1
|
Morina E, Harris DA, Hayes-Skelton SA, Ciaramitaro VM. Altered mechanisms of adaptation in social anxiety: differences in adapting to positive versus negative emotional faces. Cogn Emot 2024; 38:727-747. [PMID: 38427396 DOI: 10.1080/02699931.2024.2314987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/19/2023] [Accepted: 01/16/2024] [Indexed: 03/02/2024]
Abstract
Social anxiety is characterised by fear of negative evaluation and negative perceptual biases; however, the cognitive mechanisms underlying these negative biases are not well understood. We investigated a possible mechanism which could maintain negative biases: altered adaptation to emotional faces. Heightened sensitivity to negative emotions could result from weakened adaptation to negative emotions, strengthened adaptation to positive emotions, or both mechanisms. We measured adaptation from repeated exposure to either positive or negative emotional faces, in individuals high versus low in social anxiety. We quantified adaptation strength by calculating the point of subjective equality (PSE) before and after adaptation for each participant. We hypothesised: (1) weaker adaptation to angry vs happy faces in individuals high in social anxiety, (2) no difference in adaptation to angry vs happy faces in individuals low in social anxiety, and (3) no difference in adaptation to sad vs happy faces in individuals high in social anxiety. Our results revealed a weaker adaptation to angry compared to happy faces in individuals high in social anxiety (Experiment 1), with no such difference in individuals low in social anxiety (Experiment 1), and no difference in adaptation strength to sad vs happy faces in individuals high in social anxiety (Experiment 2).
Collapse
Affiliation(s)
- Erinda Morina
- Developmental and Brain Sciences, Department of Psychology, University of Massachusetts Boston, Boston, MA, USA
| | - Daniel A Harris
- Developmental and Brain Sciences, Department of Psychology, University of Massachusetts Boston, Boston, MA, USA
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Sarah A Hayes-Skelton
- Clinical Psychology, Department of Psychology, University of Massachusetts Boston, Boston, MA, USA
| | - Vivian M Ciaramitaro
- Developmental and Brain Sciences, Department of Psychology, University of Massachusetts Boston, Boston, MA, USA
| |
Collapse
|
2
|
Constant-Varlet C, Nakai T, Prado J. Intergenerational transmission of brain structure and function in humans: a narrative review of designs, methods, and findings. Brain Struct Funct 2024; 229:1327-1348. [PMID: 38710874 DOI: 10.1007/s00429-024-02804-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024]
Abstract
Children often show cognitive and affective traits that are similar to their parents. Although this indicates a transmission of phenotypes from parents to children, little is known about the neural underpinnings of that transmission. Here, we provide a general overview of neuroimaging studies that explore the similarity between parents and children in terms of brain structure and function. We notably discuss the aims, designs, and methods of these so-called intergenerational neuroimaging studies, focusing on two main designs: the parent-child design and the multigenerational design. For each design, we also summarize the major findings, identify the sources of variability between studies, and highlight some limitations and future directions. We argue that the lack of consensus in defining the parent-child transmission of brain structure and function leads to measurement heterogeneity, which is a challenge for future studies. Additionally, multigenerational studies often use measures of family resemblance to estimate the proportion of variance attributed to genetic versus environmental factors, though this estimate is likely inflated given the frequent lack of control for shared environment. Nonetheless, intergenerational neuroimaging studies may still have both clinical and theoretical relevance, not because they currently inform about the etiology of neuromarkers, but rather because they may help identify neuromarkers and test hypotheses about neuromarkers coming from more standard neuroimaging designs.
Collapse
Affiliation(s)
- Charlotte Constant-Varlet
- Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028 - CNRS UMR5292, Université de Lyon, Bron, France.
| | - Tomoya Nakai
- Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028 - CNRS UMR5292, Université de Lyon, Bron, France
- Araya Inc., Tokyo, Japan
| | - Jérôme Prado
- Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028 - CNRS UMR5292, Université de Lyon, Bron, France.
| |
Collapse
|
3
|
Li Q, Zhang X, Yang X, Pan N, He M, Suo X, Li X, Gong Q, Wang S. Pre-COVID resting-state brain activity in the fusiform gyrus prospectively predicts social anxiety alterations during the pandemic. J Affect Disord 2024; 344:380-388. [PMID: 37838273 DOI: 10.1016/j.jad.2023.10.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/24/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND Social anxiety (SA) has been linked to the coronavirus disease 2019 (COVID-19) pandemic, but the neurobiopsychological mechanisms underlying this relationship remain unclear. This study aimed to elucidate the neurofunctional markers for COVID-induced SA development and the potential role of COVID-related posttraumatic stress symptoms (PTSS) in the brain-SA alterations link. METHODS Before the COVID-19 pandemic (T1), 100 general college students underwent resting-state magnetic resonance imaging and behavioral tests. During the period of community-level outbreaks (T2), these students were re-contacted to undergo follow-up behavioral assessments. RESULTS Whole-brain correlation and prediction analyses found that pre-pandemic spontaneous neural activity (measured by fractional amplitude of low-frequency fluctuations) in the right fusiform gyrus (FG) was positively correlated to SA alterations (T2 - T1). Mediation analyses revealed that COVID-specific PTSS mediated the effects of right FG on SA alterations. LIMITATIONS The results should be interpreted carefully because only one-session neuroimaging data in a sample of normal adults were included. CONCLUSIONS The results provide evidence for neurofunctional markers of COVID-induced SA and may help develop targeted brain-based interventions that reduce SA.
