precise predictions. In addition, computational psychiatry might provide explanatory disease models based on faulty updating of internal values or beliefs. CONCLUSIONS There is a need for larger studies, clinical trials using machine learning, or computational psychiatry model parameters predictions as actionable outcomes, comparing alternative explanatory computational models, and using translational approaches that apply similar paradigms and models in humans and animals.
Collapse
Affiliation(s)
- Martin P Paulus
- Laureate Institute for Brain Research, 6655 S Ave Tulsa, Yale, OK, 74136-3326, USA.
| | - Wesley K Thompson
- Family Medicine and Public Health, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
4
|
Uddin LQ. Bring the Noise: Reconceptualizing Spontaneous Neural Activity. Trends Cogn Sci 2020; 24:734-746. [PMID: 32600967 PMCID: PMC7429348 DOI: 10.1016/j.tics.2020.06.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/17/2022]
Abstract
Definitions of what constitutes the 'signal of interest' in neuroscience can be controversial, due in part to continuously evolving notions regarding the significance of spontaneous neural activity. This review highlights how the challenge of separating brain signal from noise has led to new conceptualizations of brain functional organization at both the micro- and macroscopic level. Recent debates in the functional neuroimaging community surrounding artifact removal processes have revived earlier discussions surrounding how to appropriately isolate and measure neuronal signals against a background of noise from various sources. Insights from electrophysiological studies and computational modeling can inform current theory and data analytic practices in human functional neuroimaging, given that signal and noise may be inextricably linked in the brain.
Collapse
Affiliation(s)
- Lucina Q Uddin
- Department of Psychology, University of Miami, PO Box 248185-0751, Coral Gables, FL 33124, USA; Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
5
|
Shafiei G, Zeighami Y, Clark CA, Coull JT, Nagano-Saito A, Leyton M, Dagher A, Mišic B. Dopamine Signaling Modulates the Stability and Integration of Intrinsic Brain Networks. Cereb Cortex 2020; 29:397-409. [PMID: 30357316 PMCID: PMC6294404 DOI: 10.1093/cercor/bhy264] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Indexed: 11/24/2022] Open
Abstract
Dopaminergic projections are hypothesized to stabilize neural signaling and neural representations, but how they shape regional information processing and large-scale network interactions remains unclear. Here we investigated effects of lowered dopamine levels on within-region temporal signal variability (measured by sample entropy) and between-region functional connectivity (measured by pairwise temporal correlations) in the healthy brain at rest. The acute phenylalanine and tyrosine depletion (APTD) method was used to decrease dopamine synthesis in 51 healthy participants who underwent resting-state functional MRI (fMRI) scanning. Functional connectivity and regional signal variability were estimated for each participant. Multivariate partial least squares (PLS) analysis was used to statistically assess changes in signal variability following APTD as compared with the balanced control treatment. The analysis captured a pattern of increased regional signal variability following dopamine depletion. Changes in hemodynamic signal variability were concomitant with changes in functional connectivity, such that nodes with greatest increase in signal variability following dopamine depletion also experienced greatest decrease in functional connectivity. Our results suggest that dopamine may act to stabilize neural signaling, particularly in networks related to motor function and orienting attention towards behaviorally-relevant stimuli. Moreover, dopamine-dependent signal variability is critically associated with functional embedding of individual areas in large-scale networks.
Collapse
Affiliation(s)
- Golia Shafiei
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Yashar Zeighami
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Crystal A Clark
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Jennifer T Coull
- Laboratoire des Neurosciences Cognitives UMR 7291, Federation 3C, Aix-Marseille University, France.,Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Atsuko Nagano-Saito
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montreal, QC, Canada.,Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montréal, Canada.,Department of Psychiatry, McGill University, Montréal, Canada
| | - Marco Leyton
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montreal, QC, Canada.,Department of Psychiatry, McGill University, Montréal, Canada
| | - Alain Dagher
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Bratislav Mišic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
6
|
The role that choice of model plays in predictions for epilepsy surgery. Sci Rep 2019; 9:7351. [PMID: 31089190 PMCID: PMC6517411 DOI: 10.1038/s41598-019-43871-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/02/2019] [Indexed: 12/26/2022] Open
Abstract
Mathematical modelling has been widely used to predict the effects of perturbations to brain networks. An important example is epilepsy surgery, where the perturbation in question is the removal of brain tissue in order to render the patient free of seizures. Different dynamical models have been proposed to represent transitions to ictal states in this context. However, our choice of which mathematical model to use to address this question relies on making assumptions regarding the mechanism that defines the transition from background to the seizure state. Since these mechanisms are unknown, it is important to understand how predictions from alternative dynamical descriptions compare. Herein we evaluate to what extent three different dynamical models provide consistent predictions for the effect of removing nodes from networks. We show that for small, directed, connected networks the three considered models provide consistent predictions. For larger networks, predictions are shown to be less consistent. However consistency is higher in networks that have sufficiently large differences in ictogenicity between nodes. We further demonstrate that heterogeneity in ictogenicity across nodes correlates with variability in the number of connections for each node.