Collapse
Affiliation(s)
- Qingyuan Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China; Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xun Zhang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Xun Yang
- School of Public Affairs, Chongqing University, Chongqing, China
| | - Nanfang Pan
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Min He
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Xueling Suo
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Xiao Li
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiyong Gong
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, China.
| | - Song Wang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.
| |
Collapse
|
4
|
Li Q, Zhang X, Yang X, Pan N, Li X, Kemp GJ, Wang S, Gong Q. Pre-COVID brain network topology prospectively predicts social anxiety alterations during the COVID-19 pandemic. Neurobiol Stress 2023; 27:100578. [PMID: 37842018 PMCID: PMC10570707 DOI: 10.1016/j.ynstr.2023.100578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/12/2023] [Accepted: 09/30/2023] [Indexed: 10/17/2023] Open
Abstract
Background Social anxiety (SA) is a negative emotional response that can lead to mental health issues, which some have experienced during the coronavirus disease 2019 (COVID-19) pandemic. Little attention has been given to the neurobiological mechanisms underlying inter-individual differences in SA alterations related to COVID-19. This study aims to identify neurofunctional markers of COVID-specific SA development. Methods 110 healthy participants underwent resting-state magnetic resonance imaging and behavioral tests before the pandemic (T1, October 2019 to January 2020) and completed follow-up behavioral measurements during the pandemic (T2, February to May 2020). We constructed individual functional networks and used graph theoretical analysis to estimate their global and nodal topological properties, then used Pearson correlation and partial least squares correlations examine their associations with COVID-specific SA alterations. Results In terms of global network parameters, SA alterations (T2-T1) were negatively related to pre-pandemic brain small-worldness and normalized clustering coefficient. In terms of nodal network parameters, SA alterations were positively linked to a pronounced degree centrality pattern, encompassing both the high-level cognitive networks (dorsal attention network, cingulo-opercular task control network, default mode network, memory retrieval network, fronto-parietal task control network, and subcortical network) and low-level perceptual networks (sensory/somatomotor network, auditory network, and visual network). These findings were robust after controlling for pre-pandemic general anxiety, other stressful life events, and family socioeconomic status, as well as by treating SA alterations as categorical variables. Conclusions The individual functional network associated with SA alterations showed a disrupted topological organization with a more random state, which may shed light on the neurobiological basis of COVID-related SA changes at the network level.
Collapse
Affiliation(s)
- Qingyuan Li
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xun Zhang
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xun Yang
- School of Public Affairs, Chongqing University, Chongqing, 400044, China
| | - Nanfang Pan
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xiao Li
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Graham J. Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L69 3BX, UK
| | - Song Wang
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Qiyong Gong
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, 361000, China
| |
Collapse
|
5
|
Zhang X, Yang X, Wu B, Pan N, He M, Wang S, Kemp GJ, Gong Q. Large-scale brain functional network abnormalities in social anxiety disorder. Psychol Med 2023; 53:6194-6204. [PMID: 36330833 PMCID: PMC10520603 DOI: 10.1017/s0033291722003439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/06/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Although aberrant brain regional responses are reported in social anxiety disorder (SAD), little is known about resting-state functional connectivity at the macroscale network level. This study aims to identify functional network abnormalities using a multivariate data-driven method in a relatively large and homogenous sample of SAD patients, and assess their potential diagnostic value. METHODS Forty-six SAD patients and 52 demographically-matched healthy controls (HC) were recruited to undergo clinical evaluation and resting-state functional MRI scanning. We used group independent component analysis to characterize the functional architecture of brain resting-state networks (RSNs) and investigate between-group differences in intra-/inter-network functional network connectivity (FNC). Furtherly, we explored the associations of FNC abnormalities with clinical characteristics, and assessed their ability to discriminate SAD from HC using support vector machine analyses. RESULTS SAD patients showed widespread intra-network FNC abnormalities in the default mode network, the subcortical network and the perceptual system (i.e. sensorimotor, auditory and visual networks), and large-scale inter-network FNC abnormalities among those high-order and primary RSNs. Some aberrant FNC signatures were correlated to disease severity and duration, suggesting pathophysiological relevance. Furthermore, intrinsic FNC anomalies allowed individual classification of SAD v. HC with significant accuracy, indicating potential diagnostic efficacy. CONCLUSIONS SAD patients show distinct patterns of functional synchronization abnormalities both within and across large-scale RSNs, reflecting or causing a network imbalance of bottom-up response and top-down regulation in cognitive, emotional and sensory domains. Therefore, this could offer insights into the neurofunctional substrates of SAD.
Collapse
Affiliation(s)
- Xun Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan 610041, China
| | - Xun Yang
- School of Public Affairs, Chongqing University, Chongqing 400044, China
| | - Baolin Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan 610041, China
| | - Nanfang Pan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan 610041, China
| | - Min He
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan 610041, China
| | - Song Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan 610041, China
| | - Graham J. Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian 361000, China
| |
Collapse
|
6
|
Lin H, Bruchmann M, Straube T. Altered Putamen Activation for Social Comparison-Related Feedback in Social Anxiety Disorder: A Pilot Study. Neuropsychobiology 2023; 82:359-372. [PMID: 37717563 DOI: 10.1159/000531762] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 06/13/2023] [Indexed: 09/19/2023]
Abstract
INTRODUCTION Social anxiety disorder (SAD) is characterized by abnormal processing of performance-related social stimuli. Previous studies have shown altered emotional experiences and activations of different sub-regions of the striatum during processing of social stimuli in patients with SAD. However, whether and to what extent social comparisons affect behavioural and neural responses to feedback stimuli in patients with SAD is unknown. MATERIALS AND METHODS To address this issue, emotional ratings and functional magnetic resonance imaging (fMRI) responses were assessed while patients suffering from SAD and healthy controls (HC) were required to perform a choice task and received performance feedback (correct, incorrect, non-informative) that varied in relation to the performance of fictitious other participants (a few, half, or most of others had the same outcome). RESULTS Across all performance feedback conditions, fMRI analyses revealed reduced activations in bilateral putamen when feedback was assumed to be received by only a few compared to half of the other participants in patients with SAD. Nevertheless, analysis of rating data showed a similar modulation of valence and arousal ratings in patients with SAD and HC depending on social comparison-related feedback. CONCLUSIONS This suggests altered neural processing of performance feedback depending on social comparisons in patients with SAD.
Collapse
Affiliation(s)
- Huiyan Lin
- Laboratory for Behavioral and Regional Finance, Guangdong University of Finance, Guangzhou, China
- Institute of Applied Psychology, Guangdong University of Finance, Guangzhou, China
| | - Maximilian Bruchmann
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| |
Collapse
|
7
|
Liu X, Klugah-Brown B, Zhang R, Chen H, Zhang J, Becker B. Pathological fear, anxiety and negative affect exhibit distinct neurostructural signatures: evidence from psychiatric neuroimaging meta-analysis. Transl Psychiatry 2022; 12:405. [PMID: 36151073 PMCID: PMC9508096 DOI: 10.1038/s41398-022-02157-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022] Open
Abstract
Internalizing disorders encompass anxiety, fear and depressive disorders, which exhibit overlap at both conceptual and symptom levels. Given that a neurobiological evaluation is lacking, we conducted a Seed-based D-Mapping comparative meta-analysis including coordinates as well as original statistical maps to determine common and disorder-specific gray matter volume alterations in generalized anxiety disorder (GAD), fear-related anxiety disorders (FAD, i.e., social anxiety disorder, specific phobias, panic disorder) and major depressive disorder (MDD). Results showed that GAD exhibited disorder-specific altered volumes relative to FAD including decreased volumes in left insula and lateral/medial prefrontal cortex as well as increased right putamen volume. Both GAD and MDD showed decreased prefrontal volumes compared to controls and FAD. While FAD showed less robust alterations in lingual gyrus compared to controls, this group presented intact frontal integrity. No shared structural abnormalities were found. Our study is the first to provide meta-analytic evidence for distinct neuroanatomical abnormalities underlying the pathophysiology of anxiety-, fear-related and depressive disorders. These findings may have implications for determining promising target regions for disorder-specific neuromodulation interventions (e.g. transcranial magnetic stimulation or neurofeedback).
Collapse
Affiliation(s)
- Xiqin Liu
- grid.54549.390000 0004 0369 4060The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, 611731 Chengdu, P. R. China
| | - Benjamin Klugah-Brown
- grid.54549.390000 0004 0369 4060The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, 611731 Chengdu, P. R. China
| | - Ran Zhang
- grid.54549.390000 0004 0369 4060The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, 611731 Chengdu, P. R. China
| | - Huafu Chen
- grid.54549.390000 0004 0369 4060The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, 611731 Chengdu, P. R. China
| | - Jie Zhang
- grid.8547.e0000 0001 0125 2443Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, 200433 Shanghai, P. R. China ,grid.8547.e0000 0001 0125 2443Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, 200433 Shanghai, P. R. China
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, 611731, Chengdu, P. R. China.