Collapse
|
7
|
Payne DE, Karoly PJ, Freestone DR, Boston R, D'Souza W, Nurse E, Kuhlmann L, Cook MJ, Grayden DB. Postictal suppression and seizure durations: A patient‐specific, long‐term
iEEG
analysis. Epilepsia 2018; 59:1027-1036. [DOI: 10.1111/epi.14065] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2018] [Indexed: 11/26/2022]
Affiliation(s)
- Daniel E. Payne
- Department of Biomedical Engineering Melbourne School of Engineering The University of Melbourne Parkville Vic. Australia
- Department of Medicine St Vincent's Hospital The University of Melbourne Fitzroy Vic. Australia
| | - Philippa J. Karoly
- Department of Biomedical Engineering Melbourne School of Engineering The University of Melbourne Parkville Vic. Australia
- Department of Medicine St Vincent's Hospital The University of Melbourne Fitzroy Vic. Australia
| | - Dean R. Freestone
- Department of Medicine St Vincent's Hospital The University of Melbourne Fitzroy Vic. Australia
| | - Ray Boston
- Department of Medicine St Vincent's Hospital The University of Melbourne Fitzroy Vic. Australia
| | - Wendyl D'Souza
- Department of Medicine St Vincent's Hospital The University of Melbourne Fitzroy Vic. Australia
| | - Ewan Nurse
- Department of Biomedical Engineering Melbourne School of Engineering The University of Melbourne Parkville Vic. Australia
- Department of Medicine St Vincent's Hospital The University of Melbourne Fitzroy Vic. Australia
| | - Levin Kuhlmann
- Department of Biomedical Engineering Melbourne School of Engineering The University of Melbourne Parkville Vic. Australia
- Department of Medicine St Vincent's Hospital The University of Melbourne Fitzroy Vic. Australia
- Brain Dynamics Unit Centre for Human Psychopharmacology Swinburne University of Technology Hawthorn Vic. Australia
| | - Mark J. Cook
- Department of Biomedical Engineering Melbourne School of Engineering The University of Melbourne Parkville Vic. Australia
- Department of Medicine St Vincent's Hospital The University of Melbourne Fitzroy Vic. Australia
| | - David B. Grayden
- Department of Biomedical Engineering Melbourne School of Engineering The University of Melbourne Parkville Vic. Australia
- Department of Medicine St Vincent's Hospital The University of Melbourne Fitzroy Vic. Australia
| |
Collapse
|
8
|
Clinical Applications of Stochastic Dynamic Models of the Brain, Part I: A Primer. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2017. [PMID: 29528293 DOI: 10.1016/j.bpsc.2017.01.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Biological phenomena arise through interactions between an organism's intrinsic dynamics and stochastic forces-random fluctuations due to external inputs, thermal energy, or other exogenous influences. Dynamic processes in the brain derive from neurophysiology and anatomical connectivity; stochastic effects arise through sensory fluctuations, brainstem discharges, and random microscopic states such as thermal noise. The dynamic evolution of systems composed of both dynamic and random effects can be studied with stochastic dynamic models (SDMs). This article, Part I of a two-part series, offers a primer of SDMs and their application to large-scale neural systems in health and disease. The companion article, Part II, reviews the application of SDMs to brain disorders. SDMs generate a distribution of dynamic states, which (we argue) represent ideal candidates for modeling how the brain represents states of the world. When augmented with variational methods for model inversion, SDMs represent a powerful means of inferring neuronal dynamics from functional neuroimaging data in health and disease. Together with deeper theoretical considerations, this work suggests that SDMs will play a unique and influential role in computational psychiatry, unifying empirical observations with models of perception and behavior.
Collapse
|