| |
Collapse
|
8
|
Bas‐Hoogendam JM, Groenewold NA, Aghajani M, Freitag GF, Harrewijn A, Hilbert K, Jahanshad N, Thomopoulos SI, Thompson PM, Veltman DJ, Winkler AM, Lueken U, Pine DS, Wee NJA, Stein DJ, Agosta F, Åhs F, An I, Alberton BAV, Andreescu C, Asami T, Assaf M, Avery SN, Nicholas L, Balderston, Barber JP, Battaglia M, Bayram A, Beesdo‐Baum K, Benedetti F, Berta R, Björkstrand J, Blackford JU, Blair JR, Karina S, Blair, Boehme S, Brambilla P, Burkhouse K, Cano M, Canu E, Cardinale EM, Cardoner N, Clauss JA, Cividini C, Critchley HD, Udo, Dannlowski, Deckert J, Demiralp T, Diefenbach GJ, Domschke K, Doruyter A, Dresler T, Erhardt A, Fallgatter AJ, Fañanás L, Brandee, Feola, Filippi CA, Filippi M, Fonzo GA, Forbes EE, Fox NA, Fredrikson M, Furmark T, Ge T, Gerber AJ, Gosnell SN, Grabe HJ, Grotegerd D, Gur RE, Gur RC, Harmer CJ, Harper J, Heeren A, Hettema J, Hofmann D, Hofmann SG, Jackowski AP, Andreas, Jansen, Kaczkurkin AN, Kingsley E, Kircher T, Kosti c M, Kreifelts B, Krug A, Larsen B, Lee S, Leehr EJ, Leibenluft E, Lochner C, Maggioni E, Makovac E, Mancini M, Manfro GG, Månsson KNT, Meeten F, Michałowski J, Milrod BL, Mühlberger A, Lilianne R, Mujica‐Parodi, Munjiza A, Mwangi B, Myers M, Igor Nenadi C, Neufang S, Nielsen JA, Oh H, Ottaviani C, Pan PM, Pantazatos SP, Martin P, Paulus, Perez‐Edgar K, Peñate W, Perino MT, Peterburs J, Pfleiderer B, Phan KL, Poletti S, Porta‐Casteràs D, Price RB, Pujol J, Andrea, Reinecke, Rivero F, Roelofs K, Rosso I, Saemann P, Salas R, Salum GA, Satterthwaite TD, Schneier F, Schruers KRJ, Schulz SM, Schwarzmeier H, Seeger FR, Smoller JW, Soares JC, Stark R, Stein MB, Straube B, Straube T, Strawn JR, Suarez‐Jimenez B, Boris, Suchan, Sylvester CM, Talati A, Tamburo E, Tükel R, Heuvel OA, Van der Auwera S, Nieuwenhuizen H, Tol M, van Velzen LS, Bort CV, Vermeiren RRJM, Visser RM, Volman I, Wannemüller A, Wendt J, Werwath KE, Westenberg PM, Wiemer J, Katharina, Wittfeld, Wu M, Yang Y, Zilverstand A, Zugman A, Zwiebel HL. ENIGMA-anxiety working group: Rationale for and organization of large-scale neuroimaging studies of anxiety disorders. Hum Brain Mapp 2022; 43:83-112. [PMID: 32618421 PMCID: PMC8805695 DOI: 10.1002/hbm.25100] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/09/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022] Open
Abstract
Anxiety disorders are highly prevalent and disabling but seem particularly tractable to investigation with translational neuroscience methodologies. Neuroimaging has informed our understanding of the neurobiology of anxiety disorders, but research has been limited by small sample sizes and low statistical power, as well as heterogenous imaging methodology. The ENIGMA-Anxiety Working Group has brought together researchers from around the world, in a harmonized and coordinated effort to address these challenges and generate more robust and reproducible findings. This paper elaborates on the concepts and methods informing the work of the working group to date, and describes the initial approach of the four subgroups studying generalized anxiety disorder, panic disorder, social anxiety disorder, and specific phobia. At present, the ENIGMA-Anxiety database contains information about more than 100 unique samples, from 16 countries and 59 institutes. Future directions include examining additional imaging modalities, integrating imaging and genetic data, and collaborating with other ENIGMA working groups. The ENIGMA consortium creates synergy at the intersection of global mental health and clinical neuroscience, and the ENIGMA-Anxiety Working Group extends the promise of this approach to neuroimaging research on anxiety disorders.
Collapse
Affiliation(s)
- Janna Marie Bas‐Hoogendam
- Department of Developmental and Educational PsychologyLeiden University, Institute of Psychology Leiden The Netherlands
- Department of PsychiatryLeiden University Medical Center Leiden The Netherlands
- Leiden Institute for Brain and Cognition Leiden The Netherlands
| | - Nynke A. Groenewold
- Department of Psychiatry & Mental HealthUniversity of Cape Town Cape Town South Africa
| | - Moji Aghajani
- Department of PsychiatryAmsterdam UMC / VUMC Amsterdam The Netherlands
- Department of Research & InnovationGGZ inGeest Amsterdam The Netherlands
| | - Gabrielle F. Freitag
- National Institute of Mental Health, Emotion and Development Branch Bethesda Maryland USA
| | - Anita Harrewijn
- National Institute of Mental Health, Emotion and Development Branch Bethesda Maryland USA
| | - Kevin Hilbert
- Department of PsychologyHumboldt‐Universität zu Berlin Berlin Germany
| | - Neda Jahanshad
- University of Southern California Keck School of MedicineImaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute Los Angeles California USA
| | - Sophia I. Thomopoulos
- University of Southern California Keck School of MedicineImaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute Los Angeles California USA
| | - Paul M. Thompson
- University of Southern California Keck School of MedicineImaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute Los Angeles California USA
| | - Dick J. Veltman
- Department of PsychiatryAmsterdam UMC / VUMC Amsterdam The Netherlands
| | - Anderson M. Winkler
- National Institute of Mental Health, Emotion and Development Branch Bethesda Maryland USA
| | - Ulrike Lueken
- Department of PsychologyHumboldt‐Universität zu Berlin Berlin Germany
| | - Daniel S. Pine
- National Institute of Mental Health, Emotion and Development Branch Bethesda Maryland USA
| | - Nic J. A. Wee
- Department of PsychiatryLeiden University Medical Center Leiden The Netherlands
- Leiden Institute for Brain and Cognition Leiden The Netherlands
| | - Dan J. Stein
- Department of Psychiatry & Mental HealthUniversity of Cape Town Cape Town South Africa
- University of Cape TownSouth African MRC Unit on Risk & Resilience in Mental Disorders Cape Town South Africa
- University of Cape TownNeuroscience Institute Cape Town South Africa
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Wang S, Zhao Y, Wang X, Yang X, Cheng B, Pan N, Suo X, Gong Q. Emotional intelligence mediates the association between middle temporal gyrus gray matter volume and social anxiety in late adolescence. Eur Child Adolesc Psychiatry 2021; 30:1857-1869. [PMID: 33011842 DOI: 10.1007/s00787-020-01651-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 09/18/2020] [Indexed: 12/17/2022]
Abstract
As a common mental health problem, social anxiety refers to the fear and avoidance of interacting in social or performance situations, which plays a crucial role in many health and social problems. Although a growing body of studies has explored the neuroanatomical alterations related to social anxiety in clinical patients, far fewer have examined the association between social anxiety and brain morphology in the general population, which may help us understand the neural underpinnings of social anxiety more comprehensively. Here, utilizing a voxel-based morphometry approach via structural magnetic resonance imaging, we investigated brain gray matter correlates of social anxiety in 231 recent graduates of the same high school grade. We found that social anxiety was positively associated with gray matter volume in the right middle temporal gyrus (MTG), which is a core brain area for cognitive processing of emotions and feelings. Critically, emotional intelligence mediated the impact of right MTG volume on social anxiety. Notably, our results persisted even when controlling for the effects of general anxiety and depression. Altogether, our research reveals right MTG gray matter volume as a neurostructural correlate of social anxiety in a general sample of adolescents and suggests a potential indirect effect of emotional intelligence on the association between gray matter volume and social anxiety.
Collapse
Affiliation(s)
- Song Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.,Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Yajun Zhao
- School of Education and Psychology, Southwest Minzu University, Chengdu, China
| | - Xiuli Wang
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Xun Yang
- School of Public Affairs, Chongqing University, Chongqing, China
| | - Bochao Cheng
- Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Nanfang Pan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Xueling Suo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China. .,Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China. .,Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
10
|
Roelofs EF, Bas-Hoogendam JM, van Ewijk H, Ganjgahi H, van der Werff SJA, Barendse MEA, Westenberg PM, Vermeiren RRJM, van der Wee NJA. Investigating microstructure of white matter tracts as candidate endophenotypes of Social Anxiety Disorder - Findings from the Leiden Family Lab study on Social Anxiety Disorder (LFLSAD). NEUROIMAGE-CLINICAL 2020; 28:102493. [PMID: 33395984 PMCID: PMC7691726 DOI: 10.1016/j.nicl.2020.102493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Social anxiety disorder (SAD) is a mental illness with a complex, partially genetic background. Differences in characteristics of white matter (WM) microstructure have been reported in patients with SAD compared to healthy controls. Also, WM characteristics are moderately to highly heritable. Endophenotypes are measurable characteristics on the road from genotype to phenotype, putatively reflective of genetically based disease mechanisms. In search of candidate endophenotypes of SAD we used a unique sample of SAD patients and their family members of two generations to explore microstructure of WM tracts as candidate endophenotypes. We focused on two endophenotype criteria: co-segregation with social anxiety within the families, and heritability. METHODS Participants (n = 94 from 8 families genetically vulnerable for SAD) took part in the Leiden Family Lab Study on Social Anxiety Disorder (LFLSAD). We employed tract-based spatial statistics to examine structural WM characteristics, being fractional anisotropy (FA), axial diffusivity (AD), mean diffusivity (MD) and radial diffusivity (RD), in three a-priori defined tracts of interest: uncinate fasciculus (UF), superior longitudinal fasciculus (SLF) and inferior longitudinal fasciculus (ILF). Associations with social anxiety symptoms and heritability were estimated. RESULTS Increased FA in the left and right SLF co-segregated with symptoms of social anxiety. These findings were coupled with decreased RD and MD. All characteristics of WM microstructure were estimated to be at least moderately heritable. CONCLUSION These findings suggest that alterations in WM microstructure in the SLF could be candidate endophenotypes of SAD, as they co-segregated within families genetically vulnerable for SAD and are heritable. These findings further elucidate the genetic susceptibility to SAD and improve our understanding of the overall etiology.
Collapse
Affiliation(s)
- Eline F Roelofs
- Curium-LUMC, Department of Child and Adolescent Psychiatry, Leiden University Medical Center, Leiden, The Netherlands; Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands; Leiden Institute for Brain and Cognition, Leiden, The Netherlands.
| | - Janna Marie Bas-Hoogendam
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands; Leiden Institute for Brain and Cognition, Leiden, The Netherlands; Developmental and Educational Psychology, Institute of Psychology, Leiden University, Leiden, The Netherlands.
| | - Hanneke van Ewijk
- Curium-LUMC, Department of Child and Adolescent Psychiatry, Leiden University Medical Center, Leiden, The Netherlands; Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands.
| | - Habib Ganjgahi
- Department of Statistics, University of Oxford, Oxford, United Kingdom.
| | - Steven J A van der Werff
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands; Leiden Institute for Brain and Cognition, Leiden, The Netherlands.
| | | | - P Michiel Westenberg
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands; Developmental and Educational Psychology, Institute of Psychology, Leiden University, Leiden, The Netherlands.
| | - Robert R J M Vermeiren
- Curium-LUMC, Department of Child and Adolescent Psychiatry, Leiden University Medical Center, Leiden, The Netherlands; Leiden Institute for Brain and Cognition, Leiden, The Netherlands.
| | - Nic J A van der Wee
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands; Leiden Institute for Brain and Cognition, Leiden, The Netherlands.
| |
Collapse
|
11
|
Crawford B, Muhlert N, MacDonald G, Lawrence AD. Brain structure correlates of expected social threat and reward. Sci Rep 2020; 10:18010. [PMID: 33093488 PMCID: PMC7582181 DOI: 10.1038/s41598-020-74334-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/24/2020] [Indexed: 12/19/2022] Open
Abstract
Prospection (mentally simulating future events) generates emotionally-charged mental images that guide social decision-making. Positive and negative social expectancies-imagining new social interactions to be rewarding versus threatening-are core components of social approach and avoidance motivation, respectively. Interindividual differences in such positive and negative future-related cognitions may be underpinned by distinct neuroanatomical substrates. Here, we asked 100 healthy adults to vividly imagine themselves in a novel self-relevant event that was ambiguous with regards to possible social acceptance or rejection. During this task we measured participants' expectancies for social reward (anticipated feelings of social connection) or threat (anticipated feelings of rejection). On a separate day they underwent structural MRI; voxel-based morphometry was used to explore the relation between social reward and threat expectancies and regional grey matter volumes (rGMV). Increased rGMV in key default-network regions involved in prospection, socio-emotional cognition, and subjective valuation, including ventromedial prefrontal cortex, correlated with both higher social reward and lower social threat expectancies. In contrast, social threat expectancies uniquely correlated with rGMV of regions involved in social attention (posterior superior temporal sulcus, pSTS) and interoception (somatosensory cortex). These findings provide novel insight into the neurobiology of future-oriented cognitive-affective processes critical to adaptive social functioning.
Collapse
Affiliation(s)
- Bonni Crawford
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK.
| | - Nils Muhlert
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Geoff MacDonald
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Andrew D Lawrence
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| |
Collapse
|
12
|
Zhang X, Luo Q, Wang S, Qiu L, Pan N, Kuang W, Lui S, Huang X, Yang X, Kemp GJ, Gong Q. Dissociations in cortical thickness and surface area in non-comorbid never-treated patients with social anxiety disorder. EBioMedicine 2020; 58:102910. [PMID: 32739867 PMCID: PMC7393569 DOI: 10.1016/j.ebiom.2020.102910] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/30/2020] [Accepted: 07/10/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Abnormalities of functional activation and cortical volume in brain regions involved in the neurobiology of fear and anxiety have been implicated in the pathophysiology of social anxiety disorder (SAD). However, few studies have performed separate measurements of cortical thickness (CT) and cortical surface area (CSA) which reflect different neurobiological processes. Thus, we aimed to explore the cortical morphological anomaly separately in SAD using FreeSurfer. METHODS High-resolution structural magnetic resonance images were obtained from 32 non-comorbid never-treated adult SAD patients and 32 demography-matched healthy controls. Cortical morphometry indices including CT and CSA were separately determined by FreeSurfer and compared between the two groups via whole-brain vertex-wise analysis, while partial correlation analysis using age and gender as covariates were conducted. FINDINGS The patients with SAD showed decreased CT but increased CSA near-symmetrically in the bilateral prefrontal cortex (PFC) of the dorsolateral, dorsomedial, and ventromedial subdivisions, as well as the right lateral orbitofrontal cortex; increased CSA in the left superior temporal gyrus (STG) was also observed in SAD. The CSA in the left PFC was negatively correlated with the disease duration. INTERPRETATION As the balloon model hypothesis suggests that the tangentially stretched cortex may cause dissociations in cortical morphometry and affect the cortical capacity for information processing, our findings of dissociated morphological alterations in the PFC and cortical expansion in the STG may reflect the morphological alterations of the functional reorganization in those regions, and highlight the important role of those structures in the pathophysiology and neurobiology of SAD. FUNDING This study was funded by the National Natural Science Foundation of China (Grant Nos. 31700964, 31800963, 81621003, and 81820108018).
Collapse
Affiliation(s)
- Xun Zhang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu 610041, China
| | - Qiang Luo
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu 610041, China
| | - Song Wang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu 610041, China
| | - Lihua Qiu
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu 610041, China; Department of Radiology, The Second People's Hospital of Yibin, Yibin 644000, China
| | - Nanfang Pan
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu 610041, China
| | - Weihong Kuang
- Department of Psychiatry, State Key Lab of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, PR, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xun Yang
- School of Public Affairs, Chongqing University, Chongqing 400044, China.
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu 610041, China; Department of Psychology, School of Public Administration, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
13
|
Bas-Hoogendam JM, Westenberg PM. Imaging the socially-anxious brain: recent advances and future prospects. F1000Res 2020; 9:F1000 Faculty Rev-230. [PMID: 32269760 PMCID: PMC7122428 DOI: 10.12688/f1000research.21214.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/23/2020] [Indexed: 12/20/2022] Open
Abstract
Social anxiety disorder (SAD) is serious psychiatric condition with a genetic background. Insight into the neurobiological alterations underlying the disorder is essential to develop effective interventions that could relieve SAD-related suffering. In this expert review, we consider recent neuroimaging work on SAD. First, we focus on new results from magnetic resonance imaging studies dedicated to outlining biomarkers of SAD, including encouraging findings with respect to structural and functional brain alterations associated with the disorder. Furthermore, we highlight innovative studies in the field of neuroprediction and studies that established the effects of treatment on brain characteristics. Next, we describe novel work aimed to delineate endophenotypes of SAD, providing insight into the genetic susceptibility to develop the disorder. Finally, we outline outstanding questions and point out directions for future research.
Collapse
Affiliation(s)
- Janna Marie Bas-Hoogendam
- Developmental and Educational Psychology, Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333 AK Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, c/o LUMC, postzone C2-S, P.O.Box 9600, 2300 RC Leiden, The Netherlands
- Department of Psychiatry, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - P. Michiel Westenberg
- Developmental and Educational Psychology, Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333 AK Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, c/o LUMC, postzone C2-S, P.O.Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
14
|
Smith AR, Nelson EE, Kircanski K, Rappaport BI, Do QB, Leibenluft E, Pine DS, Jarcho JM. Social anxiety and age are associated with neural response to social evaluation during adolescence. Dev Cogn Neurosci 2020; 42:100768. [PMID: 32077442 PMCID: PMC7030986 DOI: 10.1016/j.dcn.2020.100768] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 01/14/2020] [Accepted: 01/31/2020] [Indexed: 11/15/2022] Open
Abstract
Adolescence is a sensitive period for the development of adaptive social behaviors and social anxiety, possibly due to aspects of brain development. However, research is needed to examine interactions among age, social anxiety, and social dynamics previously shown to influence neural responding. The current functional magnetic resonance imaging (fMRI) study examines brain function in 8-18 year-olds with varying levels of social anxiety. Interactions are examined among age, social anxiety, and two key task factors: valence and predictability of social interactions. Results demonstrate age, social anxiety severity, and each of the two key task-based factors interact to predict neural response in the caudate, middle and superior temporal gyri. In particular, among adolescents less-than 13 years of age, higher social anxiety predicted greater responding to unpredictable negative evaluations. However, in this same age group, the opposite pattern emerged during receipt of unpredictable positive evaluations, with less neural response in more anxious youth. Adolescents aged 13 and older overall showed less robust effects. We discuss these findings in terms of age- and anxiety-related differences in socioemotional processing.
Collapse
Affiliation(s)
- A R Smith
- Emotion and Development Branch, National Institute of Mental Health, Bethesda, MD United States.
| | - E E Nelson
- Center for Biobehavioral Health, Research Institute at Nationwide Children's Hospital, Department of Pediatrics, College of Medicine, Ohio State University, Columbus, OH United States
| | - K Kircanski
- Emotion and Development Branch, National Institute of Mental Health, Bethesda, MD United States
| | - B I Rappaport
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, Missouri United States
| | - Q B Do
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania United States
| | - E Leibenluft
- Emotion and Development Branch, National Institute of Mental Health, Bethesda, MD United States
| | - D S Pine
- Emotion and Development Branch, National Institute of Mental Health, Bethesda, MD United States
| | - J M Jarcho
- Department of Psychology, Temple University, Philadelphia, Pennsylvania United States
| |
Collapse
|
15
|
Bas-Hoogendam JM, van Steenbergen H, van der Wee NJA, Westenberg PM. Amygdala hyperreactivity to faces conditioned with a social-evaluative meaning- a multiplex, multigenerational fMRI study on social anxiety endophenotypes. NEUROIMAGE-CLINICAL 2020; 26:102247. [PMID: 32247196 PMCID: PMC7125356 DOI: 10.1016/j.nicl.2020.102247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 12/31/2022]
Abstract
Social anxiety disorder (SAD) runs in families, but the neurobiological pathways underlying the genetic susceptibility towards SAD are largely unknown. Here, we employed an endophenotype approach, and tested the hypothesis that amygdala hyperreactivity to faces conditioned with a social-evaluative meaning is a candidate SAD endophenotype. We used data from the multiplex, multigenerational Leiden Family Lab study on Social Anxiety Disorder (eight families, n = 105) and investigated amygdala activation during a social-evaluative conditioning paradigm with high ecological validity in the context of SAD. Three neutral faces were repeatedly presented in combination with socially negative, positive or neutral sentences. We focused on two endophenotype criteria: co-segregation of the candidate endophenotype with the disorder within families, and heritability. Analyses of the fMRI data were restricted to the amygdala as a region of interest, and association analyses revealed that bilateral amygdala hyperreactivity in response to the conditioned faces co-segregated with social anxiety (SA; continuous measure) within the families; we found, however, no relationship between SA and brain activation in response to more specific fMRI contrasts. Furthermore, brain activation in a small subset of voxels within these amygdala clusters was at least moderately heritable. Taken together, these findings show that amygdala engagement in response to conditioned faces with a social-evaluative meaning qualifies as a neurobiological candidate endophenotype of social anxiety. Thereby, these data shed light on the genetic vulnerability to develop SAD.
Collapse
Affiliation(s)
- Janna Marie Bas-Hoogendam
- Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333 AK Leiden, The Netherlands; Department of Psychiatry, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; Leiden Institute for Brain and Cognition, Leiden, The Netherlands.
| | - Henk van Steenbergen
- Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333 AK Leiden, The Netherlands; Leiden Institute for Brain and Cognition, Leiden, The Netherlands.
| | - Nic J A van der Wee
- Department of Psychiatry, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; Leiden Institute for Brain and Cognition, Leiden, The Netherlands.
| | - P Michiel Westenberg
- Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333 AK Leiden, The Netherlands; Leiden Institute for Brain and Cognition, Leiden, The Netherlands.
| |
Collapse
|
16
|
Bas‐Hoogendam JM, van Steenbergen H, Blackford JU, Tissier RLM, van der Wee NJA, Westenberg PM. Impaired neural habituation to neutral faces in families genetically enriched for social anxiety disorder. Depress Anxiety 2019; 36:1143-1153. [PMID: 31600020 PMCID: PMC6916167 DOI: 10.1002/da.22962] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/22/2019] [Accepted: 08/24/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Social anxiety disorder (SAD) is an incapacitating disorder running in families. Previous work associated social fearfulness with a failure to habituate, but the habituation response to neutral faces has, as of yet, not been investigated in patients with SAD and their family members concurrently. Here, we examined whether impaired habituation to neutral faces is a putative neurobiological endophenotype of SAD by using data from the multiplex and multigenerational Leiden Family Lab study on SAD. METHODS Participants (n = 110; age, 9.2 - 61.5 years) performed a habituation paradigm involving neutral faces, as these are strong social stimuli with an ambiguous meaning. We used functional magnetic resonance imaging data to investigate whether brain activation related to habituation was associated with the level of social anxiety within the families. Furthermore, the heritability of the neural habituation response was estimated. RESULTS Our data revealed a relationship between impaired habituation to neutral faces and social anxiety in the right hippocampus and right amygdala. In addition, our data indicated that this habituation response displayed moderate - to-moderately high heritability in the right hippocampus. CONCLUSION The present results provide support for altered habituation as a candidate SAD endophenotype; impaired neural habitation cosegregrated with the disorder within families and was heritable. These findings shed light on the genetic susceptibility to SAD.
Collapse
Affiliation(s)
- Janna M. Bas‐Hoogendam
- Developmental and Educational Psychology, Institute of PsychologyLeiden UniversityLeidenThe Netherlands,Department of PsychiatryLeiden University Medical CenterLeidenThe Netherlands,Leiden Institute for Brain and CognitionLeidenThe Netherlands
| | - Henk van Steenbergen
- Leiden Institute for Brain and CognitionLeidenThe Netherlands,Cognitive Psychology Unit, Institute of PsychologyUniversity of LeidenLeidenThe Netherlands
| | - Jennifer Urbano Blackford
- Department of Psychiatry and Behavioral SciencesVanderbilt University Medical CenterNashvilleTennessee,Department of Veterans Affairs Medical CenterResearch Service, Research and DevelopmentNashvilleTennessee
| | - Renaud L. M. Tissier
- Developmental and Educational Psychology, Institute of PsychologyLeiden UniversityLeidenThe Netherlands
| | - Nic J. A. van der Wee
- Department of PsychiatryLeiden University Medical CenterLeidenThe Netherlands,Leiden Institute for Brain and CognitionLeidenThe Netherlands
| | - P. Michiel Westenberg
- Developmental and Educational Psychology, Institute of PsychologyLeiden UniversityLeidenThe Netherlands,Leiden Institute for Brain and CognitionLeidenThe Netherlands
| |
Collapse
|